Unicity of type inhabitants; a Work in Progress

Gabriel Scherer

Gallium (INRIA Paris-Rocquencourt)
May 30, 2013

What? This talk is about a problem rather than a solution.

The question

Given a type T, does T have a unique inhabitant? (modulo observational equivalence)

We need to fix a type system and a pure term language.

Let's start with the simply-typed lambda-calculus (STLC) with arrows, products and sums.

Remark: (non-)relation with singleton types $\{=M\}$.

Why? Practical motivations

A principal approach to code inference.

Informal conjecture

When programmers feel bored even before writing the code, it's because there are no choices to be made.

Provide a feature to fill some hole (?), that fails if there are several possible choices.

$$
\begin{aligned}
& \text { val swap : 'a 'b 'c. ('a * 'b * 'c) } \rightarrow \text { ('a } * \text { 'c * 'b } \\
& \text { let swap }=\text { ? }
\end{aligned}
$$

Code inference example

Most general form ($\Gamma \vdash$? : σ).
Default context choice (\emptyset), inferred type.

Code inference example

```
Most general form ( }\Gamma\vdash\mathrm{ ? : }\sigma\mathrm{ ).
Default context choice (\emptyset), inferred type.
Type_variant (
    List.map (fun (name, name_loc, ctys, option, loc) ->
        name, List.map (fun cty -> cty.ctyp_type) ctys, option)
        cstrs
)
```


Code inference example

```
Most general form ( }\Gamma\vdash\mathrm{ ? : }\sigma\mathrm{ ).
Default context choice (\emptyset), inferred type.
Type_variant (
    List.map (fun (name, name_loc, ctys, option, loc) ->
        name, List.map (fun cty -> cty.ctyp_type) ctys, option)
        cstrs
)
Type_variant (
    List.map (? (List.map (fun cty -> cty.ctyp_type))) cstrs
)
Analysis of the typing/ code. For 100 instances of List.map (fun ...), about 30 of them could use code inference.
```


Uses of code inference

Non-interactive use:

- glue between trivial parts of the program

I forgot the argument order. . . but only one type-correct choice.

- more ambitious: generic boilerplate

Is there a type whose unique inhabitant is List.map? (next slide)

- re-expresses other code inference feature
type classes, implicits. . .
Interactive use: program-assistant tactics?

Note: we're not using scoring/heuristics [recent $\mathrm{C} \sharp$, Scala work].

Interaction between type and term inference. You can't do both at once, but they can cooperate.

What's a precise type for List.map?

$$
\forall \alpha \beta .(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) \quad(? f \mathrm{li})
$$

What's a precise type for List.map?

$$
\begin{aligned}
& \forall \alpha \beta \cdot(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) \quad(? f \text { li }) \\
& \forall \alpha \beta .(\alpha \multimap \beta) \rightarrow(\text { List } \alpha \multimap \text { List } \beta) \quad(? f \circ-l i)
\end{aligned}
$$

What's a precise type for List.map?

$$
\begin{array}{lr}
\forall \alpha \beta .(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) & (? f \text { li }) \\
\forall \alpha \beta \cdot(\alpha \multimap \beta) \rightarrow(\text { List } \alpha \multimap \text { List } \beta) & (? \mathrm{f} \circ-\mathrm{li}) \\
\forall \alpha \beta \cdot(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) & (? \mathrm{f} \leftrightarrow-\mathrm{li})
\end{array}
$$

We are:

- using more expressive types than the host language ones
- producing purer terms

What's a precise type for List.map?

$$
\begin{array}{lr}
\forall \alpha \beta .(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) & (? f \mathrm{li}) \\
\forall \alpha \beta \cdot(\alpha \multimap \beta) \rightarrow(\text { List } \alpha \multimap \text { List } \beta) & (? \mathrm{f} \circ \mathrm{li}) \\
\forall \alpha \beta \cdot(\alpha \rightarrow \beta) \rightarrow(\text { List } \alpha \rightarrow \text { List } \beta) & (? \mathrm{f} \leftarrow \mathrm{li})
\end{array}
$$

We are:

- using more expressive types than the host language ones
- producing purer terms

For fold, need to move to dependent types; decreasing gains.

$$
\begin{array}{ll}
\forall \alpha \beta, & \forall(A: \star)(P: \text { List } A \rightarrow \star), \\
\beta \rightarrow & P \text { nil } \rightarrow \\
(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow & (\forall(a: A)(I: \text { List } A), P I \rightarrow P(\text { cons a } I)) \rightarrow \\
\text { List } \alpha \rightarrow \beta & \forall(I: \text { List } A), P I
\end{array}
$$

Why? Theoretical motivations

It's fun: a question so simple to state must have interesting anwsers.

