
Universe Subtyping in Martin-Löf Type Theory

Internship Report

Gabriel Scherer
under the supervision of Andreas Abel

Revised version: August 24, 2011

The pragmatic goal of this internship was to establish the theoretical soundness
of a particular feature of the Agda proof assistant, the so-called universe polymor-
phism. This is part of a series of work by my supervisor Andreas Abel [ACD07]
aiming to provide a coherent metatheory for the different features implemented or
desired in this proof assistant. More precisely, we first considered universe cumu-
lativity, a well-known feature for universe hierarchy, then universe polymorphism,
which is a less explored area, and finally attempted to add irrelevance to the type
system, to ease universe levels manipulations.

All those notions will be introduced in more detail in the first section. I will
highlight the main goals and constraints of the desired theory, in comparison to
related works. I will also have to discuss some of the technical choices and issues
we have faced; those technical decisions have large consequences – often unforeseen
– on the technical development and its structure.

The second section will describe the formal type system – or type systems, as
we will consider variants – used throughout the report. To this declarative type
system corresponds an algorithmic system that provides a concrete implementation
and decision procedure. We will insist on the “close to the metal” aspect of these
algorithms, that do not afford superfluous checks to ease the metatheoretic study.

Building the metatheory of a dependent type system is a lot of technical work,
but most of the presentation is reusable for other systems having similar features.
In particular, we have focused in this internship on proof techniques using logical
relations [Gog00, VC02], a very important concept that I will try to expose in the
third section, as independently of our specific details as possible.

We will see in the fourth section how logical relations give us the important
meta-theoretic results, including subject reduction of the declarative system, and
termination, soundness and completeness of the algorithmic system, providing a
decidability result for the whole theory.

The fifth section will be dedicated to an exploration of the type system features
considered in this work. First universe polymorphism, then the rougher parts,
irrelevant function spaces and heterogeneous equality. They bring an additional
layer of complexity that would have obscured the previous developments if presented
simultaneously.

Space restrictions, proofs, related work and appendix Due to the quite
severe space constraints imposed on this report, we have made unsatisfying com-
promises. When given the choice between sacrifying informal explanations and
formal proofs, we have kept the explanations. All the lemmas we used in our formal
development are given, so it is still possible to follow the construction; moreover, a
few particularly relevant proof details are given. The detailed proofs are available
in an unpublished article [AS11] containing the full proofs of the core metatheory

1

— without cumulativity or universe polymorphism. This article also contains a
full, detailed discussion of related work, thanks to the vast field knowledge of the
supervisor; we have kept the set of citations in the present document smaller, in-
tentionally including only the references that we had some time to study during the
internship.

Finally, as a last offering to the dragon of page number reduction, we have
moved to the appendix both our informal discussion of the logical relation defini-
tion – which the reader knowledgeable in Kripke logical relation can easily skip –
and our fifth section, describing the less well established parts of our theory, uni-
verse polymorphism, level irrelevance and heterogeneous equality. While maybe
representing the most novel part of the work, they are expected to change consid-
erably during the last weeks of the internship which, at the time of writing, is not
finished.

1 Goals, challenges, related works and design space

Situation The type theory we work in is essentially Martin-Löf Type Theory, as
present in the proof assistant Agda. The main distinguishing feature, in particular
with respect to the Calculus of Constructions (CoC), is the use of a typed equality
including η-equivalence. No part of the system is impredicative, in constrast to
System F polymorphism or Coq’s Prop universe; we only have a family of predicative
universes Seti. As for the CoC, it is presented without stratification between terms,
types and sorts. Here are the classic syntax and the basic rules, of which we will
consider some variants.

Var 3 x, y,X, Y
Sort 3 s ::= Setk (k ∈ N) universes
Exp 3 t, u, T, U ::= s | (x :U)→ T sort, function type

| x | λx?U. t | t u lambda-calculus
Cxt 3 Γ,∆ ::= � | Γ. x :T empty context, context extension

Context validity judgement Γ `

� `
Γ ` Γ ` T : s

Γ. x :T `

Typing judgement Γ ` t : T

Γ `
Γ ` Seti : Seti+1

Γ ` U : s Γ. x :U ` T : s

Γ ` (x :U)→ T : s

Γ ` (x :U) ∈ Γ

Γ ` x : U

Γ ` U : s Γ. x :U ` t : T

Γ ` λx :U. t : (x :U)→ T

Γ ` t : (x :U)→ T Γ ` u : U

Γ ` t u : T [u/x]

Γ ` t : T Γ ` T = T ′

Γ ` t : T ′

The last rule is a conversion rule relying on a type equality judgement Γ ` T =
T ′, which is here left undefined. This the main variability point of the theory, and
it concentrates all the metatheoretic difficulties, the typing rules being otherwise
quite natural — and syntax-directed. We will discuss several possible designs for
our equality judgement, and the vast differences in metatheory development they
entail.

2

Here are some standard examples for the enjoyment of the reader — where the
abbreviation U → T is understood as (x :U) → T with x not free in T ; note that
→ is right associative.

id : (X :Set0)→ X → X
id := λX :Set0. λx :X.x
Nat : Set1
Nat := (X :Set0)→ (X → X)→ X → X

Goal: close the gap between formal description and actual implemen-
tation We will produce an algorithmic system corresponding to this declarative
system, suitable for a practical implementation in a proof assistant. This is in-
spired in particular by the typed algorithmic equality check of Harper and Pfenning
[HP05], but we claim a practical improvement in the removal of a specific equal-
ity check that was known to be useless in practice, but necessary to establish the
desired metatheoretic results.

Goal: an approach that scales to large elimination The typed equality
algorithm of Harper and Pfenning crucially operates on erased version of the types,
as type dependencies would make the transitivity of the algorithm problematic.
This is acceptable in their Logical Framework as typed equality relies only on the
shape of types, not on their term subparts. In contrast, we wish to allow large
eliminations, where the shape of types may depend on a value, using for example
the following operator constructing types of different shapes from boolean terms:

T : Bool→ Set0
T true := Bool→ Bool
T false := Bool

We therefore have to abandon erasure, and design an algorithm directed by
fully dependent types. The price to pay is a more difficult metatheoretic study. For
example, completeness of the algorithmic equality is proved, as is customary since
the seminal work of Coquand [Coq91], using a logical relation; but while Harper and
Pfenning only need to define their logical relation on simple, erased types, we have
to define a logical relation on fully dependent types, making the well-foundedness
arguments more delicate.

While we are not concerned in this report with inductive datatypes and related
powerful extensions to the type theory, we expect our development and metatheo-
retic results to scale to those settings.

Goal: universe cumulativity In counterpart to their reassuringly understand-
able model constructions, predicative theories are less comfortable to use than the
impredicative ones. When doing type-level programming, one often wish to use
type polymorphism, in the spirit of system F. But quantification on Set0 is a poor
palliative that quickly shows its limits. Suppose for example one wished to define
the type List n T of lists of length n and element type T , using the previously given
type of Church numerals, a binary product type Prod : Set0 → Set0 → Set0 and a
unit type Unit : Set0:

List : Nat→ (X :Set0)→ Set0
List n X := n Set0 (Prod X) Unit

Unfortunately, this definition cannot work as Nat quantifies over types in Set0,
to which Set0 itself doesn’t belong. We can change the definition of Nat to quantify

3

on Set1, making this last example work, but then we cannot use it at level Set0
anymore.

Cumulativity helps with this problem, by making it possible to lift elements of
an universe to all higher universes. For example, if Γ ` t : Set0 holds, we also
want Γ ` t : Set1 to hold. This is done by a cumulativity relation 4 at the type
level, which is a restricted form of subtyping on universes, conveniently extended
to function types: for example we have Γ ` Set0 4 Set1 and Γ ` Set1 → Set1 4
Set0 → Set2.

Cumulativity was discussed in depth in Luo’s thesis [Luo90], and implemented
in the proof assistants Lego, Plastic and Coq. We have successfully ported Luo’s
definition of cumulativity to our setting, resulting in a typed cumulativity relation
— in contrast to the untyped definition in the context of Extended Calculus of Con-
structions. Contrarily to most presentation after Luo’s, our cumulativity relation
is contravariant, rather than invariant, in the domain of the function types.

Interestingly, such a type system with cumulativity was described in Ulf Norell’s
PhD thesis [Nor07], which laid the ground for the Agda2 system. But the metathe-
ory of this system has not been developped, and current versions of Agda do not
support cumulativity, relying on a relaxation of the function type rule to get some
of its flexibility:

Γ ` U : Seti Γ. x :U ` T : Setj

Γ ` (x :U)→ T : Setmax(i,j)

Goal: universe polymorphism Once type cumulativity is enabled, it is suffi-
cient for our former example to define Nat as taking a type in universe Set0, and
use it at both levels Set0 and Set1. But the problem may re-appear, say, at level
Set2.

The practical solution usually suggested is to define such polymorphic operators
at a “sufficiently high level”, say Set8, which is enough for all but the most insane
uses of type-level computations. While possibly sufficient in practice, this method is
clearly unsatisfying, and various techniques have been suggested to handle universe
levels in a less ad-hoc manner.

In particular, Harper and Pollack [HP91] have imitated the principle, well-known
among mathematicians building predicative proof theories [Fef04], of typical ambi-
guity : one does not give the explicit universe level used, e.g., by writing Set instead
of Seti, and the system infers a suitable level by itself. This model scales better than
picking a “large enough” level, as code changes that introduce new level constraints
do not necessitate to update levels by hand, they are re-inferred accordingly. They
also propose to control the instantiation of those constraints at a “definition” level,
allowing ML-flavoured polymorphism, where different uses of the same definition
can make independent level instantiations.

The proof assistant Coq implements such a typical ambiguity for its predicative
hierarchy Typei. Level constraints are collected are resolved at the module level.
This is a satisfying solution, and it succeeds in hiding the predicative subtilities to
the user, which for all practical purposes can live in the convenient Type : Type
world.

