# Module LayoutConstraints

Require Import LibLists.
Require Import Maps.
Require Import Cplusconcepts.
Require Import Coqlib.
Require Import Tactics.
Require Import CplusWf.
Require Import LibMaps.

Status convention for propositions:
• Remark: not specific to C++ formalization
• Fact: specific to C++ formalization, intended for internal use only
• Lemma: specific to C++ formalization
• Theorem: theorems of the POPL'11 paper

# General-purpose tools

Ltac try_dependent_revert i :=
match goal with
| h: ?P |- _ =>
match P with
| context [ i ] => revert h
end
end.
Ltac dependent_revert i :=
repeat try_dependent_revert i;
revert i.

Remark option_eq_dec : forall (T : Type) (T_eq_dec : forall t1 t2 : T, {t1 = t2} + {t1 <> t2}),
forall l1 l2 : option T, {l1 = l2} + {l1 <> l2}.
Proof.
repeat decide equality.
Qed.

Remark prod_eq_dec : forall (U : Type) (U_eq_dec : forall u1 u2 : U, {u1 = u2} + {u1 <> u2})
(V : Type) (V_eq_dec : forall v1 v2 : V, {v1 = v2} + {v1 <> v2})
(p1 p2 : U * V), {p1 = p2} + {p1 <> p2}.
Proof.
repeat decide equality.
Qed.

Remark Zpos_positive : forall n, 0 < Zpos n.
Proof.
intros ; compute ; trivial.
Qed.

Remark Zpos_minus_1_nonnegative : forall n, 0 <= Zpos n - 1.
Proof.
intros.
generalize (Zpos_positive n).
omega.
Qed.

Remark Zmult_ge : forall a b, 0 <= a -> 0 <= b -> 0 <= a * b.
Proof.
intros.
replace 0 with (0 * 0) by reflexivity.
apply Zmult_le_compat ; omega.
Qed.

Remark Zmult_gt : forall a b, 0 < a -> 0 < b -> 0 < a * b.
Proof.
intros.
assert (0 < a) by omega.
assert (0 < b) by omega.
cut (0 < (a * b)) ; [ omega | ].
replace 0 with (0 * 0) by reflexivity.
eapply Zmult_lt_compat ; omega.
Qed.

Remark Zmult_distr_1: forall x y, x * y + y = (x + 1) * y.
Proof.
intros.
rewrite Zmult_plus_distr_l.
omega.
Qed.

Remark array_cells_disjoint : forall i j, i <> j -> forall s, 0 < s ->
i * s + s <= j * s \/ j * s + s <= i * s.
Proof.
intros.
repeat rewrite Zmult_distr_1.
cut (i + 1 <= j \/ j + 1 <= i).
inversion 1.
left.
eapply Zmult_le_compat_r.
assumption.
omega.
right.
eapply Zmult_le_compat_r.
assumption.
omega.
omega.
Qed.

Remark distinct_paths_cases : forall (A : Type) (aeq : forall a1 a2 : A, {a1 = a2} + {a1 <> a2}) (l1 l2 : _ A),
(length l1 <= length l2)%nat ->
l1 <> l2 ->
{a : _ & {l2' | l2 = l1 ++ a :: l2'}} +
{l : _ & { a1 : _ & { a2 : _ & { l1' : _ & { l2' |
l1 = l ++ a1 :: l1' /\ l2 = l ++ a2 :: l2' /\ a1 <> a2}}}}}.
Proof.
induction l1 ; simpl.
destruct l2 ; simpl.
congruence.
intros _ _.
left.
esplit.
esplit.
reflexivity.
destruct l2 ; simpl.
intro.
intros until 2.
destruct (aeq a a0).
subst.
assert (length l1 <= length l2)%nat by omega.
assert (l1 <> l2) by congruence.
destruct (IHl1 _ H1 H2).
destruct s.
destruct s.
subst.
left.
esplit.
esplit.
reflexivity.
destruct s.
destruct s.
destruct s.
destruct s.
destruct s.
destruct a.
destruct H4.
subst.
right.
exists (a0 :: x).
esplit.
esplit.
esplit.
esplit.
split.
simpl.
reflexivity.
split.
simpl.
reflexivity.
assumption.
right.
exists (@nil A).
esplit.
esplit.
esplit.
esplit.
split.
simpl.
reflexivity.
split.
simpl.
reflexivity.
assumption.
Qed.

Remark distinct_lists_rect : forall (A : Type) (aeq : forall a1 a2 : A, {a1 = a2} + {a1 <> a2}) (P : list A -> list A -> Type),
(forall l1 l2, P l1 l2 -> P l2 l1) ->
(forall l1 a l2', P l1 (l1 ++ a :: l2')) ->
(forall l a1 l1' a2 l2', a1 <> a2 -> P (l ++ a1 :: l1') (l ++ a2 :: l2')) ->
forall l1 l2, l1 <> l2 -> P l1 l2.
Proof.
intros until 4.
cut (forall l1 l2, (length l1 <= length l2)%nat -> l1 <> l2 -> P l1 l2).
intros.
destruct (le_lt_dec (length l1) (length l2)).
auto.
apply X.
apply X2.
omega.
congruence.
intros.
destruct (distinct_paths_cases aeq H H0); invall; subst; auto.
Qed.

# Requirements for a class to be empty (4.3)

Module Is_empty.

Section Is_empty.

Variable A : ATOM.t.

Variable hierarchy : PTree.t (Class.t A).

Variable is_empty : ident -> Prop.

Record prop : Prop := intro {
defined: forall i, is_empty i -> hierarchy ! i <> None;
fields_struct: forall i,
is_empty i -> forall c,
hierarchy ! i = Some c ->
forall f, In f (Class.fields c) -> exists e, exists he, FieldSignature.type f = FieldSignature.Struct e he
;
fields_struct_empty: forall i,
is_empty i ->
forall c, hierarchy ! i = Some c ->
forall f, In f (Class.fields c) ->
forall e he, FieldSignature.type f = FieldSignature.Struct e he ->
is_empty e
;
bases_empty : forall i,
is_empty i ->
forall c, hierarchy ! i = Some c ->
forall h b, In (h, b) (Class.super c) ->
is_empty b
}.

Hypothesis Hprop : prop.

Lemma no_scalar_fields : forall ci,
is_empty ci -> forall c,
hierarchy ! ci = Some c -> forall f,
In f (Class.fields c) -> forall t,
FieldSignature.type f = FieldSignature.Scalar t ->
False.
Proof.
intros.
generalize (fields_struct Hprop H H0 H1).
destruct 1.
invall.
congruence.
Qed.

Lemma path_to : forall to via from by
(Hpath : path hierarchy to via from by)
(H_empty_from : is_empty from),
is_empty to.
Proof.
intros.
generalize (path_path2 Hpath).
clear Hpath.
intro Hpath.
revert H_empty_from.
induction Hpath ; intros; eauto using bases_empty.
Qed.

Lemma path_from : forall l h to from,
path hierarchy to l from h ->
(is_empty to -> False) ->
(is_empty from -> False).
Proof.
intros; eauto using path_to.
Qed.

Lemma array_path_to : forall from zfrom to zto p,
valid_array_path hierarchy to zto from zfrom p ->
is_empty from ->
is_empty to
.
Proof.
induction 1; subst; intros; eauto using fields_struct_empty, path_to.
Qed.

Lemma array_path_from : forall from zfrom to zto p,
valid_array_path hierarchy to zto from zfrom p ->
(is_empty to -> False) ->
is_empty from -> False
.
Proof.
intros; eauto using array_path_to.
Qed.

Lemma relative_pointer_to : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
is_empty afrom ->
is_empty pto.
Proof.
inversion 1; subst; intros; eauto using array_path_to, path_to.
Qed.

Lemma relative_pointer_from : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
(is_empty pto -> False) ->
is_empty afrom -> False.
Proof.
intros; eauto using relative_pointer_to.
Qed.

End Is_empty.

End Is_empty.

Section OPTIM.

Variable A : ATOM.t.

Record OPTIM : Type := Optim {
is_empty : PTree.t (Class.t A) -> ident -> Prop;
is_empty_prop : forall hierarchy, Is_empty.prop hierarchy (is_empty hierarchy);
is_dynamic : PTree.t (Class.t A) -> ident -> Prop;
4.3
dynamic_nonempty : forall hierarchy id, is_dynamic hierarchy id -> is_empty hierarchy id -> False
}.

End OPTIM.

# Platform-dependent parameters (4.1)

Section PLATFORM.

Variable A : ATOM.t.

Record PLATFORM : Type := Platform {
typ_size : Typ.t A -> Z;
typ_size_positive : forall ty, 0 < typ_size ty;
typ_align : Typ.t A -> Z;
typ_align_positive : forall ty, 0 < typ_align ty;
dynamic_type_data_size : Z;
dynamic_type_data_size_low_bound : 0 < dynamic_type_data_size;
dynamic_type_data_align : Z;
dynamic_type_data_align_low_bound : 0 < dynamic_type_data_align
}.

End PLATFORM.

Section Offsets.

Variable A : ATOM.t.
Variable OP : OPTIM A.
Variable PF : PLATFORM A.

# What a layout algorithm is expected to compute (4.2)

Record t : Type := make {
pbase
primary_base : option ident;
dnvboff
non_virtual_direct_base_offsets : PTree.t Z;
fboundary
own_fields_offset : Z;
foff
field_offsets : list (FieldSignature.t A * Z);
nvdsize
non_virtual_data_size : Z;
nvsize
non_virtual_size : Z;
nvalign
non_virtual_align : Z;
vboff
virtual_base_offsets : PTree.t Z;
dsize
data_size : Z;
size
size : Z;
align
align : Z
}.

Section OF.

Variable offsets : PTree.t t.

# Computation of offsets (4.4)

Function field_data_size (f : FieldSignature.t A) : option Z :=
match FieldSignature.type f with
| FieldSignature.Scalar ty => Some (typ_size PF ty)
| FieldSignature.Struct c n =>
match offsets ! c with
| Some o => Some ((Zpos n - 1) * size o + data_size o)
| None => None
end
end.

Function field_size (f : FieldSignature.t A) : option Z :=
match FieldSignature.type f with
| FieldSignature.Scalar ty => Some (typ_size PF ty)
| FieldSignature.Struct c n =>
match offsets ! c with
| Some o => Some ((Zpos n - 1) * size o + size o)
| None => None
end
end.

Function field_align (f : FieldSignature.t A) : option Z :=
match FieldSignature.type f with
| FieldSignature.Scalar ty => Some (typ_align PF ty)
| FieldSignature.Struct c n =>
match offsets ! c with
| Some o => Some (align o)
| _ => None
end
end.

Function non_virtual_subobject_offset (accu : Z) (l : list ident) {struct l} : option Z :=
match l with
| nil => None
| a :: l' =>
match l' with
| nil => Some accu
| b :: _ =>
match offsets ! a with
| None => None
| Some o =>
match (non_virtual_direct_base_offsets o) ! b with
| Some of => non_virtual_subobject_offset (accu + of) l'
| _ => None
end
end
end
end.

Fact non_virtual_subobject_offset_app : forall l1 a accu accu',
non_virtual_subobject_offset accu (l1 ++ a :: nil) = Some accu' ->
forall l2,
non_virtual_subobject_offset accu (l1 ++ a :: l2) = non_virtual_subobject_offset accu' (a :: l2)
.
Proof.
induction l1.
simpl.
injection 1 ; intros ; subst.
reflexivity.
intros.
simpl in H.
cut (forall v, non_virtual_subobject_offset accu' (a0 :: l2) = v -> non_virtual_subobject_offset accu ((a :: l1) ++ a0 :: l2) =v).
intros ; eauto.
intros.
change ((a :: l1) ++ a0 :: l2) with
(a :: (l1 ++ a0 :: l2)).
replace (l1 ++ a0 :: l2) with ((l1 ++ a0 :: nil) ++ l2).
revert H.
case_eq (l1 ++ a0 :: nil).
intros.
apply False_rect.
destruct l1 ; simpl in * ; discriminate.
intros until 1.
rewrite <- H.
simpl.
replace ((l1 ++ a0 :: nil) ++ l2) with (i :: l ++ l2).
change (i :: l ++ l2) with ((i :: l) ++ l2).
rewrite <- H.
replace ((l1 ++ a0 :: nil) ++ l2) with (l1 ++ a0 :: l2).
destruct (offsets ! a).
destruct ((non_virtual_direct_base_offsets t0) ! i).
rewrite <- H0.
intros.
eauto.
congruence.
congruence.
rewrite app_ass.
reflexivity.
rewrite H.
reflexivity.
rewrite app_ass.
reflexivity.
Qed.

Fact non_virtual_subobject_offset_app_recip : forall l1 a l2 accu accu',
non_virtual_subobject_offset accu (l1 ++ a :: l2) = Some accu' ->
exists accu1,
non_virtual_subobject_offset accu (l1 ++ a :: nil) = Some accu1 /\
non_virtual_subobject_offset accu1 (a :: l2) = Some accu'
.
Proof.
induction l1.
intros a l2 accu accu'.
change (nil ++ a :: l2) with (a :: l2).
intro.
exists accu.
split.
reflexivity.
assumption.
intros.
change ((a :: l1) ++ a0 :: l2) with (a :: l1 ++ a0 :: l2) in H.
change ((a :: l1) ++ a0 :: nil) with (a :: l1 ++ a0 :: nil).
simpl in H.
case_eq (l1 ++ a0 :: nil).
intros.
destruct l1 ; simpl in H0 ; discriminate.
intros.
assert (l1 ++ a0 :: l2 = i :: l ++ l2).
change (a0 :: l2) with ((a0 :: nil) ++ l2).
rewrite <- app_ass.
rewrite H0.
reflexivity.
rewrite H1 in H.
rewrite <- H1 in H.
case_eq ((offsets) ! a).
intros.
rewrite H2 in H.
case_eq ((non_virtual_direct_base_offsets t0) ! i).
intros.
rewrite H3 in H.
destruct (IHl1 _ _ _ _ H).
destruct H4.
esplit.
split.
2 : eassumption.
rewrite <- H0.
simpl.
rewrite H0.
rewrite H2.
rewrite H3.
congruence.
intros.
rewrite H3 in H.
discriminate.
intros.
rewrite H2 in H.
discriminate.
Qed.

Fact non_virtual_subobject_offset_rewrite : forall l accu v,
non_virtual_subobject_offset accu l = Some v ->
forall accu',
non_virtual_subobject_offset accu' l = Some (v + accu' - accu).
Proof.
intro.
rewrite <- (rev_involutive l).
induction (rev l).
simpl.
congruence.
simpl.
intros.
destruct l0.
simpl in *.
injection H.
intros ; subst.
f_equal.
omega.
simpl in *.
rewrite app_ass in *.
simpl in *.
destruct (non_virtual_subobject_offset_app_recip H).
destruct H0.
generalize (IHl0 _ _ H0 accu').
intros.
rewrite (non_virtual_subobject_offset_app H2).
revert H1.
simpl.
destruct ((offsets) ! i) ; try congruence.
destruct ((non_virtual_direct_base_offsets t0) ! a) ; try congruence.
injection 1 ; intros ; subst.
f_equal.
omega.
Qed.

Function subobject_offset (ci : ident) (l : list ident) {struct l} : option Z :=
match offsets ! ci with
| None => None
| Some o =>
match l with
| nil => None
| b :: _ =>
match (virtual_base_offsets o) ! b with
| None => None
| Some of => non_virtual_subobject_offset of l
end
end
end.

Function array_path_offset (accu : Z) (ci : ident) (l : array_path A) {struct l} : option Z :=
match l with
| nil => Some accu
| (z, (_, p), f) :: l' =>
match offsets ! ci with
| Some o =>
match subobject_offset ci p with
| Some off =>
match Cplusconcepts.last p with
| Some clast =>
match offsets ! clast with
| Some olast =>
match FieldSignature.type f with
| FieldSignature.Struct ci'0 _ =>
match assoc (FieldSignature.eq_dec (A := A)) f (field_offsets olast) with
| Some fo =>
array_path_offset (accu + z * size o + off + fo) ci'0 l'
| _ => None
end
| _ => None
end
| _ => None
end
| _ => None
end
| _ => None
end
| _ => None
end
end.

Fact array_path_offset_rewrite : forall accu ci l1 z1,
array_path_offset accu ci l1 = Some z1 ->
forall accu',
array_path_offset accu' ci l1 = Some (z1 + accu' - accu)
.
Proof.
intros until 1.
functional induction (array_path_offset accu ci l1 ) ; try congruence.
simpl.
injection H ; intros ; subst.
f_equal.
omega.
simpl.
rewrite e0.
rewrite e1.
rewrite e2.
rewrite e3.
rewrite e4.
rewrite e5.
intros.
rewrite (IHo H).
f_equal.
omega.
Qed.

Function relative_pointer_offset (afrom ato : ident) (apath: array_path A) (i : Z) (p : list ident) : option Z :=
match array_path_offset 0 afrom apath with
| Some z1 =>
match offsets ! ato with
| None => None
| Some ofto =>
match subobject_offset ato p with
| Some z2 => Some (z1 + i * size ofto + z2)
| _ => None
end
end
| _ => None
end.

# Alternate definition for pointers (relative to a given structure array)

Not useful for casts, but useful to reason with offsets. This is a nasty thing (partial induction). Cf. proof of Theorem 1.

Inductive relative_pointer_alt: Type :=
| relative_pointer_alt_intro
(i : Z) (p : Class.Inheritance.t * list ident)
(f : option (FieldSignature.t A * array_path A * Z * (Class.Inheritance.t * list ident)))
.

Function relative_pointer_alt_of_relative_pointer (a : array_path A) (i : Z) (p : Class.Inheritance.t * list ident) {struct a} : relative_pointer_alt :=
match a with
| nil => relative_pointer_alt_intro i p None
| (i', p', f') :: a' => relative_pointer_alt_intro i' p' (Some (f', a', i, p))
end.

Function relative_pointer_of_relative_pointer_alt (rpa : relative_pointer_alt) : (array_path A * Z * (Class.Inheritance.t * list ident)) :=
match rpa with
| relative_pointer_alt_intro i p None => (nil, i, p)
| relative_pointer_alt_intro i' p' (Some (f', a, i, p)) => ((i', p', f') :: a, i, p)
end.

Fact relative_pointer_alt_to_default_to_alt : forall rpa a i p,
relative_pointer_of_relative_pointer_alt rpa = (a, i, p) ->
relative_pointer_alt_of_relative_pointer a i p = rpa.
Proof.
intros until 1.
revert H.
functional inversion 1; subst; simpl; trivial.
Qed.

Fact relative_pointer_default_to_alt_to_default: forall a i p,
relative_pointer_of_relative_pointer_alt (relative_pointer_alt_of_relative_pointer a i p) = (a, i, p).
Proof.
intros.
functional induction (relative_pointer_alt_of_relative_pointer a i p); subst; simpl; trivial.
Qed.

Function relative_pointer_alt_length (rpa : relative_pointer_alt) : nat :=
match rpa with
| relative_pointer_alt_intro _ _ None => O
| relative_pointer_alt_intro _ _ (Some (_, a, _, _)) => S (length a)
end.

Fact relative_pointer_alt_length_correct: forall a i p,
relative_pointer_alt_length (relative_pointer_alt_of_relative_pointer a i p) = length a.
Proof.
intros.
functional induction (relative_pointer_alt_of_relative_pointer a i p); simpl; trivial.
Qed.

Variable hierarchy : PTree.t (Class.t A).

Inductive valid_relative_pointer_alt (afrom : ident) (zfrom : Z) (ato : ident) (pto : ident) : relative_pointer_alt -> Prop :=
| valid_relative_pointer_alt_intro : forall i',
0 <= i' -> i' < zfrom -> forall h' p' through,
path hierarchy through p' afrom h' ->
forall f',
match f' with
| None => ato = afrom /\ pto = through
| Some (f, a, i, (h, p)) =>
exists cthrough, hierarchy ! through = Some cthrough /\
In f (Class.fields cthrough) /\
exists bfrom, exists bn,
FieldSignature.type f = FieldSignature.Struct bfrom bn /\
valid_relative_pointer hierarchy bfrom (Zpos bn) a ato i h p pto
end ->
valid_relative_pointer_alt afrom zfrom ato pto (relative_pointer_alt_intro i' (h', p') f')
.

Fact valid_relative_pointer_alt_valid_relative_pointer : forall p afrom zfrom ato pto,
valid_relative_pointer_alt afrom zfrom ato pto p ->
forall a i h' p', relative_pointer_of_relative_pointer_alt p = (a, i, (h', p')) ->
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto
.
Proof.
inversion 1; simpl.
destruct f'.
destruct p0.
destruct p0.
destruct p0.
injection 1 ; intros ; subst.
invall.
inversion H8 ; subst.
econstructor.
econstructor.
assumption.
assumption.
eassumption.
eassumption.
assumption.
eassumption.
eassumption.
assumption.
assumption.
assumption.
injection 1 ; intros ; subst.
invall ; subst.
assert (i + 1 <= zfrom) by omega.
econstructor.
econstructor.
2 : eassumption.
omega.
assumption.
omega.
assumption.
Qed.

Fact valid_relative_pointer_valid_relative_pointer_alt : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
valid_relative_pointer_alt afrom zfrom ato pto (relative_pointer_alt_of_relative_pointer a i (h', p')).
Proof.
inversion 1 ; intros ; subst.
inversion H0 ; subst ; simpl.
econstructor.
assumption.
omega.
eassumption.
tauto.
econstructor.
assumption.
assumption.
eassumption.
esplit.
split.
eassumption.
split.
assumption.
esplit.
esplit.
split.
eassumption.
econstructor.
eassumption.
assumption.
assumption.
assumption.
Qed.

Function relative_pointer_alt_offset (rpa: relative_pointer_alt) (from : ident) (ato : ident) : option Z :=
match rpa with
| relative_pointer_alt_intro i' (h', p') f' =>
match offsets ! from with
| None => None
| Some ofrom =>
match subobject_offset from p' with
| Some of =>
match f' with
| None => Some (i' * size ofrom + of)
| Some (f, a, i, (_, p)) =>
match FieldSignature.type f with
| FieldSignature.Struct afrom _ =>
match Cplusconcepts.last p' with
| Some pto =>
match offsets ! pto with
| None => None
| Some opto =>
match assoc (FieldSignature.eq_dec (A := A)) f (field_offsets opto) with
| Some fo =>
match relative_pointer_offset afrom ato a i p with
| Some o => Some (i' * size ofrom + of + fo + o)
| _ => None
end
| _ => None
end
end
| _ => None
end
| _ => None
end
end
| _ => None
end
end
end.

Fact relative_pointer_alt_offset_correct : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall of,
relative_pointer_offset afrom ato a i p' = Some of ->
relative_pointer_alt_offset (relative_pointer_alt_of_relative_pointer a i (h', p')) afrom ato = Some of.
Proof.
inversion 1; subst.
functional inversion 1; subst.
inversion H0; subst; simpl.
rewrite H7.
rewrite H8.
simpl in H6.
injection H6 ; intros ; subst; simpl; reflexivity.
functional inversion H6; subst.
rewrite H21.
rewrite H24.
rewrite H28.
rewrite H26.
rewrite H27.
rewrite H29.
unfold relative_pointer_offset.
rewrite (array_path_offset_rewrite X).
rewrite H7.
rewrite H8.
f_equal; omega.
Qed.

# Soundness conditions (4.5)

## Sizes, field separation, field alignment and dynamic type data (4.5.1, 4.5.2, 4.5.3, 4.5.4)

Some conditions are considered guard conditions, e.g.:
• an alignment is positive
• an offset is nonnegative
• the offset of a direct non-virtual base B within C exists if and only if B is actually a direct non-virtual base of C

Notation Is_empty := (is_empty OP hierarchy) (only parsing).

Notation Is_dynamic := (is_dynamic OP hierarchy) (only parsing).

