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Claim – yet to prove

Types with unique inhabitants are a useful notion to write dependently
typed programs.

In this talk:

1 What we mean by “type with a unique inhabitant”, and how to use
them.

2 Discussing usage opportunities in existing dependently typed code.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 2 / 12



Definition

Pick a term language t, a type system Γ ` t : τ and a (sound) notion of
program equivalence Γ ` t ≡ t ′ : τ .

Under the environment Γ, a type τ has a unique inhabitant if:

∃t, (Γ ` t : τ) ∧ ∀t ′, (Γ ` t ′ : τ) =⇒ (Γ ` t ≡ t ′ : τ)

(we will say singleton for the rest of this talk)

We are interested in tuples of (term language, type system, equivalence
relation) that make this notion interesting.

1 pure term languages

2 equivalence at least βη
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Decision problem(s)

The structure of singletons is already interesting for the simply-typed
lambda-calculus with sums – whose η-equivalence is tricky.

So interesting that we don’t have a decision procedure yet.

This talk requires some suspension of disbelief.
We will discuss what we could do if we knew how to detect singletons.
In dependently typed systems.
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Joker

New language construct for your favorite language: Γ ` ?! : τ
If τ is a singleton, infer a term, otherwise fail.

Term search can happen in a pure subset of the host language.
Or in use a richer type system (substructural types, more polymorphism or
dependencies...).

Applicable (in thought experiments) to ML, Haskell, Coq, Agda...

flip :: (a -> b -> c) -> (b -> a -> c)

flip = ?!

Intended use case: fill the boring glues around interesting program parts.
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Dependent types help

In ML/Haskell, most programs fragments are not in singletons – except in
typeful libraries.

List.map (fun (x,y) -> (y,x)) [(1,2); (3,4)]

Yet, singletons generalize erasable coercions (subtyping) and consistent
type-class resolution.

In dependently typed language, List.fold is in a singleton.

fold :: forall P, P nil ->

(forall x xs, P xs -> P (cons x xs)) ->

forall li, P li

fold init f nil = init

fold init f (cons x xs) = f x xs (fold init f xs)

You want to infer either the type or the term.
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Where would it be useful?

Unicity of inhabitant is relevant to program construction rather than proof
construction – where inhabitation is enough.
It adds value when it works, but also when it fails.

Split between two verified programming schools:

“program then prove correct”

“program correctly through types”; good for us!
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Fixpoint merge l1 l2 :=

let fix merge_aux l2 :=

match l1, l2 with

| [], _ => l2

| _, [] => l1

| a1::l1’, a2::l2’ =>

if a1 <=? a2

then a1 :: merge l1’ l2

else a2 :: merge_aux l2’

end

in merge_aux l2.

Theorem Sorted_merge : forall l1 l2,

Sorted l1 -> Sorted l2 -> Sorted (merge l1 l2).

Proof. ... Qed.

coq-8.3/theories/Sorting/Mergesort.v
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emb :: Var Γ σ -> Tm Γ σ
emb vZ = top

emb (vS x τ) = emb x [ pop τ ]

James Chapman.

Type Theory should eat itself.

2008.

Definition Sub E E’ := ∀ t, Var E t -> Exp E’ t.

Program Definition consSub {E E’ t} (e:Exp E’ t) (s:Sub E E’)

: Sub (t::E) E’ :=

fun t’ (v:Var (t::E) t’) =>

match v with

| ZVAR _ _ => e

| SVAR _ _ _ v’ => s _ v’

end.

Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride.

Strongly Typed Term Representation in Coq.

2009.
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Two-level languages

LF family (Twelf, Beluga, VeriML. . . ): two layers, an object language and
a host language. Computation only happens at the host. It’s natural to
allow dependency on the object language.

VeriML: object language represents rich terms of higher-order logic (proofs
and propositions). Useful to write tactics.

The “program then prove correct” style is not available!
Lots of opportunities for singleton types.
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Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> < @hd , @nil , @removedHead ? ? >

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’ ) then

< @hd , @tl, Exact @removedHead hd tl >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;
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Conclusions so far

Bad: simpler inhabitation search is just as useful in a lot of cases.

Mixed: Our intuition about singletons needs more training.

Good: There is no confusion between intent-expressing types/code, and
glue.

Good: There are opportunities for singleton types, when programming
with rich types.
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