
Unicity of type inhabitants; a Work in Progress

Gabriel Scherer

Gallium (INRIA Paris-Rocquencourt)

May 30, 2013

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 1 / 27



What? This talk is about a problem rather than a solution.

The question

Given a type T , does T have a unique inhabitant?
(modulo observational equivalence)

We need to fix a type system and a pure term language.

Let’s start with the simply-typed lambda-calculus (STLC)
with arrows, products and sums.

Remark: (non-)relation with singleton types {= M}.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 2 / 27



Why? Practical motivations

A principal approach to code inference.

Informal conjecture

When programmers feel bored even before writing the code, it’s because
there are no choices to be made.

Provide a feature to fill some hole (?), that fails if there are several
possible choices.

val swap : ’a ’b ’c. (’a * ’b * ’c) -> (’a * ’c * ’b)

let swap = ?

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 3 / 27



Code inference example

Most general form (Γ ` ? : σ).
Default context choice (∅), inferred type.

Type_variant (

List.map (fun (name, name_loc, ctys, option, loc) ->

name, List.map (fun cty -> cty.ctyp_type) ctys, option)

cstrs

)

Type_variant (

List.map (? (List.map (fun cty -> cty.ctyp_type))) cstrs

)

Analysis of the typing/ code. For 100 instances of
List.map (fun ...), about 30 of them could use code inference.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 4 / 27



Code inference example

Most general form (Γ ` ? : σ).
Default context choice (∅), inferred type.

Type_variant (

List.map (fun (name, name_loc, ctys, option, loc) ->

name, List.map (fun cty -> cty.ctyp_type) ctys, option)

cstrs

)

Type_variant (

List.map (? (List.map (fun cty -> cty.ctyp_type))) cstrs

)

Analysis of the typing/ code. For 100 instances of
List.map (fun ...), about 30 of them could use code inference.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 4 / 27



Code inference example

Most general form (Γ ` ? : σ).
Default context choice (∅), inferred type.

Type_variant (

List.map (fun (name, name_loc, ctys, option, loc) ->

name, List.map (fun cty -> cty.ctyp_type) ctys, option)

cstrs

)

Type_variant (

List.map (? (List.map (fun cty -> cty.ctyp_type))) cstrs

)

Analysis of the typing/ code. For 100 instances of
List.map (fun ...), about 30 of them could use code inference.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 4 / 27



Uses of code inference

Non-interactive use:

glue between trivial parts of the program
I forgot the argument order. . . but only one type-correct choice.

more ambitious: generic boilerplate
Is there a type whose unique inhabitant is List.map? (next slide)

re-expresses other code inference feature
type classes, implicits. . .

Interactive use: program-assistant tactics?

Note: we’re not using scoring/heuristics [recent C], Scala work].

Interaction between type and term inference. You can’t do both at once,
but they can cooperate.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 5 / 27



What’s a precise type for List.map?

∀αβ.(α→ β)→ (List α→ List β) (? f li)

∀αβ.(α( β)→ (List α( List β) (? f ›li)
∀αβ.(α −. β)→ (List α −. List β) (? f /−li)

We are:

using more expressive types than the host language ones

producing purer terms

For fold, need to move to dependent types; decreasing gains.

∀αβ, ∀(A : ?)(P : List A→ ?),
β → P nil→
(α→ β → β)→ (∀(a : A)(l : List A),P l → P (cons a l))→
List α→ β ∀(l : List A), P l

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 6 / 27



What’s a precise type for List.map?

∀αβ.(α→ β)→ (List α→ List β) (? f li)
∀αβ.(α( β)→ (List α( List β) (? f ›li)

∀αβ.(α −. β)→ (List α −. List β) (? f /−li)

We are:

using more expressive types than the host language ones

producing purer terms

For fold, need to move to dependent types; decreasing gains.

∀αβ, ∀(A : ?)(P : List A→ ?),
β → P nil→
(α→ β → β)→ (∀(a : A)(l : List A),P l → P (cons a l))→
List α→ β ∀(l : List A), P l

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 6 / 27



What’s a precise type for List.map?

∀αβ.(α→ β)→ (List α→ List β) (? f li)
∀αβ.(α( β)→ (List α( List β) (? f ›li)
∀αβ.(α −. β)→ (List α −. List β) (? f /−li)

We are:

using more expressive types than the host language ones

producing purer terms

For fold, need to move to dependent types; decreasing gains.

