Module Maps


Applicative finite maps are the main data structure used in this project. A finite map associates data to keys. The two main operations are set k d m, which returns a map identical to m except that d is associated to k, and get k m which returns the data associated to key k in map m. In this library, we distinguish two kinds of maps: In this library, we provide efficient implementations of trees and maps whose keys range over the type positive of binary positive integers or any type that can be injected into positive. The implementation is based on radix-2 search trees (uncompressed Patricia trees) and guarantees logarithmic-time operations. An inefficient implementation of maps as functions is also provided.

Require Import Coqlib.

Set Implicit Arguments.

The abstract signatures of trees


Module Type TREE.
  Variable elt: Type.
  Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Variable t: Type -> Type.
  Variable eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                forall (a b: t A), {a = b} + {a <> b}.
  Variable empty: forall (A: Type), t A.
  Variable get: forall (A: Type), elt -> t A -> option A.
  Variable set: forall (A: Type), elt -> A -> t A -> t A.
  Variable remove: forall (A: Type), elt -> t A -> t A.

The ``good variables'' properties for trees, expressing commutations between get, set and remove.
  Hypothesis gempty:
    forall (A: Type) (i: elt), get i (empty A) = None.
  Hypothesis gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
  Hypothesis gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Hypothesis gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then Some x else get i m.
  Hypothesis gsident:
    forall (A: Type) (i: elt) (m: t A) (v: A),
    get i m = Some v -> set i v m = m.
  Hypothesis grs:
    forall (A: Type) (i: elt) (m: t A), get i (remove i m) = None.
  Hypothesis gro:
    forall (A: Type) (i j: elt) (m: t A),
    i <> j -> get i (remove j m) = get i m.
  Hypothesis grspec:
    forall (A: Type) (i j: elt) (m: t A),
    get i (remove j m) = if elt_eq i j then None else get i m.

Extensional equality between trees.
  Variable beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool.
  Hypothesis beq_correct:
    forall (A: Type) (P: A -> A -> Prop) (cmp: A -> A -> bool),
    (forall (x y: A), cmp x y = true -> P x y) ->
    forall (t1 t2: t A), beq cmp t1 t2 = true ->
    forall (x: elt),
    match get x t1, get x t2 with
    | None, None => True
    | Some y1, Some y2 => P y1 y2
    | _, _ => False
    end.

Applying a function to all data of a tree.
  Variable map:
    forall (A B: Type), (elt -> A -> B) -> t A -> t B.
  Hypothesis gmap:
    forall (A B: Type) (f: elt -> A -> B) (i: elt) (m: t A),
    get i (map f m) = option_map (f i) (get i m).

Applying a function pairwise to all data of two trees.
  Variable combine:
    forall (A: Type), (option A -> option A -> option A) -> t A -> t A -> t A.
  Hypothesis gcombine:
    forall (A: Type) (f: option A -> option A -> option A),
    f None None = None ->
    forall (m1 m2: t A) (i: elt),
    get i (combine f m1 m2) = f (get i m1) (get i m2).
  Hypothesis combine_commut:
    forall (A: Type) (f g: option A -> option A -> option A),
    (forall (i j: option A), f i j = g j i) ->
    forall (m1 m2: t A),
    combine f m1 m2 = combine g m2 m1.

Enumerating the bindings of a tree.
  Variable elements:
    forall (A: Type), t A -> list (elt * A).
  Hypothesis elements_correct:
    forall (A: Type) (m: t A) (i: elt) (v: A),
    get i m = Some v -> In (i, v) (elements m).
  Hypothesis elements_complete:
    forall (A: Type) (m: t A) (i: elt) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
  Hypothesis elements_keys_norepet:
    forall (A: Type) (m: t A),
    list_norepet (List.map (@fst elt A) (elements m)).

Folding a function over all bindings of a tree.
  Variable fold:
    forall (A B: Type), (B -> elt -> A -> B) -> t A -> B -> B.
  Hypothesis fold_spec:
    forall (A B: Type) (f: B -> elt -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
End TREE.

The abstract signatures of maps


Module Type MAP.
  Variable elt: Type.
  Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Variable t: Type -> Type.
  Variable init: forall (A: Type), A -> t A.
  Variable get: forall (A: Type), elt -> t A -> A.
  Variable set: forall (A: Type), elt -> A -> t A -> t A.
  Hypothesis gi:
    forall (A: Type) (i: elt) (x: A), get i (init x) = x.
  Hypothesis gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
  Hypothesis gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Hypothesis gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
  Hypothesis gsident:
    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
  Variable map: forall (A B: Type), (A -> B) -> t A -> t B.
  Hypothesis gmap:
    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
End MAP.

An implementation of trees over type positive


Module PTree <: TREE.
  Definition elt := positive.
  Definition elt_eq := peq.

  Inductive tree (A : Type) : Type :=
    | Leaf : tree A
    | Node : tree A -> option A -> tree A -> tree A
  .
  Implicit Arguments Leaf [A].
  Implicit Arguments Node [A].

  Definition t := tree.

  Theorem eq : forall (A : Type),
    (forall (x y: A), {x=y} + {x<>y}) ->
    forall (a b : t A), {a = b} + {a <> b}.
Proof.
    intros A eqA.
    decide equality.
    generalize o o0; decide equality.
  Qed.

