
Mining opportunities for unique inhabitants in
dependent programs

Gabriel Scherer, PhD Student
under supervision of Didier Rémy

Gallium – INRIA

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 1 / 12

Claim – yet to prove

Types with unique inhabitants are a useful notion to write dependently
typed programs.

In this talk:

1 What we mean by “type with a unique inhabitant”, and how to use
them.

2 Discussing usage opportunities in existing dependently typed code.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 2 / 12

Definition

Pick a term language t, a type system Γ ` t : τ and a (sound) notion of
program equivalence Γ ` t ≡ t ′ : τ .

Under the environment Γ, a type τ has a unique inhabitant if:

∃t, (Γ ` t : τ) ∧ ∀t ′, (Γ ` t ′ : τ) =⇒ (Γ ` t ≡ t ′ : τ)

(we will say singleton for the rest of this talk)

We are interested in tuples of (term language, type system, equivalence
relation) that make this notion interesting.

1 pure term languages

2 equivalence at least βη

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 3 / 12

Decision problem(s)

The structure of singletons is already interesting for the simply-typed
lambda-calculus with sums – whose η-equivalence is tricky.

So interesting that we don’t have a decision procedure yet.

This talk requires some suspension of disbelief.
We will discuss what we could do if we knew how to detect singletons.
In dependently typed systems.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 4 / 12

Decision problem(s)

The structure of singletons is already interesting for the simply-typed
lambda-calculus with sums – whose η-equivalence is tricky.

So interesting that we don’t have a decision procedure yet.

This talk requires some suspension of disbelief.
We will discuss what we could do if we knew how to detect singletons.
In dependently typed systems.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 4 / 12

Decision problem(s)

The structure of singletons is already interesting for the simply-typed
lambda-calculus with sums – whose η-equivalence is tricky.

So interesting that we don’t have a decision procedure yet.

This talk requires some suspension of disbelief.
We will discuss what we could do if we knew how to detect singletons.
In dependently typed systems.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 4 / 12

Joker

New language construct for your favorite language: Γ ` ?! : τ
If τ is a singleton, infer a term, otherwise fail.

Term search can happen in a pure subset of the host language.
Or in use a richer type system (substructural types, more polymorphism or
dependencies...).

Applicable (in thought experiments) to ML, Haskell, Coq, Agda...

flip :: (a -> b -> c) -> (b -> a -> c)

flip = ?!

Intended use case: fill the boring glues around interesting program parts.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 5 / 12

Dependent types help

In ML/Haskell, most programs fragments are not in singletons – except in
typeful libraries.

List.map (fun (x,y) -> (y,x)) [(1,2); (3,4)]

Yet, singletons generalize erasable coercions (subtyping) and consistent
type-class resolution.

In dependently typed language, List.fold is in a singleton.

fold :: forall P, P nil ->

(forall x xs, P xs -> P (cons x xs)) ->

forall li, P li

fold init f nil = init

fold init f (cons x xs) = f x xs (fold init f xs)

You want to infer either the type or the term.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 6 / 12

Dependent types help

In ML/Haskell, most programs fragments are not in singletons – except in
typeful libraries.

List.map (fun (x,y) -> (y,x)) [(1,2); (3,4)]

Yet, singletons generalize erasable coercions (subtyping) and consistent
type-class resolution.

In dependently typed language, List.fold is in a singleton.

fold :: forall P, P nil ->

(forall x xs, P xs -> P (cons x xs)) ->

forall li, P li

fold init f nil = init

fold init f (cons x xs) = f x xs (fold init f xs)

You want to infer either the type or the term.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 6 / 12

Where would it be useful?

Unicity of inhabitant is relevant to program construction rather than proof
construction – where inhabitation is enough.
It adds value when it works, but also when it fails.

Split between two verified programming schools:

“program then prove correct”

“program correctly through types”; good for us!

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 7 / 12

Where would it be useful?

Unicity of inhabitant is relevant to program construction rather than proof
construction – where inhabitation is enough.
It adds value when it works, but also when it fails.

Split between two verified programming schools:

“program then prove correct”

“program correctly through types”; good for us!

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 7 / 12

Where would it be useful?

Unicity of inhabitant is relevant to program construction rather than proof
construction – where inhabitation is enough.
It adds value when it works, but also when it fails.

Split between two verified programming schools:

“program then prove correct”

“program correctly through types”; good for us!

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 7 / 12

Where would it be useful?