However, Courant [Cou02] noted some insufficiences of the system at the cross-
module scale. In essence, if the internal level constraints are not visible in a module
interface, it is not possible to check the typability of some code using a module
without referring to the module implementation, breaking separate checking. He
suggests making the universe level explicit again, as well as the inequality constraints
between them, to be exposed in the module signature.

Agda exhibits explicit universe polymorphism: (i :Level)→ (X :Seti)→ X → X
is the type of the identity function polymorphic in its type universe level. It’s still

4

predicative as such a term lives in a higher universe, Setω, on which Level doesn’t
quantify. This can however prove inconvenient when mixing parameters of unrelated
types, as we need to pass several level parameters around and repeatedly use their
least upper bound.

Other options are possible, for example a universe-lifting operation – the idea
being that typability is preserved by lifting all the universe levels occuring in a term
by a constant – as exposed in some predicative mathematical theories [Fef04], or
informally suggested by Conor McBride [McB11]. It’s unclear to us how much those
solutions differ from quantifying everything over a “shifting base” level i and using
levels Seti+k for constant k instead of the previous Setk; some experimentation with
the different solutions would be helpful.

Our present goal is to perform the much awaited metatheoretic study of Agda’s
universe polymorphism, and evaluate the practical benefits of having added cumu-
lativity. We have not yet reached a definitive conclusion, and more experiments are
needed to evaluate the strengths and weaknesses of this point of the design space.

Goal: Universe level irrelevance Finally, we hope to build on previous work
of Abel [Abe11] to enable some form of “irrelevance” for universe levels. The idea
behind level irrelevance is to avoid asking the user to provide equality proofs between
two similar types using different instantiations of the level variables.

Irrelevance is a ongoing research topic in dependently typed calculi. The Coq
system has a distinct universe Prop for “propositions and their proofs” that allows
external erasure: it is possible to extract/compile a closed Coq program into an
other executable language, erasing the Prop fragments of the Coq program dur-
ing the translation. This erasability also protects the rest of the system from the
convenient impredicativity of the Prop universe.

Recently, more flexible approaches have been proposed, where we do not dis-
tinguish a separate erasable universe, but use instead an irrelevant function space,
where the argument can be used as a proof, but not in a computationally relevant
position; this allows to ignore terms applied in irrelevant positions during equal-
ity checking, providing internal erasure. This has been developed for the Logical
Framework by Pfenning [Pfe01] and Reed [Ree03], extended to the Calculus of Con-
structions by Miquel [Miq01], Mishra-Linger and Sheard [MLS08], and Barras and
Bernardo [BB08].

The naive idea is that we would like a “level-polymorphic” universe construc-
tor PSet : (i÷Level) → Seti+1 that is irrelevant in its level parameter i, so that
polymorphic identity λi÷Level. λX :PSet i. λx :X.x would be level-irrelevant, and
identity at different levels be considered equal. However, this cannot work as it
would also imply equality between all equality levels, e.g., PSet 0 and PSet 1, col-
lapsing the whole hierarchy to a single inconsistent universe. We need a finer notion
of irrelevance, which we will investigate in the last section of this report.

A difficult technical choice: homogeneous or heterogeneous equality One
crucial difficulty with dependent type systems is the asymmetry of the classic com-
positional rule for equality of function applications:

Γ ` f = f ′ : (x :U)→ T Γ ` u = u′ : U

Γ ` fu = f ′u′ : T [u/x]

If both the functions and the arguments are equal, then the application of the
functions to the arguments are equal. The problem is in the type of this term
equality: as the return type T of the dependent function space (x :U)→ T depends

5

on the argument x, we have to pick either T [u/x] or T [u′/x], and are forced to make
an arbitrary asymmetric choice.

This makes the metatheory of such a definitional equality harder. For example,
the syntactic validity property, according to which Γ ` t = t′ : T implies both
Γ ` t : T and Γ ` t′ : T , is not immediate: we have Γ ` f ′u′ : T [u′/x] but
not directly Γ ` f ′u′ : T [u/x]. A very similar problem appears in the algorithmic
equality, and is the reason for Harper and Pfenning to erase type dependencies,
obliterating this difficulty.

Another possibility is to instead use an heterogeneous equality judgement of the
form Γ ` t : T = Γ′ ` t′ : T ′. In heterogeneous equalities, both context and result
types may vary, but the contexts have the same domain, and their types are pairwise
definitionally equal. The application rule becomes the heavy but symmetrical

Γ ` f : (x :U)→ T = Γ′ ` f ′ : (x :U ′)→ T ′ Γ ` u : U = Γ′ ` u′ : U ′

Γ ` fu : T [u/x] = Γ′ : f ′u′ : T ′[u′/x]

With this heterogeneous presentation, the asymmetry is avoided and syntactic
validity, as well as transitivity of a the corresponding heterogeneous algorithmic
equality, are easy to obtain. There is no free lunch, however, as the use of hetero-
geneous equality raises difficulties later in the technical development, to establish
the transitivity of the logical relation.

At the very beginning of this internship, we had an heterogeneous equality, in-
spired by previous work of Abel [Abe11], but when faced with this unexpected
technical difficulty we had to retreat to the more familiar terrain of homogeneous
equality. We believe to have overcome the previous difficulties with the asymme-
tries of homogeneous equality. Instead of using one logical relation to establish
the metatheory of both the definitional and algorithmic systems, we use two dif-
ferent logical relations, the first one on top of definitional equality, which allows
to prove the non-trivial transitivity – and therefore soundness – of the algorithmic
system, and the second one on top of the algorithmic equality, finally proving its
completeness.

Unfortunately, the introduction of level irrelevance may disturb this compromise.
If we want to allow equality between types living at different levels, an heterogeneous
equality becomes again useful, and perhaps even necessary. We have therefore
investigated heterogeneous equality again, and we believe to have disarmed some of
the previous technical difficulties.

There is no clear consensus yet on which approach is better. We will try to expose
the main ideas of both developments, under the space constraints. The rigorous
reader may skip the development of level irrelevance and heterogeneous equality,
that are still in infancy and may yet yield unpleasant surprises; we claim that
the rest of the metatheoretic work, in particular the combination of homogeneous
equality and two logical relations to work on universe cumulativity, is solid.

Aside: we have attempted a mechanical formalization, in Coq, of the core tech-
nical argument — the logical relation to establish algorithmic soundness. This is
ridden with technical difficulties; in particular, our paper proofs perform an universe
construction by an inductive-recursive definition, which is not supported by Coq and
difficult to encode conveniently. Despite building on previous work – Barras’s Coq
En Coq [BW97] – unfortunate technical choices on our part, e.g., in the represen-
tation of weakening, have made the development challenging and time consuming.
We have not been able to mechanize a satisfying portion of the development, but
still believe that computer-assisted proofs have a role to play in those increasingly
treacherous technical arguments.

6

2 Definitional and Algorithmic equality

In this section, we present in more detail the definitional and algorithmic equalities,
along with the cumulativity relation — and its algorithmic counterpart.

2.1 Definitional equality

Below are the rules of definitional equality. They are separated in four groups.

Computation (β) and extensionality (η)

Γ. x :U ` t : T Γ ` u : U

Γ ` (λx :U. t) u = t[u/x] : T [u/x]

Γ ` t : (x :U)→ T

Γ ` t = λx :U. t x : (x :U)→ T

Those are the two most important rules of typed equality. β-equality carries the
“computational meaning” of equalities, while η-equality express the observational
nature of the system. Along with the λ-compatibility rule given later, it is equivalent
to the following rule that highlights the extensional nature of function equality:

Γ. x :U ` t x = t′ x : T

Γ ` t = t′ : (x :U)→ T

Equivalence rules are not syntax-directed; in particular, transitivity is the hard
rule to remove when moving from a definitional to an algorithmic presentation.

Γ ` t : T

Γ ` t = t : T

Γ ` t = t′ : T

Γ ` t′ = t : T

Γ ` t1 = t2 : T Γ ` t2 = t3 : T

Γ ` t1 = t3 : T

Compatibility rules are compositional rules expressing the equality of two terms
as a combination of equality on their subterms. They are syntax-directed, so we
will find somewhat similar-looking rules in the algorithmic presentation.

` Γ

Γ ` s = s : s+ 1

Γ ` U = U ′ : s Γ. x :U ` T = T ′ : s

Γ ` (x :U)→ T = (x :U ′)→ T ′ : s

(x :U) ∈ Γ ` Γ

Γ ` x = x : U

Γ ` U = U ′ : s Γ. x :U ` T : s Γ. x :U ` t = t′ : T

Γ ` λx :U. t = λx :U ′. t′ : (x :U)→ T

Γ ` t = t′ : (x :U)→ T Γ ` u = u′ : U

Γ ` t u = t′ u′ : T [u/x]

Conversion rule

Γ ` t = t′ : T Γ ` T = T ′

Γ ` t = t′ : T ′

Note that the absence of the expected “easy syntactic lemmas” here is not only
due to space constraints: there are not easy syntactic lemma. We only prove that
a weakening result, by syntactic induction.

Definition 1 (Weakening) We will note Γ ≤ ∆ when the valid context Γ is a
weakening of the valid context ∆: all the bindings of ∆ also belong to Γ.

Lemma 2 (Weakening) If Γ ≤ ∆ then

7

• ∆ ` t : T implies Γ ` t : T
• ∆ ` t = t′ : T implies Γ ` t = t′ : T

Anything more is out of reach. In particular, we cannot prove syntactic validity
(Γ ` t = t′ : T implies Γ ` t′ : T), or even that Γ ` t : T implies Γ ` T : s, due
to the type dependency T [u/x] in the application rules. Proving substitution (that
Γ. x : U ` t : T and Γ ` u : U implies Γ ` t[u/x] : T [u/x]) would itself require
a substantial syntactic effort. We do not attempt to pave our way through the
syntactic subtleties, as those properties will follow as results of the logical relation
construction, following a technique of Goguen [Gog00].