  Definition empty (A : Type) := (Leaf : t A).

  Fixpoint get (A : Type) (i : positive) (m : t A) {struct i} : option A :=
    match m with
    | Leaf => None
    | Node l o r =>
        match i with
        | xH => o
        | xO ii => get ii l
        | xI ii => get ii r
        end
    end.

  Fixpoint set (A : Type) (i : positive) (v : A) (m : t A) {struct i} : t A :=
    match m with
    | Leaf =>
        match i with
        | xH => Node Leaf (Some v) Leaf
        | xO ii => Node (set ii v Leaf) None Leaf
        | xI ii => Node Leaf None (set ii v Leaf)
        end
    | Node l o r =>
        match i with
        | xH => Node l (Some v) r
        | xO ii => Node (set ii v l) o r
        | xI ii => Node l o (set ii v r)
        end
    end.

  Fixpoint remove (A : Type) (i : positive) (m : t A) {struct i} : t A :=
    match i with
    | xH =>
        match m with
        | Leaf => Leaf
        | Node Leaf o Leaf => Leaf
        | Node l o r => Node l None r
        end
    | xO ii =>
        match m with
        | Leaf => Leaf
        | Node l None Leaf =>
            match remove ii l with
            | Leaf => Leaf
            | mm => Node mm None Leaf
            end
        | Node l o r => Node (remove ii l) o r
        end
    | xI ii =>
        match m with
        | Leaf => Leaf
        | Node Leaf None r =>
            match remove ii r with
            | Leaf => Leaf
            | mm => Node Leaf None mm
            end
        | Node l o r => Node l o (remove ii r)
        end
    end.

  Theorem gempty:
    forall (A: Type) (i: positive), get i (empty A) = None.
Proof.
    induction i; simpl; auto.
  Qed.

  Theorem gss:
    forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = Some x.
Proof.
    induction i; destruct m; simpl; auto.
  Qed.

    Lemma gleaf : forall (A : Type) (i : positive), get i (Leaf : t A) = None.
Proof.
exact gempty. Qed.

  Theorem gso:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
Proof.
    induction i; intros; destruct j; destruct m; simpl;
       try rewrite <- (gleaf A i); auto; try apply IHi; congruence.
  Qed.

  Theorem gsspec:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then Some x else get i m.
Proof.
    intros.
    destruct (peq i j); [ rewrite e; apply gss | apply gso; auto ].
  Qed.

  Theorem gsident:
    forall (A: Type) (i: positive) (m: t A) (v: A),
    get i m = Some v -> set i v m = m.
Proof.
    induction i; intros; destruct m; simpl; simpl in H; try congruence.
     rewrite (IHi m2 v H); congruence.
     rewrite (IHi m1 v H); congruence.
  Qed.

    Lemma rleaf : forall (A : Type) (i : positive), remove i (Leaf : t A) = Leaf.
Proof.
destruct i; simpl; auto. Qed.

  Theorem grs:
    forall (A: Type) (i: positive) (m: t A), get i (remove i m) = None.
Proof.
    induction i; destruct m.
     simpl; auto.
     destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto.
      rewrite (rleaf A i); auto.
      cut (get i (remove i (Node ll oo rr)) = None).
        destruct (remove i (Node ll oo rr)); auto; apply IHi.
        apply IHi.
     simpl; auto.
     destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto.
      rewrite (rleaf A i); auto.
      cut (get i (remove i (Node ll oo rr)) = None).
        destruct (remove i (Node ll oo rr)); auto; apply IHi.
        apply IHi.
     simpl; auto.
     destruct m1; destruct m2; simpl; auto.
  Qed.

  Theorem gro:
    forall (A: Type) (i j: positive) (m: t A),
    i <> j -> get i (remove j m) = get i m.
Proof.
    induction i; intros; destruct j; destruct m;
        try rewrite (rleaf A (xI j));
        try rewrite (rleaf A (xO j));
        try rewrite (rleaf A 1); auto;
        destruct m1; destruct o; destruct m2;
        simpl;
        try apply IHi; try congruence;
        try rewrite (rleaf A j); auto;
        try rewrite (gleaf A i); auto.
     cut (get i (remove j (Node m2_1 o m2_2)) = get i (Node m2_1 o m2_2));
        [ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf A i); auto
        | apply IHi; congruence ].
     destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
        auto.
     destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
        auto.
     cut (get i (remove j (Node m1_1 o0 m1_2)) = get i (Node m1_1 o0 m1_2));
        [ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf A i); auto
        | apply IHi; congruence ].
     destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
        auto.
     destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
        auto.
  Qed.

  Theorem grspec:
    forall (A: Type) (i j: elt) (m: t A),
    get i (remove j m) = if elt_eq i j then None else get i m.
Proof.
    intros. destruct (elt_eq i j). subst j. apply grs. apply gro; auto.
  Qed.

  Section EXTENSIONAL_EQUALITY.

    Variable A: Type.
    Variable eqA: A -> A -> Prop.
    Variable beqA: A -> A -> bool.
    Hypothesis beqA_correct: forall x y, beqA x y = true -> eqA x y.