∀αβ, ∀(A : ?)(P : List A→ ?),
β → P nil→
(α→ β → β)→ (∀(a : A)(l : List A),P l → P (cons a l))→
List α→ β ∀(l : List A), P l

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 6 / 27



What’s a precise type for List.map?

∀αβ.(α→ β)→ (List α→ List β) (? f li)
∀αβ.(α( β)→ (List α( List β) (? f ›li)
∀αβ.(α −. β)→ (List α −. List β) (? f /−li)

We are:

using more expressive types than the host language ones

producing purer terms

For fold, need to move to dependent types; decreasing gains.

∀αβ, ∀(A : ?)(P : List A→ ?),
β → P nil→
(α→ β → β)→ (∀(a : A)(l : List A),P l → P (cons a l))→
List α→ β ∀(l : List A), P l

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 6 / 27



Why? Theoretical motivations

It’s fun: a question so simple to state must have interesting anwsers.

It’s an excuse to look at the proof-search research with different eyes.
Look at dynamic behavior, rather than just yes/no inhabitation problems.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 7 / 27



Caution required

Intuitionistic sequent calculi generally have a contraction rule

Γ,A,A ` B

Γ,A ` B

Γ,A,B ` C

Γ,A ∗ B ` C

You can get rid of contraction if you preserve formulas at use site.

Γ,A ∗ B,A,B ` C

Γ,A ∗ B ` C

For sums and pairs, it is in fact not needed, but it is for arrows.

Γ,A→ B ` A Γ,B ` C

Γ,A→ B ` C

Dropping the arrow on the right is complete, but not dynamically so.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 8 / 27



How? High-level directions

I recently started working on this. I will warmly welcome any suggestion.

Directions to explore in parallel

Keep looking for related work.
Diverse, hard to find, not well-connected.

Enrich type systems to express more types with unique inhabitants.
Substructural logics, polymorphic (parametricity), dependent types.

Devise practical algorithms to check unicity.
(Bulk of this talk)

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 9 / 27



Some related work

J. B. Wells and Boris Yakobowski.
Graph-based proof counting and enumeration with applications for
program fragment synthesis.
In LOPSTR 2004.

Takahito Aoto.
Uniqueness of normal proofs in implicational intuitionistic logic.
Journal of Logic, Language and Information, 8:217–242, 1999.

Sabine Broda and Lúıs Damas.
On long normal inhabitants of a type.
J. Log. Comput., 15(3):353–390, 2005.

Pierre Boureau and Sylvain Salvati.
Game semantics and uniqueness of type inhabitance in the
simply-typed λ-calculus.
Typed Lambda-Calculi and Applications, 2011.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 10 / 27



A few words on [Yakobowski and Wells]

Consider the graph whose nodes are sequent, and edges are valid inference
rules.

When context is a set, subformula property implies finiteness.

Can be seen as a “memoization” techniques: cycles in the graph can be
dropped without hurting completeness.

(Idea of the paper: from this graph structure with set-contexts, deduce
information about the infinite structure of multiset-contexts.)

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 11 / 27



Facing the Decision problem: Unicity for STLC

Obvious idea: enumerate proofs, check that there is only one.

Usual problem: irrelevant permutations allowed by the proof system

A,B,C ,D ` E

A,B,C ∗ D ` E

A ∗ B,C ∗ D ` E

A,B,C ,D ` E

A ∗ B,C ,D ` E

A ∗ B,C ∗ D ` E

Two approaches:

do equivalence checks after enumeration to remove duplicates
(simple, not fun, not efficient in general)

change the proof system to remove those duplicates

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 12 / 27



Mandatory step towards duplicates-free systems: Focusing

Quotient by reordering of {non,}inversible proof steps.

Γ; ∆,A ` B

Γ; ∆ ` A→ B

Γ; ∆,A,B ` C

Γ; ∆,A ∗ B ` C

Γ; ∆,A ` C Γ; ∆,B ` C

Γ; ∆,A + B ` C

Γ,X ; ∆ ` C

Γ; ∆,X ` C

Γ ` [P]

Γ; ∅ ` P

Γ, [N] ` X

Γ,N; ∅ ` X

Γ, [N] ` P Γ;P ` Q

Γ,N ` Q

Γ ` [A] Γ ` [B]

Γ ` [A ∗ B]

Γ ` [Ai ]

Γ ` [A1 + A2]

Γ; ∅ ` N

Γ ` [N]

Γ, [X ] ` X

Γ, [N] ` A→ B Γ ` [A]

Γ, [N] ` B

Focused proofs correspond to β-normal, η-long terms. Good!