2.2 Algorithmic type checking and equality

Algorithmic type checking We remark that the type checking rule (Γ ` t : T)
presented above (1, page 2) are almost algorithmic rules. Indeed, all rules are
syntax-directed, except for the conversion rule. To obtain a type checking algorithm,
one can notice that equality checking is only useful on applications and function type
checking: those are the only rules where we compare the type of two subterms, which
may or may not be equal. In all other case, the return type is a composition of the
subterm types, so no additional conversion rule may help typability. We therefore
turn the definitional checking rule into algorithmic by inserting an equality check
⇐̂⇒, yet to be defined, in those two rules:

Γ ` U ⇒ s Γ. x :U ` T ⇒ s′ Γ ` s ⇐̂⇒ s′

Γ ` (x :U)→ T ⇒ s

Γ ` t⇒ (x :U)→ T Γ ` u⇒ U ′ Γ ` U ⇐̂⇒ U ′

Γ ` t u⇒ T [u/x]

One important remark is that the algorithmic equality check is only performed
on types that are returned by the algorithmic typing algorithm, supposedly well-
formed. This means that we can assume that algorithmic equality will only be
called on well-typed terms, assumption which will play an important role in the
design of a practical equality checking algorithm.

Weak-head normalization We first define weak-head normal forms (whnf), in
particular neutral whnf, which are terms applied to a head variable – the only
possible whnf after enough η-expansion – weak-head reduction t ↘ a and active
application t@ u↘ a. We will write ↓t for the a such that t↘ a, if it exists.

Whnf 3 a, b, f, A,B, F ::= s | (x :U)→ T | λx :U. t | n whnf
Wne 3 n,N ::= x | n u neutral whnf

t↘ f f @ u↘ a

t u↘ a a↘ a

t[u/x]↘ a

(λx :U. t) @ u↘ a n@ u↘ n u

The algorithmic equality alternates weak-head normalizations (to account for β-
reductions), type-directed equality (η-expansions), and structural equality on neu-
tral terms. The core idea is that once we have reduced equality to two neutral
terms1 Γ ` x u1 u2...←→ x u′1 u

′
2..., we can look into the context for the type of x,

which must be of the form T1 → T2 → ..., and therefore deduce the types of ui, u
′
i,

on which we can run type-directed equality Γ ` ui ⇐̂⇒ u′i : Ti.

1if the head variable on each side of the equality is different, equality checking fails

8

Type equality ∆ ` A ⇐⇒ A′, for weak head normal forms, and ∆ ` T ⇐̂⇒
T ′, for arbitrary well-formed types, checks that two given types are equal in their
respective contexts.

∆ ` s⇐⇒ s

∆ ` N ←→ N ′ : s

∆ ` N ⇐⇒ N ′
∆ ` ↓T ⇐⇒ ↓T ′

∆ ` T ⇐̂⇒ T ′

∆ ` U ⇐̂⇒ U ′ ∆. x :U ` T ⇐̂⇒ T ′

∆ ` (x :U)→ T ⇐⇒ (x :U ′)→ T ′

Structural equality ∆ ` n←→ n′ : A and ∆ ` n ←̂→ n′ : T checks the neutral
expressions n and n′ for equality and at the same time infers their type, which is
returned as output, allowing neutral applications to deduce the type of their last
argument and call typed-directed equality in turn.

∆ ` n ←̂→ n′ : T

∆ ` n←→ n′ : ↓T
(x :T) ∈ ∆

∆ ` x ←̂→ x : T

∆ ` n←→ n′ : (x :U)→ T ∆ ` u ⇐̂⇒ u′ : U

∆ ` n u ←̂→ n′ u′ : T [u/x]

Type-directed equality ∆ ` t ⇐⇒ t′ : A and ∆ ` t ⇐̂⇒ t′ : T proceeds by
inspecting the structure of the supplied type, performing η-expansions until we get
to a base type, where we switch to structural equality again.

∆. x :U ` t x ⇐̂⇒ t′ x : T

∆ ` t⇐⇒ t′ : (x :U)→ T

∆ ` T ⇐̂⇒ T ′

∆ ` T ⇐⇒ T ′ : s

∆ ` ↓t ←̂→ ↓t′ : T

∆ ` t⇐⇒ t′ : N

∆ ` t⇐⇒ t′ : ↓T
∆ ` t ⇐̂⇒ t′ : T

Note that, in the but-last rule, we do not check that the inferred type T of ↓t is
convertible to the ascribed type N . Since algorithmic equality is only invoked for
well-typed t, we know that this must always be the case. Skipping this test is our
improvement over Harper and Pfenning’s algorithm.

Transitivity requires soundness We can now expose the problem with transi-
tivity in presence of type dependencies. We must show transitivity of the equality
algorithms, otherwise it cannot possibly be complete with respect to definitional
equality, which has a transitivity rule. We may want to show, for example, that
∆ ` A1 ⇐⇒ A2 and ∆ ` A2 ⇐⇒ A3 implies ∆ ` A1 ⇐⇒ A3. But consider two
instances of the function type case:

∆ ` U1 ⇐̂⇒ U2 ∆. x :U1 ` T1 ⇐̂⇒ T2

∆ ` (x :U1)→ T1 ⇐⇒ (x :U2)→ T2

∆ ` U2 ⇐̂⇒ U3 ∆. x :U2 ` T2 ⇐̂⇒ T3

∆ ` (x :U2)→ T2 ⇐⇒ (x :U3)→ T3

To get transitivity in that case, we need to show that ∆ ` U1 ⇐̂⇒ U3, which
is a direct inductive hypothesis, and that ∆. x : U1 ` T1 ⇐̂⇒ T3. That would be
immediate if we had ∆. x :U1 instead of ∆. x :U2 as context of ` T2 ⇐̂⇒ T3. Once
we prove soundness, we can use ∆ ` U1 ⇐̂⇒ U2 to deduce an equality between
contexts ∆. x : U1 and ∆. x : U2, and obtain ∆. x : U1 ` T2 ⇐̂⇒ T3 by conversion
of equal contexts. So our proof of homogeneous algorithmic transitivity relies on
algorithmic soundness, which itself needs significant metatheoretic results: subject
reduction and function types injectivity.

9

2.3 Cumulativity

Definitional cumulativity The cumulativity relation is meant to model “inclu-
sion between universes”: Γ ` Seti 4 Seti+1 meaning that all terms typed by Seti
are also accepted by Seti+1. In the definitional system, it is an inductively defined
relation building upon definitional equality:

Ordering rules

Γ ` T = T ′ : s

Γ ` T 4 T ′ : s

Γ ` T1 4 T2 : s Γ ` T2 4 T3 : s

Γ ` T1 4 T3 : s

Constructor rules

` Γ

Γ ` Seti 4 Seti+1 : Seti+2

Γ ` U < U ′ : s Γ. x :U ′ ` T 4 T ′ : s

Γ ` (x :U)→ T 4 (x :U ′)→ T ′ : s

Conversion rule

Γ ` T 4 T ′ : s Γ ` s 4 s′

Γ ` T 4 T ′ : s′

Notice that cumulativity is contravariant in its domain: Γ ` U < U ′ : s is
defined to mean Γ ` U ′ 4 U : s. Contrarily to the equality case, the T context is
extended with U ′ instead of U ; this is more general as Γ ` U < U ′ : s will allow
the variable x : U ′ to be considered of type U if necessary.

To use cumulativity in the type system, we add cumulativity conversion rules.
As cumulativity includes equality thanks to the reflexivity rule, those rules subsume
the corresponding conversion rules:

Γ ` t : T Γ ` T 4 T ′ : s

Γ ` t : T ′
Γ ` t = t′ : T Γ ` T 4 T ′ : s

Γ ` t = t′ : T ′

Algorithmic cumulativity It helps to understand the structure of the defini-
tional cumulativity proofs. A cumulativity proof first recursively explores function
types and then, at the leaves (and according to the covariance or contravariance of
the position), may change universe levels, or perform computations through equal-
ity; both an arbitrary number of times, thanks to the transitivity rule.

The algorithmic cumulativity check E exactly performs this traversal, relying
on algorithmic equality to check computations at the leaves:

∆ ` Seti E Setj
i ≤ j

∆ ` N ←→ N ′ : s

∆ ` N E N ′

∆ ` U D U ′ ∆. x :U ′ ` T E T ′

∆ ` (x :U)→ T E (x :U ′)→ T ′
∆ ` ↓T E ↓T ′

∆ ` T Ê T ′

It is interesting to compare algorithmic cumulativity with the algorithmic type
equality: cumulativity is exactly a directed version of type equality. This helps to
ensure that our design is natural rather than ad-hoc, and will provide a very direct
antisymmetry proof once the equivalence of algorithmic and definitional equality is
obtained.

10

3 Equivalence of definitional and algorithmic sys-
tem: logical relations

We want to prove that definitional and algorithmic system are equivalent.

• soundness: algorithmic equality implies definitional equality. The algorithm
is sound, it doesn’t claim that two things are equal when they really aren’t.

• completeness: definitional equality implies algorithmic equality. The algo-
rithm is complete, it is able to conclude positively for all “really equal” terms;
there are no complicated equalities that it may miss.

For the algorithmic system to be a practical replacement for explicit derivations,
we also want termination:

• decidability : the checking algorithms terminate: they succeed or fail in finite
time.

3.1 An informal introduction to Kripke logical relations

We will first informally present the rationale and requirements for logical relations,
the main proof tool used to bring those results.

Due to space restrictions, this informal presentation has been relegated to ap-
pendix A, page 21. The reader who is not familiar with Kripke logical relations is
strongly advised to read it first. The knowledgeable reader can go directly to the
next section, defining the logical relation formally.

3.2 Formal presentation of a generic logical relation

Partial equivalence relations The relations discussed so far are generally tran-
sitive and symmetric, but not necessarily reflexive. For example the relation Γ `

= : T is transitive and symmetric, but not reflexive as an ill-typed term t may
not verify Γ ` t = t : T . We call them partial equivalence relations (P.E.R.), as
they may be seen as equivalence relation defined only on a subset of the relation
space — in this example the well-typed terms. We say that t is “defined” for the
P.E.R. R if there exist t′ such that t R t′. Then we have t R t by transitivity from
t R t′ and its symmetric t′ R t: a P.E.R. is reflexive on its defined terms.