    Definition exteq (m1 m2: t A) : Prop :=
      forall (x: elt),
      match get x m1, get x m2 with
      | None, None => True
      | Some y1, Some y2 => eqA y1 y2
      | _, _ => False
      end.

    Fixpoint bempty (m: t A) : bool :=
      match m with
      | Leaf => true
      | Node l None r => bempty l && bempty r
      | Node l (Some _) r => false
      end.

    Lemma bempty_correct:
      forall m, bempty m = true -> forall x, get x m = None.
Proof.
      induction m; simpl; intros.
      change (@Leaf A) with (empty A). apply gempty.
      destruct o. congruence. destruct (andb_prop _ _ H).
      destruct x; simpl; auto.
    Qed.

    Fixpoint beq (m1 m2: t A) {struct m1} : bool :=
      match m1, m2 with
      | Leaf, _ => bempty m2
      | _, Leaf => bempty m1
      | Node l1 o1 r1, Node l2 o2 r2 =>
          match o1, o2 with
          | None, None => true
          | Some y1, Some y2 => beqA y1 y2
          | _, _ => false
          end
          && beq l1 l2 && beq r1 r2
      end.

    Lemma beq_correct:
      forall m1 m2, beq m1 m2 = true -> exteq m1 m2.
Proof.
      induction m1; destruct m2; simpl.
      intros; red; intros. change (@Leaf A) with (empty A).
      repeat rewrite gempty. auto.
      destruct o; intro. congruence.
      red; intros. change (@Leaf A) with (empty A). rewrite gempty.
      rewrite bempty_correct. auto. assumption.
      destruct o; intro. congruence.
      red; intros. change (@Leaf A) with (empty A). rewrite gempty.
      rewrite bempty_correct. auto. assumption.
      destruct o; destruct o0; simpl; intro; try congruence.
      destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
      red; intros. destruct x; simpl.
      apply IHm1_2; auto. apply IHm1_1; auto.
      apply beqA_correct; auto.
      destruct (andb_prop _ _ H).
      red; intros. destruct x; simpl.
      apply IHm1_2; auto. apply IHm1_1; auto.
      auto.
    Qed.

  End EXTENSIONAL_EQUALITY.

    Fixpoint append (i j : positive) {struct i} : positive :=
      match i with
      | xH => j
      | xI ii => xI (append ii j)
      | xO ii => xO (append ii j)
      end.

    Lemma append_assoc_0 : forall (i j : positive),
                           append i (xO j) = append (append i (xO xH)) j.
Proof.
      induction i; intros; destruct j; simpl;
      try rewrite (IHi (xI j));
      try rewrite (IHi (xO j));
      try rewrite <- (IHi xH);
      auto.
    Qed.

    Lemma append_assoc_1 : forall (i j : positive),
                           append i (xI j) = append (append i (xI xH)) j.
Proof.
      induction i; intros; destruct j; simpl;
      try rewrite (IHi (xI j));
      try rewrite (IHi (xO j));
      try rewrite <- (IHi xH);
      auto.
    Qed.

    Lemma append_neutral_r : forall (i : positive), append i xH = i.
Proof.
      induction i; simpl; congruence.
    Qed.

    Lemma append_neutral_l : forall (i : positive), append xH i = i.
Proof.
      simpl; auto.
    Qed.

    Fixpoint xmap (A B : Type) (f : positive -> A -> B) (m : t A) (i : positive)
             {struct m} : t B :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node (xmap f l (append i (xO xH)))
                           (option_map (f i) o)
                           (xmap f r (append i (xI xH)))
      end.

  Definition map (A B : Type) (f : positive -> A -> B) m := xmap f m xH.

    Lemma xgmap:
      forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
      get i (xmap f m j) = option_map (f (append j i)) (get i m).
Proof.
      induction i; intros; destruct m; simpl; auto.
      rewrite (append_assoc_1 j i); apply IHi.
      rewrite (append_assoc_0 j i); apply IHi.
      rewrite (append_neutral_r j); auto.
    Qed.

  Theorem gmap:
    forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
    get i (map f m) = option_map (f i) (get i m).
Proof.
    intros.
    unfold map.
    replace (f i) with (f (append xH i)).
    apply xgmap.
    rewrite append_neutral_l; auto.
  Qed.

  Definition Node' (A: Type) (l: t A) (x: option A) (r: t A): t A :=
    match l, x, r with
    | Leaf, None, Leaf => Leaf
    | _, _, _ => Node l x r
    end.

  Lemma gnode':
    forall (A: Type) (l r: t A) (x: option A) (i: positive),
    get i (Node' l x r) = get i (Node l x r).
Proof.
    intros. unfold Node'.
    destruct l; destruct x; destruct r; auto.
    destruct i; simpl; auto; rewrite gleaf; auto.
  Qed.

  Section COMBINE.

  Variable A: Type.
  Variable f: option A -> option A -> option A.
  Hypothesis f_none_none: f None None = None.

  Fixpoint xcombine_l (m : t A) {struct m} : t A :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node' (xcombine_l l) (f o None) (xcombine_l r)
      end.

  Lemma xgcombine_l :
          forall (m: t A) (i : positive),
          get i (xcombine_l m) = f (get i m) None.
Proof.
      induction m; intros; simpl.
      repeat rewrite gleaf. auto.
      rewrite gnode'. destruct i; simpl; auto.
    Qed.

