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What? This talk is about a problem rather than a solution.

The question

Given a type T , does T have a unique inhabitant?
(modulo observational equivalence)

We need to fix a type system and a pure term language.

Let’s start with the simply-typed lambda-calculus (STLC)
with arrows, products and sums.

Remark: (non-)relation with singleton types {= M}.
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Why? Practical motivations

A principal approach to code inference.

Informal conjecture

When programmers feel bored even before writing the code, it’s because
there are no choices to be made.

Provide a feature to fill some hole (?), that fails if there are several
possible choices.

val swap : ’a ’b ’c. (’a * ’b * ’c) -> (’a * ’c * ’b)

let swap = ?
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Code inference example

Most general form (Γ ` ? : σ).
Default context choice (∅), inferred type.

Type_variant (

List.map (fun (name, name_loc, ctys, option, loc) ->

name, List.map (fun cty -> cty.ctyp_type) ctys, option)

cstrs

)

Type_variant (

List.map (? (List.map (fun cty -> cty.ctyp_type))) cstrs

)

Analysis of the typing/ code. For 100 instances of
List.map (fun ...), about 30 of them could use code inference.
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Uses of code inference

Non-interactive use:

glue between trivial parts of the program
I forgot the argument order. . . but only one type-correct choice.

more ambitious: generic boilerplate
Is there a type whose unique inhabitant is List.map? (next slide)

re-expresses other code inference feature
type classes, implicits. . .

Interactive use: program-assistant tactics?

Note: we’re not using scoring/heuristics [recent C], Scala work].

Interaction between type and term inference. You can’t do both at once,
but they can cooperate.
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What’s a precise type for List.map?

∀αβ.(α→ β)→ (List α→ List β) (? f li)

∀αβ.(α( β)→ (List α( List β) (? f ›li)
∀αβ.(α −. β)→ (List α −. List β) (? f /−li)

We are:

using more expressive types than the host language ones

producing purer terms

For fold, need to move to dependent types; decreasing gains.

∀αβ, ∀(A : ?)(P : List A→ ?),
β → P nil→
(α→ β → β)→ (∀(a : A)(l : List A),P l → P (cons a l))→
List α→ β ∀(l : List A), P l
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Why? Theoretical motivations

It’s fun: a question so simple to state must have interesting anwsers.

It’s an excuse to look at the proof-search research with different eyes.
Look at dynamic behavior, rather than just yes/no inhabitation problems.
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Caution required

Intuitionistic sequent calculi generally have a contraction rule

Γ,A,A ` B

Γ,A ` B

Γ,A,B ` C

Γ,A ∗ B ` C

You can get rid of contraction if you preserve formulas at use site.

Γ,A ∗ B,A,B ` C

Γ,A ∗ B ` C

For sums and pairs, it is in fact not needed, but it is for arrows.

Γ,A→ B ` A Γ,B ` C

Γ,A→ B ` C

Dropping the arrow on the right is complete, but not dynamically so.
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How? High-level directions

I recently started working on this. I will warmly welcome any suggestion.

Directions to explore in parallel

Keep looking for related work.
Diverse, hard to find, not well-connected.

Enrich type systems to express more types with unique inhabitants.
Substructural logics, polymorphic (parametricity), dependent types.

Devise practical algorithms to check unicity.
(Bulk of this talk)
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Some related work

J. B. Wells and Boris Yakobowski.
Graph-based proof counting and enumeration with applications for
program fragment synthesis.
In LOPSTR 2004.

Takahito Aoto.
Uniqueness of normal proofs in implicational intuitionistic logic.
Journal of Logic, Language and Information, 8:217–242, 1999.

Sabine Broda and Lúıs Damas.
On long normal inhabitants of a type.
J. Log. Comput., 15(3):353–390, 2005.

Pierre Boureau and Sylvain Salvati.
Game semantics and uniqueness of type inhabitance in the
simply-typed λ-calculus.
Typed Lambda-Calculi and Applications, 2011.
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A few words on [Yakobowski and Wells]

Consider the graph whose nodes are sequent, and edges are valid inference
rules.

When context is a set, subformula property implies finiteness.

Can be seen as a “memoization” techniques: cycles in the graph can be
dropped without hurting completeness.

(Idea of the paper: from this graph structure with set-contexts, deduce
information about the infinite structure of multiset-contexts.)
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Facing the Decision problem: Unicity for STLC

Obvious idea: enumerate proofs, check that there is only one.

Usual problem: irrelevant permutations allowed by the proof system

A,B,C ,D ` E

A,B,C ∗ D ` E

A ∗ B,C ∗ D ` E

A,B,C ,D ` E

A ∗ B,C ,D ` E

A ∗ B,C ∗ D ` E

Two approaches:

do equivalence checks after enumeration to remove duplicates
(simple, not fun, not efficient in general)

change the proof system to remove those duplicates
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Mandatory step towards duplicates-free systems: Focusing

Quotient by reordering of {non,}inversible proof steps.