Record class_level_prop (ci : ident) (o : t) : Prop := class_level_intro {

4.3

primary_base_dynamic : forall b,
primary_base o = Some b ->
Is_dynamic b
;
Guard
primary_base_offsets_exist : forall b,
primary_base o = Some b ->
offsets ! b <> None
;
4.3
primary_base_exist_dynamic :
primary_base o <> None ->
Is_dynamic ci
;
Guard
non_virtual_direct_base_offsets_exist :
forall c,
hierarchy ! ci = Some c ->
forall bi,
In (Class.Inheritance.Repeated, bi) (Class.super c) ->
(non_virtual_direct_base_offsets o) ! bi <> None
;
Guard
non_virtual_direct_base_offsets_guard :
forall bi,
(non_virtual_direct_base_offsets o) ! bi <> None ->
forall c,
hierarchy ! ci = Some c ->
In (Class.Inheritance.Repeated, bi) (Class.super c)
;
C21
non_virtual_primary_base_offset : forall b,
primary_base o = Some b ->
(non_virtual_direct_base_offsets o) ! b = Some 0
;
Guard
non_virtual_direct_base_offsets_low_bound :
forall bi of,
(non_virtual_direct_base_offsets o) ! bi = Some of ->
0 <= of
;
C20
non_virtual_direct_base_offsets_dynamic_type_data_size :
Is_dynamic ci ->
primary_base o = None ->
forall bi,
(Is_empty bi -> False) ->
forall of,
(non_virtual_direct_base_offsets o) ! bi = Some of ->
dynamic_type_data_size PF <= of
;
C16
non_virtual_align_dynamic :
Is_dynamic ci ->
(dynamic_type_data_align PF | non_virtual_align o)
;
C15 part 1/2
non_virtual_direct_base_offsets_align : forall bi of,
(non_virtual_direct_base_offsets o) ! bi = Some of ->
forall bo,
offsets ! bi = Some bo ->
(non_virtual_align bo | of)
;
C6
non_virtual_direct_base_nonempty_data_non_overlap : forall bi1 of1,
(non_virtual_direct_base_offsets o) ! bi1 = Some of1 ->
(Is_empty bi1 -> False) ->
forall bi2 of2,
(non_virtual_direct_base_offsets o) ! bi2 = Some of2 ->
(Is_empty bi2 -> False) ->
bi1 <> bi2 ->
forall o1, offsets ! bi1 = Some o1 ->
forall o2, offsets ! bi2 = Some o2 ->
of1 + non_virtual_data_size o1 <= of2 \/
of2 + non_virtual_data_size o2 <= of1
;
C7
non_virtual_direct_base_offsets_nonempty_high_bound :
forall bi,
(Is_empty bi -> False) ->
forall of,
(non_virtual_direct_base_offsets o) ! bi = Some of ->
forall bo,
offsets ! bi = Some bo ->
of + non_virtual_data_size bo <= own_fields_offset o
;
Guard
own_fields_offset_low_bound :
0 <= own_fields_offset o
;
C19
own_fields_offset_dynamic_low_bound :
Is_dynamic ci ->
dynamic_type_data_size PF <= own_fields_offset o
;
Guard
field_offsets_exist :
forall c,
hierarchy ! ci = Some c ->
forall f,
In f (Class.fields c) ->
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) <> None
;
Guard
field_offsets_guard :
forall f,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) <> None ->
forall c,
hierarchy ! ci = Some c ->
In f (Class.fields c)
;
Guard
field_offsets_low_bound :
forall f fi,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) = Some fi ->
0 <= fi
;
C8
field_offsets_nonempty_low_bound :
forall f fi,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) = Some fi ->
(forall ty n, FieldSignature.type f = FieldSignature.Struct ty n -> Is_empty ty -> False) ->
own_fields_offset o <= fi
;
C14 part 1/2
field_offsets_align :
forall f fo,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) = Some fo ->
forall al, field_align f = Some al ->
(al | fo)
;
C9
field_offsets_non_overlap :
forall f1 fi1,
assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets o) = Some fi1 ->
forall f2 fi2,
assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets o) = Some fi2 ->
(forall ty n, FieldSignature.type f1 = FieldSignature.Struct ty n -> Is_empty ty -> False) ->
(forall ty n, FieldSignature.type f2 = FieldSignature.Struct ty n -> Is_empty ty -> False) ->
f1 <> f2 ->
forall s1, field_data_size f1 = Some s1 ->
forall s2, field_data_size f2 = Some s2 ->
fi1 + s1 <= fi2 \/
fi2 + s2 <= fi1
;
C22
nonempty_non_virtual_data_size_positive :
(Is_empty ci -> False) ->
0 < non_virtual_data_size o
;
C10
non_virtual_data_size_field_offsets :
forall f fi,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) = Some fi ->
(forall ty n, FieldSignature.type f = FieldSignature.Struct ty n -> Is_empty ty -> False) ->
forall s1, field_data_size f = Some s1 ->
fi + s1 <= non_virtual_data_size o
;
C2
non_virtual_size_field_offsets :
forall f fi,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) = Some fi ->
forall s1, field_size f = Some s1 ->
fi + s1 <= non_virtual_size o
;
C11
non_virtual_data_size_own_fields_offset :
own_fields_offset o <= non_virtual_data_size o
;
C1
non_virtual_size_non_virtual_direct_bases : forall bi of,
(non_virtual_direct_base_offsets o) ! bi = Some of ->
forall bo, offsets ! bi = Some bo ->
of + non_virtual_size bo <= non_virtual_size o
;
C15 part 2/2
non_virtual_align_non_virtual_direct_bases : forall bi,
(non_virtual_direct_base_offsets o) ! bi <> None ->
forall bo,
offsets ! bi = Some bo ->
(non_virtual_align bo | non_virtual_align o)
;
C14 part 2/2
non_virtual_align_fields : forall f,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o) <> None ->
forall al, field_align f = Some al ->
(al | (non_virtual_align o))
;
Guard
virtual_base_offsets_exist : forall b,
is_virtual_base_of hierarchy b ci ->
(virtual_base_offsets o) ! b <> None
;
Guard
virtual_base_offsets_guard : forall b,
(virtual_base_offsets o) ! b <> None ->
is_virtual_base_of hierarchy b ci \/ b = ci
;
4.2
virtual_base_offsets_self :
(virtual_base_offsets o) ! ci = Some 0
;
C17 part 1/2
virtual_base_offsets_align : forall b of,
(virtual_base_offsets o) ! b = Some of ->
forall bo, offsets ! b = Some bo ->
(non_virtual_align bo | of)
;
Guard
virtual_base_offsets_low_bound : forall b of,
(virtual_base_offsets o) ! b = Some of ->
0 <= of
;
C12
virtual_base_offsets_nonempty_non_overlap : forall b1 of1,
(virtual_base_offsets o) ! b1 = Some of1 ->
forall bo1,
offsets ! b1 = Some bo1 ->
forall b2 of2,
(virtual_base_offsets o) ! b2 = Some of2 ->
forall bo2,
offsets ! b2 = Some bo2 ->
(Is_empty b1 -> False) ->
(Is_empty b2 -> False) ->
b1 <> b2 ->
of1 + non_virtual_data_size bo1 <= of2 \/
of2 + non_virtual_data_size bo2 <= of1
;
C13
virtual_base_offsets_data_size : forall bi of,
(virtual_base_offsets o) ! bi = Some of ->
(Is_empty bi -> False) ->
forall bo,
offsets ! bi = Some bo ->
of + non_virtual_data_size bo <= data_size o
;
C4
data_size_high_bound :
data_size o <= size o
;
C3
virtual_base_offsets_high_bound : forall bi of,
(virtual_base_offsets o) ! bi = Some of ->
forall bo,
offsets ! bi = Some bo ->
of + non_virtual_size bo <= size o
;
C17 part 2/2
align_virtual_base_offsets_align : forall b,
(virtual_base_offsets o) ! b <> None ->
forall bo, offsets ! b = Some bo ->
(non_virtual_align bo | align o)
;
C18
align_size :
(align o | size o)
;
Guard
align_low_bound :
0 < align o
;
Guard
non_virtual_align_low_bound :
0 < non_virtual_align o
;
C5
non_virtual_size_positive :
0 < non_virtual_size o
}.

Hypothesis Hhier : Well_formed_hierarchy.prop hierarchy.

Hypothesis intro : forall ci o, offsets ! ci = Some o -> class_level_prop ci o.

Hypothesis guard : forall ci, offsets ! ci <> None -> hierarchy ! ci <> None.

# Existence theorems

Section Exist.

Assume that the relevant data have been computed by the layout algorithm for all defined classes below some limit

Variable cilimit : ident.

Hypothesis exist : forall ci, Plt ci cilimit -> hierarchy ! ci <> None -> offsets ! ci <> None.

Fact is_valid_repeated_subobject_offset_exist :
forall l a l', l = a :: l' -> is_valid_repeated_subobject hierarchy l = true ->
Plt a cilimit ->
forall accu, non_virtual_subobject_offset accu l <> None.
Proof.
induction l ; simpl ; try congruence.
injection 1 ; intros until 2; subst.
case_eq (hierarchy ! a0) ; try congruence.
intros until 1.
destruct l' ; try congruence.
destruct (In_dec super_eq_dec (Class.Inheritance.Repeated, i) (Class.super t0)) ; try congruence.
intros until 2.
assert (hierarchy ! a0 <> None) by congruence.
assert ((offsets) ! a0 <> None) by eauto using exist.
case_eq ((offsets) ! a0) ; try congruence.
intros until 1.
assert ((non_virtual_direct_base_offsets t1) ! i <> None) by eauto using non_virtual_direct_base_offsets_exist.
case_eq ((non_virtual_direct_base_offsets t1) ! i) ; try congruence.
intros.
eapply IHl.
reflexivity.
assumption.
eauto using Plt_trans, Well_formed_hierarchy.well_founded.
Qed.

Fact non_virtual_subobject_offset_exist : forall from,
Plt from cilimit ->
forall p to,
path hierarchy to p from Class.Inheritance.Repeated ->
forall accu, non_virtual_subobject_offset accu p <> None.
Proof.
inversion 2 ; subst ; eauto using (is_valid_repeated_subobject_offset_exist).
Qed.

Fact subobject_offset_exist : forall from,
Plt from cilimit ->
forall p to h,
path hierarchy to p from h ->
subobject_offset from p <> None.
Proof.
intros.
unfold subobject_offset.
assert (hierarchy ! from <> None) by eauto using path_defined_from.
assert (offsets ! from <> None) by eauto.
case_eq (offsets ! from) ; try congruence.
intros.
destruct p.
generalize (path_path0 H0).
inversion 1; discriminate.
generalize (path_path1 H0).
inversion 1.
injection H5 ; intros ; subst.
rewrite (virtual_base_offsets_self (intro H3)).
eauto using non_virtual_subobject_offset_exist.
subst.
inversion H6 ; subst.
injection H7 ; intros ; subst.
generalize (virtual_base_offsets_exist (intro H3) H5).
intros.
case_eq ((virtual_base_offsets t0) ! base) ; try congruence.
intros.
eauto using non_virtual_subobject_offset_exist, Plt_trans, Well_formed_hierarchy.is_virtual_base_of_lt.
Qed.

Fact array_path_offset_exist : forall from zfrom to zto p,
valid_array_path hierarchy to zto from zfrom p ->
Plt from cilimit ->
hierarchy ! to <> None ->
forall accu,
array_path_offset accu from p <> None
.
Proof.
induction 1 ; subst ; simpl.
intros.
destruct (peq c c) ; try congruence.
intros.
generalize (path_defined_from H1).
intros.
assert (offsets ! from <> None) by eauto.
case_eq (offsets ! from) ; try congruence.
intros.
generalize (subobject_offset_exist H6 H1).
intro.
case_eq (subobject_offset from l) ; try congruence.
intros.
rewrite (path_last H1).
assert (hierarchy ! through <> None) by congruence.
assert (Plt through cilimit) by eauto using Ple_Plt_trans, Well_formed_hierarchy.path_le.
assert (offsets ! through <> None) by eauto.
case_eq (offsets ! through) ; try congruence.
intros.
rewrite H4.
generalize (field_offsets_exist (intro H16) H2 H3).
intros.
case_eq (assoc (FieldSignature.eq_dec (A := A)) fs (field_offsets t1)) ; try congruence.
intros.
eauto using Well_formed_hierarchy.well_founded_struct, Plt_trans, Plt_Ple_trans.
Qed.

Lemma relative_pointer_offset_exist : forall afrom,
Plt afrom cilimit ->
forall zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
relative_pointer_offset afrom ato a i p' <> None.
Proof.
inversion 2; subst.
unfold relative_pointer_offset.
generalize (path_defined_from H4).
intro.
generalize (array_path_offset_exist H1 H H5 (accu := 0)).
case_eq (array_path_offset 0 afrom a); try congruence.
intros.
assert (Plt ato cilimit) by eauto using Ple_Plt_trans, Well_formed_hierarchy.array_path_le.
assert (offsets ! ato <> None) by eauto.
case_eq (offsets ! ato); try congruence.
intros.
generalize (subobject_offset_exist H8 H4).
case_eq (subobject_offset ato p'); congruence.
Qed.

Fact non_virtual_path_field_align_exist : forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
Plt from cilimit ->
forall hto, hierarchy ! to = Some hto ->
forall f, In f (Class.fields hto) ->
field_align f <> None.
Proof.
intros.
unfold field_align.
case_eq (FieldSignature.type f).
congruence.
intros.
case_eq (offsets ! struct).
congruence.
intros.
apply False_rect.
eapply exist.
3 : eassumption.
eapply Plt_Ple_trans.
eauto using Well_formed_hierarchy.well_founded_struct.
eauto using Plt_Ple, Ple_Plt_trans, Well_formed_hierarchy.path_le.
eauto using Well_formed_hierarchy.complete_struct.
Qed.

Fact path_field_align_exist : forall l from to h,
path hierarchy to l from h ->
Plt from cilimit ->
forall hto, hierarchy ! to = Some hto ->
forall f, In f (Class.fields hto) ->
field_align f <> None.
Proof.
intros.
destruct h.
eauto using non_virtual_path_field_align_exist.
generalize (path_path1 H).
inversion 1; subst.
assert (Plt base cilimit) by eauto using Plt_trans, Well_formed_hierarchy.is_virtual_base_of_lt.
eauto using non_virtual_path_field_align_exist.
Qed.

Lemma relative_pointer_field_align_exist : forall afrom,
Plt afrom cilimit ->
forall zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall hto, hierarchy ! pto = Some hto ->
forall f, In f (Class.fields hto) ->
field_align f <> None.
Proof.
inversion 2; subst.
clear H0.
revert H i H2 H3.
induction H1.
intros; eauto using path_field_align_exist.
intro.
assert (Plt by cilimit).
eauto using Plt_trans, Ple_Plt_trans, Well_formed_hierarchy.well_founded_struct, Well_formed_hierarchy.path_le.
eauto.
Qed.

End Exist.

# Proofs of alignment properties (5.2)

Section Alignment.

Fact non_virtual_path_align : forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
forall accu of, non_virtual_subobject_offset accu l = Some of ->
forall ofrom, offsets ! from = Some ofrom ->
forall oto, offsets ! to = Some oto ->
(non_virtual_align oto | non_virtual_align ofrom) /\
((non_virtual_align oto | accu) -> (non_virtual_align oto | of)).
Proof.
intros until 2.
generalize (path_last H).
revert H0.
inversion H; subst.
clear lt H H1 H2.
var (from :: lf).
intro.
revert x from lf H.
functional induction (non_virtual_subobject_offset accu v); try congruence.
injection 1; intro; subst.
injection 1; intros until 2; subst.
injection 1; intro; subst.
intros ? H1.
rewrite H1.
injection 1; intro; subst.
split.
apply Zdivide_refl.
tauto.
injection 2; intros until 2; subst.
functional inversion 1; subst.
intros.
assert (offsets ! b <> None).
functional inversion x; subst; try congruence.
simpl in H6; congruence.
case_eq (offsets ! b); try congruence.
intros.
destruct (IHo x _ _ (refl_equal _) H6 _ H3 _ H1).
asplit.
apply Zdivide_trans with (non_virtual_align t0).
assumption.
assert ((non_virtual_direct_base_offsets ofrom) ! b <> None) by congruence.
eauto using non_virtual_align_non_virtual_direct_bases.
intros.
apply H7.
apply Zdivide_plus_r.
assumption.
eauto using Zdivide_trans, non_virtual_direct_base_offsets_align.
Qed.

Fact path_align : forall l from to h,
path hierarchy to l from h ->
forall of, subobject_offset from l = Some of ->
forall ofrom, offsets ! from = Some ofrom ->
forall oto, offsets ! to = Some oto ->
(non_virtual_align oto | align ofrom) /\
(non_virtual_align oto | of).
Proof.
functional inversion 2; subst.
generalize (path_cons_repeated H).
intros.
assert (offsets ! b <> None).
functional inversion H1; try congruence.
subst. generalize (path_last H3). simpl. congruence.
case_eq (offsets ! b); try congruence. intros. destruct (non_virtual_path_align H3 H1 H8 H6). replace o with ofrom in * by congruence.
split.
assert ((virtual_base_offsets ofrom) ! b <> None) by congruence.
eauto using align_virtual_base_offsets_align, Zdivide_trans.
eauto using virtual_base_offsets_align, Zdivide_trans.
Qed.

Lemma relative_pointer_align : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall of,
relative_pointer_offset afrom ato a i p' = Some of ->
forall ofrom, offsets ! afrom = Some ofrom ->
forall oto, offsets ! pto = Some oto ->
(non_virtual_align oto | align ofrom) /\
(non_virtual_align oto | of).
Proof.
inversion 1; subst.
clear H.
functional inversion 1; subst.
clear H.
revert i h' p' pto H1 H2 H3 z1 ofto z2 H5 H6 H7.
induction H0.
simpl in *.
injection 4; intros; subst.
replace ofrom with ofto in * by congruence.
destruct (path_align H3 H7 H6 H9).
split.
assumption.
apply Zdivide_plus_r; eauto.
apply Zdivide_plus_r; eauto using Zdivide_0.
apply Zdivide_mult_r.
eauto using align_size, Zdivide_trans.
functional inversion 4; subst.
rewrite H16.
injection 3; intro; subst.
intros.
generalize (path_last H1).
intros.
replace clast with through in * by congruence.
replace ci'0 with by in * by congruence.
replace _x0 with by_n in * by congruence.
generalize (array_path_offset_rewrite X 0).
intros.
assert (offsets ! by <> None).
functional inversion X; try congruence.
subst. inversion H5; congruence.
case_eq (offsets ! by); try congruence.
intros.
destruct (IHvalid_array_path _ _ _ _ H6 H7 H8 _ _ _ H15 H10 H11 _ H18 _ H13).
generalize (field_offsets_align (intro H22) H24).
unfold field_align.
rewrite H23.
rewrite H18.
intro.
generalize (H26 _ (refl_equal _)).
intros.
assert ( assoc (FieldSignature.eq_dec (A := A)) fs (field_offsets olast) <> None) by congruence.
generalize (non_virtual_align_fields (intro H22) H28).
unfold field_align.
rewrite H23.
rewrite H18.
intros.
generalize (H29 _ (refl_equal _)).
intros.
destruct (path_align H1 H19 H16 H22).
split.
eauto using Zdivide_trans.
replace (z1 + i * size ofto + z2) with (( z1 + 0 - (0 + p * size ofrom + off + fo) + i * size ofto + z2) + (p * size ofrom + off + fo)) by omega.
apply Zdivide_plus_r.
assumption.
apply Zdivide_plus_r; eauto using Zdivide_trans.
apply Zdivide_plus_r; eauto using Zdivide_trans.
apply Zdivide_mult_r.
eauto 6 using Zdivide_trans, align_size.
Qed.

5.2 Theorem 2
Theorem field_align_prop : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall of,
relative_pointer_offset afrom ato a i p' = Some of ->
forall ofrom, offsets ! afrom = Some ofrom ->
forall oto, offsets ! pto = Some oto ->
forall f fa, field_align f = Some fa ->
forall foff, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets oto) = Some foff ->
(fa | align ofrom) /\ (fa | of + foff).
Proof.
intros.
destruct (relative_pointer_align H H0 H1 H2).
generalize (field_offsets_align (intro H2) H4 H3).
intros.
assert (assoc (FieldSignature.eq_dec (A := A)) f (field_offsets oto) <> None) by congruence.
generalize (non_virtual_align_fields (intro H2) H8 H3).
intros; eauto using Zdivide_trans, Zdivide_plus_r.
Qed.

5.2 Theorem 3
Theorem dynamic_align : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall of,
relative_pointer_offset afrom ato a i p' = Some of ->
forall ofrom, offsets ! afrom = Some ofrom ->
offsets ! pto <> None ->
Is_dynamic pto ->
(dynamic_type_data_align PF | align ofrom) /\
(dynamic_type_data_align PF | of).
Proof.
intros.
case_eq (offsets ! pto); try congruence.
intros.
destruct (relative_pointer_align H H0 H1 H4).
eauto 8 using Zdivide_trans, non_virtual_align_dynamic.
Qed.

End Alignment.

# Total size inclusion

Section Bounds.

Lemma size_positive : forall c o, offsets ! c = Some o ->
0 < size o.
Proof.
intros.
generalize (virtual_base_offsets_high_bound (intro H) (virtual_base_offsets_self (intro H)) H).
generalize (non_virtual_size_positive (intro H)).
omega.
Qed.

Fact non_virtual_subobject_offset_size : forall l to from,
path hierarchy to l from Class.Inheritance.Repeated ->
forall accu o, non_virtual_subobject_offset accu l = Some o ->
accu <= o /\
forall ofrom, offsets ! from = Some ofrom ->
forall oto, offsets ! to = Some oto ->
o + non_virtual_size oto <= accu + non_virtual_size ofrom.
Proof.
induction l; inversion 1; subst; try discriminate.
injection H0; intros; subst.
functional inversion H2; subst.
destruct lt ; simpl in H1.
injection H1; intros; subst.
functional inversion H5; subst.
split.
omega.
intros.
replace oto with ofrom by congruence.
omega.
destruct lt; simpl in H1; discriminate.
functional inversion H5; subst.
rewrite H13.
destruct lt; simpl in H1; try congruence.
injection H1; intros; subst.
assert (path hierarchy to (id2 :: l3) id2 Class.Inheritance.Repeated).
eleft; eauto.
generalize (non_virtual_direct_base_offsets_low_bound (intro H13) H14).
intros.
generalize (IHl _ _ H4 _ _ X0).
destruct 1.
split.
omega.
injection 1; intros; subst.
assert (offsets ! id2 <> None).
functional inversion X0; subst; try congruence.
generalize (path_last H4).
simpl.
congruence.
case_eq (offsets ! id2); try congruence.
intros.
generalize (non_virtual_size_non_virtual_direct_bases (intro H13) H14 H16).
generalize (H9 _ H16 _ H15).
omega.
Qed.

Fact subobject_offset_size : forall l to from h,
path hierarchy to l from h ->
forall so, subobject_offset from l = Some so ->
0 <= so /\
forall ofrom, offsets ! from = Some ofrom ->
forall oto, offsets ! to = Some oto ->
so + non_virtual_size oto <= size ofrom
.
Proof.
functional inversion 2.
subst.
generalize (virtual_base_offsets_low_bound (intro H2) H5).
intros.
generalize (path_cons_repeated H).
intros.
generalize (non_virtual_subobject_offset_size H4 H1).
destruct 1.
split.
omega.
rewrite H2.
injection 1; intros; subst.
assert (offsets ! b <> None).
functional inversion H1; subst.
inversion H4 ; subst.
destruct lt.
simpl in * ; congruence.
destruct lt ; simpl in * ; congruence.
congruence.
case_eq (offsets ! b) ; try congruence.
intros.
generalize (H7 _ H11 _ H10).
intros.
eapply Zle_trans.
eassumption.
eapply virtual_base_offsets_high_bound.
eapply intro.
eassumption.
eassumption.
assumption.
Qed.

Fact array_path_offset_size : forall to to_n from from_n l,
valid_array_path hierarchy to to_n from from_n l ->
forall accu z, array_path_offset accu from l = Some z ->
accu <= z /\
forall ofrom, offsets ! from = Some ofrom ->
forall oto, offsets ! to = Some oto ->
z + to_n * size oto <= accu + from_n * size ofrom
.
Proof.
induction 1.
simpl.
injection 1; intros; subst.
split.
omega.
intros until 1.
rewrite H2.
injection 1; intros; subst.
cut (to_n * size oto <= from_n * size oto).
omega.
apply Zmult_le_compat_r.
assumption.
generalize (size_positive H2).
omega.
intros ? ?.
functional inversion 1; subst.
rewrite H13.
rewrite (path_last H1) in H18.
injection H18; intros; subst.
rewrite H4 in H20.
injection H20; intros; subst.
generalize (IHvalid_array_path _ _ X).
destruct 1.
assert (0 <= p * size o).
generalize (size_positive H13).
intros.
eapply Zmult_ge.
assumption.
omega.
functional inversion H16.
subst.
replace o0 with o in * by congruence.
generalize (virtual_base_offsets_low_bound (intro H13) H15).
intros.
generalize (path_cons_repeated H1).
intros.
generalize (non_virtual_subobject_offset_size H14 H10).
destruct 1.
generalize (field_offsets_low_bound (intro H19) H21).
intros.
split.
omega.
injection 1; intros; subst.
assert (offsets ! b <> None).
functional inversion H10; subst.
inversion H14; subst.
destruct lt; simpl in *; try congruence.
destruct lt; simpl in *; congruence.
congruence.
case_eq (offsets ! b); try congruence.
intros.
generalize (H22 _ H27 _ H19).
intros.
generalize (virtual_base_offsets_high_bound (intro H11) H15 H27).
intros.
generalize (non_virtual_size_field_offsets (intro H19) H21).
unfold field_size.
rewrite H4.
assert (offsets ! ci'0 <> None).
functional inversion X; subst ; try congruence.
inversion H5; subst; congruence.
case_eq (offsets ! ci'0); try congruence.
intros.
generalize (H32 _ (refl_equal _)).
rewrite Zmult_distr_1.
replace (Zpos _x0 - 1 + 1) with (Zpos _x0) by omega.
intros.
generalize (H8 _ H31 _ H26).
intros.
cut (p * size ofrom + size ofrom <= from_n * size ofrom).
omega.
rewrite Zmult_distr_1.
apply Zmult_le_compat_r.
omega.
generalize (size_positive H13).
omega.
Qed.