  Fixpoint xcombine_r (m : t A) {struct m} : t A :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node' (xcombine_r l) (f None o) (xcombine_r r)
      end.

  Lemma xgcombine_r :
          forall (m: t A) (i : positive),
          get i (xcombine_r m) = f None (get i m).
Proof.
      induction m; intros; simpl.
      repeat rewrite gleaf. auto.
      rewrite gnode'. destruct i; simpl; auto.
    Qed.

  Fixpoint combine (m1 m2 : t A) {struct m1} : t A :=
    match m1 with
    | Leaf => xcombine_r m2
    | Node l1 o1 r1 =>
        match m2 with
        | Leaf => xcombine_l m1
        | Node l2 o2 r2 => Node' (combine l1 l2) (f o1 o2) (combine r1 r2)
        end
    end.

  Theorem gcombine:
      forall (m1 m2: t A) (i: positive),
      get i (combine m1 m2) = f (get i m1) (get i m2).
Proof.
    induction m1; intros; simpl.
    rewrite gleaf. apply xgcombine_r.
    destruct m2; simpl.
    rewrite gleaf. rewrite <- xgcombine_l. auto.
    repeat rewrite gnode'. destruct i; simpl; auto.
  Qed.

  End COMBINE.

  Lemma xcombine_lr :
    forall (A : Type) (f g : option A -> option A -> option A) (m : t A),
    (forall (i j : option A), f i j = g j i) ->
    xcombine_l f m = xcombine_r g m.
Proof.
      induction m; intros; simpl; auto.
      rewrite IHm1; auto.
      rewrite IHm2; auto.
      rewrite H; auto.
    Qed.

  Theorem combine_commut:
    forall (A: Type) (f g: option A -> option A -> option A),
    (forall (i j: option A), f i j = g j i) ->
    forall (m1 m2: t A),
    combine f m1 m2 = combine g m2 m1.
Proof.
    intros A f g EQ1.
    assert (EQ2: forall (i j: option A), g i j = f j i).
      intros; auto.
    induction m1; intros; destruct m2; simpl;
      try rewrite EQ1;
      repeat rewrite (xcombine_lr f g);
      repeat rewrite (xcombine_lr g f);
      auto.
     rewrite IHm1_1.
     rewrite IHm1_2.
     auto.
  Qed.

    Fixpoint xelements (A : Type) (m : t A) (i : positive) {struct m}
             : list (positive * A) :=
      match m with
      | Leaf => nil
      | Node l None r =>
          (xelements l (append i (xO xH))) ++ (xelements r (append i (xI xH)))
      | Node l (Some x) r =>
          (xelements l (append i (xO xH)))
          ++ ((i, x) :: xelements r (append i (xI xH)))
      end.


  Definition elements A (m : t A) := xelements m xH.

    Lemma xelements_correct:
      forall (A: Type) (m: t A) (i j : positive) (v: A),
      get i m = Some v -> In (append j i, v) (xelements m j).
Proof.
      induction m; intros.
       rewrite (gleaf A i) in H; congruence.
       destruct o; destruct i; simpl; simpl in H.
        rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
          apply IHm2; auto.
        rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
        rewrite append_neutral_r; apply in_or_app; injection H;
          intro EQ; rewrite EQ; right; apply in_eq.
        rewrite append_assoc_1; apply in_or_app; right; apply IHm2; auto.
        rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
        congruence.
    Qed.

  Theorem elements_correct:
    forall (A: Type) (m: t A) (i: positive) (v: A),
    get i m = Some v -> In (i, v) (elements m).
Proof.
    intros A m i v H.
    exact (xelements_correct m i xH H).
  Qed.

    Fixpoint xget (A : Type) (i j : positive) (m : t A) {struct j} : option A :=
      match i, j with
      | _, xH => get i m
      | xO ii, xO jj => xget ii jj m
      | xI ii, xI jj => xget ii jj m
      | _, _ => None
      end.

    Lemma xget_left :
      forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
      xget i (append j (xO xH)) m1 = Some v -> xget i j (Node m1 o m2) = Some v.
Proof.
      induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
      destruct i; congruence.
    Qed.

    Lemma xelements_ii :
      forall (A: Type) (m: t A) (i j : positive) (v: A),
      In (xI i, v) (xelements m (xI j)) -> In (i, v) (xelements m j).
Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
         apply in_or_app.
        left; apply IHm1; auto.
        right; destruct (in_inv H0).
         injection H1; intros EQ1 EQ2; rewrite EQ1; rewrite EQ2; apply in_eq.
         apply in_cons; apply IHm2; auto.
        left; apply IHm1; auto.
        right; apply IHm2; auto.
    Qed.

    Lemma xelements_io :
      forall (A: Type) (m: t A) (i j : positive) (v: A),
      ~In (xI i, v) (xelements m (xO j)).
Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        apply (IHm1 _ _ _ H0).
        destruct (in_inv H0).
         congruence.
         apply (IHm2 _ _ _ H1).
        apply (IHm1 _ _ _ H0).
        apply (IHm2 _ _ _ H0).
    Qed.