Semantic universe We first give the complete definition of our semantic uni-
verses: to account for the predicative hierarchy Seti, we define instead of a single
universe U a family of universes Ui recursively defined over i ∈ N. This is an
inductive-recursive definition. As informally justified in the appendix, the Ui are
subsets of Exp×P(Exp), and they uniquely associate to a type code T its extension
A, a set of values. Here |Ui| is defined as {T | (T,A) ∈ Ui}.

(N,Wne) ∈ Ui

j < i

(Setj , |Uj |) ∈ Ui

(U,A) ∈ Ûi ∀u ∈ Â. (T [u/x], F̂(↓u)) ∈ Ûi

((x :U)→ T,ΠAF) ∈ Ui

We have carefully defined the universe relation to approximate the cumulativity
relation 4; in particular, neutrals live at all levels, and Setj is present in all universes
Ui for i > j.

11

Base relation We will build a generic logical relation L∆,T ⊆ Exp × Exp from
any suitable base relation B∆,T . Both are parametrized by a context ∆ ∈ Cxt and
a type T ∈ Exp. For syntactic convenience, we will reuse the equality notation, by
writing respectively ∆ B̀ t = t′ : T and ∆ L̀ t = t′ : T .

We assume the following properties of the base relation B.

Hypothesis 3 (P.E.R.) B∆,T is a partial equivalence relation.

Hypothesis 4 (Context well-formedness) B is only defined on well-formed con-
texts: ∆ B̀ t = t′ : T implies ∆ `.

Hypothesis 5 (Variable definedness) Well-typed variables are defined in B: ∆. x :
U B̀ x = x : U .

Hypothesis 6 (Weakening) If ∆ B̀ t = t′ : T and Γ ≤ ∆, then Γ B̀ t = t′ : T .

Hypothesis 7 (Type conversion) If ∆ B̀ t = t′ : T and ∆ B̀ T = T ′ : s then
∆ B̀ t = t′ : T ′.

The logical relation L We define the Kripke logical relation L∆,T by induction

over the membership of types to the semantic universe: for T and T ′ in |Ûi| we
define both ∆ L̀ T = T ′ : Seti and ∆ L̀ t = t′ : T .

We want to restrict our base relation B̀ to well-typed terms, to get syntactic
validity later. We will write ∆ B̀ t :=: t′ : T for the conjunction of ∆ B̀ t = t′ : T ,
∆ ` t : T and ∆ ` t′ : T .

∆ B̀ N :=: N ′ : s

∆ L̀ N = N ′ : s

∆ B̀ n :=: n′ : N

∆ L̀ n = n′ : N

` ∆

∆ L̀ s = s : s′
s′ > s

∆ L̀ U = U ′ : s
∀Γ ≤ ∆, Γ L̀ u = u′ : U =⇒ Γ L̀ T [u/x] = T ′[u′/x] : s

∆ B̀ (x :U)→ T :=: (x :U ′)→ T ′ : s

∆ L̀ (x :U)→ T = (x :U ′)→ T ′ : s

∀Γ ≤ ∆, Γ L̀ u = u′ : U =⇒ Γ L̀ f @ u = f ′@ u′ : T [u/x]
∆ B̀ f :=: f ′ : (x :U)→ T

∆ L̀ f = f ′ : (x :U)→ T

T ↘ A ∆ B̀ T = A : s
t↘ a ∆ B̀ t = a : A ∆ B̀ t

′ = a′ : A t′ ↘ a′

∆ L̀ a = a′ : A
∆ B̀ t :=: t′ : T

∆ L̀ t = t′ : T

Note that in the definition of ∆ L̀ t = t′ : T for (T,A) ∈ Ûi, we always have
t, t′ ∈ A. This can be easily checked by induction, as the base case only relate
neutrals.

12

Cumulativity The presence of cumulativity does not change much in the defi-
nition and property of the logical relation. We have several choices as to how to
transpose cumulativity in a logical setting ∆ L̀ T 4 T ′ : s. We could parametrize
over a “base cumulativity relation” with defined properties as we do for B, we could
choose to mirror the structure of the cumulativity check into a logical cumulativity
relation, or we could use a very shallow definition, for which we would later prove
that it indeed is related to cumulativity.

The first option is a bit heavy; we will detail the second and third option. In
the second case, we would use a structured definition such as this one:

` ∆ i < j < k

∆ L̀ Seti 4 Setj : Setk

∆ L̀ U < U ′ : s
∀Γ ≤ ∆, Γ L̀ u = u′ : U ′ =⇒ Γ L̀ T [u/x] 4 T ′[u′/x] : s

∆ L̀ (x :U)→ T 4 (x :U ′)→ T ′ : s

In the third case, we would use a shallow definition such as this one:

∀Γ ≤ ∆, Γ L̀ t = t′ : T =⇒ Γ L̀ t = t′ : T ′

∆ L̀ T 4 T ′ : s

The structured definition make it relatively easy to prove its correspondence
with definitional and algorithmic cumulativity, as it follows the same structure. It
asks for more work, however, to prove that the cumulativity conversion is still true
at the logical level. The shallow relation makes cumulativity conversion trivial, but
makes it harder to relate to definitional and algorithmic cumulativity, because then
we would need to prove logical cumulativity conversion. We prove the same things
in both case, but in different places.

The following properties of the logical relation will make reference to this logical
cumulativity 4L; either definition is suitable in this case.

Properties of the logical relation By lack of space, we have not given the
proofs of the following properties, but they are relatively simple, as the definition
of the relation was precisely designed to provide those results. They are all proved

by induction over the membership T ∈ |Ûi| of the relating type in the semantic
universe: this is the analoguous, for logical relations, of the syntactic induction
performed on the more gentle inductive relations.

The first properties are mostly lifting of the base relation properties to the logical
relation. As we have explained in our informal appendix, they are nonetheless
not trivial. For example, weakening mandates the use of Kripke relations; type
conversion also dictates the definition of L between function types.

Lemma 8 (Weakening) If Γ ≤ ∆, then

• ∆ L̀ T = T ′ : s implies Γ L̀ T = T ′ : s
• ∆ L̀ t = t′ : T implies Γ L̀ t = t′ : T
• ∆ L̀ T 4 T ′ : s implies Γ L̀ T 4 T ′ : s

Lemma 9 (Type conversion)

• If ∆ L̀ t = t′ : T and ∆ L̀ T = T ′ : s then ∆ L̀ t = t′ : T ′.
• If ∆ L̀ t = t′ : T and ∆ L̀ T 4 T ′ : s then ∆ L̀ t = t′ : T ′.

Lemma 10 (P.E.R.) L is a partial equivalence relation. 4L is transitive.

While symmetry is very simple to prove, transitivity is made more delicate by
the negative occurence of L at function types. We will detail the crucial case of
transitivity at function types.

13

Proof We have

∆ L̀ U1 = U2 : s
∀Γ ≤ ∆, Γ L̀ u = u′ : U1 =⇒ Γ L̀ T1[u/x] = T2[u′/x] : s

∆ B̀ (x :U1)→ T1 = (x :U2)→ T2 : s

∆ L̀ (x :U1)→ T1 = (x :U2)→ T2 : s

∆ L̀ U2 = U3 : s
∀Γ ≤ ∆, Γ L̀ u = u′ : U2 =⇒ Γ L̀ T2[u/x] = T3[u′/x] : s

∆ B̀ (x :U2)→ T2 = (x :U3)→ T3 : s

∆ L̀ (x :U2)→ T2 = (x :U3)→ T3 : s

And wish to prove ∆ L̀ (x : U1) → T1 = (x : U3) → T3 : s. We have ∆ L̀
U1 = U3 : s by inductive hypothesis, and ∆ ` (x : U1) → T1 B (x : U3) → T3 : s
by transitivity of B. Given Γ ≤ ∆ and Γ L̀ u = u′ : U1, we have to prove that
Γ L̀ T1[u/x] = T3[u′/x] : s.

By induction hypothesis, L is a P.E.R. at type U1, so in particlar from Γ L̀ u =
u′ : U1 we have Γ L̀ u = u : U1, from which we deduce Γ L̀ T1[u/x] = T2[u/x].
We also have Γ L̀ U1 = U2 by weakening hypothesis ∆ L̀ U1 = U2, which
allows to use type conversion to get Γ L̀ u = u′ : U2. From this we deduce
Γ L̀ T2[u/x] = T3[u′/x], which allows us to conclude by transitivity — as an
inductive hypothesis.

�

Lemma 11 (Into the logical relation) If T ∈ Ui and ∆ B̀ n = n′ : T then
∆ L̀ n = n′ : T .

This is true by definition of L when T is a neutral type. Otherwise, we proceed
by induction on T ∈ Ui. Note that we know that n, n′ are approximate elements of
T in Ui, as all types of the universe accept all neutrals — this is easily checked by
induction.

3.3 Validity and substitutions

An important property of type systems is to behave well with respect to substitution;
this is the property of substitution we have defined earlier. A similar property
would be expected of the logical relation, in particular if we wish to prove that the
β-reduction rule is admissible: ∆ L̀ (λx :U. t) u = t[u/x] : T .

Unfortunately, it is not at all easy to manipulate substitutions with the current
definition of the logical relation. For example, it treats neutrals specifically, but the
property of being neutral is not stable by substitution of the head variable.

The solution is to introduce a new relation, the validity relation L, that is
in some sense “closed over substitutions”, as the logical relation was closed over
applications.