It's an excuse to look at the proof-search research with different eyes. Look at dynamic behavior, rather than just yes/no inhabitation problems.

Caution required

Intuitionistic sequent calculi generally have a contraction rule

$$
\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A * B \vdash C}
$$

You can get rid of contraction if you preserve formulas at use site.

$$
\frac{\Gamma, A * B, A, B \vdash C}{\Gamma, A * B \vdash C}
$$

For sums and pairs, it is in fact not needed, but it is for arrows.

$$
\frac{\Gamma, A \rightarrow B \vdash A \quad\ulcorner, B \vdash C}{\Gamma, A \rightarrow B \vdash C}
$$

Dropping the arrow on the right is complete, but not dynamically so.

How? High-level directions

I recently started working on this. I will warmly welcome any suggestion.

Directions to explore in parallel

- Keep looking for related work. Diverse, hard to find, not well-connected.
- Enrich type systems to express more types with unique inhabitants. Substructural logics, polymorphic (parametricity), dependent types.
- Devise practical algorithms to check unicity. (Bulk of this talk)

Some related work

(1) J. B. Wells and Boris Yakobowski.

Graph-based proof counting and enumeration with applications for program fragment synthesis.
In LOPSTR 2004.
E Takahito Aoto.
Uniqueness of normal proofs in implicational intuitionistic logic. Journal of Logic, Language and Information, 8:217-242, 1999.
Sabine Broda and Luís Damas.
On long normal inhabitants of a type.
J. Log. Comput., 15(3):353-390, 2005.

围 Pierre Boureau and Sylvain Salvati.
Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus.
Typed Lambda-Calculi and Applications, 2011.

A few words on [Yakobowski and Wells]

Consider the graph whose nodes are sequent, and edges are valid inference rules.

When context is a set, subformula property implies finiteness.

Can be seen as a "memoization" techniques: cycles in the graph can be dropped without hurting completeness.
(Idea of the paper: from this graph structure with set-contexts, deduce information about the infinite structure of multiset-contexts.)

Facing the Decision problem: Unicity for STLC

Obvious idea: enumerate proofs, check that there is only one.

Usual problem: irrelevant permutations allowed by the proof system

$$
\frac{\frac{A, B, C, D \vdash E}{A, B, C * D \vdash E}}{A * B, C * D \vdash E}
$$

$\frac{\frac{A, B, C, D \vdash E}{A * B, C, D \vdash E}}{A * B, C * D \vdash E}$

Two approaches:

- do equivalence checks after enumeration to remove duplicates (simple, not fun, not efficient in general)
- change the proof system to remove those duplicates

Mandatory step towards duplicates-free systems: Focusing Quotient by reordering of $\{$ non, $\}$ inversible proof steps.

$$
\begin{array}{cc}
\frac{\Gamma ; \Delta, A \vdash B}{\Gamma ; \Delta \vdash A \rightarrow B} \quad \frac{\Gamma ; \Delta, A, B \vdash C}{\Gamma ; \Delta, A * B \vdash C} & \frac{\Gamma ; \Delta, A \vdash C}{\Gamma ; \Delta, A+B \vdash C} \\
\frac{\Gamma, X ; \Delta \vdash C}{\Gamma ; \Delta, X \vdash C} \quad \frac{\Gamma \vdash[P]}{\Gamma ; \emptyset \vdash P} & \frac{\Gamma,[N] \vdash X}{\Gamma, N ; \emptyset \vdash X}
\end{array} \frac{\Gamma,[N] \vdash P}{\Gamma, N \vdash Q}
$$

Focused proofs correspond to β-normal, η-long terms. Good!

Shortcomings of Focusing

Too many proofs of $(X \rightarrow Y+Z) \rightarrow X \rightarrow X$. fun f x $->$?