    Lemma xelements_oo :
      forall (A: Type) (m: t A) (i j : positive) (v: A),
      In (xO i, v) (xelements m (xO j)) -> In (i, v) (xelements m j).
Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
         apply in_or_app.
        left; apply IHm1; auto.
        right; destruct (in_inv H0).
         injection H1; intros EQ1 EQ2; rewrite EQ1; rewrite EQ2; apply in_eq.
         apply in_cons; apply IHm2; auto.
        left; apply IHm1; auto.
        right; apply IHm2; auto.
    Qed.

    Lemma xelements_oi :
      forall (A: Type) (m: t A) (i j : positive) (v: A),
      ~In (xO i, v) (xelements m (xI j)).
Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        apply (IHm1 _ _ _ H0).
        destruct (in_inv H0).
         congruence.
         apply (IHm2 _ _ _ H1).
        apply (IHm1 _ _ _ H0).
        apply (IHm2 _ _ _ H0).
    Qed.

    Lemma xelements_ih :
      forall (A: Type) (m1 m2: t A) (o: option A) (i : positive) (v: A),
      In (xI i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m2 xH).
Proof.
      destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
        absurd (In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
        destruct (in_inv H0).
         congruence.
         apply xelements_ii; auto.
        absurd (In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
        apply xelements_ii; auto.
    Qed.

    Lemma xelements_oh :
      forall (A: Type) (m1 m2: t A) (o: option A) (i : positive) (v: A),
      In (xO i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m1 xH).
Proof.
      destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
        apply xelements_oo; auto.
        destruct (in_inv H0).
         congruence.
         absurd (In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
        apply xelements_oo; auto.
        absurd (In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
    Qed.

    Lemma xelements_hi :
      forall (A: Type) (m: t A) (i : positive) (v: A),
      ~In (xH, v) (xelements m (xI i)).
Proof.
      induction m; intros.
       simpl; auto.
       destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        generalize H0; apply IHm1; auto.
        destruct (in_inv H0).
         congruence.
         generalize H1; apply IHm2; auto.
        generalize H0; apply IHm1; auto.
        generalize H0; apply IHm2; auto.
    Qed.

    Lemma xelements_ho :
      forall (A: Type) (m: t A) (i : positive) (v: A),
      ~In (xH, v) (xelements m (xO i)).
Proof.
      induction m; intros.
       simpl; auto.
       destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        generalize H0; apply IHm1; auto.
        destruct (in_inv H0).
         congruence.
         generalize H1; apply IHm2; auto.
        generalize H0; apply IHm1; auto.
        generalize H0; apply IHm2; auto.
    Qed.

    Lemma get_xget_h :
      forall (A: Type) (m: t A) (i: positive), get i m = xget i xH m.
Proof.
      destruct i; simpl; auto.
    Qed.

    Lemma xelements_complete:
      forall (A: Type) (i j : positive) (m: t A) (v: A),
      In (i, v) (xelements m j) -> xget i j m = Some v.
Proof.
      induction i; simpl; intros; destruct j; simpl.
       apply IHi; apply xelements_ii; auto.
       absurd (In (xI i, v) (xelements m (xO j))); auto; apply xelements_io.
       destruct m.
        simpl in H; tauto.
        rewrite get_xget_h. apply IHi. apply (xelements_ih _ _ _ _ _ H).
       absurd (In (xO i, v) (xelements m (xI j))); auto; apply xelements_oi.
       apply IHi; apply xelements_oo; auto.
       destruct m.
        simpl in H; tauto.
        rewrite get_xget_h. apply IHi. apply (xelements_oh _ _ _ _ _ H).
       absurd (In (xH, v) (xelements m (xI j))); auto; apply xelements_hi.
       absurd (In (xH, v) (xelements m (xO j))); auto; apply xelements_ho.
       destruct m.
        simpl in H; tauto.
        destruct o; simpl in H; destruct (in_app_or _ _ _ H).
         absurd (In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
         destruct (in_inv H0).
          congruence.
          absurd (In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
         absurd (In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
         absurd (In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
    Qed.

  Theorem elements_complete:
    forall (A: Type) (m: t A) (i: positive) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
Proof.
    intros A m i v H.
    unfold elements in H.
    rewrite get_xget_h.
    exact (xelements_complete i xH m v H).
  Qed.

  Lemma in_xelements:
    forall (A: Type) (m: t A) (i k: positive) (v: A),
    In (k, v) (xelements m i) ->
    exists j, k = append i j.
Proof.
    induction m; simpl; intros.
    tauto.
    assert (k = i \/ In (k, v) (xelements m1 (append i 2))
                  \/ In (k, v) (xelements m2 (append i 3))).
      destruct o.
      elim (in_app_or _ _ _ H); simpl; intuition.
      replace k with i. tauto. congruence.
      elim (in_app_or _ _ _ H); simpl; intuition.
    elim H0; intro.
    exists xH. rewrite append_neutral_r. auto.
    elim H1; intro.
    elim (IHm1 _ _ _ H2). intros k1 EQ. rewrite EQ.
    rewrite <- append_assoc_0. exists (xO k1); auto.
    elim (IHm2 _ _ _ H2). intros k1 EQ. rewrite EQ.
    rewrite <- append_assoc_1. exists (xI k1); auto.
  Qed.

  Definition xkeys (A: Type) (m: t A) (i: positive) :=
    List.map (@fst positive A) (xelements m i).