Lemma relative_pointer_offset_size : forall afrom zfrom a ato i h' p' pto,
valid_relative_pointer hierarchy afrom zfrom a ato i h' p' pto ->
forall of, relative_pointer_offset afrom ato a i p' = Some of ->
0 <= of /\ forall ofrom,
offsets ! afrom = Some ofrom ->
forall opto, offsets ! pto = Some opto ->
of + non_virtual_size opto <= zfrom * size ofrom.
Proof.
inversion 1; subst.
functional inversion 1; subst.
destruct (subobject_offset_size H3 H8).
destruct (array_path_offset_size H0 H6).
generalize (size_positive H7).
intros.
assert (0 <= size ofto) by omega.
generalize (Zmult_ge H1 H13).
intros.
split.
omega.
intros.
generalize (H9 _ H7 _ H16).
generalize (H11 _ H15 _ H7).
intros.
cut (i * size ofto + size ofto <= zto * size ofto).
omega.
pattern (size ofto) at 2.
replace (size ofto) with (1 * size ofto) by omega.
rewrite <- (Zmult_plus_distr_l).
apply Zmult_le_compat_r.
omega.
omega.
Qed.

Fact relative_pointer_alt_offset_size : forall i h p f afrom zfrom ato pto,
valid_relative_pointer_alt afrom zfrom ato pto (relative_pointer_alt_intro i (h, p) f) ->
forall ofrom, offsets ! afrom = Some ofrom ->
forall op, subobject_offset afrom p = Some op ->
forall of, relative_pointer_alt_offset (relative_pointer_alt_intro i (h, p) f) afrom ato = Some of ->
i * size ofrom + op <= of /\
forall through, last p = Some through ->
forall othrough, offsets ! through = Some othrough ->
forall opto, offsets ! pto = Some opto ->
of + non_virtual_size opto <= i * size ofrom + op + non_virtual_size othrough
.
Proof.
inversion 1; subst.
intros until 2.
unfold relative_pointer_alt_offset.
rewrite H0.
rewrite H1.
destruct f.
Focus 2.
injection 1; intros; subst.
split.
omega.
invall; subst.
rewrite (path_last H6).
injection 1; intro; subst.
intros until 1.
rewrite H7.
injection 1; intros; subst.
omega.
destruct p0.
destruct p0.
destruct p0.
destruct p1.
invall.
rewrite H7.
rewrite (path_last H6).
case_eq (offsets ! through); try congruence.
intros until 1.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t0 (field_offsets t2)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato a z l); try congruence.
functional inversion 1; subst.
injection 1; intros; subst.
generalize (field_offsets_low_bound (intro H8) H10).
intros.
inversion H9; subst.
generalize (array_path_offset_size H17 H13).
destruct 1.
generalize (size_positive H14).
intros.
assert (0 <= z * size ofto).
eapply Zmult_ge; omega.
generalize (subobject_offset_size H20 H15).
destruct 1.
split.
omega.
injection 1; intro; subst.
rewrite H8.
injection 1; intro; subst.
intros.
assert (offsets ! x0 <> None).
functional inversion H13; subst; try congruence.
inversion H17; subst; congruence.
case_eq (offsets ! x0); try congruence.
intros.
generalize (H22 _ H31 _ H14).
intros.
generalize (H26 _ H14 _ H29).
intros.
eapply Zle_trans with ( i * size ofrom + op + z0 + (z2 + (z * size ofto + size ofto))).
omega.
rewrite Zmult_distr_1.
eapply Zle_trans with ( i * size ofrom + op + z0 + (z2 + (zto * size ofto))).
cut ((z + 1) * size ofto <= zto * size ofto).
omega.
eapply Zmult_le_compat_r.
omega.
generalize (size_positive H14).
omega.
generalize (non_virtual_size_field_offsets (intro H8) H10).
unfold field_size.
rewrite H7.
rewrite H31.
rewrite Zmult_distr_1.
replace (Zpos x1 - 1 + 1) with (Zpos x1) by omega.
intros.
generalize (H34 _ (refl_equal _)).
omega.
Qed.

End Bounds.

Let Is_empty_prop := is_empty_prop OP hierarchy.

Section Empty_base_offsets.

# Specification of the sets of (non-virtual) empty base offsets (4.5.5)

Inductive non_virtual_empty_base_offset : ident -> ident -> Z -> Prop :=
| non_virtual_empty_base_offset_self : forall ci,
Is_empty ci ->
forall z, z = 0 ->
non_virtual_empty_base_offset ci ci z
| non_virtual_empty_base_offset_non_virtual_base : forall ci oc,
offsets ! ci = Some oc ->
forall ci' o',
(non_virtual_direct_base_offsets oc) ! ci' = Some o' ->
forall b o,
non_virtual_empty_base_offset ci' b (o - o') ->
non_virtual_empty_base_offset ci b o
| non_virtual_empty_base_offset_field : forall ci oc,
offsets ! ci = Some oc ->
forall f fo,
assoc (FieldSignature.eq_dec (A := A)) f (field_offsets oc) = Some fo ->
forall cif arraysize, FieldSignature.type f = FieldSignature.Struct cif arraysize ->
forall ocf, offsets ! cif = Some ocf ->
forall ai, 0 <= ai -> ai < Zpos arraysize ->
forall b x,
empty_base_offset cif b (x - fo - ai * size ocf) ->
non_virtual_empty_base_offset ci b x

with empty_base_offset : ident -> ident -> Z -> Prop :=
| empty_base_offset_intro : forall ci oc,
offsets ! ci = Some oc ->
forall ci' o', (virtual_base_offsets oc) ! ci' = Some o' ->
forall b x,
non_virtual_empty_base_offset ci' b (x - o') ->
empty_base_offset ci b x
.

Scheme empty_base_offset_rec_mu := Minimality for empty_base_offset Sort Prop
with non_virtual_empty_base_offset_rec_mu := Minimality for non_virtual_empty_base_offset Sort Prop.

Combined Scheme combined_empty_base_offset_rec from empty_base_offset_rec_mu, non_virtual_empty_base_offset_rec_mu.

Fact non_virtual_empty_base_offset_intro_non_virtual_path :
forall from,
forall p by,
path hierarchy by p from Class.Inheritance.Repeated ->
forall of accu,
non_virtual_subobject_offset accu p = Some of ->
forall to oz,
non_virtual_empty_base_offset by to oz ->
non_virtual_empty_base_offset from to (oz + of - accu)
.
Proof.
intros until p.
revert from.
induction p.
inversion 1.
discriminate.
inversion 1.
injection H0 ; intros until 2 ; subst.
destruct lt.
simpl in H1.
injection H1 ; intros until 2 ; subst.
simpl.
injection 1 ; intros ; subst.
replace (oz + of - of) with oz by omega.
assumption.
simpl in H1.
injection H1 ; intros until 2.
subst i ; subst.
functional inversion H2.
destruct lt ; simpl in * ; discriminate.
subst.
assert (path hierarchy by (lt ++ by :: nil) id2 Class.Inheritance.Repeated).
eleft.
symmetry ; eassumption.
reflexivity.
congruence.
rewrite H4.
clear H9.
simpl.
rewrite <- H4.
rewrite -> H4.
case_eq (offsets ! from) ; try congruence.
intros fo Hfo.
case_eq ((non_virtual_direct_base_offsets fo) ! id2) ; try congruence.
intros.
eapply non_virtual_empty_base_offset_non_virtual_base.
eassumption.
eassumption.
replace (oz + of - accu - z) with (oz + of - (accu + z)) by omega.
eauto using Plt_trans, Well_formed_hierarchy.well_founded.
Qed.

Fact non_virtual_path_empty_base_offsets : forall p to (to_empty : Is_empty to) from,
path hierarchy to p from Class.Inheritance.Repeated ->
forall of accu,
non_virtual_subobject_offset accu p = Some of ->
non_virtual_empty_base_offset from to (of - accu)
.
Proof.
intros.
replace (of - accu) with (0 + of - accu) by omega.
eapply non_virtual_empty_base_offset_intro_non_virtual_path.
eassumption.
assumption.
constructor.
assumption.
reflexivity.
Qed.

Fact empty_base_offset_intro_path : forall from,
forall p by h,
path hierarchy by p from h ->
forall of,
subobject_offset from p = Some of ->
forall to oz,
non_virtual_empty_base_offset by to oz ->
empty_base_offset from to (oz + of)
.
Proof.
functional inversion 2 ; subst.
intros.
generalize (path_cons_repeated H).
intros.
econstructor.
eassumption.
eassumption.
eapply non_virtual_empty_base_offset_intro_non_virtual_path.
eassumption.
assumption.
assumption.
Qed.

Fact path_empty_base_offsets : forall p to (to_empty : Is_empty to) from,
forall h,
path hierarchy to p from h ->
forall of,
subobject_offset from p = Some of ->
empty_base_offset from to of
.
Proof.
intros.
replace of with (0 + of) by omega.
eapply empty_base_offset_intro_path.
eassumption.
assumption.
constructor.
assumption.
reflexivity.
Qed.

Fact field_non_virtual_empty_base_offsets : forall l from to1 p1,
path hierarchy to1 p1 from Class.Inheritance.Repeated ->
forall accu1 z1, non_virtual_subobject_offset accu1 p1 = Some z1 ->
forall o1, offsets ! to1 = Some o1 ->
forall f fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz ->
forall to2 ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 ->
forall to3 arsz3,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l ->
forall lz,
array_path_offset (z1 + fz) to2 l = Some lz ->
forall o3, offsets ! to3 = Some o3 ->
forall x, 0 <= x -> x < arsz3 ->
forall to4,
Is_empty to4 ->
forall p4 h4,
path hierarchy to4 p4 to3 h4 ->
forall p4z,
subobject_offset to3 p4 = Some p4z ->
non_virtual_empty_base_offset from to4 (lz + x * size o3 + p4z - accu1)
.
Proof.
cut (
forall l from to1 p1,
path hierarchy to1 p1 from Class.Inheritance.Repeated ->
True ->
forall accu1 z1, non_virtual_subobject_offset accu1 p1 = Some z1 ->
forall o1, offsets ! to1 = Some o1 ->
forall f fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz ->
forall to2 ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 ->
forall to3 arsz3,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l ->
forall lz,
array_path_offset (z1 + fz) to2 l = Some lz ->
forall o3, offsets ! to3 = Some o3 ->
forall x, 0 <= x -> x < arsz3 ->
forall to4,
Is_empty to4 ->
forall p4 h4,
path hierarchy to4 p4 to3 h4 ->
forall p4z,
subobject_offset to3 p4 = Some p4z ->
non_virtual_empty_base_offset from to4 (lz + x * size o3 + p4z - accu1)
).
intros.
eauto.
induction l ; simpl.
inversion 7 ; subst.
destruct (peq to2 to2) ; try congruence.
intros until 2.
injection H8 ; intros ; subst.
replace (z1 + fz + x * size o3 + p4z - accu1) with ((fz + x * size o3 + p4z) + z1 - accu1) by omega.
eapply non_virtual_empty_base_offset_intro_non_virtual_path.
eassumption.
eassumption.
eapply non_virtual_empty_base_offset_field.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
omega.
replace (fz + x * size o3 + p4z - fz - x * size o3) with p4z by omega.
eapply path_empty_base_offsets.
assumption.
assert (offsets ! to1 <> None) by congruence.
assert (hierarchy ! to1 <> None) by eauto.
case_eq (hierarchy ! to1) ; try congruence.
intros.
assert (assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) <> None) by congruence.
generalize (field_offsets_guard (intro H2) H18 H17).
intros.
eauto using Plt_trans, Well_formed_hierarchy.well_founded_struct, Ple_Plt_trans, Well_formed_hierarchy.path_le.
eassumption.

inversion 7 ; subst.
case_eq (offsets ! to2) ; try congruence.
intros until 1.
case_eq (subobject_offset to2 l0) ; try congruence.
intros until 1.
case_eq (last l0) ; try congruence.
intros until 1.
case_eq (offsets ! i) ; try congruence.
intros until 1.
rewrite H17.
case_eq (assoc (FieldSignature.eq_dec (A := A)) fs (field_offsets t1)) ; try congruence.
intros.
generalize (path_last H10).
intros.
replace i with through in * by congruence.
functional inversion H7 ; subst.
generalize (path_cons_repeated H10).
intros.
generalize (array_path_offset_rewrite H16 (z + z0)).
replace (lz + (z + z0) - (z1 + fz + p * size t0 + z + z0)) with (lz - z1 - fz - p * size t0) by omega.
intro.
refine (
_ (IHl _ _ _ H28 I _ _ H26 _ H14 _ _ H15 _ _ H17 _ _ H18 _ H29 _ H19 _ H20 H21 _ H22 _ _ H23 _ H24)
).
intros.
replace (lz + x * size o3 + p4z - accu1) with (lz + x * size o3 + p4z - z1 + z1 - accu1) by omega.
eapply non_virtual_empty_base_offset_intro_non_virtual_path.
eassumption.
eassumption.
eapply non_virtual_empty_base_offset_field.
eassumption.
eassumption.
eassumption.
eassumption.
2 : eassumption.
assumption.
econstructor.
eassumption.
eassumption.
replace (
lz + x * size o3 + p4z - z1 - fz - p * size o - of
) with (
lz - z1 - fz - p * size o + x * size o3 + p4z - of
) by omega.
replace o with t0 by congruence.
assumption.
Qed.

Fact field_empty_base_offsets : forall l from to1 p1 h1,
path hierarchy to1 p1 from h1 ->
forall z1, subobject_offset from p1 = Some z1 ->
forall o1, offsets ! to1 = Some o1 ->
forall f fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz ->
forall to2 ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 ->
forall to3 arsz3,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l ->
forall lz,
array_path_offset (z1 + fz) to2 l = Some lz ->
forall o3, offsets ! to3 = Some o3 ->
forall x, 0 <= x -> x < arsz3 ->
forall to4,
Is_empty to4 ->
forall p4 h4,
path hierarchy to4 p4 to3 h4 ->
forall p4z,
subobject_offset to3 p4 = Some p4z ->
empty_base_offset from to4 (lz + x * size o3 + p4z)
.
Proof.
functional inversion 2.
subst.
intros.
generalize (path_cons_repeated H).
intros.
eauto using empty_base_offset_intro, field_non_virtual_empty_base_offsets.
Qed.

Fact combined_empty_base_offset_elim :
(forall from to z, empty_base_offset from to z -> (
Is_empty to /\
exists p1, exists h1, exists to1,
path hierarchy to1 p1 from h1 /\
exists z1, subobject_offset from p1 = Some z1 /\
((
to = to1 /\
z1 = z
) \/
exists o1, offsets ! to1 = Some o1 /\
exists f, exists fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz /\
exists to2, exists ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 /\
exists to3, exists arsz3, exists l,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l /\
exists lz,
array_path_offset (z1 + fz) to2 l = Some lz /\
exists o3, offsets ! to3 = Some o3 /\
exists x, 0 <= x /\ x < arsz3 /\
exists p4, exists h4,
path hierarchy to p4 to3 h4 /\
exists p4z,
subobject_offset to3 p4 = Some p4z /\
z = lz + x * size o3 + p4z
)
)) /\
(forall from to z, non_virtual_empty_base_offset from to z -> (
Is_empty to /\
exists to1, exists p1,
path hierarchy to1 p1 from Class.Inheritance.Repeated /\
exists z1, non_virtual_subobject_offset 0 p1 = Some z1 /\
((
to = to1 /\
z1 = z
) \/
exists o1, offsets ! to1 = Some o1 /\
exists f, exists fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz /\
exists to2, exists ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 /\
exists to3, exists arsz3, exists l,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l /\
exists lz,
array_path_offset (z1 + fz) to2 l = Some lz /\
exists o3, offsets ! to3 = Some o3 /\
exists x, 0 <= x /\ x < arsz3 /\
exists p4, exists h4,
path hierarchy to p4 to3 h4 /\
exists p4z,
subobject_offset to3 p4 = Some p4z /\
z = (lz + x * size o3 + p4z)
)
)).
Proof.
apply combined_empty_base_offset_rec.

intros.
assert ((virtual_base_offsets oc) ! ci' <> None) by congruence.
generalize (virtual_base_offsets_guard (intro H) H3).
intros.
invall.
split.
assumption.
assert (exists h1, path hierarchy x0 x1 ci h1).
inversion H4.
exists Class.Inheritance.Shared.
econstructor ; eauto.
subst.
exists Class.Inheritance.Repeated.
assumption.
invall.
esplit.
esplit.
esplit.
split.
eassumption.
unfold subobject_offset at 1.
rewrite H.
inversion H2 ; subst.
rewrite H0.
rewrite (non_virtual_subobject_offset_rewrite H7).
esplit.
split.
reflexivity.
inversion_clear H8.
invall.
subst.
left.
split.
trivial.
omega.
right.
invall.
subst.
repeat (esplit ; try eassumption).
rewrite (array_path_offset_rewrite H15).
reflexivity.
omega.

intros.
subst.
split.
assumption.
exists ci.
exists (ci :: nil).
split.
econstructor.
reflexivity.
pattern (ci :: nil) at 1.
replace (ci :: nil) with (nil ++ ci :: nil).
reflexivity.
reflexivity.
generalize (Is_empty.defined Is_empty_prop H).
simpl.
case_eq (hierarchy ! ci); congruence.
simpl.
esplit.
split.
reflexivity.
tauto.

intros.
invall.
split.
assumption.
inversion H2 ; subst.
exists x.
exists (ci :: ci' :: lf).
asplit.
econstructor.
reflexivity.
pattern (ci' :: lf) at 1.
rewrite H7.
change (ci :: lt ++ x :: nil) with ((ci :: lt) ++ x :: nil).
reflexivity.
case_eq (is_valid_repeated_subobject hierarchy (ci :: ci' :: lf)).
tauto.
functional inversion 1 ; subst.
assert (offsets ! ci <> None) by congruence.
assert (hierarchy ! ci <> None) by eauto.
congruence.
assert ((non_virtual_direct_base_offsets oc) ! ci' <> None) by congruence.
generalize (non_virtual_direct_base_offsets_guard (intro H) H9 H13).
intros.
rewrite non_virtual_subobject_offset_equation.
rewrite H.
rewrite H0.
rewrite (non_virtual_subobject_offset_rewrite H5).
esplit.
split.
reflexivity.
inversion_clear H6.
invall.
subst.
left.
split.
trivial.
omega.
invall.
subst.
right.
repeat (esplit ; try eassumption).
rewrite (array_path_offset_rewrite H13).
reflexivity.
omega.

intros.
invall.
split.
assumption.
assert (offsets ! ci <> None) by congruence.
assert (hierarchy ! ci <> None) by eauto.
case_eq (hierarchy ! ci) ; try congruence.
intros.
exists ci.
exists (ci :: nil).
asplit.
eleft with nil nil.
reflexivity.
reflexivity.
simpl.
rewrite H12 ; trivial.
simpl.
esplit.
split.
reflexivity.
right.
esplit.
split.
eassumption.
esplit.
esplit.
split.
eassumption.
esplit.
esplit.
split.
eassumption.
inversion_clear H10.
invall.
subst.
exists cif.
exists (Zpos arraysize).
exists nil.
split.
constructor.
compute ; congruence.
omega.
simpl.
destruct (peq cif cif) ; try congruence.
esplit.
split.
reflexivity.
esplit.
split.
eassumption.
esplit.
split.
eassumption.
split.
assumption.
esplit.
esplit.
split.
eassumption.
esplit.
split.
eassumption.
omega.
invall ; subst.
exists x9.
exists x10.
exists ((ai, (x1, x0), x5) :: x11).
generalize (path_defined_to H8).
intros.
case_eq (hierarchy ! x2) ; try congruence.
intros.
assert (assoc (FieldSignature.eq_dec (A := A)) x5 (field_offsets x4) <> None) by congruence.
generalize (field_offsets_guard (intro H14) H26 H25).
intros.
split.
econstructor.
assumption.
assumption.
eassumption.
eassumption.
eassumption.
eassumption.
assumption.
simpl.
rewrite H2.
rewrite H9.
rewrite (path_last H8).
rewrite H14.
rewrite H15.
rewrite H10.
rewrite (array_path_offset_rewrite H18).
esplit.
split.
reflexivity.
repeat (esplit ; try eassumption).
omega.
Qed.

Lemma combined_empty_base_offset_equiv :
(forall from to z, empty_base_offset from to z <-> (
Is_empty to /\
exists p1, exists h1, exists to1,
path hierarchy to1 p1 from h1 /\
exists z1, subobject_offset from p1 = Some z1 /\
((
to = to1 /\
z1 = z
) \/
exists o1, offsets ! to1 = Some o1 /\
exists f, exists fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz /\
exists to2, exists ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 /\
exists to3, exists arsz3, exists l,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l /\
exists lz,
array_path_offset (z1 + fz) to2 l = Some lz /\
exists o3, offsets ! to3 = Some o3 /\
exists x, 0 <= x /\ x < arsz3 /\
exists p4, exists h4,
path hierarchy to p4 to3 h4 /\
exists p4z,
subobject_offset to3 p4 = Some p4z /\
z = lz + x * size o3 + p4z
)
)) /\
(forall from to z, non_virtual_empty_base_offset from to z <-> (
Is_empty to /\
exists to1, exists p1,
path hierarchy to1 p1 from Class.Inheritance.Repeated /\
exists z1, non_virtual_subobject_offset 0 p1 = Some z1 /\
((
to = to1 /\
z1 = z
) \/
exists o1, offsets ! to1 = Some o1 /\
exists f, exists fz, assoc (FieldSignature.eq_dec (A := A)) f (field_offsets o1) = Some fz /\
exists to2, exists ars2,
FieldSignature.type f = FieldSignature.Struct to2 ars2 /\
exists to3, exists arsz3, exists l,
valid_array_path hierarchy to3 arsz3 to2 (Zpos ars2) l /\
exists lz,
array_path_offset (z1 + fz) to2 l = Some lz /\
exists o3, offsets ! to3 = Some o3 /\
exists x, 0 <= x /\ x < arsz3 /\
exists p4, exists h4,
path hierarchy to p4 to3 h4 /\
exists p4z,
subobject_offset to3 p4 = Some p4z /\
z = (lz + x * size o3 + p4z)
)
)).
Proof.
generalize (combined_empty_base_offset_elim).
destruct 1.
intros.
split.
intros.
split.
eauto.
intros.
invall.
inversion H5 ; invall ; subst.
eauto using path_empty_base_offsets.
eauto using field_empty_base_offsets.
intros.
split.
eauto.
intros.
invall.
inversion_clear H5 ; invall ; subst.
replace z with (z - 0) by omega.
eauto using non_virtual_path_empty_base_offsets.
replace (x10 + x12 * size x11 + x15) with (x10 + x12 * size x11 + x15 - 0) by omega.
eauto using field_non_virtual_empty_base_offsets.
Qed.

# Soundness conditions for empty base offsets (4.5.5)

Record disjoint_empty_base_offsets (ci : ident) (oc : t) : Prop := disjoint_empty_base_offsets_intro {
C23 C26
disjoint_empty_base_offsets_bases :
forall baseref,
(baseref = non_virtual_direct_base_offsets \/ baseref = virtual_base_offsets) ->
forall ci1 o1,
(baseref oc) ! ci1 = Some o1 ->
forall ci2 o2,
(baseref oc) ! ci2 = Some o2 ->
ci1 <> ci2 ->
forall bi x1, non_virtual_empty_base_offset ci1 bi x1 ->
forall x2, non_virtual_empty_base_offset ci2 bi x2 ->
o1 + x1 <> o2 + x2
;
C24
disjoint_empty_base_offsets_field_base :
forall ci1 o1,
(non_virtual_direct_base_offsets oc) ! ci1 = Some o1 ->
forall f2 o2,
assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets oc) = Some o2 ->
forall ci2 n2, FieldSignature.type f2 = FieldSignature.Struct ci2 n2 ->
forall p2, 0 <= p2 -> p2 < Zpos n2 ->
forall of2, offsets ! ci2 = Some of2 ->
forall bi x1, non_virtual_empty_base_offset ci1 bi x1 ->
forall x2, empty_base_offset ci2 bi x2 ->
o1 + x1 <> o2 + p2 * size of2 + x2
;
C25
disjoint_empty_base_offsets_fields :
forall f1 o1,
assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets oc) = Some o1 ->
forall ci1 n1, FieldSignature.type f1 = FieldSignature.Struct ci1 n1 ->
forall of1, offsets ! ci1 = Some of1 ->
forall p1, 0 <= p1 -> p1 < Zpos n1 ->
forall f2 o2,
assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets oc) = Some o2 ->
forall ci2 n2, FieldSignature.type f2 = FieldSignature.Struct ci2 n2 ->
forall of2, offsets ! ci2 = Some of2 ->
forall p2, 0 <= p2 -> p2 < Zpos n2 ->
f1 <> f2 ->
forall bi x1, empty_base_offset ci1 bi x1 ->
forall x2, empty_base_offset ci2 bi x2 ->
o1 + p1 * size of1 + x1 <> o2 + p2 * size of2 + x2
}.