Logically related substitutions To a relation ∆ L̀ t = t′ : T , we wish to apply
related substitutions σ and σ′, to get ∆ L̀ tσ = t′σ′ : Tσ. We now define what
it means for two substitutions to be related: they substitute related terms for a
given variable. Additionally, as a substitution may remove some free variables and
introduce new ones, the result context ∆ is not necessarily identical to the origin
context Γ; we write ∆ L̀ σ = σ′ : Γ when σ, σ′ are L-related and translate terms
from context Γ to ∆. This is reminiscent of the categorical view of substitutions as
context morphisms. This relation between substitutions is inductively defined:

∆ L̀ σ = σ′ : �
∆ L̀ σ = σ′ : Γ ∆ L̀ σ(x) = σ′(x) : Uσ

∆ L̀ σ = σ′ : Γ. x :U

14

The validity relation L We can now define the validity relation Γ L t = t′ : T .
We also use a “context validity” relation Γ L, and define Γ L T and Γ L t : T
as syntactic sugar for ∃s,Γ L T = T : s and Γ L t = t : T respectively.

� L
Γ L Γ L U

Γ. x :U L

Γ L Γ L T : s (unless T is a sort)
∀∆, σ, σ′, ∆ L̀ σ = σ′ : Γ =⇒ ∆ L̀ tσ = t′σ′ : Tσ

Γ L t = t′ : T

Γ L ∀∆, σ, σ′, ∆ L̀ σ = σ′ : Γ =⇒ ∆ L̀ Tσ 4 T ′σ′ : s

Γ L T 4 T ′ : s

Lemma 12 (Substitution relation is a P.E.R.) If Γ L then ∆ L̀ = : Γ is
symmetric and transitive. ∆ L 4 : s is transitive.

Lemma 13 (Validity is a P.E.R.) Γ L = : T is symmetric and transitive.

Lemma 14 (Function types are injective (in the validity relation)) If Γ L
(x :U)→ T = (x :U ′)→ T ′ : s then Γ L U = U ′ : s and Γ. x :U L T = T ′ : s.

This is our first example of a meta-theoretic result that we easily obtain in the
derived relation L and L – because it’s embedded in L’s definition – while we
cannot prove it directly for the definitional equality. Once we particularize the
generic B to definitional equality, and prove that L is not more restrictive than B,
we will have proved function type injectivity for definitional equality.

Lemma 15 (Context satisfiable) The identity substitution is related to itself: if
Γ L then Γ ` and Γ L id = id : Γ.

The identity relation allows to close the loop between L and B.

Lemma 16 (Completeness of the validity relation) If Γ L t = t′ : T then
Γ B̀ t = t′ : T and Γ B̀ T = T : s.

The fundamental theorem of the logical relation Now that we have built L
and L, we can show that they indeed have the desirable compositional properties of
the definitional equality. We have already shown that the symmetry and transitivity
rules are admissible, and we prove that L, despite being built only from B, admits
the other equality rules.

Lemma 17 (Validity of β) The following rule is admissible

Γ. x :U L t : T Γ L u : U

Γ L (λx :U. t) u = t[u/x] : T [u/x]

The crux of the β-reduction proof is that if ∆ L̀ σ = σ′ : Γ are related
substitutions, then Γ L u : U implies that ∆ L (σ, uσ/x) = (σ′, uσ′/x) : Γ. x :U .

Lemma 18 (Validity of function equality and η)

Γ L U = U ′ : s Γ. x :U L T : s Γ. x :U L t = t′ : T

Γ L λx :U. t = λx :U ′. t′ : (x :U)→ T

Γ L t : (x :U)→ T

Γ L t = λx :U. t x : (x :U)→ T

The link between function equality and η is a β-expansion, which we have shown
admissible.

15

Lemma 19 (Validity of function application)

Γ L t = t′ : (x :U)→ T Γ L u = u′ : U

Γ L t u = t′ u′ : T [u/x]

The proof relies entirely, of course, on the definition of L at function types.

Lemma 20 (Validity of conversion)

Γ L t = t′ : T Γ L T 4 T ′ : s

Γ L t = t′ : T ′

Theorem 21 (Fundamental Theorem of the Logical Relation) Let B be a
base relation satisfying the required properties (3.2, page 12), L and L defined
as explained (3.2, page 12 and 3.3, page 14). Then the following completeness
properties hold:

• If Γ ` then Γ L.
• If Γ ` t : T then Γ L t : T .
• If Γ ` t = t′ : T then Γ L t = t′ : T .
• If Γ ` T 4 T ′ : s then Γ L T 4 T ′ : s.

This is proved using the previous validity lemmas: we do an syntactic induction
on the definitional judgement, using the admissibility of each rule in the validity
relation.

It may be surprising that we obtain definitional equality and cumulativity from
any base relation B, but the hypotheses on B are in fact quite constraining; it
can only be used for a relation that is “similar enough” to definitional equality.
Fortunately, algorithmic equality can be persuaded to fit these restrictions; the
Fundamental Theorem will then provides a completeness proof.

Finally, we may also extend the fundamental theorem to well-typed substitu-
tions. Let ∆ B̀ σ = σ′ : Γ and Γ L σ = σ′ : Γ′ be defined as:

` ∆

∆ B̀ σ = σ′ : �
∆ B̀ σ = σ′ : Γ Γ ` U ∆ B̀ σ(x) = σ′(x) : Uσ

∆ B̀ σ = σ′ : Γ. x :U

Γ L Γ′ L
∀∆ L̀ ρ = ρ′ : Γ, ∆ L̀ σρ = σ′ρ′ : Γ′

Γ L σ = σ′ : Γ′

Corollary 22 (Fundamental lemma for substitutions) If Γ B̀ σ = σ′ : Γ′

then Γ L σ = σ′ : Γ′.

4 The eagerly awaited metatheoretic results

The Fundamental Lemma of the previous section relates a base relation B, the
validity relation L and the definitional typing and equality rules of our system.
We will now exploit it to get the desired meta-theoretic results.

4.1 Metatheory of the definitional rules

We first establish results that are only concerned with the definitional system, and
not related to algorithmic equality. For example, we have shown that L admits
function type injectivity, and transferring this to definitional equality provide an
important meta-theoretic result.

16

Definition 23 Let B∆,T be the following relation: ∆ B̀ t = t′ : T if and only iff
∆ ` t : T and ∆ ` t′ : T and ∆ ` t = t′ : T .
B∆,T satisfies the required properties of the base relation described in (3.2, page 12),

and ∆ ` T 4 T ′ : s implies ∆ L̀ T 4 T ′ : s.
We will note S̀ the corresponding logical relation (S for “soundness”), and S

the corresponding validity relation.

The proof of the statements of this section are not given. The reader should not
be confused by the apparent similarity with the previous section, where the proof
where non-trivial but skipped for reasons of space constraints. Here the proofs are
short and easy ; it’s generally only a matter of using the fundamental lemma to go
from the definitional system to the validity relation, applying the corresponding
and already-proved result there, and then using the identity substitution to return
to the definitional world.

Syntactic validity is a direct consequence of the fundamental lemma, as we have
already shown it to be true for the validity relation.

Corollary 24 (Syntactic validity)

• If Γ ` t : T then Γ ` T .
• If Γ ` t = t′ : T then Γ ` t, t′ : T .
• If Γ ` T 4 T ′ : s then Γ ` T, T ′ : s.

Function type injectivity This is a direct corollary of validity of function type
injectivity (14, page 15).

Corollary 25 If Γ ` (x : U) → T = (x : U ′) → T ′ : s then Γ ` U = U ′ : s and
Γ. x :U ` T = T ′ : s.

Substitution The second metatheoretic result is substitution. Let us write ∆ `
σ = σ′ : T for the relation on substitution determined by the B defined above.
Substitution could have been proved syntactically, but this require to prove tricky
interdependent syntactic lemmas; following the technique of Goguen [Gog00], we get
it from the logical relation – more precisely, the fundamental lemma for substitutions
– to avoid those subtleties.

Theorem 26 (substitution)

• If Γ ` σ = σ′ : Γ′ and Γ′ ` t : T then Γ ` tσ = tσ′ : Tσ.
• If Γ ` σ = σ′ : Γ′ and Γ′ ` t = t′ : T then Γ ` tσ = t′σ′ : Tσ.
• If Γ ` σ = σ′ : Γ′ and Γ′ ` T 4 T ′ : s then Γ ` Tσ 4 T ′σ′ : s.

Inversion A condition for the decidability of type checking is the ability to invert
typing derivations.

Lemma 27 (Inversion)

• If Γ ` x : T then (x :U) ∈ Γ for some U with Γ ` U 4 T .
• If Γ ` λx :U. t : T then Γ. x :U ` t : T ′ for some T ′ with Γ ` (x :U)→ T ′ 4 T .
• If Γ ` t u : T then Γ ` t : (x :U) → T ′ and Γ ` u : U for some U, T ′ with

Γ ` T ′[u/x] 4 T .
• If Γ ` Seti : T then Γ ` Seti+1 4 T
• If Γ ` (x : U) → T ′ : T then, for some s, Γ ` U : s, Γ. x : U ` T ′ : s, and

Γ ` s 4 T .

This proof is not a direct consequence of the logical relation, but depends on
substitution. It is proved by induction on the derivations.

17

Context cumulativity We write Γ 4 Γ′ ` if Γ,Γ′ have the same domain and
each types of Γ is more general than the corresponding type in Γ′:

� 4 � `
Γ 4 Γ′ ` Γ ` U 4 U ′

Γ. x :U 4 Γ. ′ :xU ′

Context cumulativity conversion shows that going to a more general context
preserves typability.

Theorem 28 (Context cumulativity conversion) Let Γ 4 Γ′ `

• If Γ′ ` t : T then Γ ` t : T
• If Γ′ ` t = t′ : T then Γ ` t = t′ : T
• If Γ′ ` T 4 T ′ : s then Γ ` T 4 T ′ : s

It is proved using the substitution theorem (26, page 17), by relying on the fact
that Γ 4 Γ′ ` implies Γ ` id = id : Γ′.

Normalization and subject reduction The logical relation L was defined on
weak-head normal forms of the universe Ui, and extended by L to the terms that
reduce to those normal forms. By proving the Fundamental Lemma, we also proved,
without noticing, that all the terms typed by the definitional system are in this
situation. The normalization and subject reduction result falls out naturally.

Theorem 29 (Normalization and subject reduction) If Γ ` t : T then t↘ a
and Γ ` t = a : T .