  Lemma in_xkeys:
    forall (A: Type) (m: t A) (i k: positive),
    In k (xkeys m i) ->
    exists j, k = append i j.
Proof.
    unfold xkeys; intros.
    elim (list_in_map_inv _ _ _ H). intros [k1 v1] [EQ IN].
    simpl in EQ; subst k1. apply in_xelements with A m v1. auto.
  Qed.

  Remark list_append_cons_norepet:
    forall (A: Type) (l1 l2: list A) (x: A),
    list_norepet l1 -> list_norepet l2 -> list_disjoint l1 l2 ->
    ~In x l1 -> ~In x l2 ->
    list_norepet (l1 ++ x :: l2).
Proof.
    intros. apply list_norepet_append_commut. simpl; constructor.
    red; intros. elim (in_app_or _ _ _ H4); intro; tauto.
    apply list_norepet_append; auto.
    apply list_disjoint_sym; auto.
  Qed.

  Lemma append_injective:
    forall i j1 j2, append i j1 = append i j2 -> j1 = j2.
Proof.
    induction i; simpl; intros.
    apply IHi. congruence.
    apply IHi. congruence.
    auto.
  Qed.

  Lemma xelements_keys_norepet:
    forall (A: Type) (m: t A) (i: positive),
    list_norepet (xkeys m i).
Proof.
    induction m; unfold xkeys; simpl; fold xkeys; intros.
    constructor.
    assert (list_disjoint (xkeys m1 (append i 2)) (xkeys m2 (append i 3))).
      red; intros; red; intro. subst y.
      elim (in_xkeys _ _ _ H); intros j1 EQ1.
      elim (in_xkeys _ _ _ H0); intros j2 EQ2.
      rewrite EQ1 in EQ2.
      rewrite <- append_assoc_0 in EQ2.
      rewrite <- append_assoc_1 in EQ2.
      generalize (append_injective _ _ _ EQ2). congruence.
    assert (forall (m: t A) j,
            j = 2%positive \/ j = 3%positive ->
            ~In i (xkeys m (append i j))).
      intros; red; intros.
      elim (in_xkeys _ _ _ H1); intros k EQ.
      assert (EQ1: append i xH = append (append i j) k).
        rewrite append_neutral_r. auto.
      elim H0; intro; subst j;
      try (rewrite <- append_assoc_0 in EQ1);
      try (rewrite <- append_assoc_1 in EQ1);
      generalize (append_injective _ _ _ EQ1); congruence.
    destruct o; rewrite list_append_map; simpl;
    change (List.map (@fst positive A) (xelements m1 (append i 2)))
      with (xkeys m1 (append i 2));
    change (List.map (@fst positive A) (xelements m2 (append i 3)))
      with (xkeys m2 (append i 3)).
    apply list_append_cons_norepet; auto.
    apply list_norepet_append; auto.
  Qed.

  Theorem elements_keys_norepet:
    forall (A: Type) (m: t A),
    list_norepet (List.map (@fst elt A) (elements m)).
Proof.
    intros. change (list_norepet (xkeys m 1)). apply xelements_keys_norepet.
  Qed.


  Fixpoint xfold (A B: Type) (f: B -> positive -> A -> B)
                 (i: positive) (m: t A) (v: B) {struct m} : B :=
    match m with
    | Leaf => v
    | Node l None r =>
        let v1 := xfold f (append i (xO xH)) l v in
        xfold f (append i (xI xH)) r v1
    | Node l (Some x) r =>
        let v1 := xfold f (append i (xO xH)) l v in
        let v2 := f v1 i x in
        xfold f (append i (xI xH)) r v2
    end.

  Definition fold (A B : Type) (f: B -> positive -> A -> B) (m: t A) (v: B) :=
    xfold f xH m v.

  Lemma xfold_xelements:
    forall (A B: Type) (f: B -> positive -> A -> B) m i v,
    xfold f i m v =
    List.fold_left (fun a p => f a (fst p) (snd p))
                   (xelements m i)
                   v.
Proof.
    induction m; intros.
    simpl. auto.
    simpl. destruct o.
    rewrite fold_left_app. simpl.
    rewrite IHm1. apply IHm2.
    rewrite fold_left_app. simpl.
    rewrite IHm1. apply IHm2.
  Qed.

  Theorem fold_spec:
    forall (A B: Type) (f: B -> positive -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
Proof.
    intros. unfold fold, elements. apply xfold_xelements.
  Qed.

End PTree.

An implementation of maps over type positive


Module PMap <: MAP.
  Definition elt := positive.
  Definition elt_eq := peq.

  Definition t (A : Type) : Type := (A * PTree.t A)%type.

  Definition eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                 forall (a b: t A), {a = b} + {a <> b}.
Proof.
    intros.
    generalize (PTree.eq X). intros.
    decide equality.
  Qed.

  Definition init (A : Type) (x : A) :=
    (x, PTree.empty A).

  Definition get (A : Type) (i : positive) (m : t A) :=
    match PTree.get i (snd m) with
    | Some x => x
    | None => fst m
    end.

  Definition set (A : Type) (i : positive) (x : A) (m : t A) :=
    (fst m, PTree.set i x (snd m)).