# Soundness proof of identity of subobjects for empty base offsets (5.3)

Section Disjoint_empty_base_offsets.

Hypothesis disjoint : forall ci oc,
offsets ! ci = Some oc ->
disjoint_empty_base_offsets ci oc.

Fact disjoint_empty_base_offsets_disjoint_non_virtual_paths :
forall p1 ci to, path hierarchy to p1 ci Class.Inheritance.Repeated ->
forall (to_empty : Is_empty to),
forall accu o, non_virtual_subobject_offset accu p1 = Some o ->
forall p2, path hierarchy to p2 ci Class.Inheritance.Repeated ->
non_virtual_subobject_offset accu p2 = Some o ->
p1 = p2.
Proof.
induction p1 ; simpl.
congruence.
intros until o.
inversion H ; subst.
injection H0 ; intros until 2 ; subst.
pattern lf at 1.
destruct lf.
destruct lt ; simpl in H1 ; try discriminate.
injection H1 ; intros ; subst.
generalize (Well_formed_hierarchy.self_path_trivial Hhier H5).
congruence.
destruct lt ; simpl in H1 ; discriminate.
case_eq (offsets ! ci); try congruence.
intros until 1.
case_eq ((non_virtual_direct_base_offsets t0) ! i); try congruence.
intros.
inversion H6 ; subst.
destruct lf0.
destruct lt0 ; simpl in H9.
injection H9 ; intros ; subst.
generalize (Well_formed_hierarchy.self_path_trivial Hhier H).
congruence.
destruct lt0 ; simpl in H9 ; discriminate.
functional inversion H7.
subst.
replace o0 with t0 in * by congruence.
functional inversion H2.
subst.
functional inversion H10.
subst.
generalize (last_equation (ci :: i0 :: lf0)).
rewrite H9 at 1.
rewrite last_complete.
intros.
symmetry in H8.
generalize (last_correct H8).
destruct 1.
assert (path hierarchy to (i0 :: lf0) i0 Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
generalize (last_equation (ci :: i :: lf)).
rewrite H1 at 1.
rewrite last_complete.
intros.
symmetry in H12.
generalize (last_correct H12).
destruct 1.
assert (path hierarchy to (i :: lf) i Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
destruct (peq i i0).
subst.
cut (i0 :: lf = i0 :: lf0).
congruence.
eapply IHp1.
eassumption.
assumption.
eassumption.
assumption.
congruence.
apply False_rect.
generalize (non_virtual_path_empty_base_offsets to_empty H13 H5).
intros.
generalize (non_virtual_path_empty_base_offsets to_empty H11 X).
intros.
generalize (disjoint_empty_base_offsets_bases (disjoint H3) (or_introl _ (refl_equal _)) H4 H18 n H16 H20).
omega.
Qed.

Fact disjoint_empty_base_offsets_disjoint_paths :
forall p1 h1 ci to, path hierarchy to p1 ci h1 ->
forall (to_empty : Is_empty to),
forall o, subobject_offset ci p1 = Some o ->
forall p2 h2, path hierarchy to p2 ci h2 ->
subobject_offset ci p2 = Some o ->
(h1, p1) = (h2, p2).
Proof.
intros.
functional inversion H0 ; subst.
assert (path hierarchy to (b :: _x) b Class.Inheritance.Repeated) by (
generalize (path_path0 H);
inversion 1 ; subst ; try congruence; try eleft ; eauto using is_valid_repeated_subobject_defined
).
generalize (non_virtual_path_empty_base_offsets to_empty H5 H3).
intros.
functional inversion H2 ; subst.
assert (path hierarchy to (b0 :: _x0) b0 Class.Inheritance.Repeated) by (
generalize (path_path0 H1);
inversion 1 ; subst ; try congruence; try eleft ; eauto using is_valid_repeated_subobject_defined
).
replace o1 with o0 in * by congruence.
generalize (non_virtual_path_empty_base_offsets to_empty H10 H8).
intros.
destruct (peq b b0).
subst.
cut (b0 :: _x = b0 :: _x0).
injection 1 ; intros ; subst.
generalize (Well_formed_hierarchy.categorize_paths Hhier H1 (refl_equal _)).
destruct 1.
generalize (Well_formed_hierarchy.categorize_paths Hhier H (refl_equal _)).
destruct 1.
destruct h1 ; destruct h2 ; try congruence ; assert (b0 = ci) by eauto ; assert (Class.Inheritance.Shared = Class.Inheritance.Repeated) by eauto ; congruence.
replace of0 with of in * by congruence.
eauto using disjoint_empty_base_offsets_disjoint_non_virtual_paths.
apply False_rect.
generalize (disjoint_empty_base_offsets_bases (disjoint H4) (or_intror _ (refl_equal _)) H7 H12 n H6 H11).
omega.
Qed.

5.3 Theorem 4 empty
Theorem disjoint_empty_base_offsets_disjoint_pointer_paths :
forall pto (pto_isempty : Is_empty pto) (pto_offsets_def: offsets ! pto <> None) ap1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto ->
forall ap2 ato2 i2 h2 p2,
valid_relative_pointer hierarchy afrom asfrom ap2 ato2 i2 h2 p2 pto ->
forall o, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o ->
relative_pointer_offset afrom ato2 ap2 i2 p2 = Some o ->
(ap1, i1, h1, p1) = (ap2, i2, h2, p2)
.
Proof.
cut (
forall pto (pto_isempty : Is_empty pto) (pto_offsets_def: offsets ! pto <> None)
ap1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto ->
forall ap2 (ap1_le : (length ap1 <= length ap2)%nat) ato2 i2 h2 p2,
valid_relative_pointer hierarchy afrom asfrom ap2 ato2 i2 h2 p2 pto ->
forall o, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o ->
relative_pointer_offset afrom ato2 ap2 i2 p2 = Some o ->
(ap1, i1, h1, p1) = (ap2, i2, h2, p2)
).
intros.
destruct (le_lt_dec (length ap1) (length ap2)).
eauto.
assert (length ap2 <= length ap1)%nat by omega.
cut ((ap2, i2, h2, p2) = (ap1, i1, h1, p1)) ; eauto.

intros until ap1.
var (length ap1).
revert v ap1 H.
induction v using (well_founded_induction Wf_nat.lt_wf).

intros.
subst.
revert ap1_le H.
rewrite <- (relative_pointer_alt_length_correct ap1 i1 (h1, p1)).
rewrite <- (relative_pointer_alt_length_correct ap2 i2 (h2, p2)).
generalize (relative_pointer_alt_offset_correct H1 H3).
clear H3.
generalize (relative_pointer_alt_offset_correct H2 H4).
clear H4.
generalize (valid_relative_pointer_valid_relative_pointer_alt H1).
clear H1.
generalize (valid_relative_pointer_valid_relative_pointer_alt H2).
clear H2.
inversion 1; subst.
rewrite <- H0 in H.
inversion 1; subst.
rewrite <- H6 in H5.
intros.
cut ((i'0, h'0, p'0, f'0) = (i', h', p', f')).
injection 1; intros; subst.
generalize (relative_pointer_default_to_alt_to_default ap1 i1 (h1, p1)).
generalize (relative_pointer_default_to_alt_to_default ap2 i2 (h2, p2)).
rewrite <- H0.
rewrite <- H6.
intro.
rewrite H15.
injection 1; intros; subst; trivial.
clear ap1 i1 h1 p1 ap2 i2 h2 p2 H0 H6.

generalize H11.
unfold relative_pointer_alt_offset.
case_eq (offsets ! afrom); try congruence.
intros until 1.
case_eq (subobject_offset afrom p'); try congruence.
intros until 1.
generalize (relative_pointer_alt_offset_size H H0 H6 H11).
rewrite (path_last H3).
destruct 1.
generalize (H15 _ (refl_equal _)).
clear H15.
intros.
assert (offsets ! through <> None).
destruct f'.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
revert H16.
rewrite H18.
case_eq (offsets ! through); congruence.
invall.
congruence.
case_eq (offsets ! through); try congruence.
intros.
rewrite H18 in *.

generalize H12.
unfold relative_pointer_alt_offset.
rewrite H0.
case_eq (subobject_offset afrom p'0); try congruence.
intros until 1.
generalize (relative_pointer_alt_offset_size H5 H0 H19 H12).
rewrite (path_last H9).
destruct 1.
generalize (H21 _ (refl_equal _)).
clear H21.
intros.
assert (offsets ! through0 <> None).
destruct f'0.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
revert H22.
rewrite H24.
case_eq (offsets ! through0); congruence.
invall.
congruence.
case_eq (offsets ! through0); try congruence.
intros.
rewrite H24 in *.

case_eq (offsets ! pto); try congruence.
intros.
rewrite H25 in *.
generalize (H21 _ (refl_equal _) _ (refl_equal _)).
clear H21.
intros.
generalize (H15 _ (refl_equal _) _ (refl_equal _)).
clear H15.
intros.

destruct (Z_eq_dec i'0 i').

Focus 2.
apply False_rect.
generalize (subobject_offset_size H3 H6).
destruct 1.
generalize (H27 _ H0 _ H18).
intros.
generalize (subobject_offset_size H9 H19).
destruct 1.
generalize (H30 _ H0 _ H24).
intros.
generalize (size_positive H0).
intros.
generalize (array_cells_disjoint n H32).
generalize (own_fields_offset_low_bound (intro H25)).
generalize (non_virtual_size_positive (intro H25)).
omega.

subst.
assert (non_virtual_empty_base_offset through pto (o - (i' * size t0 + z))).
destruct f'.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
revert H16.
rewrite H27.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t4 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato2 a z1 l); try congruence.
functional inversion 1; subst.
inversion H29; subst.
injection 1; intros; subst.
replace (
(i' * size t0 + z + z2 + (z4 + z1 * size ofto + z5) - (i' * size t0 + z))
) with (
(z2 + z4) + z1 * size ofto + z5 - 0
) by omega.
eapply field_non_virtual_empty_base_offsets.
eapply path_trivial.
eapply path_defined_to.
eassumption.
simpl.
reflexivity.
eassumption.
eassumption.
eassumption.
eassumption.
rewrite (array_path_offset_rewrite H31).
f_equal; omega.
assumption.
assumption.
assumption.
assumption.
eassumption.
assumption.
invall.
subst.
injection H16; intros; subst.
econstructor.
assumption.
omega.
assert (non_virtual_empty_base_offset through0 pto (o - (i' * size t0 + z0))).
destruct f'0.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
revert H22.
rewrite H28.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t4 (field_offsets t2)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato1 a z1 l); try congruence.
functional inversion 1; subst.
inversion H30; subst.
injection 1; intros; subst.
replace (
(i' * size t0 + z0 + z2 + (z4 + z1 * size ofto + z5) - (i' * size t0 + z0))
) with (
(z2 + z4) + z1 * size ofto + z5 - 0
) by omega.
eapply field_non_virtual_empty_base_offsets.
eapply path_trivial.
eapply path_defined_to.
eassumption.
simpl.
reflexivity.
eassumption.
eassumption.
eassumption.
eassumption.
rewrite (array_path_offset_rewrite H32).
f_equal; omega.
assumption.
assumption.
assumption.
assumption.
eassumption.
assumption.
invall.
subst.
injection H22; intros; subst.
econstructor.
assumption.
omega.

functional inversion H6; subst.
functional inversion H19; subst.
generalize (path_cons_repeated H3).
intros.
generalize (path_cons_repeated H9).
intros.
destruct (list_eq_dec peq (b0 :: _x0) (b :: _x)).

injection e; intros; subst.
assert (h' = h'0) by eauto using Well_formed_hierarchy.path_eq_hierarchy_eq.
subst.
destruct (option_eq_dec
(prod_eq_dec
(prod_eq_dec
(prod_eq_dec (FieldSignature.eq_dec (A := A)) (array_path_eq_dec (A := A)))
Z_eq_dec
)
(prod_eq_dec
Class.Inheritance.eq_dec
(list_eq_dec peq)
)
)
f' f'0
) ; try congruence.
apply False_rect.
generalize (path_last H3).
intros.
generalize (path_last H9).
intros.
replace through0 with through in * by congruence.
replace z0 with z in * by congruence.
replace t2 with t1 in * by congruence.
destruct f'.
destruct p.
destruct p.
destruct p.
destruct p0.
invall; subst.
revert H16.
rewrite H39.
inversion H41; subst.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t4 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato2 a z1 l); try congruence.
injection 2; intros; subst.
destruct f'0.
destruct p.
destruct p.
destruct p.
destruct p0.
invall; subst.
replace x2 with x in * by congruence.
inversion H50; subst.
revert H22.
rewrite H48.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t6 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x3 ato1 a0 z4 l0); try congruence.
injection 2; intros.
destruct ((FieldSignature.eq_dec (A := A)) t4 t6).
subst.
rewrite H48 in H39.
injection H39; intros; subst.
replace z5 with z2 in * by congruence.
replace z6 with z3 in * by omega.
cut ( (a0, z4, t7, l0) = (a, z1, t5, l)).
congruence.
simpl in ap1_le.
assert (length a0 <= length a)%nat by omega.
simpl in H13.
assert (length a0 < S (length a0))%nat by omega.
eauto.
assert (exists of0, offsets ! x0 = Some of0 /\ exists p0, 0 <= p0 /\ p0 < Zpos x1 /\ empty_base_offset x0 pto (z3 - p0 * size of0)).
functional inversion H45; subst.
functional inversion H58; subst; inversion H16; subst.
esplit.
esplit.
eassumption.
esplit.
split.
eexact H40.
split.
omega.
eapply path_empty_base_offsets.
assumption.
eassumption.
rewrite H60.
f_equal.
omega.
esplit.
split.
eassumption.
esplit.
split.
eassumption.
split.
eassumption.
replace
(z7 + z1 * size ofto + z8 - z3 * size o)
with
((z7 - z3 * size o) + z1 * size ofto + z8)
by omega.
rewrite (path_last H77) in H63.
injection H63; intro; subst.
eapply field_empty_base_offsets.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
replace by with ci'0 in * by congruence.
rewrite (array_path_offset_rewrite X).
f_equal; omega.
assumption.
assumption.
assumption.
assumption.
eassumption.
assumption.
assert (exists of3, offsets ! x3 = Some of3 /\ exists p3, 0 <= p3 /\ p3 < Zpos x4 /\ empty_base_offset x3 pto (z6 - p3 * size of3)).
functional inversion H54; subst.
functional inversion H59; subst; inversion H49; subst.
esplit.
esplit.
eassumption.
esplit.
split.
eexact H51.
split.
omega.
eapply path_empty_base_offsets.
assumption.
eassumption.
rewrite H61.
f_equal.
omega.
esplit.
split.
eassumption.
esplit.
split.
eassumption.
split.
eassumption.
replace
(z7 + z4 * size ofto + z8 - z6 * size o)
with
((z7 - z6 * size o) + z4 * size ofto + z8)
by omega.
rewrite (path_last H78) in H64.
injection H64; intro; subst.
eapply field_empty_base_offsets.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
replace by with ci'0 in * by congruence.
rewrite (array_path_offset_rewrite X).
f_equal; omega.
assumption.
assumption.
assumption.
assumption.
eassumption.
assumption.
invall.
cut (z2 + x7 * size x6 + (z3 - x7 * size x6) <> z5 + x8 * size x5 + (z6 - x8 * size x5)).
omega.
eauto using disjoint_empty_base_offsets_fields.

invall; subst.
destruct (Plt_irrefl through).
eapply Ple_Plt_trans.
eauto using Well_formed_hierarchy.path_le.
eapply Ple_Plt_trans.
eauto using Well_formed_hierarchy.array_path_le.
eauto using Well_formed_hierarchy.well_founded_struct.

destruct f'0; try congruence.
simpl in ap1_le; destruct p; destruct p; destruct p; omega.

clear H13.
clear ap1_le.
replace o0 with t0 in * by congruence.
replace o1 with t0 in * by congruence.
clear H17 H23.
clear H29 H31.
clear H11 H12 H6 H19 .
apply False_rect.
clear H3 H9.
clear H H5.
destruct (peq b b0).

subst.
assert (_x0 <> _x) by congruence.
clear n.
replace of0 with of in * by congruence.

dependent_revert z0.
dependent_revert z.
dependent_revert f'.
dependent_revert f'0.
dependent_revert through.
dependent_revert through0.
dependent_revert t1.
dependent_revert t2.
dependent_revert ato1.
dependent_revert ato2.
pattern _x , _x0.
apply distinct_lists_rect; try congruence.
exact peq.
intros; eauto.

intros.
inversion H33; clear H33; subst.
injection H3; clear H3; intros; subst.
inversion H34; clear H34; subst.
injection H3; intros; subst.
replace (b0 :: lf ++ a :: l2') with ((b0 :: lf) ++ a :: l2') in * by reflexivity.
rewrite H5 in *.
rewrite app_ass in *.
replace ((through :: nil) ++ a :: l2') with (through :: a :: l2') in * by reflexivity.
generalize (non_virtual_subobject_offset_app_recip H30).
destruct 1.
invall.
replace x with z in * by congruence.
clear H28 H13 H30 H6 H5 H3.
generalize (is_valid_repeated_subobject_split_right H11).
clear b0 lf H11 H32 H35.
functional inversion 1; subst.
clear H28.
functional inversion H17; subst.
replace o2 with t1 in * by congruence.
assert {lt1 | a :: l2' = lt1 ++ through0 :: nil}.
apply last_correct.
assert (a :: l2' <> nil) by congruence.
rewrite <- (last_app_left H5 (lt ++ through :: nil)).
rewrite app_ass.
simpl.
rewrite H9.
apply last_complete.
destruct H5.
clear lt H9.
assert (path hierarchy through0 (a :: l2') a Class.Inheritance.Repeated).
econstructor.
reflexivity.
eassumption.
assumption.
assert (non_virtual_empty_base_offset a pto (o - (i' * size t0 + z + of1))).
replace (o - (i' * size t0 + z + of1)) with ((o - (i' * size t0 + z0)) + z0 - (z + of1)) by omega.
eapply non_virtual_empty_base_offset_intro_non_virtual_path.
eassumption.
assumption.
assumption.
revert H4 H16.
destruct f'.
destruct p.
destruct p.
destruct p.
destruct p0.
destruct 1.
invall.
rewrite H11.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t4 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x2 ato2 a0 z1 l); try congruence.
functional inversion 1.
injection 1; intros; subst.
inversion H16; subst.
assert (
exists p2, 0 <= p2 /\ p2 < Zpos x3 /\
exists of2, offsets ! x2 = Some of2 /\
empty_base_offset x2 pto (z4 - p2 * size of2 + z1 * size ofto + z5)
).
inversion H23; subst.
simpl in H28.
injection H28; intros; subst.
exists z1.
split.
assumption.
split.
omega.
esplit.
esplit.
eassumption.
replace (0 - z1 * size ofto + z1 * size ofto + z5) with z5 by omega.
eapply path_empty_base_offsets.
assumption.
eassumption.
assumption.
exists p.
split.
assumption.
split.
assumption.
revert H28.
rewrite array_path_offset_equation.
case_eq (offsets ! x2); try congruence.
intros until 1.
case_eq (subobject_offset x2 l0); try congruence.
intros until 1.
rewrite (path_last H39).
case_eq (offsets ! through1); try congruence.
intros until 1.
rewrite H42.
case_eq (assoc (FieldSignature.eq_dec (A := A)) fs (field_offsets t7)); try congruence.
intros.
esplit.
split.
reflexivity.
eapply field_empty_base_offsets.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
rewrite (array_path_offset_rewrite H47).
f_equal; omega.
assumption.
assumption.
assumption.
assumption.
eassumption.
eassumption.
invall.
generalize (disjoint_empty_base_offsets_field_base (disjoint H18) H30 H12 H11 H37 H38 H40 H6 H41).
omega.
destruct 1; subst.
injection 1; intros; subst.
apply (Plt_irrefl through).
eapply Ple_Plt_trans.
2 : eauto using Well_formed_hierarchy.well_founded.
destruct f'0; invall; subst; eauto using Well_formed_hierarchy.path_le.
destruct p; destruct p; destruct p; destruct p0.
invall.
inversion H12; subst.
eauto 9 using Plt_Ple, Ple_trans, Well_formed_hierarchy.path_le, Well_formed_hierarchy.array_path_le, Well_formed_hierarchy.well_founded_struct.

intros until 2.
assert (b0 :: l <> nil) by congruence.
generalize (last_nonempty H4).
intro.
case_eq (last (b0 :: l)); try congruence.
intros until 1.
generalize (last_correct H6).
destruct 1.
inversion 1; subst.
injection H9; intro; subst.
inversion 2; subst.
injection H12; intro; subst.
revert H10 H13 H11 H14.
replace (b0 :: l ++ a1 :: l1') with ((b0 :: l) ++ a1 :: l1') by reflexivity.
replace (b0 :: l ++ a2 :: l2') with ((b0 :: l) ++ a2 :: l2') by reflexivity.
rewrite e.
clear b0 H35 H32 l H4 H5 H6 e H34 H9 H33 H12.
intros until 2.
repeat rewrite app_ass.
simpl.
assert (a2 :: l2' <> nil) by congruence.
generalize (last_complete lt through0).
rewrite <- H10.
rewrite (last_app_left H4).
intro.
generalize (last_correct H5).
destruct 1.
assert (a1 :: l1' <> nil) by congruence.
generalize (last_complete lt0 through).
rewrite <- H13.
rewrite (last_app_left H6).
intro.
generalize (last_correct H9).
destruct 1.
intros until 2.
generalize (is_valid_repeated_subobject_split_right H11).
functional inversion 1; subst.
clear H23.
generalize (is_valid_repeated_subobject_split_right H14).
rewrite is_valid_repeated_subobject_equation.
rewrite H20.
destruct ( In_dec super_eq_dec (Class.Inheritance.Repeated, a1) (Class.super cl1)); try congruence.
intro.
assert (path hierarchy through (a1 :: l1') a1 Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
assert (path hierarchy through0 (a2 :: l2') a2 Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
intros.
generalize (non_virtual_subobject_offset_app_recip H28).
destruct 1.
invall.
functional inversion H36; subst.
generalize (non_virtual_subobject_offset_app_recip H33).
rewrite H35.
destruct 1.
invall.
injection H37; intros; subst.
revert H38.
rewrite non_virtual_subobject_offset_equation.
rewrite H43.
case_eq ((non_virtual_direct_base_offsets o2) ! a2); try congruence.
intros.
dependent_revert of.
dependent_revert x.
apply False_rect.
generalize (non_virtual_empty_base_offset_intro_non_virtual_path H16 X0 H27).
generalize (non_virtual_empty_base_offset_intro_non_virtual_path H17 H38 H32).
intros.
generalize (disjoint_empty_base_offsets_bases (disjoint H43) (or_introl _ (refl_equal _)) H44 H34 H3 H11 H10).
omega.

generalize (non_virtual_empty_base_offset_intro_non_virtual_path H33 H28 H26).
generalize (non_virtual_empty_base_offset_intro_non_virtual_path H34 H30 H27).
intros.
generalize (disjoint_empty_base_offsets_bases (disjoint H0) (or_intror _ (refl_equal _)) H32 H35 n0 H3 H).
omega.

Qed.

End Disjoint_empty_base_offsets.