Proof By the fundamental theorem we get Γ L t = t : T so Γ L̀ t = t : T using
the identity substitution. The result directly follows from the definition of L on
non-whnf:

T ↘ A ∆ ` T = A
t↘ a ∆ B̀ t = a : A ∆ B̀ t

′ = a′ : A t′ ↘ a′

∆ L̀ a = a′ : A
∆ B̀ t = t′ : T

∆ L̀ t = t′ : T

�

Consistency Importantly, not every type is inhabited, thus, our system can be
used as a logic. A prerequisite is that types can be distinguished, which follows
immediately from the syntax-directed definition of the logical relation.

Lemma 30 (Type constructor discrimination) Neutral types, sorts and func-
tion types are mutually unequal.

• Γ ` N 6= s.
• Γ ` N 6= (x?U)→ T .
• Γ ` s = s′ implies s ≡ s′.
• Γ ` s 6= (x?U)→ T .

Lemma 31 (Distinct type constructors are incomparable) Extending the pre-
vious result, we show that neutral types, sort and function types are mutually non-
cumulative. We will write Γ ` T ��4< T ′ to say that both Γ ` T 4 T ′ : s and
Γ ` T < T ′ : s are false.

• Γ ` N��4< s.

18

• Γ ` N��4< (x?U)→ T .
• Γ ` s��4< (x?U)→ T .

From normalization and those type constructor discrimination results we can
show that not every type is inhabited.

Theorem 32 (Consistency) X :Set0 6 ` t : X.

Proof Let Γ = (X :Set0). Assuming Γ ` t : X, we have Γ ` a : X for the whnf a
of t. We invert on the typing of a. By Lemma 31, X cannot be equal – even modulo
cumulativity – to a function type or sort, thus, a can neither be a λ nor a function
type nor a sort, it can only be neutral. The only variable X must be in the head
of a, but since X is not of function type, it cannot be applied. Thus, a ≡ X and
Γ ` X : X, implying Γ ` Set0 4 X by inversion (27). This is in contradiction to
Lemma 31, which states Γ ` Set0 ��4< X. �

4.2 Metatheory of the algorithmic equality

Using the result just proved for the definitional system, we will establish metathe-
oretic properties of the algorithmic equality, culminating in its soundness. From
there, we will be able to use a second logical relation to get completeness.

Termination We have shown that well-typed terms are in the model. In par-
ticular, they are weak-head reducible so the algorithmic check terminates — on
well-typed terms.

Theorem 33 (Termination of algorithmic equality) If ∆ ` t, t′ : T then the
query ∆ ` t ⇐̂⇒ t′ : T terminates. If ∆ ` T, T ′ : s then ∆ ` T ⇐̂⇒ T and
∆ ` T Ê T ′ terminate.

Soundness Soundness of the equality algorithm is a consequence of subject re-
duction. As we want to express soundness for typed terms, we define the relations
(:⇐⇒:), (:←→:), (:E:), etc. as the restriction of the relation on well-typed term:
Γ ` A :E: A′ if both Γ ` A E A′ and Γ ` A,A′ : s, etc.

Theorem 34 (Soundness of algorithmic equality and cumulativity)

• If ∆ ` t :⇐̂⇒: t′ : T then ∆ ` t = t′ : T .
• If ∆ ` n, n′ : T and ∆ ` n ←̂→ n′ : U then ∆ ` n = n′ : U and ∆ ` U 4 T .
• If ∆ ` T :Ê: T ′ then ∆ ` T 4 T ′ : s.

Symmetry and transitivity

Lemma 35 (Type and context subsumption in algorithmic judgements)
Let ` ∆ < ∆′.

• If ∆ ` A :⇐⇒: A′ : s then ∆′ ` A⇐⇒ A′ : s.
• If ∆ ` n :←→: n′ : A then ∆′ ` n←→ n′ : A′ for some A′ with ∆ ` A < A′.
• If ∆ ` t :⇐⇒: t′ : A and ∆ ` A 4 A′ then ∆′ ` t⇐⇒ t′ : A′.
• If ∆ ` A :E: A′ then ∆′ ` A E A′

Lemma 36 (Algorithmic equality is transitive) Let ` ∆ = ∆′. In the fol-
lowing, let the terms submitted to algorithmic equality be well-typed.

• If ∆ ` n1 ←̂→ n2 : T and ∆′ ` n2 ←̂→ n3 : T ′ then ∆ ` n1 ←̂→ n3 : T and
∆ ` T = T ′.

19

• If ∆ ` t1 ⇐̂⇒ t2 : T and ∆′ ` t2 ⇐̂⇒ t3 : T ′ and ∆ ` T = T ′ then
∆ ` t1 ⇐̂⇒ t3 : T .

• If ∆ ` T1 ⇐̂⇒ T2 : s and ∆′ ` T2 ⇐̂⇒ T3 : s then ∆ ` T1 ⇐̂⇒ T3 : s
• If ` ∆ < ∆′ and ∆ ` T1 Ê T2 and ∆′ ` T2 Ê T3, then ∆′ ` T1 Ê T3.

Theorem 37 (Algorithmic equality is a P.E.R.) The type, structural and type-
directed equality judgements are symmetric and transitive on well-typed expressions.

4.3 Completeness of algorithmic equality

Now that we have soundness of the algorithmic equality, we build a second logical
relation to get completeness. We need to define a new base relation B; to avoid
confusion with the previous sections, we will note c© the logical relation, and ∆ c

t = t′ : T the validity relation.
Due to the presence of three interleaved judgements, we cannot just “use algo-

rithmic equality as base relation”: which one? We will first use a base relation using
a very restricted form of type-directed equality, build the corresponding logical re-
lation, and in a second moment determine how the other algorithmic judgements
are related to the logical relation; this will be our escape lemma, going from the
logical relation to the algorithmic equality.

Definition 38 Let ∆ B̀ = : be defined as: ∆ ` N :⇐⇒: N ′ : s on neutral
types, ∆ ` n :⇐⇒: n′ : N on neutral terms at a neutral type, and ∆ ` t :=: t′ : T
otherwise.
B satisfies all the required properties of a base relation, and ∆ ` T Ê T ′ : s

implies ∆ L̀ T 4 T ′ : s.
Let ∆ C̀ t = t′ : T be the corresponding logical relation (C for completeness),

and ∆ C t = t′ : T the validity relation.

Remark that B is stronger than :=: by soundness of algorithmic equality, as
:⇐⇒: implies definitional equality.

We now explain the relation between C and the three algorithmic judgements.

Lemma 39 (Escape from the logical relation) Let ∆ C̀ T = T ′ : s

• ∆ ` T ⇐̂⇒ T ′.
• If ∆ C̀ t = t′ : T then ∆ ` t ⇐̂⇒ t′ : T .
• If ∆ ` n ←̂→ n′ : T and ∆ ` n = n′ : T then ∆ C̀ n = n′ : T .

This is the non-trivial proof that allows completeness. We want to show that
despite the very restricted use of algorithmic equality in the definition of the logical
relation, that is only at base types, this relation coincides with algorithmic equality
at all types. This works because the structure of the logical relation mirrors the
algorithmic equality judgements.

Theorem 40 (Completeness of algorithmic equality and cumulativity) If Γ `
t = t′ : T then Γ ` t ⇐̂⇒ t′ : T . If Γ ` T 4 T ′ : s then Γ ` T Ê T ′.

Proof for Γ ` t = t′ : T Since Γ C̀ id = id : Γ, we have Γ C̀ t = t′ : T by the
Fundamental Theorem, and conclude with the escape lemma. �

We have shown that algorithmic equality is sound, complete and terminating.
This means that our definitional type system is decidable.

Theorem 41 (Decidability) Γ ` t : T , Γ ` t = t′ : T and Γ ` T 4 T ′ : s are
decidable.

20

The following results are not central to our development, but they strengthen
our confindence in the cumulativity relation:

Theorem 42 (Antisymmetry of cumulativity) If Γ ` T 4 T ′ : s and Γ `
T < T ′ : s, then Γ ` T = T ′ : s.

Theorem 43 (Principal types) If Γ ` t : T , then there exists a T ′ such that
Γ ` ↓t ←̂→ ↓t : T ′ and Γ ` T ′ 4 T : s.

5 Universe polymorphism, level irrelevance and
heterogeneous equality

For more informal discussion of the more advanced feature considered, the reader
is invited to read the appendix B, page 24.

Conclusion

In this report we have demonstrated proof techniques using two logicals relations
to get the metatheory of a definitional system for dependent types with typed,
extensional equality. We also proved its decidability by equivalence with a practical
algorithmic type system, in a way that we believe would scale to large eliminations.
Finally, we have incorporated a cumulativity relation inspired by Luo’s ECC in
our typed equality, and explored the addition of universe polymorphism and level
irrelevance. We have also discussed the choice of homogeneous or heterogeneous
presentations of equality, trying to expose the strength and weaknesses of both.

Before the end of the internship, we hope to be able to gain more assurance
into the universe polymorphism mechanisms, and find a way to expose shape irrele-
vance that is not overly complex; while the core idea is rather simple, the technical
presentation is currently very sophisticated. In particular, while we are seduced
by the symmetry of the heterogeneous definitions, they are lesser known and have
proved suprisingly tricky to handle. We hope that more practice with homogeneous
and heterogeneous presentations will help us understand the compromise to make;
it is possible that some middle way, e.g., adding a context conversion rule to a
homogeneous system, could combine the advantages of the two approaches.

Finally, one question we still feel is unresolved, probability by lack of experience
and intuition with thoose tools, is “how semantic” our use of logical relation really
is. While we focused in this document on its justification as a pure “proof technique”
(closure by application, closure by substitution), there are very strong similarities
between our construction of a logical relation from an semantic universe and explicit
model-construction semantic approaches to the consistency of type systems. It is
unclear to us if we could formally claim that our logical relation is, in some sense,
a model construction. If not, we would like to get a better understanding of the
distance between the two notions.