  Theorem gi:
    forall (A: Type) (i: positive) (x: A), get i (init x) = x.
Proof.
    intros. unfold init. unfold get. simpl. rewrite PTree.gempty. auto.
  Qed.

  Theorem gss:
    forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gss. auto.
  Qed.

  Theorem gso:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gso; auto.
  Qed.

  Theorem gsspec:
    forall (A: Type) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then x else get i m.
Proof.
    intros. destruct (peq i j).
     rewrite e. apply gss. auto.
     apply gso. auto.
  Qed.

  Theorem gsident:
    forall (A: Type) (i j: positive) (m: t A),
    get j (set i (get i m) m) = get j m.
Proof.
    intros. destruct (peq i j).
     rewrite e. rewrite gss. auto.
     rewrite gso; auto.
  Qed.

  Definition map (A B : Type) (f : A -> B) (m : t A) : t B :=
    (f (fst m), PTree.map (fun _ => f) (snd m)).

  Theorem gmap:
    forall (A B: Type) (f: A -> B) (i: positive) (m: t A),
    get i (map f m) = f(get i m).
Proof.
    intros. unfold map. unfold get. simpl. rewrite PTree.gmap.
    unfold option_map. destruct (PTree.get i (snd m)); auto.
  Qed.

End PMap.

An implementation of maps over any type that injects into type positive


Module Type INDEXED_TYPE.
  Variable t: Type.
  Variable index: t -> positive.
  Hypothesis index_inj: forall (x y: t), index x = index y -> x = y.
  Variable eq: forall (x y: t), {x = y} + {x <> y}.
End INDEXED_TYPE.

Module IMap(X: INDEXED_TYPE).

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t : Type -> Type := PMap.t.
  Definition eq: forall (A: Type), (forall (x y: A), {x=y} + {x<>y}) ->
                 forall (a b: t A), {a = b} + {a <> b} := PMap.eq.
  Definition init (A: Type) (x: A) := PMap.init x.
  Definition get (A: Type) (i: X.t) (m: t A) := PMap.get (X.index i) m.
  Definition set (A: Type) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
  Definition map (A B: Type) (f: A -> B) (m: t A) : t B := PMap.map f m.

  Lemma gi:
    forall (A: Type) (x: A) (i: X.t), get i (init x) = x.
Proof.
    intros. unfold get, init. apply PMap.gi.
  Qed.

  Lemma gss:
    forall (A: Type) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
Proof.
    intros. unfold get, set. apply PMap.gss.
  Qed.

  Lemma gso:
    forall (A: Type) (i j: X.t) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
Proof.
    intros. unfold get, set. apply PMap.gso.
    red. intro. apply H. apply X.index_inj; auto.
  Qed.

  Lemma gsspec:
    forall (A: Type) (i j: X.t) (x: A) (m: t A),
    get i (set j x m) = if X.eq i j then x else get i m.
Proof.
    intros. unfold get, set.
    rewrite PMap.gsspec.
    case (X.eq i j); intro.
    subst j. rewrite peq_true. reflexivity.
    rewrite peq_false. reflexivity.
    red; intro. elim n. apply X.index_inj; auto.
  Qed.

  Lemma gmap:
    forall (A B: Type) (f: A -> B) (i: X.t) (m: t A),
    get i (map f m) = f(get i m).
Proof.
    intros. unfold map, get. apply PMap.gmap.
  Qed.

End IMap.

Module ZIndexed.
  Definition t := Z.
  Definition index (z: Z): positive :=
    match z with
    | Z0 => xH
    | Zpos p => xO p
    | Zneg p => xI p
    end.
  Lemma index_inj: forall (x y: Z), index x = index y -> x = y.
Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
    congruence.
  Qed.
  Definition eq := zeq.
End ZIndexed.

Module ZMap := IMap(ZIndexed).

Module NIndexed.
  Definition t := N.
  Definition index (n: N): positive :=
    match n with
    | N0 => xH
    | Npos p => xO p
    end.
  Lemma index_inj: forall (x y: N), index x = index y -> x = y.
Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
  Qed.
  Lemma eq: forall (x y: N), {x = y} + {x <> y}.
Proof.
    decide equality. apply peq.
  Qed.
End NIndexed.

Module NMap := IMap(NIndexed).

An implementation of maps over any type with decidable equality


Module Type EQUALITY_TYPE.
  Variable t: Type.
  Variable eq: forall (x y: t), {x = y} + {x <> y}.
End EQUALITY_TYPE.

Module EMap(X: EQUALITY_TYPE) <: MAP.