Lemma non_virtual_empty_base_offset_incl : forall ci b z,
non_virtual_empty_base_offset ci b z ->
((offsets ) ! b <> None) ->
forall o', (offsets ) ! ci = Some o' ->
0 <= z /\ z < non_virtual_size o'.
Proof.
induction 1.
subst.
intros.
split.
omega.
eapply non_virtual_size_positive.
eauto.
intros.
assert ((offsets ) ! ci' <> None).
inversion H1; congruence.
case_eq ((offsets ) ! ci'); try congruence.
intros.
generalize (IHnon_virtual_empty_base_offset H2 _ H5).
generalize (non_virtual_size_positive (intro H5) ).
replace oc with o'0 in * by congruence.
generalize (non_virtual_size_non_virtual_direct_bases (intro H3) H0 H5).
generalize (non_virtual_direct_base_offsets_low_bound (intro H3) H0).
omega.
intros.
destruct (combined_empty_base_offset_elim).
destruct (H8 _ _ _ H5).
clear H8 H9.
invall.
assert (exists r, exists ato, exists i, exists h, exists p, valid_relative_pointer hierarchy cif (Zpos arraysize) r ato i h p b /\ relative_pointer_offset cif ato r i p = Some (x - fo)).
destruct H12.
invall; subst.
exists nil.
exists cif.
exists ai.
exists x1.
exists x0.
asplit.
econstructor.
3 : eassumption.
econstructor.
omega.
omega.
assumption.
assumption.
unfold relative_pointer_offset.
simpl.
rewrite H2.
rewrite H11.
f_equal.
omega.
invall; subst.
exists ((ai, (x1, x0), x5) :: x11).
exists x9.
exists x14.
exists x16.
exists x15.
assert (hierarchy ! x2 <> None).
apply guard.
congruence.
case_eq (hierarchy ! x2); try congruence.
intros.
assert (In x5 (Class.fields t0)).
eapply field_offsets_guard.
3 : eassumption.
eauto.
congruence.
asplit.
econstructor.
econstructor.
assumption.
assumption.
eassumption.
eassumption.
assumption.
eassumption.
eassumption.
assumption.
assumption.
assumption.
unfold relative_pointer_offset.
simpl.
rewrite H2.
rewrite H11.
rewrite (path_last H9).
rewrite H8.
rewrite H13.
rewrite H12.
rewrite (array_path_offset_rewrite H16).
rewrite H17.
rewrite H21.
f_equal.
omega.
clear ai H3 H4 H5 x0 x1 x2 H9 x3 H11 H12.
invall.
replace o' with oc in * by congruence.
case_eq ((offsets ) ! b); try congruence.
intros.
destruct (relative_pointer_offset_size H4 H5).
generalize (H9 _ H2 _ H3).
intros.
generalize (non_virtual_size_positive (intro H3)).
intros.
generalize (non_virtual_size_field_offsets (intro H) H0).
unfold field_size.
rewrite H1.
rewrite H2.
intros.
generalize (H13 _ (refl_equal _)).
pattern (size ocf) at 2.
replace (size ocf) with (1 * size ocf) by omega.
rewrite <- Zmult_plus_distr_l.
replace (Zpos arraysize - 1 + 1) with (Zpos arraysize) by omega.
generalize (field_offsets_low_bound (intro H) H0).
omega.
Qed.

Lemma empty_base_offset_incl : forall ci b z,
empty_base_offset ci b z ->
((offsets ) ! b <> None) ->
forall o', (offsets ) ! ci = Some o' ->
0 <= z /\ z < size o'.
Proof.
inversion 1; subst.
intros.
replace o'0 with oc in * by congruence.
assert ((offsets ) ! ci' <> None).
inversion H2; congruence.
case_eq ((offsets ) ! ci'); try congruence.
intros.
destruct (non_virtual_empty_base_offset_incl H2 H3 H6).
generalize (virtual_base_offsets_low_bound (intro H0) H1).
intros.
generalize (virtual_base_offsets_high_bound (intro H0) H1 H6).
intros.
omega.
Qed.

Lemma non_virtual_empty_base_offset_wf : forall ci b z,
non_virtual_empty_base_offset ci b z ->
Ple b ci /\ hierarchy ! b <> None.
Proof.
intros.
destruct (combined_empty_base_offset_equiv ).
eauto.
destruct (H1 ci b z).
clear H0 H1 H3.
destruct (H2 H).
clear H2 H.
invall.
destruct H3.
invall; subst.
split.
eauto using Well_formed_hierarchy.path_le.
eauto using path_defined_to.
invall.
split.
2 : eauto using path_defined_to.
eapply Ple_trans.
eauto using Well_formed_hierarchy.path_le.
eapply Ple_trans.
eauto using Well_formed_hierarchy.array_path_le.
assert ((offsets ) ! x <> None) by congruence.
assert (hierarchy ! x <> None) by eauto.
case_eq (hierarchy ! x); try congruence.
intros.
assert (assoc (FieldSignature.eq_dec (A := A)) x3 (field_offsets x2) <> None) by congruence.
assert (In x3 (Class.fields t0)) by eauto using field_offsets_guard.
eapply Plt_Ple.
eapply Plt_Ple_trans.
eauto using Well_formed_hierarchy.well_founded_struct.
eauto using Well_formed_hierarchy.path_le.
Qed.

Lemma empty_base_offset_wf : forall ci b z,
empty_base_offset ci b z ->
Ple b ci /\ hierarchy ! b <> None.
Proof.
inversion 1; subst.
assert (offsets ! ci <> None) by congruence.
assert (hierarchy ! ci <> None) by eauto.
case_eq (hierarchy ! ci); try congruence.
intros.
assert ((virtual_base_offsets oc) ! ci' <> None) by congruence.
assert (Ple ci' ci).
destruct (virtual_base_offsets_guard (intro H0) H6).
eauto using Plt_Ple, Well_formed_hierarchy.is_virtual_base_of_lt.
subst; apply Ple_refl.
destruct (non_virtual_empty_base_offset_wf H2).
split.
eauto using Ple_trans.
assumption.
Qed.

End Empty_base_offsets.

Section Nonempty_base_offsets.

# Data inclusion for non-empty bases

Fact non_virtual_path_non_virtual_data_incl : forall l to from,
path hierarchy to l from Class.Inheritance.Repeated ->
(Is_empty to -> False) ->
forall accu o, non_virtual_subobject_offset accu l = Some o ->
accu <= o /\
forall oto, offsets ! to = Some oto ->
forall ofrom, offsets ! from = Some ofrom ->
o + non_virtual_data_size oto <= accu + non_virtual_data_size ofrom.
Proof.
induction l; inversion 1; subst; try discriminate.
injection H0; intros; subst.
functional inversion H2; subst.
destruct lt ; simpl in H1.
injection H1; intros; subst.
functional inversion H6; subst.
split.
omega.
intros.
replace oto with ofrom by congruence.
omega.
destruct lt; simpl in H1; discriminate.
functional inversion H6; subst.
rewrite H14.
destruct lt; simpl in H1; try congruence.
injection H1; intros; subst.
assert (path hierarchy to (id2 :: l3) id2 Class.Inheritance.Repeated).
eleft; eauto.
generalize (non_virtual_direct_base_offsets_low_bound (intro H14) H15).
intros.
generalize (IHl _ _ H4 H5 _ _ X0).
destruct 1.
split.
omega.
injection 2; intros; subst.
assert (offsets ! id2 <> None).
functional inversion X0; subst; try congruence.
generalize (path_last H4).
simpl.
congruence.
case_eq (offsets ! id2); try congruence.
intros.
generalize (Is_empty.path_from Is_empty_prop H4 H5).
intros.
generalize (non_virtual_direct_base_offsets_nonempty_high_bound (intro H14) H18 H15 H17).
generalize (non_virtual_data_size_own_fields_offset (intro H14)).
generalize (H10 _ H12 _ H17).
omega.
Qed.

Fact non_virtual_path_disjoint_field_zones : forall l1 l2,
l1 <> l2 ->
forall to1,
(Is_empty to1 -> False) ->
forall from,
path hierarchy to1 l1 from Class.Inheritance.Repeated ->
forall to2,
(Is_empty to2 -> False) ->
path hierarchy to2 l2 from Class.Inheritance.Repeated ->
forall accu z1, non_virtual_subobject_offset accu l1 = Some z1 ->
forall z2, non_virtual_subobject_offset accu l2 = Some z2 ->
forall o1, offsets ! to1 = Some o1 ->
forall o2, offsets ! to2 = Some o2 ->
z1 + non_virtual_data_size o1 <= z2 + own_fields_offset o2 \/
z2 + non_virtual_data_size o2 <= z1 + own_fields_offset o1
.
Proof.
intros until 1.
pattern l1, l2.
eapply distinct_lists_rect; eauto using peq ; clear l1 l2 H.

intros.
assert (forall A B : Prop, A \/ B -> B \/ A) by tauto.
eauto.

inversion 2; subst.
rewrite H2 in *.
inversion 2; subst.
revert H7.
repeat rewrite app_ass.
simpl.
intro.
generalize (is_valid_repeated_subobject_split_right H7).
functional inversion 1; subst.
intros until 2.
generalize (non_virtual_subobject_offset_app_recip H10).
destruct 1.
invall.
replace z1 with x in * by congruence.
assert {lt1 | a :: l2' = lt1 ++ to2 :: nil}.
apply last_correct.
assert (a :: l2' <> nil) by congruence.
rewrite <- (last_app_left H11 (lt ++ to1 :: nil)).
rewrite H6.
apply last_complete.
destruct H11.
clear from lf lt H0 H2 H3 H4 lf0 lt0 H5 H6 H7 H16 H8 accu z1 H9 H10 H12.
functional inversion H14; subst.
clear H14.
assert (path hierarchy to2 (a :: l2') a Class.Inheritance.Repeated).
eleft; eauto.
rewrite H8.
injection 1; intro; subst.
intros.
assert (offsets ! a <> None).
functional inversion X0; subst; try congruence.
generalize (path_last H0); simpl; congruence.
case_eq (offsets ! a); try congruence.
intros.
generalize (non_virtual_path_non_virtual_data_incl H0 H1 X0).
destruct 1.
generalize (H7 _ H3 _ H5).
generalize (non_virtual_direct_base_offsets_nonempty_high_bound (intro H8) (Is_empty.path_from Is_empty_prop H0 H1) H9 H5).
omega.

destruct l.
simpl.
inversion 3; subst.
inversion 2; subst.
congruence.
inversion 3; subst.
assert (i :: l <> nil) by congruence.
generalize (last_nonempty H5).
intro.
case_eq (last (i :: l)); try congruence.
intros until 1.
generalize (last_correct H7).
destruct 1.
revert H4.
rewrite e.
assert {lt1 | a1 :: l1' = lt1 ++ to1 :: nil}.
assert (a1 :: l1' <> nil) by congruence.
generalize (last_app_left H4 (i :: l)).
rewrite H3.
rewrite last_complete.
intros.
symmetry in H8.
eauto using last_correct.
destruct H4.
intro.
rewrite app_ass in H4.
simpl in H4.
generalize (is_valid_repeated_subobject_split_right H4).
functional inversion 1; subst.
inversion 2; subst.
assert {lt2 | a2 :: l2' = lt2 ++ to2 :: nil}.
assert (a2 :: l2' <> nil) by congruence.
generalize (last_app_left H15 (x ++ i0 :: nil)).
rewrite H12.
rewrite last_complete.
intros.
symmetry in H17.
eauto using last_correct.
destruct H15.
revert H14.
repeat rewrite app_ass.
simpl.
intro.
generalize (is_valid_repeated_subobject_split_right H14).
rewrite is_valid_repeated_subobject_equation.
rewrite H13.
destruct (In_dec super_eq_dec (Class.Inheritance.Repeated, a2) (Class.super cl1)); try congruence.
intro.
clear i l from H1 lf lt H2 H3 H5 H6 H7 e H4 H16 H8 H10 lf0 lt0 H11 H12 H14.
intros until 1.
generalize (non_virtual_subobject_offset_app_recip H1).
destruct 1.
invall.
functional inversion H4; subst.
intros until 1.
generalize (non_virtual_subobject_offset_app_recip H2).
rewrite H3.
destruct 1.
invall.
injection H6; intro; subst.
revert H7.
rewrite non_virtual_subobject_offset_equation.
rewrite H12.
case_eq ( (non_virtual_direct_base_offsets o) ! a2 ); try congruence.
intros.
assert (path hierarchy to1 (a1 :: l1') a1 Class.Inheritance.Repeated) by (eleft; eauto).
assert (path hierarchy to2 (a2 :: l2') a2 Class.Inheritance.Repeated) by (eleft; eauto).
assert (offsets ! a1 <> None).
functional inversion X0; subst; try congruence.
generalize (path_last H11); simpl; congruence.
case_eq (offsets ! a1); try congruence.
intros.
assert (offsets ! a2 <> None).
functional inversion H7; subst; try congruence.
generalize (path_last H16); simpl; congruence.
case_eq (offsets ! a2); try congruence.
intros.
generalize (non_virtual_path_non_virtual_data_incl H11 H0 X0).
destruct 1.
generalize (H22 _ H8 _ H18).
generalize (non_virtual_path_non_virtual_data_incl H16 H9 H7).
destruct 1.
generalize (H24 _ H10 _ H20).
generalize (own_fields_offset_low_bound (intro H18)).
generalize (own_fields_offset_low_bound (intro H20)).
generalize (non_virtual_direct_base_nonempty_data_non_overlap (intro H12) H14 (Is_empty.path_from Is_empty_prop H11 H0) H5 (Is_empty.path_from Is_empty_prop H16 H9) H H18 H20).
generalize (own_fields_offset_low_bound (intro H8)).
generalize (non_virtual_data_size_own_fields_offset (intro H8)).
generalize (own_fields_offset_low_bound (intro H10)).
generalize (non_virtual_data_size_own_fields_offset (intro H10)).
omega.
Qed.

Fact path_disjoint_field_zones : forall h1 l1 h2 l2,
(h1, l1) <> (h2, l2) ->
forall to1,
(Is_empty to1 -> False) ->
forall from,
path hierarchy to1 l1 from h1 ->
forall to2,
(Is_empty to2 -> False) ->
path hierarchy to2 l2 from h2 ->
forall z1, subobject_offset from l1 = Some z1 ->
forall z2, subobject_offset from l2 = Some z2 ->
forall o1, offsets ! to1 = Some o1 ->
forall o2, offsets ! to2 = Some o2 ->
z1 + non_virtual_data_size o1 <= z2 + own_fields_offset o2 \/
z2 + non_virtual_data_size o2 <= z1 + own_fields_offset o1
.
Proof.
intros.
functional inversion H4; subst.
functional inversion H5; subst.
replace o0 with o in * by congruence.
generalize (path_cons_repeated H1).
intros.
generalize (path_cons_repeated H3).
intros.
destruct (peq b b0).

subst.
replace of0 with of in * by congruence.
assert (h1 = h2).
generalize (Well_formed_hierarchy.categorize_paths Hhier H1 (refl_equal _)).
destruct 1.
generalize (Well_formed_hierarchy.categorize_paths Hhier H3 (refl_equal _)).
destruct 1.
destruct h1; destruct h2; eauto using sym_equal.
assert (b0 :: _x <> b0 :: _x0) by congruence.
eauto using non_virtual_path_disjoint_field_zones.

assert (offsets ! b <> None).
functional inversion H8; subst; try congruence.
generalize (path_last H13); simpl; congruence.
case_eq (offsets ! b); try congruence.
assert (offsets ! b0 <> None).
functional inversion H10; subst; try congruence.
generalize (path_last H14); simpl; congruence.
case_eq (offsets ! b0); try congruence.
intros.
assert (b_nonempty : Is_empty b -> False) by eauto using Is_empty.path_from.
assert (b0_nonempty : Is_empty b0 -> False) by eauto using Is_empty.path_from.
generalize (virtual_base_offsets_nonempty_non_overlap (intro H9) H12 H19 H15 H18 b_nonempty b0_nonempty n).
generalize (own_fields_offset_low_bound (intro H6)).
generalize (non_virtual_data_size_own_fields_offset (intro H6)).
generalize (own_fields_offset_low_bound (intro H7)).
generalize (non_virtual_data_size_own_fields_offset (intro H7)).
generalize (non_virtual_path_non_virtual_data_incl H13 H0 H8).
destruct 1.
generalize (H21 _ H6 _ H19).
generalize (non_virtual_path_non_virtual_data_incl H14 H2 H10).
destruct 1.
generalize (H23 _ H7 _ H18).
omega.
Qed.

Definition Dynamic_nonempty : forall id, Is_dynamic id -> Is_empty id -> False := dynamic_nonempty (o := OP) (hierarchy := hierarchy).

Hint Resolve Dynamic_nonempty.

Fact non_virtual_path_dynamic_own_fields_offset :
forall l from
to,
path hierarchy to l from Class.Inheritance.Repeated ->
Is_dynamic from ->
forall (to_nonempty : Is_empty to -> False)
oto, offsets ! to = Some oto ->
forall accu z,
non_virtual_subobject_offset accu l = Some z ->
accu + dynamic_type_data_size PF <= z + own_fields_offset oto
.
Proof.
induction l ; inversion 1 ; subst.
discriminate.
injection H0 ; intros until 2; subst.
destruct lf.

simpl in *.
destruct lt ; simpl in *.
injection H1 ; intro ; subst.
injection 4 ; intro ; subst.
generalize (own_fields_offset_dynamic_low_bound (intro H4) H3).
omega.
destruct lt ; simpl in * ; discriminate.

destruct lt.
simpl in * ; discriminate.
simpl in H1.
injection H1 ; intros ; subst.
replace (i0 :: i :: lf) with ((i0 :: nil) ++ i :: lf) in H2 , H7 by reflexivity.
generalize (is_valid_repeated_subobject_split_right H2).
intros.
assert (path hierarchy to (i :: lf) i Class.Inheritance.Repeated).
econstructor.
reflexivity.
eassumption.
assumption.
generalize (non_virtual_subobject_offset_app_recip H7).
destruct 1.
destruct H9.
functional inversion H9.
subst.
functional inversion X.
subst.
generalize (non_virtual_direct_base_offsets_low_bound (intro H18) H19).
intro.
generalize (own_fields_offset_low_bound (intro H6)).
intros.
assert (offsets ! i <> None).
functional inversion H10; subst; try congruence.
generalize (path_last H8); simpl; congruence.
case_eq (offsets ! i); try congruence.
intros.
generalize (Is_empty.path_from Is_empty_prop H8 to_nonempty).
intros.
generalize (non_virtual_path_non_virtual_data_incl H8 to_nonempty H10).
destruct 1.
generalize (H17 _ H6 _ H14).
intros.
case_eq (primary_base o).
intros.
generalize (non_virtual_primary_base_offset (intro H18) H21).
intros.
generalize (primary_base_dynamic (intro H18) H21).
intros.
destruct (peq i i1).
subst.
replace of with 0 in * by congruence.
generalize (IHl _ _ H8 H23 to_nonempty _ H6 _ _ H10).
omega.
generalize (primary_base_offsets_exist (intro H18) H21).
intros.
case_eq (offsets ! i1); try congruence.
intros.
generalize (dynamic_type_data_size_low_bound).
intros.
generalize (own_fields_offset_dynamic_low_bound (intro H25) H23).
intros.
generalize (non_virtual_data_size_own_fields_offset (intro H25)).
intros.
generalize (nonempty_non_virtual_data_size_positive (intro H14) H15).
intros.
generalize (non_virtual_direct_base_nonempty_data_non_overlap (intro H18) H19 H15 H22 (Dynamic_nonempty H23) n H14 H25).
omega.

intros.
generalize (non_virtual_direct_base_offsets_dynamic_type_data_size (intro H18) H5 H21 H15 H19).
omega.
Qed.

Fact non_virtual_path_own_fields_offset_dynamic :
forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
Is_dynamic to ->
forall ofrom, offsets ! from = Some ofrom ->
offsets ! to <> None ->
forall accu z,
non_virtual_subobject_offset accu l = Some z ->
z + dynamic_type_data_size PF <= accu + own_fields_offset ofrom
.
Proof.
functional inversion 5; subst.
inversion H; subst.
injection H4; intros; subst.
generalize (path_last H).
simpl.
injection 1; intros; subst.
generalize (own_fields_offset_dynamic_low_bound (intro H1) H0).
omega.
inversion H; subst.
injection H4; intros; subst.
destruct lt; simpl in H5; try discriminate.
injection H5; intros; subst.
functional inversion H8; subst.
assert (path hierarchy to (b :: _x) b Class.Inheritance.Repeated).
eleft; eauto.
replace o with ofrom in * by congruence.
assert (offsets ! b <> None).
functional inversion X; subst; try congruence.
generalize (path_last H10); simpl; congruence.
case_eq (offsets ! b); try congruence.
intros.
case_eq (offsets ! to); try congruence.
intros.
generalize (non_virtual_path_non_virtual_data_incl H10 (dynamic_nonempty H0) X).
destruct 1.
generalize (H16 _ H13 _ H12).
generalize (own_fields_offset_dynamic_low_bound (intro H13) H0).
generalize (dynamic_type_data_size_low_bound PF).
generalize (non_virtual_data_size_own_fields_offset (intro H13)).
generalize (non_virtual_direct_base_offsets_nonempty_high_bound (intro H1) (Is_empty.path_from Is_empty_prop H10 (dynamic_nonempty H0)) H7 H12).
omega.
Qed.

Fact non_virtual_paths_disjoint_field_dynamic_type :
forall l1 b to1,
path hierarchy to1 l1 b Class.Inheritance.Repeated ->
(Is_empty to1 -> False) ->
forall accu so1, non_virtual_subobject_offset accu l1 = Some so1 ->
forall o1, offsets ! to1 = Some o1 ->
forall to2, Is_dynamic to2 ->
forall l2,
path hierarchy to2 l2 b Class.Inheritance.Repeated ->
forall so2, non_virtual_subobject_offset accu l2 = Some so2 ->
offsets ! to2 <> None ->
so1 + non_virtual_data_size o1 <= so2 \/
so2 + dynamic_type_data_size PF <= so1 + own_fields_offset o1.
Proof.
induction l1; inversion 1; subst; try discriminate.
injection H0; intros until 2; subst.
functional inversion 2; subst.
generalize (path_last H).
simpl.
injection 1; intro; subst.
intros; eauto using non_virtual_path_own_fields_offset_dynamic.
functional inversion H2; subst.
destruct lt; simpl in H1; try discriminate.
injection H1; intros until 2; subst.
assert (path hierarchy to1 (b0 :: _x) b0 Class.Inheritance.Repeated) by (eleft; eauto).
inversion 3; subst.
functional inversion 1; subst.
generalize (path_last H11).
simpl.
injection 1; intros; subst.
eauto using non_virtual_path_dynamic_own_fields_offset.
intros.
destruct lt0; simpl in H15; try discriminate.
injection H15; intros; subst.
functional inversion H16; subst.
assert (path hierarchy to2 (b :: _x1) b Class.Inheritance.Repeated) by (eleft; eauto).
replace o with o0 in * by congruence.
destruct (peq b b0).
subst.
replace of with of0 in * by congruence.
eauto.
case_eq (offsets ! to2); try congruence.
intros.
assert (offsets ! b <> None).
functional inversion X1; subst; try congruence.
generalize (path_last H19); simpl; congruence.
case_eq (offsets ! b); try congruence.
intros.
assert (offsets ! b0 <> None).
functional inversion X; subst; try congruence.
generalize (path_last H6); simpl; congruence.
case_eq (offsets ! b0); try congruence.
intros.
generalize (non_virtual_path_non_virtual_data_incl H6 H3 X).
destruct 1.
generalize (H30 _ H7 _ H27).
generalize (non_virtual_path_non_virtual_data_incl H19 (dynamic_nonempty H8) X1).
destruct 1.
generalize (H32 _ H20 _ H23).
generalize (dynamic_type_data_size_low_bound).
generalize (own_fields_offset_dynamic_low_bound (intro H20) H8).
generalize (non_virtual_data_size_own_fields_offset (intro H20)).
generalize (own_fields_offset_low_bound (intro H7)).
generalize (non_virtual_data_size_own_fields_offset (intro H7)).
generalize (non_virtual_direct_base_nonempty_data_non_overlap (intro H10) H24 (Is_empty.path_from Is_empty_prop H19 (dynamic_nonempty H8)) H12 (Is_empty.path_from Is_empty_prop H6 H3) n H23 H27).
omega.
Qed.