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 13 / 27



Shortcomings of Focusing
Too many proofs of (X → Y + Z )→ X → X .

fun f x -> ?

fun f x -> x

fun f x -> match f x with

| L y -> ?

| R z -> ?

fun f x -> match f x with

| L y -> x

| R z -> x

fun f x -> match f x with

| L y -> (match f x with

| L y’ -> ?

| R z -> ?)

| R z -> x

fun f x -> match f x with

| L y -> x

| R z -> (match f x with

| L y -> ?

| R z’ -> ?)

fun f x -> match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z’ -> ?)

Remark: (Y + Z )→ X → X would be fine.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 14 / 27



Shortcomings of Focusing
Too many proofs of (X → Y + Z )→ X → X .

fun f x -> ? fun f x -> x

fun f x -> match f x with

| L y -> ?

| R z -> ?

fun f x -> match f x with

| L y -> x

| R z -> x

fun f x -> match f x with

| L y -> (match f x with

| L y’ -> ?

| R z -> ?)

| R z -> x

fun f x -> match f x with

| L y -> x

| R z -> (match f x with

| L y -> ?

| R z’ -> ?)

fun f x -> match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z’ -> ?)

Remark: (Y + Z )→ X → X would be fine.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 14 / 27



Shortcomings of Focusing
Too many proofs of (X → Y + Z )→ X → X .

fun f x -> ? fun f x -> x

fun f x -> match f x with

| L y -> ?

| R z -> ?

fun f x -> match f x with

| L y -> x

| R z -> x

fun f x -> match f x with

| L y -> (match f x with

| L y’ -> ?

| R z -> ?)

| R z -> x

fun f x -> match f x with

| L y -> x

| R z -> (match f x with

| L y -> ?

| R z’ -> ?)

fun f x -> match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z’ -> ?)

Remark: (Y + Z )→ X → X would be fine.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 14 / 27



Shortcomings of Focusing
Too many proofs of (X → Y + Z )→ X → X .

fun f x -> ? fun f x -> x

fun f x -> match f x with

| L y -> ?

| R z -> ?

fun f x -> match f x with

| L y -> x

| R z -> x

fun f x -> match f x with

| L y -> (match f x with

| L y’ -> ?

| R z -> ?)

| R z -> x

fun f x -> match f x with

| L y -> x

| R z -> (match f x with

| L y -> ?

| R z’ -> ?)

fun f x -> match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z’ -> ?)

Remark: (Y + Z )→ X → X would be fine.
Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 14 / 27



η-equivalence for sum types

Weak, local equivalence:

e = match e with

| L y -> L y

| R z -> R z

Full, non-local, categorical equivalence

C[e] = match e with

| L y -> C[L y]

| R z -> C[R z]

In particular:

t = match e with

| L y -> t

| R y -> t

and. . .

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 15 / 27



match e with

| L y -> C1[y][match e with M1]

| R z -> C2[z][match e with M2]

= (strong η-sum)

match e with

| L y0 ->

(match L y0 with

| L y -> C1[y][match L y0 with M1]

| R z -> C2[z][match L y0 with M2])

| R z0 ->

(match R z0 with

| L y -> C1[y][match R z0 with M1]

| R z -> C2[z][match R z0 with M2])

= (β-sum)

match e with

| L y0 -> C1[y0][match L y0 with M1]

| R z0 -> C2[z0][match R z0 with M2]

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 16 / 27



match e with

| L y -> C1[y][match e with M1]

| R z -> C2[z][match e with M2]

= (strong η-sum)

match e with

| L y0 ->

(match L y0 with

| L y -> C1[y][match L y0 with M1]

| R z -> C2[z][match L y0 with M2])

| R z0 ->

(match R z0 with

| L y -> C1[y][match R z0 with M1]

| R z -> C2[z][match R z0 with M2])

= (β-sum)

match e with

| L y0 -> C1[y0][match L y0 with M1]

| R z0 -> C2[z0][match R z0 with M2]

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 16 / 27



match e with

| L y -> C1[y][match e with M1]

| R z -> C2[z][match e with M2]

= (strong η-sum)

match e with

| L y0 ->

(match L y0 with

| L y -> C1[y][match L y0 with M1]

| R z -> C2[z][match L y0 with M2])

| R z0 ->

(match R z0 with

| L y -> C1[y][match R z0 with M1]

| R z -> C2[z][match R z0 with M2])

= (β-sum)

match e with

| L y0 -> C1[y0][match L y0 with M1]

| R z0 -> C2[z0][match R z0 with M2]

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 16 / 27



Checking strong η-equivalence for sums

[Balat and Di Cosmo, 2004]; [Lindley, 2005]
General idea: move sum destructions as early as possible, then remove
duplicates.

fun f g ...

match ... with

...

fun x y ...

match ... with

...

fun g z ...

match f x with ...