Unicity of inhabitant is relevant to program construction rather than proof
construction – where inhabitation is enough.
It adds value when it works, but also when it fails.

Split between two verified programming schools:

“program then prove correct”

“program correctly through types”; good for us!

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 7 / 12

Fixpoint merge l1 l2 :=

let fix merge_aux l2 :=

match l1, l2 with

| [], _ => l2

| _, [] => l1

| a1::l1’, a2::l2’ =>

if a1 <=? a2

then a1 :: merge l1’ l2

else a2 :: merge_aux l2’

end

in merge_aux l2.

Theorem Sorted_merge : forall l1 l2,

Sorted l1 -> Sorted l2 -> Sorted (merge l1 l2).

Proof. ... Qed.

coq-8.3/theories/Sorting/Mergesort.v

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 8 / 12

emb :: Var Γ σ -> Tm Γ σ
emb vZ = top

emb (vS x τ) = emb x [pop τ]

James Chapman.

Type Theory should eat itself.

2008.

Definition Sub E E’ := ∀ t, Var E t -> Exp E’ t.

Program Definition consSub {E E’ t} (e:Exp E’ t) (s:Sub E E’)

: Sub (t::E) E’ :=

fun t’ (v:Var (t::E) t’) =>

match v with

| ZVAR _ _ => e

| SVAR _ _ _ v’ => s _ v’

end.

Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride.

Strongly Typed Term Representation in Coq.

2009.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 9 / 12

emb :: Var Γ σ -> Tm Γ σ
emb vZ = top

emb (vS x τ) = emb x [pop τ]

James Chapman.

Type Theory should eat itself.

2008.

Definition Sub E E’ := ∀ t, Var E t -> Exp E’ t.

Program Definition consSub {E E’ t} (e:Exp E’ t) (s:Sub E E’)

: Sub (t::E) E’ :=

fun t’ (v:Var (t::E) t’) =>

match v with

| ZVAR _ _ => e

| SVAR _ _ _ v’ => s _ v’

end.

Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride.

Strongly Typed Term Representation in Coq.

2009.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 9 / 12

Two-level languages

LF family (Twelf, Beluga, VeriML. . .): two layers, an object language and
a host language. Computation only happens at the host. It’s natural to
allow dependency on the object language.

VeriML: object language represents rich terms of higher-order logic (proofs
and propositions). Useful to write tactics.

The “program then prove correct” style is not available!
Lots of opportunities for singleton types.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 10 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> < @hd , @nil , @removedHead ? ? >

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< @hd , @tl, Exact @removedHead hd tl >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> < @hd , @nil , @removedHead ? ? >

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< @hd , @tl, Exact @removedHead hd tl >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> ?!

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< @hd , @tl, Exact @removedHead hd tl >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> ?!

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< @hd , @tl, Exact @removedHead hd tl >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> ?!

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< ?!, @tl, ?! >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> ?!

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< ?!, @tl, ?! >

else

< @min’, @cons hd rem, @removedTail pf >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Inductive removed [T : Type] : List/[T] -> T -> List/[T] -> Prop :=

| removedHead : ∀hd tl, removed (cons hd tl) hd tl

| removedTail : ∀elm hd tl tl’,

removed tl elm tl’ -> removed (cons hd tl) elm (cons hd tl’) ;;

letrec min_list:

({φ : ctx}, {T : @Type}, cmp : (@T) -> (@T) -> bool) ->

(l : @List) -> (min : @T) * (rest : @List) * hol(@removed l min rest)

= fun {φ T} cmp l =>

let < @l’ , @pfl’ > = default_rewriter @l in

let < @min, @rest, @pf > = holmatch @l’ with

| @nil -> error

| @cons hd nil -> ?!

| @cons hd tl ->

let < min’, rem, pf > = min_list cmp @tl in

if (cmp @hd @min’) then

< ?!, @tl, ?! >

else

< ?!, @cons hd rem, ?! >

in < @min , @rest , {{ Auto }} > ;;

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 11 / 12

Conclusions so far

Bad: simpler inhabitation search is just as useful in a lot of cases.

Mixed: Our intuition about singletons needs more training.

Good: There is no confusion between intent-expressing types/code, and
glue.

Good: There are opportunities for singleton types, when programming
with rich types.

Gabriel Scherer (Gallium) Mining opportunities for unique inhabitants in dependent programsSeptember 29, 2013 12 / 12