Fact paths_disjoint_field_dynamic_type: forall l1 b to1 h1,
path hierarchy to1 l1 b h1 ->
(Is_empty to1 -> False) ->
forall so1, subobject_offset b l1 = Some so1 ->
forall o1, offsets ! to1 = Some o1 ->
forall to2, Is_dynamic to2 ->
forall l2 h2,
path hierarchy to2 l2 b h2 ->
forall so2, subobject_offset b l2 = Some so2 ->
offsets ! to2 <> None ->
so1 + non_virtual_data_size o1 <= so2 \/
so2 + dynamic_type_data_size PF <= so1 + own_fields_offset o1.
Proof.
functional inversion 3; subst.
functional inversion 4; subst.
intros.
generalize (path_cons_repeated H).
intros.
generalize (path_cons_repeated H7).
intros.
destruct (peq b0 b1).
subst.
replace of0 with of in * by congruence.
eauto using non_virtual_paths_disjoint_field_dynamic_type.
case_eq (offsets ! to2); try congruence.
intros.
assert (offsets ! b0 <> None).
functional inversion H2; subst; try congruence.
generalize (path_last H12); simpl; congruence.
case_eq (offsets ! b0); try congruence.
intros.
assert (offsets ! b1 <> None).
functional inversion H9; subst; try congruence.
generalize (path_last H14); simpl; congruence.
case_eq (offsets ! b1); try congruence.
intros.
generalize (non_virtual_path_non_virtual_data_incl H12 H0 H2).
destruct 1.
generalize (H21 _ H4 _ H17).
generalize (non_virtual_path_non_virtual_data_incl H14 (dynamic_nonempty H5) H9).
destruct 1.
generalize (H23 _ H15 _ H19).
generalize (dynamic_type_data_size_low_bound).
generalize (own_fields_offset_dynamic_low_bound (intro H15) H5).
generalize (non_virtual_data_size_own_fields_offset (intro H15)).
generalize (own_fields_offset_low_bound (intro H4)).
generalize (non_virtual_data_size_own_fields_offset (intro H4)).
replace o0 with o in * by congruence.
assert (b0_nonempty : Is_empty b0 -> False) by eauto using Is_empty.path_from.
assert (b1_nonempty : Is_empty b1 -> False) by eauto using Is_empty.path_from, dynamic_nonempty.
generalize (virtual_base_offsets_nonempty_non_overlap (intro H3) H6 H17 H13 H19 b0_nonempty b1_nonempty n).
omega.
Qed.

Fact path_data_incl : forall l to from h,
path hierarchy to l from h ->
(Is_empty to -> False) ->
forall o, subobject_offset from l = Some o ->
0 <= o /\
forall oto, offsets ! to = Some oto ->
forall ofrom, offsets ! from = Some ofrom ->
o + non_virtual_data_size oto <= data_size ofrom.
Proof.
functional inversion 3; subst.
generalize (path_cons_repeated H).
intros.
generalize (non_virtual_path_non_virtual_data_incl H4 H0 H2).
destruct 1.
generalize (virtual_base_offsets_low_bound (intro H3) H6).
intros.
split.
omega.
rewrite H3.
injection 2; intros; subst.
assert (offsets ! b <> None).
functional inversion H2; subst; try congruence.
generalize (path_last H4); simpl; congruence.
case_eq (offsets ! b); try congruence.
intros.
generalize (H7 _ H9 _ H12).
intros.
assert (Is_empty b -> False) by eauto using Is_empty.path_from.
generalize (virtual_base_offsets_data_size (intro H3) H6 H14 H12).
omega.
Qed.

Fact relative_pointer_data_incl : forall ap1 pto1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto1 ->
forall (pto1_nonempty : Is_empty pto1 -> False) o1, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o1 ->
0 <= o1 /\
forall ofrom, offsets ! afrom = Some ofrom ->
forall of1, offsets ! pto1 = Some of1 ->
o1 + non_virtual_data_size of1 <= (asfrom - 1) * size ofrom + data_size ofrom
.
Proof.
inversion 1; subst.
functional inversion 2; subst.
clear H H4.
dependent_revert p1.
dependent_revert ofto.
dependent_revert i1.
dependent_revert z1.
dependent_revert z2.
induction H0; subst.
simpl.
injection 1; intros; subst.
rewrite H7.
generalize (size_positive H7).
intro.
assert (0 <= size ofto) by omega.
generalize (Zmult_ge H2 H5).
generalize (path_data_incl H4 pto1_nonempty H8).
destruct 1.
intros.
split.
omega.
injection 1; intro ; subst.
intros.
assert (i1 <= from_n - 1) by omega.
generalize (Zmult_le_compat_r _ _ _ H14 H5).
generalize (H10 _ H13 _ H7).
omega.
intros.
revert H6.
rewrite array_path_offset_equation.
case_eq (offsets ! from); try congruence.
intros until 1.
case_eq (subobject_offset from l); try congruence.
intros until 1.
rewrite (path_last H1).
case_eq (offsets ! through); try congruence.
intros until 1.
rewrite H4.
case_eq (assoc (FieldSignature.eq_dec (A := A)) fs (field_offsets t1)); try congruence.
intros.
generalize (array_path_offset_rewrite H15 0).
intros.
assert (offsets ! by <> None).
functional inversion H16; subst; try congruence.
inversion H5; congruence.
case_eq (offsets ! by); try congruence.
intros until 1.
generalize (IHvalid_array_path _ _ H16 _ H7 H8 _ H9 _ H10 H11).
destruct 1.
assert (forall ty n, FieldSignature.type fs = FieldSignature.Struct ty n -> Is_empty ty -> False).
rewrite H4.
injection 1; intros; subst.
eauto using Is_empty.path_from, Is_empty.array_path_from.
generalize (field_offsets_low_bound (intro H13) H14).
generalize (non_virtual_data_size_field_offsets (intro H13) H14 H21).
unfold field_data_size.
rewrite H4.
rewrite H18.
intro.
generalize (H22 _ (refl_equal _)).
clear H22.
assert (Is_empty through -> False).
intros.
eapply H21.
eassumption.
eapply Is_empty.fields_struct_empty.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
generalize (path_data_incl H1 H22 H12).
destruct 1.
generalize (H24 _ H13 _ H6).
assert (0 <= size t0).
generalize (size_positive H6).
omega.
generalize (Zmult_ge H H25).
assert (p <= from_n - 1) by omega.
generalize (Zmult_le_compat_r _ _ _ H26 H25).
intros.
split.
omega.
injection 1; intros; subst.
generalize (H20 _ H18 _ H34).
omega.
Qed.

Fact relative_pointer_alt_fields_incl : forall afrom zfrom ato pto i h p f,
valid_relative_pointer_alt afrom zfrom ato pto (relative_pointer_alt_intro i (h, p) f) ->
forall (is_empty_pto : Is_empty pto -> False) of, relative_pointer_alt_offset (relative_pointer_alt_intro i (h, p) f) afrom ato = Some of ->
forall ofrom, offsets ! afrom = Some ofrom ->
forall ofp, subobject_offset afrom p = Some ofp ->
forall pato, last p = Some pato ->
forall oato, offsets ! pato = Some oato ->
forall opto, offsets ! pto = Some opto ->
i * size ofrom + ofp <= of /\
i * size ofrom + ofp + own_fields_offset oato <= of + own_fields_offset opto /\
of + non_virtual_data_size opto <= i * size ofrom + ofp + non_virtual_data_size oato.
Proof.
inversion 1; subst.
simpl.
intros.
revert H3 H0.
rewrite H1.
rewrite H2.
rewrite (path_last H6).
injection 1; intro; subst.
rewrite H8.
destruct f.
destruct p0.
destruct p0.
destruct p0.
destruct p1.
invall.
rewrite H10.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t0 (field_offsets oato)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato a z l); try congruence.
injection 2; intros; subst.
generalize (field_offsets_nonempty_low_bound (intro H8) H11).
assert (x0_nonempty : forall (ty : ident) (n : positive),
FieldSignature.type t0 = FieldSignature.Struct ty n ->
Is_empty ty -> False).
rewrite H10.
injection 1; intros; subst.
eauto using Is_empty.relative_pointer_from.
intro.
generalize (H15 x0_nonempty).
assert (offsets ! x0 <> None).
functional inversion H13; subst.
inversion H12; subst.
functional inversion H17; subst; try congruence.
inversion H16; subst; congruence.
case_eq (offsets ! x0); try congruence.
intros.
generalize (relative_pointer_data_incl H12 is_empty_pto H13).
destruct 1.
generalize (own_fields_offset_low_bound (intro H9)).
intros.
generalize (H20 _ H17 _ H9).
intros.
generalize (non_virtual_data_size_field_offsets (intro H8) H11 x0_nonempty).
unfold field_data_size.
rewrite H10.
rewrite H17.
intros.
generalize (H23 _ (refl_equal _)).
intros.
generalize (own_fields_offset_low_bound (intro H8)).
omega.
injection 1; intros; subst.
invall.
subst.
replace oato with opto in * by congruence.
omega.
Qed.

# Proof of field access (5.1)

5.1 Theorem 1
Theorem scalar_fields_disjoint :
forall ap1 pto1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto1 ->
forall ap2 pto2 ato2 i2 h2 p2,
valid_relative_pointer hierarchy afrom asfrom ap2 ato2 i2 h2 p2 pto2 ->
forall o1, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o1 ->
forall o2, relative_pointer_offset afrom ato2 ap2 i2 p2 = Some o2 ->
forall of1, offsets ! pto1 = Some of1 ->
forall of2, offsets ! pto2 = Some of2 ->
forall f1 fo1, assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets of1) = Some fo1 ->
forall ty1, FieldSignature.type f1 = FieldSignature.Scalar ty1 ->
forall f2 fo2, assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets of2) = Some fo2 ->
forall ty2, FieldSignature.type f2 = FieldSignature.Scalar ty2 ->
((ap1, i1, (h1, p1)), f1) <> ((ap2, i2, (h2, p2)), f2) ->
o1 + fo1 + typ_size PF ty1 <= o2 + fo2 \/
o2 + fo2 + typ_size PF ty2 <= o1 + fo1
.
Proof.
cut (
forall ap1 ap2,
(length ap1 <= length ap2)%nat ->
forall pto1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto1 ->
forall pto2 ato2 i2 h2 p2,
valid_relative_pointer hierarchy afrom asfrom ap2 ato2 i2 h2 p2 pto2 ->
forall o1, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o1 ->
forall o2, relative_pointer_offset afrom ato2 ap2 i2 p2 = Some o2 ->
forall of1, offsets ! pto1 = Some of1 ->
forall of2, offsets ! pto2 = Some of2 ->
forall f1 fo1, assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets of1) = Some fo1 ->
forall ty1, FieldSignature.type f1 = FieldSignature.Scalar ty1 ->
forall f2 fo2, assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets of2) = Some fo2 ->
forall ty2, FieldSignature.type f2 = FieldSignature.Scalar ty2 ->
((ap1, i1, (h1, p1)), f1) <> ((ap2, i2, (h2, p2)), f2) ->
o1 + fo1 + typ_size PF ty1 <= o2 + fo2 \/
o2 + fo2 + typ_size PF ty2 <= o1 + fo1
).
intros.
destruct (le_lt_dec (length ap1) (length ap2)); eauto.
assert (length ap2 <= length ap1)%nat by omega.
assert (((ap2, i2, (h2, p2)), f2) <> ((ap1, i1, (h1, p1)), f1)) by congruence.
assert (forall A B : Prop, A \/ B -> B \/ A) by tauto.
eauto.
intro ap1.
var (length ap1).
dependent_revert ap1.
induction v using (well_founded_induction Wf_nat.lt_wf).
intros.
subst.
assert (pto1_nonempty: Is_empty pto1 -> False).
intros.
assert ( assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets of1) <> None) by congruence.
assert (offsets ! pto1 <> None) by congruence.
generalize (guard H14).
intros.
case_eq (hierarchy ! pto1); try congruence.
intros.
generalize (field_offsets_guard (intro H6) H13 H16).
intros.
eauto using Is_empty.no_scalar_fields.
assert (pto2_nonempty: Is_empty pto2 -> False).
intros.
assert ( assoc (FieldSignature.eq_dec (A := A)) f2 (field_offsets of2) <> None) by congruence.
assert (offsets ! pto2 <> None) by congruence.
generalize (guard H14).
intros.
case_eq (hierarchy ! pto2); try congruence.
intros.
generalize (field_offsets_guard (intro H7) H13 H16).
intros.
eauto using Is_empty.no_scalar_fields.
assert ((relative_pointer_alt_of_relative_pointer ap1 i1 (h1, p1), f1) <> (relative_pointer_alt_of_relative_pointer ap2 i2 (h2, p2), f2)).
rewrite <- relative_pointer_default_to_alt_to_default in H12.
rewrite <- relative_pointer_default_to_alt_to_default in H12.
congruence.
clear H12.
revert H0.
revert H1 H.
rewrite <- (relative_pointer_alt_length_correct ap1 i1 (h1, p1)).
rewrite <- (relative_pointer_alt_length_correct ap2 i2 (h2, p2)).
generalize (valid_relative_pointer_valid_relative_pointer_alt H2).
generalize (relative_pointer_alt_offset_correct H2 H4).
clear H2 H4.
generalize (valid_relative_pointer_valid_relative_pointer_alt H3).
generalize (relative_pointer_alt_offset_correct H3 H5).
clear H3 H5.
destruct (relative_pointer_alt_of_relative_pointer ap1 i1 (h1, p1)).
destruct (relative_pointer_alt_of_relative_pointer ap2 i2 (h2, p2)).
clear ap1 i1 h1 p1 ap2 i2 h2 p2.
intros.
inversion H0; subst.
rename H0 into J0.
inversion H2; subst.
rename H2 into J2.
generalize H.
rename H into J.
unfold relative_pointer_alt_offset.
case_eq (offsets ! afrom); try congruence.
intros until 1.
case_eq (subobject_offset afrom p'); try congruence.
intros.
generalize H1.
rename H1 into J1.
unfold relative_pointer_alt_offset.
rewrite H.
case_eq (subobject_offset afrom p'0); try congruence.
intros.
assert (offsets ! through <> None).
destruct f0.
destruct p.
destruct p.
destruct p.
destruct p0.
destruct (FieldSignature.type t1); try congruence.
rewrite (path_last H17) in H2.
destruct (offsets ! through); try congruence.
invall; congruence.
case_eq (offsets ! through); try congruence.
intros.
assert (offsets ! through0 <> None).
destruct f.
destruct p.
destruct p.
destruct p.
destruct p0.
destruct (FieldSignature.type t2); try congruence.
rewrite (path_last H20) in H12.
destruct (offsets ! through0); try congruence.
invall; congruence.
case_eq (offsets ! through0); try congruence.
intros.
generalize (relative_pointer_alt_fields_incl J0 pto2_nonempty J H H0).
rewrite (path_last H17).
intros.
generalize (H25 _ (refl_equal _)).
clear H25.
rewrite H22.
rewrite H7.
intros.
generalize (H25 _ (refl_equal _) _ (refl_equal _)).
clear H25.
destruct 1 as [_ [? ?]].
generalize (relative_pointer_alt_fields_incl J2 pto1_nonempty J1 H H1).
rewrite (path_last H20).
intros.
generalize (H27 _ (refl_equal _)).
clear H27.
rewrite H24.
rewrite H6.
intros.
generalize (H27 _ (refl_equal _) _ (refl_equal _)).
clear H27.
destruct 1 as [_ [? ?]].
assert (Is_empty through0 -> False).
destruct f; invall; subst; try congruence.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
inversion H32; subst.
intros.
apply pto1_nonempty.
eapply Is_empty.path_to.
eassumption.
eassumption.
eapply Is_empty.array_path_to.
eassumption.
eassumption.
eapply Is_empty.fields_struct_empty.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
assert (Is_empty through -> False).
destruct f0; invall; subst; try congruence.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
inversion H33; subst.
intros.
apply pto2_nonempty.
eapply Is_empty.path_to.
eassumption.
eassumption.
eapply Is_empty.array_path_to.
eassumption.
eassumption.
eapply Is_empty.fields_struct_empty.
eassumption.
eassumption.
eassumption.
eassumption.
eassumption.
assert (forall ty n,
FieldSignature.type f1 = FieldSignature.Struct ty n ->
Is_empty ty -> False).
rewrite H9; congruence.
assert (forall ty n,
FieldSignature.type f2 = FieldSignature.Struct ty n ->
Is_empty ty -> False).
rewrite H11; congruence.
generalize (field_offsets_nonempty_low_bound (intro H6) H8 H31).
intros.
generalize (non_virtual_data_size_field_offsets (intro H6) H8 H31).
unfold field_data_size.
rewrite H9.
intros.
generalize (H34 _ (refl_equal _)).
clear H34.
intros.
generalize (field_offsets_nonempty_low_bound (intro H7) H10 H32).
intros.
generalize (non_virtual_data_size_field_offsets (intro H7) H10 H32).
unfold field_data_size.
rewrite H11.
intros.
generalize (H36 _ (refl_equal _)).
clear H36.
intros.
generalize (typ_size_positive PF ty1).
intros.
generalize (typ_size_positive PF ty2).
intros.
generalize (path_data_incl H17 H30 H0).
destruct 1.
generalize (H40 _ H22 _ H).
intros.
generalize (data_size_high_bound (intro H)).
intros.
generalize (path_data_incl H20 H29 H1).
destruct 1.
generalize (H44 _ H24 _ H).
intros.
generalize (own_fields_offset_low_bound (intro H22)).
intros.
generalize (own_fields_offset_low_bound (intro H24)).
intros.

destruct (Z_eq_dec i i0).
Focus 2.
generalize (size_positive H).
intros.
generalize (array_cells_disjoint n H48).
omega.
subst.
destruct (list_eq_dec peq p' p'0).
Focus 2.
assert ((h', p') <> (h'0, p'0)) by congruence.
generalize (path_disjoint_field_zones H48 H30 H17 H29 H20 H0 H1 H22 H24).
omega.
subst.
assert (h' = h'0) by eauto using Well_formed_hierarchy.path_eq_hierarchy_eq.
subst.
assert (through = through0).
generalize (path_last H17).
generalize (path_last H20).
congruence.
subst.
destruct (option_eq_dec
(prod_eq_dec
(prod_eq_dec
(prod_eq_dec (FieldSignature.eq_dec (A := A)) (array_path_eq_dec (A := A)))
Z_eq_dec)
(prod_eq_dec Class.Inheritance.eq_dec (list_eq_dec peq)))
f f0).
subst.
assert (pto1 = pto2 /\ o1 = o2).
destruct f0.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
replace x3 with x1 in * by congruence.
replace x4 with x2 in * by congruence.
generalize (valid_relative_pointer_last H51 H54).
destruct 1; subst.
split.
reflexivity.
congruence.
invall.
split; congruence.
destruct H48.
subst.
assert (f1 <> f2) by congruence.
replace of1 with of2 in * by congruence.
generalize (field_offsets_non_overlap (intro H6) H8 H10 H31 H32 H48).
unfold field_data_size.
rewrite H9.
rewrite H11.
intros.
generalize (H49 _ (refl_equal _) _ (refl_equal _)).
omega.
replace z with z0 in * by congruence.
replace t1 with t2 in * by congruence.
destruct f0.
Focus 2.
destruct f.
simpl in H3.
destruct p.
destruct p.
destruct p.
omega.
congruence.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
revert H2 H21 H12.
rewrite H49.
rewrite (path_last H17).
rewrite H22.
case_eq (
assoc (FieldSignature.eq_dec (A := A)) t3 (field_offsets t2)
); try congruence.
case_eq (
relative_pointer_offset x0 ato2 a z1 l
); try congruence.
injection 3; intro; subst.
rewrite H18.
intro.
assert (offsets ! x0 <> None).
functional inversion H2; subst.
functional inversion H53; subst; try congruence.
inversion H51; subst.
inversion H52; congruence.
case_eq (offsets ! x0); try congruence.
intros until 1.
generalize (relative_pointer_data_incl H51 pto2_nonempty H2).
destruct 1.
generalize (H55 _ H53 _ H7).
intros until 1.
assert (forall ty n, FieldSignature.type t3 = FieldSignature.Struct ty n -> Is_empty ty -> False).
rewrite H49.
injection 1; intros; subst.
apply pto2_nonempty.
eapply Is_empty.relative_pointer_to.
eassumption.
eassumption.
assumption.
destruct f.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
injection H50; intro; subst.
rewrite H59.
case_eq (
assoc (FieldSignature.eq_dec (A := A)) t6 (field_offsets t2)
); try congruence.
case_eq (
relative_pointer_offset x3 ato1 a0 z4 l0
); try congruence.
injection 3; intros; subst.
simpl in H3.
simpl in H4.
assert (length a0 <= length a)%nat by omega.
assert (length a0 < S (length a0))%nat by omega.
destruct ((FieldSignature.eq_dec (A := A)) t6 t3).
subst.
assert (
(a0, z4, (t7, l0), f1) <> (a, z1, (t4, l), f2)
) by congruence.
replace x3 with x0 in * by congruence.
replace x4 with x1 in * by congruence.
generalize (H4 _ H65 _ (refl_equal _) _ H64 _ _ _ _ _ _ _ H61 _ _ _ _ _ H51 _ H60 _ H2 _ H6 _ H7 _ _ H8 _ H9 _ _ H10 _ H11 H66).
replace z6 with z3 in * by congruence.
omega.
generalize (relative_pointer_data_incl H61 pto1_nonempty H60).
destruct 1.
assert (offsets ! x3 <> None).
functional inversion H60; subst.
functional inversion H69; subst; try congruence.
inversion H61; subst.
inversion H68; congruence.
case_eq (offsets ! x3); try congruence.
intros.
generalize (H67 _ H69 _ H6).
intros.
assert (forall ty n, FieldSignature.type t6 = FieldSignature.Struct ty n -> Is_empty ty -> False).
rewrite H59.
injection 1; intros; subst.
apply pto1_nonempty.
eapply Is_empty.relative_pointer_to.
eassumption.
eassumption.
assumption.
generalize (field_offsets_non_overlap (intro H22) H62 H12 H71 H57 n0).
unfold field_data_size.
rewrite H49.
rewrite H53.
rewrite H59.
rewrite H69.
intros.
generalize (H72 _ (refl_equal _) _ (refl_equal _)).
intros.
generalize (own_fields_offset_low_bound (intro H6)).
generalize (own_fields_offset_low_bound (intro H7)).
omega.
injection 1; intros; subst.
invall; subst.
replace of1 with t2 in * by congruence.
assert (f1 <> t3) by congruence.
generalize (field_offsets_non_overlap (intro H22) H8 H12 H31 H57 H50).
unfold field_data_size.
rewrite H9.
rewrite H49.
rewrite H53.
intros.
generalize (H59 _ (refl_equal _) _ (refl_equal _)).
generalize (own_fields_offset_low_bound (intro H7)).
omega.
Qed.