Appendices

A An informal introduction to Kripke logical re-
lations

The distance between definitional and algorithmic equality Perhaps sur-
prisingly, non-syntax-directed rules such as transitivity are actually not the main

21

difficulty in an equivalence proof between definitional and algorithmic system. One
may imagine pushing transitivity to the leaves of the derivation, using repeated
β-conversion instead of a single β-reduction step, η-expansion to canonical forms,
etc.

The major difficulty is the impedance mismatch between the compositionality of
the definitional rules and the non-compositionality of the β-reductions, transpiring
through the algorithmic equality. This is problematic in at least two situations.

The first instance of this problem is in the behavior of terms with respect to
reducibility. Knowing all the β-reductions of the terms t and u do not tell us much
about the β-reduction behavior of their application t u. In particular, t and u
may be strongly normalizing, and t u diverge. This is the well-known difficulty in
termination proofs for typed lambda-calculi, and it justifies reducibility candidates
methods, which enrich the termination condition with other requirements, such as
termination of all applications of a function to normalizing terms.

The second manifestation can be directly seen in the algorithmic equality rule:
none of them behaves well with respect to algorithmic equality. Consider:

∆ ` n←→ n′ : (x :U)→ T ∆ ` u ⇐̂⇒ u′ : U

∆ ` n u ←̂→ n′ u′ : T [u/x]

As a different algorithmic check is applied on the operands of the application, it is
not direct to check admissibility of the application compatibility rule. For none of
R∈ {⇐̂⇒,←→} we have that Γ ` t R t′ and Γ ` u R u′ implies Γ ` t u R t′ u′.

Logical relation(s) The solution in both cases is to define a logical relation that
enrich a desired relation R into a relation R′ which is “closed by application”:
application of R′-related functions to R′-related arguments yield R′-related result,
that is to say, roughly:

∆ ` t R t′ : (x :U)→ T
∀(u, u′), ∆ ` u R′ u′ : U =⇒ ∆ ` t u R′ t′ u′ : T [u/x]

∆ ` t R′ t′ : (x :U)→ T

For tRt′ defined as “t and t′ are equal and weak-head-normalizing”, this yields a
solution to our first problem. For R defined as algorithmic equality, we have a
solution to the second problem.

On terms whose type N is neutral – all normalized types that are not function
types –, we define R′ to coincide with R.

∆ ` t R t′ : N

∆ ` t R′ t′ : N

Such a logical relation R′ is more restrictive than R. What we want to ensure in
general is that it is actually equal to R, as a way to prove that R indeed behaves
well with respect to application. When R is based on definitional equality, what we
need to do is to show that each of the definitional rules are admissible for R′, for
example that it is transitive, and closed under β-reduction; that will give us subject
reduction, and algorithmic soundness as a derived result. When R is algorithmic
equality, we will also prove that R′ admits the definitional equality rule, and that
will give us completeness of the algorithmic equality.

We first attempted to combine the two ideas in a single relation, proving weak-
head normalization – so algorithmic soundness – and algorithmic completeness at
the same time. But, as demonstrated earlier (2.2, page 9), we cannot prove algo-
rithmic transitivity without soundness, so we also failed to prove transitivity of the
hybrid relation. We have to build two separate logical relations, but in practice

22

the technical developments are very similar and don’t need to be repeated; in this
report we have tried to present the logical relation construction generically, to be
later instantiated in those two different cases.

Kripke logical relations The logical relations are characterized by an occurence
of the relation being defined in a negative position, on the left of an implication.
This may make reasoning more difficult, and in particular breaks weakening: if
∆ ` t R′ t′ : (x :U) → T and Γ is an extension of ∆, we do not necessarily have
Γ ` t R′ t′ : (x :U) → T with the rule given above. Indeed, we need to prove that
Γ ` u R′ u′ : U implies Γ ` t u R′ t′ u′, but we only know that ∆ ` u R′ u′ : U
implies ..., and we cannot turn a Γ hypothesis into a stronger ∆ hypothesis.

The solution is to instead use Kripke logical relations, where this negative oc-
curence of the relation is closed over weakening:

∆ ` t R t′ : (x :U)→ T
∀Γ ≤ ∆,∀(u, u′), Γ ` u R′ u′ : U =⇒ Γ ` t u R′ t′ u′ : T [u/x]

∆ ` t R′ t′ : (x :U)→ T

Type computation, dependencies, and universe construction Logical re-
lations are more complex when defined on dependent type systems with type-level
computation. The example rule given above is directed by the presence of a func-
tion type (x :U)→ T ; in a simply-typed setting, such type-definition are direct, but
with type-level computation – non-necessarily dependent, e.g., Fω – this requires
normalization at the type level.

Furthermore, type dependencies blur the simple term/type separation, and the
logical relation will also need to be defined on types classified by sorts, to account
for the behavior of their term subparts. Roughly:

∆ ` (x :U)→ T R (x :U ′)→ T ′ : s ∆ ` U R′ U ′ : s
∀(u, u′), ∆ ` u R′ u′ : U =⇒ ∆ ` T [u/x] R′ T ′[u′/x] : s

∆ ` (x :U)→ T R′ (x :U ′)→ T ′ : s

Finally, we can see that it is not obvious that such a R′ relation is well-defined.
For example, the relation ∆ ` R′ : (x :U)→ T is defined in terms of ∆ ` R′ :
U , that is at a structurally smaller type, but also ∆ ` R′ : T [u/x] where T [u/x]
is not a subterm of (x :U)→ T . Morally, one could say that u being an element of
type U , it is smaller – live in a lower universe – than T and U , and T and T [u/x]
should have “the same size”. But it’s not even clear that ∆ ` u : U , we only know
that ∆ ` u R′ u′ : U .

To justify the well-foundedness of the logical relation, we will first build a se-
mantic universe U. This is a subset of the terms whose construction ensures that
all its elements T give rise to a well-founded logical relation, ie., that ∆ ` R′ : T
is defined for well-formed ∆ `. In particular, as we define our logical relations on
type in weak-head normal form: we will define a universe U ⊆ Whnf, containing
only normal forms, and manipulate types whose whnf is in U.

We would like to have (x : U) → T in U if and only if “(x : U) → T classifies
a well-defined logical relation”, that is if U ∈ U and, for all elements u of type U ,
T [u/x] ∈ U. But it is unclear what “u is of type U” means here, we are trying
to build a semantic universe independent of any typing context ∆. The solution is
to embed an approximation of the type relation “u is of type U” directly in U, by
defining instead U ⊆ Whnf × P(Whnf), with (U,A) ∈ U meaning “U is a type in
the universe, and A is a context-independent approximation of its elements”.

We first give some notation and then produce a satisfying inductive definition
for an universe. For A ∈ P(Whnf) we will write Â := {t | ↓t ∈ A}. Similarly,

23

Û := {(T,A) | (↓T,A) ∈ U}. Finally, for A ∈ P(Whnf) and F ∈Whnf → P(Whnf),
a family of sets, we define the “dependent function space”

ΠAF := {f ∈Whnf | ∀u ∈ Â, f u ∈ F̂(↓u)}

We arrive at the following inductive definition, where Wne is the syntactic class
of neutral normal forms defined in 2.2, page 8.

(N,Wne) ∈ U
N ∈Wne

(U,A) ∈ Û ∀u ∈ Â, (T [u/x], F̂(↓u)) ∈ Û

((x :U)→ T,ΠAF) ∈ U

Again, this seemingly obscure definition is mostly an approximation of types and
their terms independently of any context: without a context, we don’t know what
variables – that is, neutrals – mean, and we choose to allow them to mean anything :
any neutral is considered an approximate type, and has any neutral as approximate
element. This gross approximation is enough to justify the well-foundedness of a
logical relation, as the definition of the relation R′ on neutral types is immediate:
it coincides with the original relation R, and thus will not pose any foundedness
problem.

Note that it is unclear whether this approximation indeed contains all well-typed
terms, or if some of them are left out of the definition. This may be problematic as
we only define our logical relation on this universe: there could be some legitimate
term that is not in the logical relation because our universe approximation is not
precise enough. But that will be ensured in due time: when we will prove that the
logical relation R′ is indeed equal to R – e.g., definitional or algorithmic equality
– we will in particular have shown that all R-related terms are in the universe
approximation.

The formal presentation of the logical relation is in section 3.2, page 11.

B Level polymorphism, irrelevance and heteroge-
neous equality

In this section, we will quickly expose the more advanced type system features con-
sidered. We will only highlight the main ideas, both because of the space constraints
and because the theory is still in flux.

We will however try to expose clearly and rigourously the problem encountered
with heterogeneous equality, and a proposed solution to overcome them. We believe
this may be relevant and applicable to other work on different type system features.

B.1 Level polymorphism

The changes needed to integrate level polymorphism are relatively modest, if we
use the same function arrow (x : U) → T to represent terms parametrized over a
level: this allows to reuse all the metatheory of functions, instead of introducing
a new constructor. We want to be able to write something like (i : Level) → (X :
Set i)→ X → X. This type cannont consistently live in any of the Seti, so we need
a higher universe Setω – on which level-polymorphism does not quantify.

Definitional system We introduce a new type Level, to classify universe levels,
equipped of a 0 : Level constant and a (+ 1) : Level→ Level operation.

We remove the universe hierarchy Seti, introducing instead a constant construc-
tor Set. The type of Set is relatively suspect, as it is self-referential:

Set : (i :Level)→ Set(i+ 1)

24

This problem, also noted by Brown [Bro06] seems not to be an issue in practice; if
it proved problematic, we could instead introduce a syntactic family Set[t] indexed
by expressions (of type Level), and integrate the typing of the family as a rule:

∆ ` t : Level

∆ ` Set[t] : Set[t+ 1]

Finally, we introduce a constant Setω, the universe in which live the level-
polymorphic terms. Note that Setω is a constant which is distinct from all ap-
plications of the Set constructor — in particular, there is no “level ω”. We have
the following typing and cumulativity rules:

∆ `
∆ ` Level : Setω

∆ ` i : Level

∆ ` Set 0 4 Set i

∆ ` i : Level

∆ ` Set i 4 Setω
∆ ` i : Level

∆ ` Set i 4 Set (i+ 1)

∆ ` i1 = i2 : Level

∆ ` Set i1 = Set i2

The fact that Level : Setω forces all level-polymorphic functions to live in universe
Setω, as it must be. Note that we do not have Level 4 Setω: the intuition is that
elements of Level are not types, so do not need to be included in Setω. Finally, let’s
give an example of well-typed level-polymorphic definition:

Id := λi :Level. λX :Set i. λx :X.x

Implicit level/universes coercion The Set constructor is really a wrapper from
levels to universes; this is reminiscent of a more explicit presentation of the pred-
icative universe hierarchy where we distinguish type codes c : Seti and the corre-
sponding type El(c).

