Library ext
Require Export FunctionalExtensionality.
Require Import ClassicalFacts.
Axiom propositional_extensionality : prop_extensionality.
Lemma and_extensionality : ∀ (P Q1 Q2 : Prop), (P → Q1 = Q2) → (P ∧ Q1) = (P ∧ Q2).
Proof.
intros; apply propositional_extensionality; split; intros [HP HQ].
rewrite <- (H HP); auto.
rewrite (H HP); auto.
Qed.
Lemma forall_extensionality : ∀ A (P Q : A → Prop), P = Q → (∀ x, P x) = (∀ x, Q x).
Proof. intros A P Q Heq; rewrite Heq; reflexivity. Qed.
Lemma exists_extensionality : ∀ A (P Q : A → Prop), P = Q → (∃ x, P x) = (∃ x, Q x).
Proof. intros A P Q Heq; rewrite Heq; reflexivity. Qed.
Require Import ClassicalFacts.
Axiom propositional_extensionality : prop_extensionality.
Lemma and_extensionality : ∀ (P Q1 Q2 : Prop), (P → Q1 = Q2) → (P ∧ Q1) = (P ∧ Q2).
Proof.
intros; apply propositional_extensionality; split; intros [HP HQ].
rewrite <- (H HP); auto.
rewrite (H HP); auto.
Qed.
Lemma forall_extensionality : ∀ A (P Q : A → Prop), P = Q → (∀ x, P x) = (∀ x, Q x).
Proof. intros A P Q Heq; rewrite Heq; reflexivity. Qed.
Lemma exists_extensionality : ∀ A (P Q : A → Prop), P = Q → (∃ x, P x) = (∃ x, Q x).
Proof. intros A P Q Heq; rewrite Heq; reflexivity. Qed.