# Proof of field access in the presence of dynamic type data (5.4)

5.4 Theorem 5
Theorem scalar_field_dynamic_type_data_disjoint :
forall ap1 pto1 afrom asfrom ato1 i1 h1 p1,
valid_relative_pointer hierarchy afrom asfrom ap1 ato1 i1 h1 p1 pto1 ->
forall ap2 pto2 ato2 i2 h2 p2,
valid_relative_pointer hierarchy afrom asfrom ap2 ato2 i2 h2 p2 pto2 ->
forall o1, relative_pointer_offset afrom ato1 ap1 i1 p1 = Some o1 ->
forall o2, relative_pointer_offset afrom ato2 ap2 i2 p2 = Some o2 ->
forall of1, offsets ! pto1 = Some of1 ->
offsets ! pto2 <> None ->
forall f1 fo1, assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets of1) = Some fo1 ->
forall ty1, FieldSignature.type f1 = FieldSignature.Scalar ty1 ->
Is_dynamic pto2 ->
o1 + fo1 + typ_size PF ty1 <= o2 \/
o2 + dynamic_type_data_size PF <= o1 + fo1
.
Proof.
intro.
var (length ap1).
revert ap1 H.
induction v using (well_founded_induction Wf_nat.lt_wf).
intros until 5.
subst.
generalize (valid_relative_pointer_valid_relative_pointer_alt H1).
generalize (valid_relative_pointer_valid_relative_pointer_alt H2).
generalize (relative_pointer_alt_offset_correct H1 H3).
clear H1 H3.
generalize (relative_pointer_alt_offset_correct H2 H4).
clear H2 H4.
revert H.
rewrite <- (relative_pointer_alt_length_correct ap1 i1 (h1, p1)).
destruct (relative_pointer_alt_of_relative_pointer ap1 i1 (h1, p1)).
clear ap1 i1 h1 p1.
destruct (relative_pointer_alt_of_relative_pointer ap2 i2 (h2, p2)).
clear ap2 i2 h2 p2.
intros.
inversion H2; subst.
inversion H3; subst.
generalize H0 H1.
unfold relative_pointer_alt_offset.
case_eq (offsets ! afrom); try congruence.
intros until 1.
case_eq (subobject_offset afrom p'); try congruence.
intros until 1.
rewrite (path_last H14).
case_eq (subobject_offset afrom p'0); try congruence.
intros until 1.
rewrite (path_last H18).
intros until 2.
assert (offsets ! through <> None).
revert H20.
destruct f0.
case_eq (offsets ! through); try congruence.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
rewrite H22.
congruence.
invall; congruence.
revert H20.
case_eq (offsets ! through); try congruence.
intros.
assert (offsets ! through0 <> None).
revert H21.
destruct f.
case_eq (offsets ! through0); try congruence.
destruct p.
destruct p.
destruct p.
destruct p0.
invall.
rewrite H24.
congruence.
invall; congruence.
revert H21.
case_eq (offsets ! through0); try congruence.
intros.
assert (pto1_nonempty : Is_empty pto1 -> False).
assert (offsets ! pto1 <> None) by congruence.
generalize (guard H26).
intros.
case_eq (hierarchy ! pto1); try congruence.
intros.
assert (assoc (FieldSignature.eq_dec (A := A)) f1 (field_offsets of1) <> None) by congruence.
generalize (field_offsets_guard (intro H4) H30 H29).
intros.
eauto using Is_empty.no_scalar_fields.
assert (pto2_nonempty : Is_empty pto2 -> False) by eauto using dynamic_nonempty.
generalize (relative_pointer_alt_fields_incl H3 pto1_nonempty H1 H9 H11 (path_last H18) H21 H4).
destruct 1.
invall.
case_eq (offsets ! pto2); try congruence.
intros.
generalize (dynamic_type_data_size_low_bound).
intros.
generalize (own_fields_offset_dynamic_low_bound (intro H27) H8).
intros.
generalize (non_virtual_data_size_own_fields_offset (intro H27)).
intros.
generalize (own_fields_offset_low_bound (intro H4)).
intros.
assert (forall ty n, FieldSignature.type f1 = FieldSignature.Struct ty n -> Is_empty ty -> False).
intros; congruence.
generalize (field_offsets_nonempty_low_bound (intro H4) H6 H34).
intros.
generalize (non_virtual_data_size_field_offsets (intro H4) H6 H34).
unfold field_data_size.
rewrite H7.
intro.
generalize (H36 _ (refl_equal _)).
clear H36.
intros.
generalize (typ_size_positive PF ty1).
intros.
generalize (relative_pointer_alt_fields_incl H2 pto2_nonempty H0 H9 H10 (path_last H14) H20 H27).
destruct 1.
invall.
assert (Is_empty through -> False).
destruct f0 as [[[[? ?] ?] [? ?]] |]; invall; subst; try assumption.
intros; apply pto2_nonempty.
eapply Is_empty.relative_pointer_to; try eassumption.
eapply Is_empty.fields_struct_empty; eassumption.
assert (Is_empty through0 -> False).
destruct f as [[[[? ?] ?] [? ?]] |]; invall; subst; try assumption.
intros; apply pto1_nonempty.
eapply Is_empty.relative_pointer_to; try eassumption.
eapply Is_empty.fields_struct_empty; eassumption.
generalize (own_fields_offset_low_bound (intro H20)).
intros.
generalize (own_fields_offset_low_bound (intro H21)).
intros.

destruct (Z_eq_dec i i0).
subst.
destruct f0 as [[[[? ?] ?] [? ?]] |].
invall.
revert H23.
rewrite H46.
case_eq (assoc (FieldSignature.eq_dec (A := A)) t4 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x0 ato2 a z1 l); try congruence.
injection 2; intros; subst.
assert (offsets ! x0 <> None).
inversion H48; subst.
functional inversion H47; subst.
functional inversion H55; subst; try congruence.
inversion H50; congruence.
case_eq (offsets ! x0); try congruence.
intros.
generalize (relative_pointer_data_incl H48 pto2_nonempty H47).
destruct 1.
generalize (H53 _ H51 _ H27).
intros.
assert (forall ty n, FieldSignature.type t4 = FieldSignature.Struct ty n -> Is_empty ty -> False).
rewrite H46.
injection 1; intros; subst.
apply pto2_nonempty.
eapply Is_empty.relative_pointer_to; eassumption.
generalize (field_offsets_nonempty_low_bound (intro H20) H23 H55) .
intros.
generalize (non_virtual_data_size_field_offsets (intro H20) H23 H55).
unfold field_data_size.
rewrite H46.
rewrite H51.
intros.
generalize (H57 _ (refl_equal _)).
clear H57.
intros.
destruct (list_eq_dec peq p'0 p').
subst.
assert (through0 = through).
generalize (path_last H18).
generalize (path_last H14).
congruence.
subst.
replace t2 with t1 in * by congruence.
replace z0 with z in * by congruence.
replace h'0 with h' in * by eauto using Well_formed_hierarchy.path_eq_hierarchy_eq.
destruct f as [[[[? ?] ?] [? ?]] |].
invall.
revert H25.
rewrite H59.
case_eq ( assoc (FieldSignature.eq_dec (A := A)) t7 (field_offsets t1)); try congruence.
intros until 1.
case_eq (relative_pointer_offset x3 ato1 a0 z4 l0); try congruence.
injection 2; intros; subst.
destruct ((FieldSignature.eq_dec (A := A)) t4 t7).
subst.
replace x3 with x0 in * by congruence.
replace x4 with x1 in * by congruence.
replace z5 with z2 in * by congruence.
simpl in H.
generalize (H _ (lt_n_Sn _) _ (refl_equal _) _ _ _ _ _ _ _ H61 _ _ _ _ _ _ H48 _ H60 _ H47 _ H4 H5 _ _ H6 _ H7 H8).
omega.
assert (offsets ! x3 <> None).
functional inversion H60; subst.
functional inversion H64; subst; try congruence.
inversion H61; subst.
inversion H63; congruence.
case_eq (offsets ! x3); try congruence.
intros.
assert (forall ty n, FieldSignature.type t7 = FieldSignature.Struct ty n -> Is_empty ty -> False).
rewrite H59.
injection 1; intros; subst.
apply pto1_nonempty.
eapply Is_empty.relative_pointer_to; eassumption.
generalize (relative_pointer_data_incl H61 pto1_nonempty H60).
destruct 1.
generalize (H67 _ H64 _ H4).
intros.
generalize (field_offsets_non_overlap (intro H20) H23 H25 H55 H65 n).
unfold field_data_size.
rewrite H59.
rewrite H64.
rewrite H46.
rewrite H51.
intros.
generalize (H69 _ (refl_equal _) _ (refl_equal _)).
omega.
invall; subst.
replace of1 with t1 in * by congruence.
injection H25; intros; subst.
assert (f1 <> t4) by congruence.
generalize (field_offsets_non_overlap (intro H4) H6 H23 H34 H55 H19).
unfold field_data_size.
rewrite H7.
rewrite H46.
rewrite H51.
intros.
generalize (H58 _ (refl_equal _) _ (refl_equal _)).
omega.
assert ((h'0, p'0) <> (h', p')) by congruence.
generalize (path_disjoint_field_zones H58 H42 H18 H39 H14 H11 H10 H21 H20).
omega.
invall; subst.
injection H23; intros; subst.
replace t3 with t1 in * by congruence.
generalize (paths_disjoint_field_dynamic_type H18 H42 H11 H21 H8 H14 H10 H5).
omega.
generalize (path_data_incl H14 H39 H10).
destruct 1.
generalize (H46 _ H20 _ H9).
intros.
generalize (path_data_incl H18 H42 H11).
destruct 1.
generalize (H49 _ H21 _ H9).
intros.
generalize (size_positive H9).
intros.
generalize (array_cells_disjoint n H51).
generalize (data_size_high_bound (intro H9)).
omega.
Qed.

# Preservation of dynamic type data (5.4)

Section Primary_paths.

Function is_primary_path (p : list ident) {struct p} : bool :=
match p with
| nil => false
| a :: p' =>
match p' with
| nil => true
| a' :: _ =>
match offsets ! a with
| None => false
| Some o =>
if (option_eq_dec peq (primary_base o) (Some a')) then is_primary_path p' else false
end
end
end.

Fact primary_path_offset : forall p,
is_primary_path p = true ->
forall accu, non_virtual_subobject_offset accu p = Some accu.
Proof.
intro p.
functional induction (is_primary_path p) ; try congruence.

intros _.
simpl.
trivial.

intros.
change (non_virtual_subobject_offset accu (a :: a' :: _x))
with
(match offsets ! a with
| None => None
| Some o0 =>
match (non_virtual_direct_base_offsets o0) ! a' with
| Some oa' => non_virtual_subobject_offset (accu + oa') (a' :: _x)
| None => None
end
end).
rewrite e1.
rewrite (non_virtual_primary_base_offset (intro e1) _x0).
replace (accu + 0) with accu by omega.
auto.
Qed.

Fact non_primary_path_offset : forall p,
is_primary_path p = false ->
forall from to, path hierarchy to p from Class.Inheritance.Repeated ->
(Is_dynamic from) ->
(Is_empty to -> False) ->
offsets ! to <> None ->
forall accu of, non_virtual_subobject_offset accu p = Some of -> accu + dynamic_type_data_size PF <= of.
Proof.
intros p.
functional induction (is_primary_path p) ; try congruence.

inversion 2 ; discriminate.

functional inversion 6 ; subst; congruence.

functional inversion 6 ; subst.
inversion H0; subst.
destruct lt; simpl in H6; try discriminate.
injection H5; intros; subst.
injection H6; intros; subst.
functional inversion H7; subst.
assert (path hierarchy to (a' :: _x) a' Class.Inheritance.Repeated) by (eleft; eauto).
generalize (non_virtual_primary_base_offset (intro e1) _x0).
intros.
replace of0 with 0 in * by congruence.
replace accu with (accu + 0) by omega.
generalize (primary_base_dynamic (intro e1) _x0).
intros.
eauto.

functional inversion 6; subst.
inversion H0; subst.
injection H5; intros; subst.
destruct lt; simpl in H6; try discriminate.
injection H6; intros; subst.
functional inversion H7; subst.
assert (path hierarchy to (a' :: _x) a' Class.Inheritance.Repeated) by (eleft; eauto).
assert (Is_empty a' -> False) by eauto using Is_empty.path_from.
generalize (non_virtual_path_non_virtual_data_incl H9 H2 X).
destruct 1.
replace o0 with o in * by congruence.
case_eq (primary_base o).

intros.
assert (i0 <> a') by congruence.
generalize (non_virtual_primary_base_offset (intro e1) H16).
intros.
generalize (primary_base_offsets_exist (intro e1) H16).
intros.
case_eq (offsets ! i0); try congruence.
intros.
assert (offsets ! a' <> None).
functional inversion X; subst; try congruence.
generalize (path_last H9); simpl; congruence.
case_eq (offsets ! a'); try congruence.
intros.
generalize (primary_base_dynamic (intro e1) H16).
intros.
generalize (Dynamic_nonempty H24).
intros.
generalize dynamic_type_data_size_low_bound.
intros.
generalize (own_fields_offset_dynamic_low_bound (intro H21) H24).
intros.
generalize (non_virtual_data_size_own_fields_offset (intro H21)).
intros.
generalize (nonempty_non_virtual_data_size_positive (intro H23) H10).
intros.
generalize (non_virtual_direct_base_nonempty_data_non_overlap (intro e1) H19 H25 H13 H10 H17 H21 H23).
intros.
generalize (non_virtual_direct_base_offsets_low_bound (intro e1) H13).
omega.

intro H_no_pb.
generalize (non_virtual_direct_base_offsets_dynamic_type_data_size (intro e1) H1 H_no_pb H10 H13).
generalize (dynamic_type_data_size_low_bound).
omega.

Qed.

Mentioned in 4.5.4
Fact non_virtual_direct_base_non_primary_offset_low_bound : forall cl,
Is_dynamic cl ->
forall of (Hof : offsets ! cl = Some of)
cl', primary_base of <> Some cl' ->
(Is_empty cl' -> False) ->
offsets ! cl' <> None ->
forall o' (Ho' : (non_virtual_direct_base_offsets of) ! cl' = Some o'),
dynamic_type_data_size PF <= o'.
Proof.
intros.
replace (dynamic_type_data_size PF) with (0 + dynamic_type_data_size PF) by omega.
eapply (@non_primary_path_offset (cl :: cl' :: nil)).
simpl.
rewrite Hof.
destruct (option_eq_dec peq (primary_base of) (Some cl')); congruence.
eleft.
reflexivity.
pattern (cl :: cl' :: nil) at 1.
replace (cl :: cl' :: nil) with ((cl :: nil) ++ cl' :: nil) by reflexivity.
reflexivity.
simpl.
assert (offsets ! cl <> None) by congruence.
assert (hierarchy ! cl <> None) by eauto.
case_eq (hierarchy ! cl); try congruence.
assert ( (non_virtual_direct_base_offsets of) ! cl' <> None) by congruence.
intros.
destruct (In_dec super_eq_dec (Class.Inheritance.Repeated,cl') (Class.super t0)).
assert (hierarchy ! cl' <> None) by eauto.
case_eq (hierarchy ! cl'); congruence.
destruct n.
eauto using non_virtual_direct_base_offsets_guard.
assumption.
assumption.
assumption.
simpl.
rewrite Hof.
rewrite Ho'.
reflexivity.
Qed.

Fact primary_path_join : forall l1 p l2,
is_primary_path (l1 ++ p :: nil) = true ->
is_primary_path (p :: l2) = true ->
is_primary_path (l1 ++ p :: l2) = true.
Proof.
induction l1 ; simpl.
intros; assumption.
intros until l2.
destruct l1 ; simpl.
case_eq (offsets ! a) ; try (intros ; discriminate).
intros until 1.
destruct (option_eq_dec peq (primary_base t0) (Some p)) ; try (intros ; discriminate).
intros; assumption.
case_eq (offsets ! a) ; try (intros ; discriminate).
intros until 1.
destruct (option_eq_dec peq (primary_base t0) (Some i)) ; try (intros ; discriminate).
generalize (IHl1 p l2).
simpl.
intros.
apply H0.
assumption.
assumption.
Qed.

Fact primary_path_split_left : forall l1 p l2,
is_primary_path (l1 ++ p :: l2) = true ->
is_primary_path (l1 ++ p :: nil) = true.
Proof.
induction l1 ; simpl.
intros ; destruct l2; destruct (offsets ! p) ; congruence.
intros until l2.
destruct l1 ; simpl.
case_eq (offsets ! a) ; try congruence.
intros until 1.
destruct (option_eq_dec peq (primary_base t0) (Some p)); congruence.
destruct (offsets ! a); try congruence.
destruct (option_eq_dec peq (primary_base t0) (Some i)) ; try congruence.
generalize (IHl1 p l2).
simpl.
tauto.
Qed.

Fact primary_path_split_right : forall l1 p l2,
is_primary_path (l1 ++ p :: l2) = true ->
is_primary_path (p :: l2) = true.
Proof.
induction l1 ; simpl.
tauto.
intros until l2.
destruct l1; simpl.
destruct (offsets ! a); try congruence.
destruct (option_eq_dec peq (primary_base t0) (Some p)); congruence.
generalize (IHl1 p l2).
simpl.
destruct (offsets ! a); try congruence.
destruct (option_eq_dec peq (primary_base t0) (Some i)); try congruence.
tauto.
Qed.

Fact minimal_path_unique : forall l1 p1 q1,
is_primary_path (p1 :: q1 :: nil) = false ->
forall l1', is_primary_path (q1 :: l1') = true ->
forall l2 p2 q2,
is_primary_path (p2 :: q2 :: nil) = false ->
forall l2', is_primary_path (q2 :: l2') = true ->
l1 ++ p1 :: q1 :: l1' = l2 ++ p2 :: q2 :: l2' ->
(l1, p1, q1, l1') = (l2, p2, q2, l2').
Proof.
induction l1 ; intros ; simpl in H3.
destruct l2 ; simpl in H3.
congruence.
destruct l2 ; simpl in H3.
injection H3 ; intros ; subst.
replace (p2 :: q2 :: l2') with ((p2 :: nil) ++ q2 :: l2') in H0 by reflexivity.
generalize (primary_path_split_left H0).
replace ((p2 :: nil) ++ q2 :: nil) with (p2 :: q2 :: nil) by reflexivity.
congruence.
injection H3 ; intros ; subst.
replace (i0 :: l2 ++ p2 :: q2 :: l2') with ((i0 :: l2) ++ p2 :: q2 :: l2') in H0 by reflexivity.
generalize (primary_path_split_right H0).
replace (p2 :: q2 :: l2') with ((p2 :: nil) ++ q2 :: l2') by reflexivity.
intros.
generalize (primary_path_split_left H4).
replace ((p2 :: nil) ++ q2 :: nil) with (p2 :: q2 :: nil) by reflexivity.
congruence.
destruct l2 ; simpl in H3.
destruct l1 ; simpl in H3.
injection H3 ; intros ; subst.
replace (q2 :: q1 :: l1') with ((q2 :: nil) ++ q1 :: l1') in H2 by reflexivity.
generalize (primary_path_split_left H2).
replace ((q2 :: nil) ++ q1 :: nil) with (q2 :: q1 :: nil) by reflexivity.
congruence.
injection H3 ; intros ; subst.
replace (q2 :: l1 ++ p1 :: q1 :: l1') with ((q2 :: l1) ++ p1 :: q1 :: l1') in H2 by reflexivity.
generalize (primary_path_split_right H2).
replace (p1 :: q1 :: l1') with ((p1 :: nil) ++ q1 :: l1') by reflexivity.
intros.
generalize (primary_path_split_left H4).
replace ((p1 :: nil) ++ q1 :: nil) with (p1 :: q1 :: nil) by reflexivity.
congruence.
injection H3 ; intros ; subst.
cut ((l1, p1, q1, l1') = (l2, p2, q2, l2')).
intros ; congruence.
eauto.
Qed.

Fact minimal_path_exist : forall l, l <> nil ->
is_primary_path l = false -> {
l2 : _ & {
p2 : _ & {
q2 : _ & {
l2' |
is_primary_path (p2 :: q2 :: nil) = false /\
is_primary_path (q2 :: l2') = true /\
l = l2 ++ p2 :: q2 :: l2'
}
}
}
}.
Proof.
intro l.
replace l with (rev (rev l)) by apply rev_involutive.
induction (rev l).
simpl; congruence.
intros _.
destruct l0.
simpl.
congruence.
intro.
simpl in H.
rewrite app_ass in H.
simpl in H.
assert (rev (i :: l0) <> nil).
replace (@nil ident) with (rev (@nil ident)) by reflexivity.
intro.
assert (rev (rev (i :: l0)) = rev (rev nil)) by congruence.
rewrite rev_involutive in H1.
rewrite rev_involutive in H1.
discriminate.
case_eq (is_primary_path (i :: a :: nil)).
intros.
case_eq (is_primary_path (rev (i :: l0))).
intro.
simpl in H2.
generalize (primary_path_join H2 H1).
congruence.
intros.
generalize (IHl0 H0 H2).
destruct 1.
invall.
exists x.
exists x0.
exists x1.
exists (x2 ++ a :: nil).
split.
assumption.
split.
replace (x1 :: x2 ++ a :: nil) with ((x1 :: x2) ++ a :: nil) by reflexivity.
simpl in H6.
generalize (last_complete (rev l0) i).
rewrite H6.
assert (x0 :: x1 :: x2 <> nil) by congruence.
rewrite (last_app_left H5).
rewrite last_equation.
intros.
generalize (last_correct H7).
destruct 1.
rewrite e.
rewrite app_ass.
apply primary_path_join.
congruence.
assumption.
simpl.
simpl in H6.
rewrite H6.
rewrite app_ass.
reflexivity.
intros.
exists (rev l0).
exists i.
exists a.
exists nil.
split.
assumption.
split.
reflexivity.
simpl.
rewrite app_ass.
reflexivity.
Qed.

Fact reduce_path_aux : {f | forall l,
l <> nil ->
if is_primary_path l
then exists p, exists q, l = p :: q /\ f l = p :: nil
else exists l1, exists p, exists q, exists l2, l = l1 ++ p :: q :: l2 /\ is_primary_path (p :: q :: nil) = false /\ is_primary_path (q :: l2) = true /\ f l = l1 ++ p :: q :: nil
}.
Proof.
cut (forall l,
{y |
l <> nil ->
if is_primary_path l
then exists p, exists q, l = p :: q /\ y = p :: nil
else exists l1, exists p, exists q, exists l2, l = l1 ++ p :: q :: l2 /\ is_primary_path (p :: q :: nil) = false /\ is_primary_path (q :: l2) = true /\ y = l1 ++ p :: q :: nil
}).
intro H.
refine (existT _ (fun l => let (y, _) := H l in y) _).
intros.
destruct (H l).
apply y.
assumption.
intros.
destruct l.
exists nil.
congruence.
case_eq (is_primary_path (i :: l)).
intros.
repeat esplit.
intros.
assert (i :: l <> nil) by congruence.
generalize (minimal_path_exist H0 H).
destruct 1.
invall.
repeat esplit.
eassumption.
assumption.
assumption.
Qed.

Definition reduce_path := let (f, _) := reduce_path_aux in f.

Lemma reduce_path_prop : forall l,
l <> nil ->
if is_primary_path l
then exists p, exists q, l = p :: q /\ reduce_path l = p :: nil
else exists l1, exists p, exists q, exists l2, l = l1 ++ p :: q :: l2 /\ is_primary_path (p :: q :: nil) = false /\ is_primary_path (q :: l2) = true /\ reduce_path l = l1 ++ p :: q :: nil
.
Proof.
unfold reduce_path.
destruct reduce_path_aux.
assumption.
Qed.

Opaque reduce_path.

Lemma reduce_path_primary : forall l,
is_primary_path l = true ->
exists p, exists q, l = p :: q /\ reduce_path l = p :: nil
.
Proof.
intro l.
destruct l.
simpl; congruence.
intros.
assert (i :: l <> nil) by congruence.
generalize (reduce_path_prop H0).
rewrite H.
tauto.
Qed.

Lemma reduce_path_non_primary : forall l,
l <> nil ->
is_primary_path l = false ->
exists l1, exists p, exists q, exists l2, l = l1 ++ p :: q :: l2 /\ is_primary_path (p :: q :: nil) = false /\ is_primary_path (q :: l2) = true /\ reduce_path l = l1 ++ p :: q :: nil
.
Proof.
destruct l.
congruence.
intros.
generalize (reduce_path_prop H).
rewrite H0.
tauto.
Qed.

Lemma reduce_path_offset : forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
forall accu,
non_virtual_subobject_offset accu l = non_virtual_subobject_offset accu (reduce_path l).
Proof.
inversion 1 ; subst.
assert (from :: lf <> nil) by congruence.
case_eq (is_primary_path (from :: lf)).
intros.
generalize (reduce_path_primary H3).
destruct 1.
invall.
injection H4; intros; subst.
rewrite H6.
generalize (primary_path_split_left (l1 := nil) H3).
change (nil ++ x :: nil) with (x :: nil).
intros.
repeat rewrite primary_path_offset ; trivial.
intros.
generalize (reduce_path_non_primary H0 H3).
destruct 1.
invall.
rewrite H8.
replace (x ++ x0 :: x1 :: x2) with ((x ++ x0 :: nil) ++ x1 :: x2) in H4 by (rewrite app_ass ; reflexivity).
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
rewrite H4.
rewrite H4 in H2.
case_eq (non_virtual_subobject_offset accu ((x ++ x0 :: nil) ++ x1 :: nil)).
intros.
rewrite (non_virtual_subobject_offset_app H7).
eauto using primary_path_offset.
intros.
case_eq (non_virtual_subobject_offset accu ((x ++ x0 :: nil) ++ x1 :: x2)).
intros.
generalize (non_virtual_subobject_offset_app_recip H9).
destruct 1.
invall.
congruence.
tauto.
Qed.

Lemma reduce_path_valid : forall l,
is_valid_repeated_subobject hierarchy l = true ->
is_valid_repeated_subobject hierarchy (reduce_path l) = true.
Proof.
intros.
assert (l <> nil) by (functional inversion H; congruence).
generalize (reduce_path_prop H0).
case_eq (is_primary_path l).
destruct 2.
invall.
subst.
rewrite H4.
functional inversion H ; subst ; try congruence.
simpl.
rewrite H6 ; congruence.
destruct 2.
invall.
rewrite H6.
subst.
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
eapply is_valid_repeated_subobject_split_left.
rewrite app_ass.
simpl.
eassumption.
Qed.

Lemma reduce_path_idem : forall l,
l <> nil ->
reduce_path (reduce_path l) = reduce_path l.
Proof.
intros.
generalize (reduce_path_prop H).
case_eq (is_primary_path l).
destruct 2.
invall.
subst.
assert (is_primary_path (x :: nil) = true) by reflexivity.
rewrite H3.
generalize (reduce_path_primary H1).
destruct 1.
invall.
rewrite H5.
congruence.
destruct 2.
invall.
subst.
rewrite H5.
assert ((x ++ x0 :: nil) ++ x1 :: nil <> nil).
rewrite app_ass.
destruct x; simpl; congruence.
assert (is_primary_path ((x ++ x0 :: nil) ++ x1 :: nil) = false).
rewrite app_ass.
case_eq (is_primary_path (x ++ (x0 :: nil) ++ x1 :: nil)) ; try congruence.
intro.
generalize (primary_path_split_right H4).
congruence.
generalize (reduce_path_non_primary H1 H4).
rewrite app_ass.
destruct 1.
invall.
simpl in H6.
rewrite H6.
assert (is_primary_path (x1 :: nil) = true) by reflexivity.
generalize (minimal_path_unique H2 H9 H7 H8 H6).
injection 1; intros; subst.
simpl in H10.
assumption.
Qed.