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 17 / 27



Remark

(→) and (+) are enemies in intuitionistic logic.
Both can be introduced reversibly, but not both at the same time.

Γ,A ` B

Γ ` A→ B

Γ ` Ai

Γ ` A1 + A2

Γ,A ` B

Γ ` (A→ B),∆

Γ ` A1,A2,∆

Γ ` (A1 + A2),∆

(Remark in remark: intuitionistic focusing makes arbitrary choices. Related
to various translations into linear logic [Chaudhuri and Miller].)

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 18 / 27



A general approach: saturation

Goal: integrate sum equivalence into proof search.

Our idea: Context saturation

Each time we introduce new things in the context, do all possible
destructions that involve them and might get used in a proof term.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 19 / 27



Saturation example

With saturation,

fun f x ->

match f x with

| L y -> (match f x with L y’ -> ? | R z -> ?)

| R z -> (match f x with L y -> ? | R z -> ?)

is ruled out. But for:

fun f x -> match f x with

| L y -> x

| R z -> x

it depends.
It would be ruled out as well if our proof search was sophisticated enough
to notice that neither Y nor Z can help prove X .

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 20 / 27



Saturation Facts

Conjecture: a search calculus enforcing saturation solves the sum
equivalence problem.

Danger: without clever ideas for checking “potential usefulness” of
destructs, this method is impractical.

Hope: this approach allows to solve not only the -sum problem, but
generalizes nicely to other constructors with tricky equalities.

Embarassing detail: no other example known, so generalization of little
value; suggestions appreciated.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 21 / 27



But: saturation is not obvious

A saturating calculus surprisingly hard to define.

Nave idea: at the end of each reversible phase (or incrementally during
them), saturate the context. Focusing phases will only run with saturated
contexts.

Context saturation operation sat(Γ)?

sat(Γ;A→ B) = sat(Γ,A→ B;B) when Γ ` A.
Problem when A of the form B → C : re-saturation needed (recursively).

Termination? Practicality? We need something clever here.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 22 / 27



Exploring the theorem proving countryside

Saturation seems costly in general, but sometimes it is required to solve
inhabitation.

(X → Y + Z )→ X → Z + Y

Let’s look at the automated theorem provign literature. Hopefully their
techniques/optimizations have helpful semantic content.

Most research centered on classical logic – easy shortcuts due to
arrow/sum permutation. But:

The inverse method has been adapted to linear [Chaudhuri],
intuitionistic logic. Sequent-saturation technique – may help for
context saturation ?

Connection-based, or Matrix-based calculi; horribly complicated, but
probably helpful to avoid redundant work.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 23 / 27



Presentation of the Inverse Method

Based on a termination argument that we can reuse for saturation: the
subformula property.
Subformulas of (X → Y + Z )→ X → X

(positively) X ; (X → X ); ((X → Y + Z )→ X → X )

(negatively) (Y + Z ); (X → Y + Z ); X

Some rules:

X atom

X ` X

Γ,A,A ` B

Γ,A ` B

Γ1 ` A Γ2 ` B

Γ1, Γ2 ` A ∗ B

Γ,A ` B

Γ ` A→ B

Γ ` B A /∈ Γ

Γ ` A→ B

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 24 / 27



Inverse Method: Pros and Cons

Note: already encoded some neededness information.

Can be refined with

polarization

focusing (derived constructors)

Has been used in practice to refute provability (Imogen, [McLaughlin and
Pfenning, 2008]), so is practically able to perform saturation.

But: unclear how its inherent sharing/subsumption preserves the dynamic
semantics of proof-terms.

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 25 / 27



Going further

Current idea : perform an inverse method to forward-explore the sequent
space, then go backward to collect maximized proof.

Going on in parallel :

“path calculi” are optimizations techniques on top of the inverse
method that allow to further prune the search space [Degtyarev and
Voronkov, 2001] and may help even further on “neededness” question.

understand and integrate ideas from connection-based calculi
[Galmiche and Méry, recent]

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 26 / 27



Thanks.

Any questions ?

Gabriel Scherer (Gallium) Unique Inhabitants; WIP May 30, 2013 27 / 27