Shortcomings of Focusing

Too many proofs of $(X \rightarrow Y+Z) \rightarrow X \rightarrow X$.

```
fun f x -> ?
```

fun f x $->x$
fun f x -> match f x with
| L y -> ?
| R z -> ?

Shortcomings of Focusing

Too many proofs of $(X \rightarrow Y+Z) \rightarrow X \rightarrow X$.

```
fun f x -> ?
fun f x -> match f x with
    | L y -> ?
    | R z -> ?
```

fun f x -> x
fun f x $->$ match f x with
| L y $\rightarrow \mathrm{x}$
| R z -> x

```
fun f x -> match f x with
    | L y -> (match f x with
    | L y' -> ?
    | R z -> ?)
    | R z -> x
```

fun $f x$ $->$ match f x with
| L y -> x
| R z -> (match f x with
| L y \rightarrow ?
| R z' -> ?)
fun f x -> match f x with
| L y -> (match f x with L y' -> ? | R z -> ?)
| R z -> (match f x with L y -> ? | R z' -> ?)

Shortcomings of Focusing

Too many proofs of $(X \rightarrow Y+Z) \rightarrow X \rightarrow X$.

```
fun f x -> ?
fun f x -> match f x with
    | L y -> ?
    | R z -> ?
```

fun f x -> x
fun f x $->$ match f x with
| L y $\rightarrow \mathrm{x}$
| R z -> x
fun f x -> match f x with
| L y -> (match f x with
| L y' -> ?
| R z -> ?)
| R z -> x
fun f x -> match f x with
| L y \rightarrow x
| R z -> (match f x with | L y \rightarrow ?
| R z' -> ?)
fun f x -> match f x with
| L y -> (match f x with L y' -> ? | R z -> ?)
| R z -> (match f x with L y $->$? | R z' $->$?)
Remark: $(Y+Z) \rightarrow X \rightarrow X$ would be fine.

η-equivalence for sum types

Weak, local equivalence:

$$
\begin{aligned}
e= & \text { match e with } \\
& \mid L y \rightarrow L \\
& \mid R y \rightarrow R y
\end{aligned}
$$

In particular:

$$
\begin{aligned}
t= & \text { match e with } \\
& \mid \mathrm{L} \text { y } \rightarrow \mathrm{t} \\
& \mid \mathrm{R} \mathrm{y} \rightarrow \mathrm{t}
\end{aligned}
$$

and. . .
match e with
| L y $->\mathrm{C} 1[\mathrm{y}][m a t c h ~ e ~ w i t h ~ M 1] ~$
| $\mathrm{R} \mathrm{z} \mathrm{->} \mathrm{C2[z][match} \mathrm{e} \mathrm{with} \mathrm{M2]}$
$=($ strong η-sum $)$
match e with
| L y -> C1[y][match e with M1]
| R z -> C2[z][match e with M2]
$=($ strong η-sum $)$
match e with
| L y0 ->
(match L y0 with
| L y -> C1[y][match L y0 with M1]
| R z -> C2[z][match L y0 with M2])
| R z0 ->
(match R z0 with
| L y -> C1[y][match R z0 with M1]
| R z -> C2[z][match R z0 with M2])
$=(\beta$-sum $)$
match e with
| L y -> C1[y][match e with M1]
| R z -> C2[z][match e with M2]
$=($ strong η-sum $)$
match e with
| L y0 ->
(match L y0 with
| L y -> C1[y][match L y0 with M1]
| R z -> C2[z][match L y0 with M2])
| R z0 ->
(match R z0 with
| L y -> C1[y] [match R z0 with M1]
| R z -> C2[z][match R z0 with M2])
$=(\beta$-sum $)$

```
match e with
    | L y0 -> C1[y0][match L y0 with M1]
    | R zO -> C2[z0][match R z0 with M2]
```


Checking strong η-equivalence for sums

[Balat and Di Cosmo, 2004]; [Lindley, 2005]
General idea: move sum destructions as early as possible, then remove duplicates.

```
fun f g ...
        match ... with
```

```
fun x y ...
match ... with
```

```
fun g z ...
    match f x with ...
```


Remark

(\rightarrow) and $(+)$ are enemies in intuitionistic logic.
Both can be introduced reversibly, but not both at the same time.

$$
\begin{array}{cc}
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1}+A_{2}} \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash(A \rightarrow B), \Delta} & \frac{\Gamma \vdash A_{1}, A_{2}, \Delta}{\Gamma \vdash\left(A_{1}+A_{2}\right), \Delta}
\end{array}
$$

(Remark in remark: intuitionistic focusing makes arbitrary choices. Related to various translations into linear logic [Chaudhuri and Miller].)