Lemma reduce_path_primary_right : forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
forall l2, is_primary_path (to :: l2) = true ->
reduce_path (l ++ l2) = reduce_path l.
Proof.
inversion 1 ; subst.
intros.
case_eq (is_primary_path (lt ++ to :: nil)).
intros.
generalize (primary_path_join H3 H0).
intros.
generalize (reduce_path_primary H4).
destruct 1.
invall.
generalize (reduce_path_primary H3).
destruct 1.
invall.
replace ((lt ++ to :: nil) ++ l2) with (lt ++ to :: l2) by (rewrite app_ass ; reflexivity).
rewrite H1.
rewrite app_ass.
simpl.
rewrite H7.
rewrite H9.
destruct lt ; simpl in H5, H6 ; congruence.
intros.
case_eq (is_primary_path (lt ++ to :: l2)).
intros.
generalize (primary_path_split_left H4).
congruence.
intros.
assert (lt ++ to :: nil <> nil) by (destruct lt; simpl in *; congruence).
assert (lt ++ to :: l2 <> nil) by (destruct lt; simpl in *; congruence).
rewrite H1.
rewrite app_ass.
simpl.
generalize (reduce_path_non_primary H6 H4).
destruct 1.
invall.
generalize (reduce_path_non_primary H5 H3).
destruct 1.
invall.
assert (x5 :: x6 <> nil) by congruence.
assert (last (x5 :: x6) = Some to).
rewrite <- (last_app_left H14 (x3 ++ x4 :: nil)).
rewrite app_ass.
simpl.
rewrite <- H10.
apply last_complete.
generalize (last_correct H16).
destruct 1.
assert (x ++ x0 :: x1 :: x2 = x3 ++ x4 :: x5 :: (x6 ++ l2)).
change (x3 ++ x4 :: x5 :: x6 ++ l2) with (x3 ++ (x4 :: x5 :: x6) ++ l2).
rewrite <- app_ass.
rewrite <- H10.
rewrite <- H7.
rewrite app_ass.
reflexivity.
rewrite H11.
rewrite H15.
assert (is_primary_path (x5 :: x6 ++ l2) = true).
change (x5 :: x6 ++ l2) with ((x5 :: x6) ++ l2) .
rewrite e in *.
rewrite app_ass.
simpl.
eauto using primary_path_join.
generalize (minimal_path_unique H8 H9 H12 H18 H17).
congruence.
Qed.

Lemma reduce_path_prefix_repeated : forall l from to,
path hierarchy to l from Class.Inheritance.Repeated ->
exists through, exists l',
path hierarchy through (reduce_path l) from Class.Inheritance.Repeated /\
path hierarchy to (through :: l') through Class.Inheritance.Repeated /\
l = reduce_path l ++ l' /\
is_primary_path (through :: l') = true.
Proof.
inversion 1 ; subst.
case_eq (is_primary_path (from :: lf)).
intros.
exists from.
exists lf.
generalize (reduce_path_primary H0).
destruct 1.
invall.
injection H3 ; intros ; subst.
rewrite H5.
split.
eleft with nil nil ; try trivial.
functional inversion H2 ; subst ; try trivial.
simpl.
rewrite H8 ; trivial.
eauto.
intros.
assert (from :: lf <> nil) by congruence.
generalize (reduce_path_non_primary H3 H0).
destruct 1.
invall.
rewrite H8.
exists x1.
exists x2.
assert (exists ll, x ++ x0 :: x1 :: nil = from :: ll).
destruct x ; simpl in H4 ; simpl.
injection H4 ; intros ; subst ; simpl.
esplit.
reflexivity.
injection H4 ; intros ; subst ; simpl.
esplit.
reflexivity.
destruct H7.
assert (x ++ x0 :: x1 :: nil = (x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
generalize H2.
rewrite H4.
intros.
split.
eleft.
eassumption.
eassumption.
rewrite H9.
eapply is_valid_repeated_subobject_split_left.
rewrite app_ass.
simpl.
eassumption.
assert (x1 :: x2 <> nil) by congruence.
assert (last (x1 :: x2) = Some to).
rewrite <- (last_app_left H11 (x ++ x0 :: nil)).
rewrite app_ass.
simpl.
rewrite <- H4.
rewrite H1.
apply last_complete.
generalize (last_correct H12).
destruct 1.
split.
eleft.
reflexivity.
eassumption.
eapply is_valid_repeated_subobject_split_right with (x ++ x0 :: nil).
rewrite app_ass.
assumption.
rewrite app_ass.
eauto.
Qed.

Lemma reduce_path_prefix : forall l from to h,
path hierarchy to l from h ->
exists through, exists l',
path hierarchy through (reduce_path l) from h /\
path hierarchy to (through :: l') through Class.Inheritance.Repeated /\
l = reduce_path l ++ l' /\
is_primary_path (through :: l') = true.
Proof.
destruct h.
eauto using reduce_path_prefix_repeated.
intros.
generalize (path_path0 H).
inversion 1 ; subst.
assert (path hierarchy to (base :: lf) base Class.Inheritance.Repeated) by (eleft ; eauto).
generalize (reduce_path_prefix_repeated H2).
destruct 1.
invall.
exists x.
exists x0.
split.
eright.
eassumption.
eassumption.
eauto.
Qed.

Fact primary_path_dynamic : forall l a,
Cplusconcepts.last l = Some a ->
is_primary_path l = true ->
Is_dynamic a ->
forall b, In b l ->
Is_dynamic b.
Proof.
induction l ; simpl ; try congruence.
destruct l.
simpl ; inversion 4 ; try congruence ; contradiction.
case_eq (offsets ! a); try congruence.
intros until 2.
destruct (option_eq_dec peq (primary_base t0) (Some i)); try congruence.
inversion 3; subst.
assert (primary_base t0 <> None) by congruence.
eauto using primary_base_exist_dynamic.
eauto.
Qed.

Fact reduce_path_dynamic_type_disjoint_non_primary : forall l1 from to1,
path hierarchy to1 l1 from Class.Inheritance.Repeated ->
is_primary_path l1 = false ->
Is_dynamic to1 ->
forall (to1_offsets : offsets ! to1 <> None) accu z1,
non_virtual_subobject_offset accu l1 = Some z1 ->
forall l2 to2,
path hierarchy to2 l2 from Class.Inheritance.Repeated ->
is_primary_path l2 = false ->
Is_dynamic to2 ->
forall (to2_offsets : offsets ! to2 <> None) z2,
non_virtual_subobject_offset accu l2 = Some z2 ->
reduce_path l1 <> reduce_path l2 ->
z1 + dynamic_type_data_size PF <= z2 \/ z2 + dynamic_type_data_size PF <= z1
.
Proof.
inversion 1 ; subst.
intro.
intro.
intro.
intro.
rewrite (reduce_path_offset H).
assert (from :: lf <> nil) by congruence.
generalize (reduce_path_non_primary H4 H0).
destruct 1.
invall.
rewrite H9.
assert (Is_dynamic x1).
eapply primary_path_dynamic.
2 : eassumption.
2 : eassumption.
assert (x1 :: x2 <> nil) by congruence.
rewrite <- (last_app_left H8 (x ++ x0 :: nil)).
rewrite app_ass.
simpl.
rewrite <- H5.
rewrite H1.
apply last_complete.
auto.
assert (is_valid_repeated_subobject hierarchy (x ++ x0 :: x1 :: nil) = true).
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
eapply is_valid_repeated_subobject_split_left with x2.
rewrite app_ass.
simpl.
congruence.
assert (exists y1, x ++ x0 :: nil = from :: y1).
symmetry in H5 ; destruct x ; simpl in H5 ; injection H5 ; intros ; subst ; simpl ; repeat esplit.
destruct H11 as [y1 Hy1].
assert (x1_offsets : offsets ! x1 <> None).
functional inversion H7; subst; try congruence.
generalize (last_complete lt to1).
rewrite <- H1.
rewrite H5.
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil).
rewrite last_complete.
congruence.
rewrite app_ass.
reflexivity.
clear to1 to1_offsets lf lt H H1 H2 H0 H3 H4 x2 H5 H7 H9.
inversion 2 ; subst.
intro.
intro.
intro.
intro.
rewrite (reduce_path_offset H0).
assert (from :: lf <> nil) by congruence.
generalize (reduce_path_non_primary H5 H1).
destruct 1.
invall.
rewrite H13.
assert (Is_dynamic x4).
eapply primary_path_dynamic.
2 : eassumption.
2 : eassumption.
assert (x4 :: x5 <> nil) by congruence.
rewrite <- (last_app_left H12 (x2 ++ x3 :: nil)).
rewrite app_ass.
simpl.
rewrite <- H7.
rewrite H2.
apply last_complete.
auto.
assert (is_valid_repeated_subobject hierarchy (x2 ++ x3 :: x4 :: nil) = true).
replace (x2 ++ x3 :: x4 :: nil) with ((x2 ++ x3 :: nil) ++ x4 :: nil) by (rewrite app_ass ; reflexivity).
eapply is_valid_repeated_subobject_split_left with x5.
rewrite app_ass.
simpl.
congruence.
assert (exists y2, x2 ++ x3 :: nil = from :: y2).
symmetry in H7 ; destruct x2 ; simpl in H7 ; injection H7 ; intros ; subst ; simpl ; repeat esplit.
destruct H15.
assert (x4_offsets : offsets ! x4 <> None).
functional inversion H11; subst; try congruence.
generalize (last_complete lt to2).
rewrite <- H2.
rewrite H7.
replace (x2 ++ x3 :: x4 :: nil) with ((x2 ++ x3 :: nil) ++ x4 :: nil).
rewrite last_complete.
congruence.
rewrite app_ass.
reflexivity.
clear to2 to2_offsets lf lt H0 H2 H3 H1 H4 H5 x5 H7 H11 H13.
intros.
assert (y1 ++ x1 :: nil <> x6 ++ x4 :: nil).
revert H1.
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
replace (x2 ++ x3 :: x4 :: nil) with ((x2 ++ x3 :: nil) ++ x4 :: nil) by (rewrite app_ass ; reflexivity).
rewrite Hy1.
rewrite H15.
simpl.
congruence.
clear H1.
revert x accu x0 x1 x1_offsets H6 H8 H10 y1 Hy1 z1 H z2 x2 x3 x4 x4_offsets H9 H12 H14 x6 H15 H0 H2.
cut (
forall (x : list ident) accu (x0 x1 : ident) (x1_offsets : offsets ! x1 <> None),
is_primary_path (x0 :: x1 :: nil) = false ->
Is_dynamic x1 ->
is_valid_repeated_subobject hierarchy (x ++ x0 :: x1 :: nil) = true ->
forall y1 : list ident,
x ++ x0 :: nil = from :: y1 ->
forall z1 : Z,
non_virtual_subobject_offset accu (x ++ x0 :: x1 :: nil) = Some z1 ->
forall (z2 : Z) (x2 : list ident) (x3 x4 : ident) (x4_offsets : offsets ! x4 <> None),
is_primary_path (x3 :: x4 :: nil) = false ->
Is_dynamic x4 ->
is_valid_repeated_subobject hierarchy (x2 ++ x3 :: x4 :: nil) = true ->
forall x6 : list ident,
x2 ++ x3 :: nil = from :: x6 ->
non_virtual_subobject_offset accu (x2 ++ x3 :: x4 :: nil) = Some z2 ->
y1 ++ x1 :: nil <> x6 ++ x4 :: nil ->
(length (y1 ++ x1 :: nil) <= length (x6 ++ x4 :: nil))%nat ->
z1 + dynamic_type_data_size PF <= z2 \/ z2 + dynamic_type_data_size PF <= z1
).
intros.
assert (forall A B, A \/ B -> B \/ A) by tauto.
destruct (le_lt_dec (length (y1 ++ x1 :: nil)) (length (x6 ++ x4 :: nil))).
eauto.
assert ((length (x6 ++ x4 :: nil) <= length (y1 ++ x1 :: nil))%nat) by omega.
eauto.
intros.
generalize (distinct_paths_cases peq H10 H9).
destruct 1.

invall.
generalize H8 H6.
replace (x2 ++ x3 :: x4 :: nil) with ((x2 ++ x3 :: nil) ++ x4 :: nil) by (rewrite app_ass ; reflexivity).
rewrite H7.
replace ((from :: x6) ++ x4 :: nil) with (from :: (x6 ++ x4 :: nil)) by reflexivity.
rewrite H12.
intros.
assert (
non_virtual_subobject_offset accu ((from :: y1) ++ (x1 :: x5 :: x7)) =
Some z2 /\ is_valid_repeated_subobject hierarchy ((from :: y1) ++ (x1 :: x5 :: x7)) = true
).
rewrite app_ass in H11, H13.
split; assumption.
clear H11 H13.
revert H14.
rewrite <- H2.
generalize H3.
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
intro.
rewrite (non_virtual_subobject_offset_app H11).
destruct 1.
left.
generalize (last_complete x6 x4).
rewrite H12.
rewrite app_ass.
simpl.
assert (x1 :: x5 :: x7 <> nil) by congruence.
rewrite (last_app_left H15).
intros.
generalize (last_correct H16).
destruct 1.
cut (is_primary_path (x1 :: x5 :: x7) = false).
intros.
eapply non_primary_path_offset.
eassumption.
eleft.
reflexivity.
eassumption.
eauto using is_valid_repeated_subobject_split_right.
assumption.
eauto using dynamic_nonempty.
assumption.
assumption.
assert (last x8 = Some x3).
destruct x8.
simpl in e ; discriminate.
simpl in e.
injection e ; intros ; subst.
assert (i :: x8 <> nil) by congruence.
rewrite H17 in H12.
rewrite <- app_ass in H12.
generalize (app_reg_r H12).
rewrite app_ass.
intros.
simpl in H19.
subst.
rewrite <- (last_app_left H18 (from :: y1)).
replace ((from :: y1) ++ i :: x8) with (from :: y1 ++ i :: x8) by reflexivity.
rewrite <- H7.
apply last_complete.
generalize (last_correct H17).
destruct 1.
subst.
rewrite e.
rewrite app_ass.
simpl.
case_eq (is_primary_path (x9 ++ x3 :: x4 :: nil)) ; try congruence.
intros.
generalize (primary_path_split_right H18).
congruence.

invall.
revert H1 H3.
replace (x ++ x0 :: x1 :: nil) with ((x ++ x0 :: nil) ++ x1 :: nil) by (rewrite app_ass ; reflexivity).
rewrite H2.
replace ((from :: y1) ++ x1 :: nil) with (from :: (y1 ++ x1 :: nil)) by reflexivity.
rewrite H12.
replace (from :: x5 ++ x7 :: x9) with ((from :: x5) ++ x7 :: x9) by reflexivity.
assert (from :: x5 <> nil) by congruence.
generalize (last_nonempty H1).
intro.
case_eq (last (from :: x5)) ; try congruence.
intros until 1.
generalize (last_correct H13).
destruct 1.
rewrite e.
rewrite app_ass.
simpl.
intros.
generalize (non_virtual_subobject_offset_app_recip H16).
destruct 1.
destruct H17.
functional inversion H18 ; subst.
generalize (is_valid_repeated_subobject_split_right H15).
functional inversion 1 ; subst.
revert H6 H8.
replace (x2 ++ x3 :: x4 :: nil) with ((x2 ++ x3 :: nil) ++ x4 :: nil) by (rewrite app_ass ; reflexivity).
rewrite H7.
replace ((from :: x6) ++ x4 :: nil) with (from :: x6 ++ x4 :: nil) by reflexivity.
rewrite H11.
replace (from :: x5 ++ x8 :: x10) with ((from :: x5) ++ x8 :: x10) by reflexivity.
rewrite e.
rewrite app_ass.
simpl.
intros.
generalize (non_virtual_subobject_offset_app_recip H8).
destruct 1.
destruct H20.
replace x13 with x12 in * by congruence.
functional inversion H21 ; subst.
replace o0 with o in * by congruence.
generalize (is_valid_repeated_subobject_split_right H6).
functional inversion 1 ; subst.
clear H36 H29.
replace cl1 with cl0 in * by congruence.
assert (x7 :: x9 <> nil) by congruence.
generalize (last_complete y1 x1).
rewrite H12.
rewrite (last_app_left H23).
intros.
assert (offsets ! x7 <> None).
functional inversion X; subst; try congruence.
generalize (last_complete y1 x1).
rewrite H12.
rewrite last_complete.
congruence.
case_eq (offsets ! x7) ; try congruence.
intros.
assert (x8 :: x10 <> nil) by congruence.
generalize (last_complete x6 x4).
rewrite H11.
rewrite (last_app_left H30).
intros.
assert (offsets ! x8 <> None).
functional inversion X1; subst; try congruence.
generalize (last_complete x6 x4).
rewrite H11.
rewrite last_complete.
congruence.
case_eq (offsets ! x8) ; try congruence.
intros.
generalize (last_correct H32).
destruct 1.
assert (path hierarchy x4 (x8 :: x10) x8 Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
generalize (last_correct H25).
destruct 1.
assert (path hierarchy x1 (x7 :: x9) x7 Class.Inheritance.Repeated).
eleft.
reflexivity.
eassumption.
assumption.
generalize (dynamic_type_data_size_low_bound PF).
generalize (non_virtual_path_non_virtual_data_incl H38 (dynamic_nonempty H0) X).
destruct 1.
case_eq (offsets ! x1); try congruence.
intros.
generalize (H40 _ H41 _ H29).
generalize (non_virtual_path_non_virtual_data_incl H37 (dynamic_nonempty H5) X1).
destruct 1.
case_eq (offsets ! x4); try congruence.
intros.
generalize (H44 _ H45 _ H36).
generalize (own_fields_offset_dynamic_low_bound (intro H41) H0).
generalize (non_virtual_data_size_own_fields_offset (intro H41)).
generalize (own_fields_offset_dynamic_low_bound (intro H45) H5).
generalize (non_virtual_data_size_own_fields_offset (intro H45)).
assert (Is_empty x7 -> False) by eauto using Is_empty.path_from, dynamic_nonempty.
assert (Is_empty x8 -> False) by eauto using Is_empty.path_from, dynamic_nonempty.
generalize (non_virtual_direct_base_nonempty_data_non_overlap
(intro H26) H27 H47 H34 H48 H14 H29 H36).
omega.
Qed.

Fact reduce_path_dynamic_type_disjoint_non_virtual_paths : forall l1 from to1,
path hierarchy to1 l1 from Class.Inheritance.Repeated ->
forall accu z1,
non_virtual_subobject_offset accu l1 = Some z1 ->
forall l2 to2,
path hierarchy to2 l2 from Class.Inheritance.Repeated ->
forall z2,
non_virtual_subobject_offset accu l2 = Some z2 ->
Is_dynamic to1 ->
Is_dynamic to2 ->
offsets ! to1 <> None ->
offsets ! to2 <> None ->
reduce_path l1 <> reduce_path l2 ->
z1 + dynamic_type_data_size PF <= z2 \/ z2 + dynamic_type_data_size PF <= z1
.
Proof.
cut (
forall (l1 l2 : list ident) (from to1 : ident),
path hierarchy to1 l1 from Class.Inheritance.Repeated ->
forall accu z1 : Z,
non_virtual_subobject_offset accu l1 = Some z1 ->
forall (to2 : ident),
path hierarchy to2 l2 from Class.Inheritance.Repeated ->
forall z2 : Z,
non_virtual_subobject_offset accu l2 = Some z2 ->
Is_dynamic to1 ->
Is_dynamic to2 ->
offsets ! to1 <> None ->
offsets ! to2 <> None ->
reduce_path l1 <> reduce_path l2 ->
(if is_primary_path l1 then is_primary_path l2 = true else True) ->
z1 + dynamic_type_data_size PF <= z2 \/ z2 + dynamic_type_data_size PF <= z1
).
intros.
assert (reduce_path l2 <> reduce_path l1) by congruence.
assert (forall A B, A \/ B -> B \/ A) by tauto.
generalize (H l1 l2).
generalize (H l2 l1).
destruct (is_primary_path l1) ; destruct (is_primary_path l2) ; eauto.
inversion 1 ; subst.
inversion 2 ; subst.
case_eq (is_primary_path (from :: lf)) ; intros.
generalize (reduce_path_primary H13).
destruct 1.
invall.
generalize (reduce_path_primary H4).
destruct 1.
invall.
congruence.
case_eq (is_primary_path (from :: lf0)).
intros.
generalize (primary_path_offset H14 accu).
intros.
replace z2 with accu in * by congruence.
assert (Is_dynamic from).
eapply primary_path_dynamic.
2 : eassumption.
rewrite H5.
eapply last_complete.
assumption.
auto.
assert (Is_empty to1 -> False) by eauto using dynamic_nonempty.
generalize (non_primary_path_offset H4 H H16 H17 H10 H0).
omega.
intros.
eauto using reduce_path_dynamic_type_disjoint_non_primary.
Qed.

Fact reduce_path_dynamic_type_disjoint_paths : forall l1 from to1 h1,
path hierarchy to1 l1 from h1 ->
forall z1,
subobject_offset from l1 = Some z1 ->
forall l2 to2 h2,
path hierarchy to2 l2 from h2 ->
forall z2,
subobject_offset from l2 = Some z2 ->
Is_dynamic to1 ->
Is_dynamic to2 ->
offsets ! to1 <> None ->
offsets ! to2 <> None ->
reduce_path l1 <> reduce_path l2 ->
z1 + dynamic_type_data_size PF <= z2 \/ z2 + dynamic_type_data_size PF <= z1
.
Proof.
functional inversion 2; subst.
functional inversion 2; subst.
generalize (path_cons_repeated H).
intros.
generalize (path_cons_repeated H3).
intros.
destruct (peq b b0).
subst.
replace of0 with of in * by congruence.
eauto using reduce_path_dynamic_type_disjoint_non_virtual_paths.
assert (offsets ! b <> None).
functional inversion H1; subst; try congruence.
generalize (path_last H); simpl; congruence.
case_eq (offsets ! b); try congruence.
intros.
assert (offsets ! b0 <> None).
functional inversion H6; subst; try congruence.
generalize (path_last H3); simpl; congruence.
case_eq (offsets ! b0); try congruence.
intros.
case_eq (offsets ! to1); try congruence.
intros.
case_eq (offsets ! to2); try congruence.
intros.
assert (Is_empty to1 -> False) by eauto using dynamic_nonempty.
assert (Is_empty to2 -> False) by eauto using dynamic_nonempty.
assert (Is_empty b -> False) by eauto using Is_empty.path_from.
assert (Is_empty b0 -> False) by eauto using Is_empty.path_from.
generalize (non_virtual_path_non_virtual_data_incl H8 H22 H1).
destruct 1.
generalize (H27 _ H20 _ H17).
generalize (non_virtual_path_non_virtual_data_incl H15 H23 H6).
destruct 1.
generalize (H29 _ H21 _ H19).
generalize (own_fields_offset_dynamic_low_bound (intro H20) H9).
generalize (non_virtual_data_size_own_fields_offset (intro H20)).
generalize (own_fields_offset_dynamic_low_bound (intro H21) H11).
generalize (non_virtual_data_size_own_fields_offset (intro H21)).
generalize (dynamic_type_data_size_low_bound).
replace o0 with o in * by congruence.
generalize (virtual_base_offsets_nonempty_non_overlap (intro H2) H5 H17 H10 H19 H24 H25 n).
omega.
Qed.

5.4 Theorem 6
Theorem reduce_path_dynamic_type_disjoint : forall afrom zfrom a1 ato1 i1 h1 p1 pto1,
valid_relative_pointer hierarchy afrom zfrom a1 ato1 i1 h1 p1 pto1 ->
forall a2 ato2 i2 h2 p2 pto2,
valid_relative_pointer hierarchy afrom zfrom a2 ato2 i2 h2 p2 pto2 ->
(a1, i1) <> (a2, i2) \/ reduce_path p1 <> reduce_path p2 ->
offsets ! pto1 <> None ->
offsets ! pto2 <> None ->
Is_dynamic pto1 ->
Is_dynamic pto2 ->
forall of1, relative_pointer_offset afrom ato1 a1 i1 p1 = Some of1 ->
forall of2, relative_pointer_offset afrom ato2 a2 i2 p2 = Some of2 ->
of1 + dynamic_type_data_size PF <= of2 \/ of2 + dynamic_type_data_size PF <= of1
.
Proof.
intros until 2.
destruct (array_path_eq_dec a1 a2).
subst.
destruct (Z_eq_dec i1 i2).
subst.
inversion 1; try congruence.
functional inversion 5; subst.
inversion H; subst.
inversion H0; subst.
generalize (valid_array_path_last H8 H15).
intro; subst.
unfold relative_pointer_offset.
rewrite H9.
rewrite H10.
case_eq (subobject_offset ato2 p2); try congruence.
injection 2; intros; subst.
generalize (reduce_path_dynamic_type_disjoint_paths H14 H11 H18 H19 H5 H6 H3 H4 H2).
omega.
intros.
inversion H; subst.
inversion H0; subst.
generalize (