Γ; ∆,A ` B

Γ; ∆ ` A→ B

Γ; ∆,A,B ` C

Γ; ∆,A ∗ B ` C

Γ; ∆,A ` C Γ; ∆,B ` C

Γ; ∆,A + B ` C

Γ,X ; ∆ ` C

Γ; ∆,X ` C

Γ ` [P]

Γ; ∅ ` P

Γ, [N] ` X

Γ,N; ∅ ` X

Γ, [N] ` P Γ;P ` Q

Γ,N ` Q

Γ ` [A] Γ ` [B]

Γ ` [A ∗ B]

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ; ∅ ` N

Γ ` [N]

Γ, [X ] ` X

Γ, [N] ` A→ B Γ ` [A]

Γ, [N] ` B

Focused proofs correspond to β-normal, η-long terms. Good!
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Shortcomings of Focusing
Too many proofs of (X → Y + Z )→ X → X .

fun f x -> ?

fun f x -> x

fun f x -> match f x with

| L y -> ?

| R z -> ?

fun f x -> match f x with

| L y -> x

| R z -> x

fun f x -> match f x with

| L y -> (match f x with

| L y’ -> ?

| R z -> ?)

| R z -> x

fun f x -> match f x with

| L y -> x

| R z -> (match f x with

| L y -> ?

| R z’ -> ?)

fun f x -> match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z’ -> ?)

Remark: (Y + Z )→ X → X would be fine.
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η-equivalence for sum types

Weak, local equivalence:

e = match e with

| L y -> L y

| R z -> R z

Full, non-local, categorical equivalence

C[e] = match e with

| L y -> C[L y]

| R z -> C[R z]

In particular:

t = match e with

| L y -> t

| R y -> t

and. . .
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match e with

| L y -> C1[y][match e with M1]

| R z -> C2[z][match e with M2]

= (strong η-sum)

match e with

| L y0 ->

(match L y0 with

| L y -> C1[y][match L y0 with M1]

| R z -> C2[z][match L y0 with M2])

| R z0 ->

(match R z0 with

| L y -> C1[y][match R z0 with M1]

| R z -> C2[z][match R z0 with M2])

= (β-sum)

match e with

| L y0 -> C1[y0][match L y0 with M1]

| R z0 -> C2[z0][match R z0 with M2]
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Checking strong η-equivalence for sums

[Balat and Di Cosmo, 2004]; [Lindley, 2005]
General idea: move sum destructions as early as possible, then remove
duplicates.

fun f g ...

match ... with

...

fun x y ...

match ... with

...

fun g z ...

match f x with ...
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Remark

(→) and (+) are enemies in intuitionistic logic.
Both can be introduced reversibly, but not both at the same time.

Γ,A ` B

Γ ` A→ B

Γ ` Ai

Γ ` A1 + A2

Γ,A ` B

Γ ` (A→ B),∆

Γ ` A1,A2,∆

Γ ` (A1 + A2),∆

(Remark in remark: intuitionistic focusing makes arbitrary choices. Related
to various translations into linear logic [Chaudhuri and Miller].)
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A general approach: saturation

Goal: integrate sum equivalence into proof search.

Our idea: Context saturation

Each time we introduce new things in the context, do all possible
destructions that involve them and might get used in a proof term.
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Saturation example

With saturation,

fun f x ->

match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z -> ?)

is ruled out. But for:

fun f x -> match f x with

| L y -> x

| R z -> x

it depends.
It would be ruled out as well if our proof search was sophisticated enough
to notice that neither Y nor Z can help prove X .

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 20 / 27



Saturation Facts

Conjecture: a search calculus enforcing saturation solves the sum
equivalence problem.

Danger: without clever ideas for checking “potential usefulness” of
destructs, this method is impractical.

Hope: this approach allows to solve not only the -sum problem, but
generalizes nicely to other constructors with tricky equalities.

Embarassing detail: no other example known, so generalization of little
value; suggestions appreciated.
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But: saturation is not obvious

A saturating calculus surprisingly hard to define.

Nave idea: at the end of each reversible phase (or incrementally during
them), saturate the context. Focusing phases will only run with saturated
contexts.

Context saturation operation sat(Γ)?

sat(Γ;A→ B) = sat(Γ,A→ B;B) when Γ ` A.
Problem when A of the form B → C : re-saturation needed (recursively).

Termination? Practicality? We need something clever here.
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Exploring the theorem proving countryside

Saturation seems costly in general, but sometimes it is required to solve
inhabitation.

(X → Y + Z )→ X → Z + Y

Let’s look at the automated theorem provign literature. Hopefully their
techniques/optimizations have helpful semantic content.

Most research centered on classical logic – easy shortcuts due to
arrow/sum permutation. But:

The inverse method has been adapted to linear [Chaudhuri],
intuitionistic logic. Sequent-saturation technique – may help for
context saturation ?

Connection-based, or Matrix-based calculi; horribly complicated, but
probably helpful to avoid redundant work.
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Presentation of the Inverse Method

Based on a termination argument that we can reuse for saturation: the
subformula property.
Subformulas of (X → Y + Z )→ X → X

(positively) X ; (X → X ); ((X → Y + Z )→ X → X )

(negatively) (Y + Z ); (X → Y + Z ); X

Some rules:

X atom

X ` X

Γ,A,A ` B

Γ,A ` B

Γ1 ` A Γ2 ` B

Γ1, Γ2 ` A ∗ B

Γ,A ` B

Γ ` A→ B

Γ ` B A /∈ Γ

Γ ` A→ B
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Inverse Method: Pros and Cons

Note: already encoded some neededness information.

Can be refined with

polarization

focusing (derived constructors)

Has been used in practice to refute provability (Imogen, [McLaughlin and
Pfenning, 2008]), so is practically able to perform saturation.

But: unclear how its inherent sharing/subsumption preserves the dynamic
semantics of proof-terms.
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Going further

Current idea : perform an inverse method to forward-explore the sequent
space, then go backward to collect maximized proof.

Going on in parallel :

“path calculi” are optimizations techniques on top of the inverse
method that allow to further prune the search space [Degtyarev and
Voronkov, 2001] and may help even further on “neededness” question.

understand and integrate ideas from connection-based calculi
[Galmiche and Méry, recent]
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Thanks.

Any questions ?
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