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t (A: Type) := X.t -> A.
  Definition init (A: Type) (v: A) := fun (_: X.t) => v.
  Definition get (A: Type) (x: X.t) (m: t A) := m x.
  Definition set (A: Type) (x: X.t) (v: A) (m: t A) :=
    fun (y: X.t) => if X.eq y x then v else m y.
  Lemma gi:
    forall (A: Type) (i: elt) (x: A), init x i = x.
Proof.
    intros. reflexivity.
  Qed.
  Lemma gss:
    forall (A: Type) (i: elt) (x: A) (m: t A), (set i x m) i = x.
Proof.
    intros. unfold set. case (X.eq i i); intro.
    reflexivity. tauto.
  Qed.
  Lemma gso:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    i <> j -> (set j x m) i = m i.
Proof.
    intros. unfold set. case (X.eq i j); intro.
    congruence. reflexivity.
  Qed.
  Lemma gsspec:
    forall (A: Type) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
Proof.
    intros. unfold get, set, elt_eq. reflexivity.
  Qed.
  Lemma gsident:
    forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
Proof.
    intros. unfold get, set. case (X.eq j i); intro.
    congruence. reflexivity.
  Qed.
  Definition map (A B: Type) (f: A -> B) (m: t A) :=
    fun (x: X.t) => f(m x).
  Lemma gmap:
    forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
Proof.
    intros. unfold get, map. reflexivity.
  Qed.
End EMap.

Additional properties over trees


Module Tree_Properties(T: TREE).

An induction principle over fold.

Section TREE_FOLD_IND.

Variables V A: Type.
Variable f: A -> T.elt -> V -> A.
Variable P: T.t V -> A -> Prop.
Variable init: A.
Variable m_final: T.t V.

Hypothesis P_compat:
  forall m m' a,
  (forall x, T.get x m = T.get x m') ->
  P m a -> P m' a.

Hypothesis H_base:
  P (T.empty _) init.

Hypothesis H_rec:
  forall m a k v,
  T.get k m = None -> T.get k m_final = Some v -> P m a -> P (T.set k v m) (f a k v).

Definition f' (a: A) (p : T.elt * V) := f a (fst p) (snd p).

Definition P' (l: list (T.elt * V)) (a: A) : Prop :=
  forall m, list_equiv l (T.elements m) -> P m a.

Remark H_base':
  P' nil init.
Proof.
  red; intros. apply P_compat with (T.empty _); auto.
  intros. rewrite T.gempty. symmetry. case_eq (T.get x m); intros; auto.
  assert (In (x, v) nil). rewrite (H (x, v)). apply T.elements_correct. auto.
  contradiction.
Qed.

Remark H_rec':
  forall k v l a,
  ~In k (List.map (@fst T.elt V) l) ->
  In (k, v) (T.elements m_final) ->
  P' l a ->
  P' (l ++ (k, v) :: nil) (f a k v).
Proof.
  unfold P'; intros.
  set (m0 := T.remove k m).
  apply P_compat with (T.set k v m0).
    intros. unfold m0. rewrite T.gsspec. destruct (T.elt_eq x k).
    symmetry. apply T.elements_complete. rewrite <- (H2 (x, v)).
    apply in_or_app. simpl. intuition congruence.
    apply T.gro. auto.
  apply H_rec. unfold m0. apply T.grs. apply T.elements_complete. auto.
  apply H1. red. intros [k' v'].
  split; intros.
  apply T.elements_correct. unfold m0. rewrite T.gro. apply T.elements_complete.
  rewrite <- (H2 (k', v')). apply in_or_app. auto.
  red; intro; subst k'. elim H. change k with (fst (k, v')). apply in_map. auto.
  assert (T.get k' m0 = Some v'). apply T.elements_complete. auto.
  unfold m0 in H4. rewrite T.grspec in H4. destruct (T.elt_eq k' k). congruence.
  assert (In (k', v') (T.elements m)). apply T.elements_correct; auto.
  rewrite <- (H2 (k', v')) in H5. destruct (in_app_or _ _ _ H5). auto.
  simpl in H6. intuition congruence.
Qed.

Lemma fold_rec_aux:
  forall l1 l2 a,
  list_equiv (l2 ++ l1) (T.elements m_final) ->
  list_disjoint (List.map (@fst T.elt V) l1) (List.map (@fst T.elt V) l2) ->
  list_norepet (List.map (@fst T.elt V) l1) ->
  P' l2 a -> P' (l2 ++ l1) (List.fold_left f' l1 a).
Proof.
  induction l1; intros; simpl.
  rewrite <- List.app_nil_end. auto.
  destruct a as [k v]; simpl in *. inv H1.
  change ((k, v) :: l1) with (((k, v) :: nil) ++ l1). rewrite <- List.app_ass. apply IHl1.
  rewrite app_ass. auto.
  red; intros. rewrite map_app in H3. destruct (in_app_or _ _ _ H3). apply H0; auto with coqlib.
  simpl in H4. intuition congruence.
  auto.
  unfold f'. simpl. apply H_rec'; auto. eapply list_disjoint_notin; eauto with coqlib.
  rewrite <- (H (k, v)). apply in_or_app. simpl. auto.
Qed.

Theorem fold_rec:
  P m_final (T.fold f m_final init).
Proof.
  intros. rewrite T.fold_spec. fold f'.
  assert (P' (nil ++ T.elements m_final) (List.fold_left f' (T.elements m_final) init)).
    apply fold_rec_aux.
    simpl. red; intros; tauto.
    simpl. red; intros. elim H0.
    apply T.elements_keys_norepet.
    apply H_base'.
  simpl in H. red in H. apply H. red; intros. tauto.
Qed.

End TREE_FOLD_IND.

End Tree_Properties.

Module PTree_Properties := Tree_Properties(PTree).

Useful notations


Notation "a ! b" := (PTree.get b a) (at level 1).
Notation "a !! b" := (PMap.get b a) (at level 1).