A general approach: saturation

Goal: integrate sum equivalence into proof search.
Our idea: Context saturation
Each time we introduce new things in the context, do all possible destructions that involve them and might get used in a proof term.

Saturation example

With saturation,

$$
\begin{aligned}
& \text { fun } f \text { x -> } \\
& \text { match } f \text { x with } \\
& \text { | L y -> (match } f \text { x with L y' -> ? | R z -> ?) } \\
& \text { | R z -> (match } f \text { x with L y } \rightarrow \text { ? | R z } \rightarrow \text { ? ? }
\end{aligned}
$$

is ruled out. But for:

$$
\begin{aligned}
& \text { fun } f x \rightarrow \text { match } f x \text { with } \\
& \text { | } L \text { y } \rightarrow x \\
& \text { | R } \mathrm{z} \rightarrow \mathrm{x}
\end{aligned}
$$

it depends.
It would be ruled out as well if our proof search was sophisticated enough to notice that neither Y nor Z can help prove X.

Saturation Facts

Conjecture: a search calculus enforcing saturation solves the sum equivalence problem.

Danger: without clever ideas for checking "potential usefulness" of destructs, this method is impractical.

Hope: this approach allows to solve not only the -sum problem, but generalizes nicely to other constructors with tricky equalities.

Embarassing detail: no other example known, so generalization of little value; suggestions appreciated.

But: saturation is not obvious

A saturating calculus surprisingly hard to define.

Nave idea: at the end of each reversible phase (or incrementally during them), saturate the context. Focusing phases will only run with saturated contexts.

Context saturation operation sat($\Gamma)$?
$\operatorname{sat}(\Gamma ; A \rightarrow B)=\operatorname{sat}(\Gamma, A \rightarrow B ; B)$ when $\Gamma \vdash A$.
Problem when A of the form $B \rightarrow C$: re-saturation needed (recursively).

Termination? Practicality? We need something clever here.

Exploring the theorem proving countryside

Saturation seems costly in general, but sometimes it is required to solve inhabitation.

$$
(X \rightarrow Y+Z) \rightarrow X \rightarrow Z+Y
$$

Let's look at the automated theorem provign literature. Hopefully their techniques/optimizations have helpful semantic content.

Most research centered on classical logic - easy shortcuts due to arrow/sum permutation. But:

- The inverse method has been adapted to linear [Chaudhuri], intuitionistic logic. Sequent-saturation technique - may help for context saturation ?
- Connection-based, or Matrix-based calculi; horribly complicated, but probably helpful to avoid redundant work.

Presentation of the Inverse Method

Based on a termination argument that we can reuse for saturation: the subformula property.
Subformulas of $(X \rightarrow Y+Z) \rightarrow X \rightarrow X$

- (positively) $X ;(X \rightarrow X) ;((X \rightarrow Y+Z) \rightarrow X \rightarrow X)$
- (negatively) $(Y+Z) ;(X \rightarrow Y+Z) ; X$

Some rules:

$$
\begin{gathered}
\frac{X \text { atom }}{X \vdash X} \quad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}
\end{gathered} \quad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A * B}
$$

Inverse Method: Pros and Cons

Note: already encoded some neededness information.

Can be refined with

- polarization
- focusing (derived constructors)

Has been used in practice to refute provability (Imogen, [McLaughlin and Pfenning, 2008]), so is practically able to perform saturation.

But: unclear how its inherent sharing/subsumption preserves the dynamic semantics of proof-terms.

Going further

Current idea : perform an inverse method to forward-explore the sequent space, then go backward to collect maximized proof.

Going on in parallel :

- "path calculi" are optimizations techniques on top of the inverse method that allow to further prune the search space [Degtyarev and Voronkov, 2001] and may help even further on "neededness" question.
- understand and integrate ideas from connection-based calculi [Galmiche and Méry, recent]

Thanks.

Any questions?