We have considered removing the Set constructor and quantifying directly on
universes, Id := λs : Setω. λX :s. λx :X.x, but then the successor operation + 1
needs to have type Setω → Setω, and can also be applied on types, despite there
are not universes.

It would also be possible to distinguish a Sets constant inhabited only by the
universes, with rules Seti : Sets and Sets 4 Setω. But that would break the principal
types, as we would have Seti : Seti+1 and Seti : Sets, whith none more general than
the other.

We have therefore choosed to stay safe by keeping the explicit level/universe
separation.

Algorithmic system and logical relation The algorithmic rules also need to
be adapted for universe polymorphism. The changes are minimal and natural, and
won’t be detailed in this repart.

On the semantic side, we add a two new universes Uω and Upoly to the hierarchy.

Uω :=
⋃
i∈N

Ui Upoly := Uω ∪ {(Setω, |Uω|), (Level,N ∪Wne)}

The logical relation is defined by induction over the membership to the universe;
for T, T ′ ∈ |Ui|, ∆ L̀ T = T ′ : Seti and ∆ L̀ t = t′ : T are defined. We extend it
to relations ∆ L̀ T = T ′ : Setω when T, T ′ ∈ Uω.

∆ `
∆ L̀ Level = Level : Setω

∆ L̀ i1 = i2 : Level

∆ L̀ Set i1 = Set i2 : Setω

25

A type that cannot be typed Adding this supplementary universe Setω imme-
diately prompts the question: “and after that?” We could imagine a level Setω+1, or
quantifying on all Setω+k at Setω∗2... “and after that?” While proof theorists have
investigated ordinal hierarchies of dyzzying strength, we think Setω is a reasonable
first step for a practical programming language.

An important difference with the previous theory is that Setω is a type that
cannot itself be typed. This means you cannot abstract over a variable x of type
Setω, as this would require Γ ` Setω : s.

If this difference proved too perturbing to the user, we could always add “turtles
all the way down” by grafting an infinite universe hierarchy Setω+i, just to regain
that property that all universes are typeable by a successor universe.

B.2 Irrelevance

The work on irrelevance builds on previous work by Abel [Abe11], which integrates
an irrelevant function space in the present type system, using an older presentation
of the metatheoretic techniques presented here. The yet unpublished article with
Abel [AS11] reinstates those results in the current version of the theory — without
cumulativity, but this is an orthogonal aspect.

Complete irrelevance As presented in the introduction (1, page 5), the irrele-
vant function space, written (x÷U) → T , represent functions that do not use the
argument, except in irrelevant positions. The arguments of irrelevant functions
λx÷U. t are marked as irrelevant in the context Γ. x÷U ; they may not be used as
usual variables as the variable rule require (x : U) ∈ Γ, but become usable in the
argument of irrelevant functions, which are type-checked in a “resurrected context”
Γ÷ which turns all irrelevant x÷U into usable x : U again.

Γ. x÷U ` t : T

Γ ` λx÷U. t : (x÷U)→ T

Γ ` t : (x÷U)→ T Γ÷ ` u : U

Γ ` t÷u : T [u/x]

To check equality between two applications f ÷u, f ′ ÷u′ to irrelevant functions,
we only need to check equality of functions, and well-typedness – and not equality –
of the arguments. At the definitional, algorithmic and logical relation levels, where
Γ L̀ t : T means Γ L̀ t = t : T , and is a “logical well-typedness check”:

Γ ` t = t′ : (x÷U)→ T Γ÷ ` u : U Γ÷ ` u′ : U

Γ ` t÷u = t′ ÷u′ : T [u/x]

∆ ` n ←̂→ n′ : (x÷U)→ T

∆ ` n÷u ←̂→ n′ ÷u′ : T [u/x]

∀Γ ≤ ∆, Γ L̀ u : U ∧ Γ L̀ u
′ : U =⇒ Γ L̀ t

÷u = t′ ÷u′ : T [u/x]

∆ L̀ t = t′ : (x÷U)→ T

Shape irrelevance We would like levels to be irrelevant to allow for more equali-
ties, e.g., ` Id 0 = Id (0 + 1), but also to make already-true equalities less tedious to
prove by removing the level-equality proof obligations. The previous notion of irrel-
evance is unfortunately too strong for universe levels, as making our set constructor
completely irrelevant, Set : (i÷Level) → Set (i + 1), would collapse all universes,
e.g., � ` Set 1 = Set 2.

The solution we currently explore, very speculatively, would be to add a dif-
ference irrelevant marker, shape irrelevance :, that woud allow equalities between
terms using different universes in their types, but not between different universes as
terms.

One way to do this is to have two equality modes, Γ ` t = t′ : T for the usual,
or strict, equality, and Γ ` t .

= t′ : T for shape equality. In strict equality, the :

26

irrelevance marker is basically ignored, and in shape equality it is transformed into
the irrelevant ÷ marker.

But with this design, the homogeneous equality used so far raises new problems.
We have already discussed its inherent asymmetry, manifest for example in the
function equality rule — we use ? as “relevance marker variables” to quantify over
{:, :,÷}

Γ ` U .
= U ′ : s Γ. x?U ` t = t′ : T

Γ ` λx?U. t = λx?U ′. t′ : (x?U)→ T

The arbitrary choice of U over U ′ in the subcheck of t = t′ makes syntactic validity,
specifically proving that Γ. x?U ` t′ : T , difficult. But the situation is even worse
with shape-irrelevance, consider for example λX : Set i. t = λX : Set j. t′; shape
equality Set i

.
= Set j will hold even for unrelated i, j, and then Γ. X :Setj ` t′ : T

may not hold, breaking syntactic validity.
This issue has encouraged us to consider heterogeneous equality again, which

we will shortly present in the next subsection.

B.3 Heterogeneous equality

A solution to avoid the asymmetry problems of the equality check Γ ` t = t′ : T
is to move to heterogeneous equality, where contexts and types may differ on both
sides of the equal sign: Γ ` t : T = Γ′ ` t′ : T ′. We preserve the invariant that
Γ,Γ′ have the same domains, and the intuition in that the type in each, as well
as T, T ′, are pairwise equal upto definitional equality. For example, the function
equality rule becomes:

Γ ` U : s = Γ′ ` U ′ : s′ Γ. x?U ` t : T = Γ′. x?U ′ ` t′ : T ′

Γ ` λx?U. t : (x?U)→ T = Γ′ ` λx?U ′. t′ : (x?U ′)→ T ′

While syntactically heavier, this rule has the advantage of preserving syntactic
validity: while in the homogeneous setting it is a non-trivial result to prove that
Γ. x?U ` t′ : T holds, it is there immediate that we have Γ′. x?U ′ ` t′ : T ′. A
result that is achieved by the semantic method of logical relations in our previous
development becomes trivial, strengthening the syntactic virtues of our definitional
system.

Algorithmic equality can easily, if heavily, be adapted to the heterogeneous
setting. A particularly compelling aspect of heterogeneous algorithmic equality is
that, as the asymmetry has been removed, there is nothing in the way of transitivity
anymore; we can easily prove that algorithmic equality is a P.E.R. However, this
does not seem to be enough to reduce the formal development to one single logi-
cal relation instead of two; context conversion for algorithmic equality still seems
problematic in absence of soundness, even for heterogeneous equality.

We can make the intuition that context are pairwise equal more precise, by
defining a context equality relation ∆` = ∆′ `, reminiscent of the Γ 4 Γ′ ` relation
defined previously (4.1, page 18):

� ` = � `
Γ` = Γ′ ` Γ ` U : s = Γ′ ` U ′ : s′

Γ. x?U ` = Γ′. x?U ′ `

It is then immediate than Γ ` t : T = Γ′ ` t′ : T ′ implies Γ` = Γ′ `.

27

The logical transitivity failure All is well until we consider the logical relation:

∆ B̀ t : (x?U)→ T = ∆′ B̀ t
′ : (x?U ′)→ T ′

∆ L̀ U : s = ∆′ L̀ U
′ : s′

∀(Γ,Γ′) ≤ (∆,∆′),
Γ L̀ u ? U = Γ′ L̀ u

′ ? U ′ =⇒ Γ L̀ t
?u : T [u/x] = Γ′ L̀ t

′ ?u′ : T ′[u′/x]

∆ L̀ t : (x?U)→ T = ∆′ L̀ t′ : (x?U ′)→ T ′

The main problem with this definition is not the awkwardness of the L̀ syntax
in an heterogeneous setting, but that transitivity seems to fail. Indeed, suppose we
have:

∆1 L̀ U1 : s1 = ∆2 L̀ U2 : s2

∀(Γ1,Γ2) ≤ (∆1,∆2),

Γ1 L̀ u ? U1 = Γ2 L̀ u
′ ? U2 =⇒ Γ1 L̀ t1

?u : T1[u/x] = Γ2 L̀ t2
?u : T2[u′/x]

∆2 L̀ U2 : s2 = ∆3 L̀ U3 : s3

∀(Γ2,Γ3) ≤ (∆2,∆3),

Γ2 L̀ u ? U2 = Γ3 L̀ u
′ ? U3 =⇒ Γ2 L̀ t2

?u2 : T2[u/x] = Γ3 L̀ t3
?u3 : T3[u′/x]

and want to prove

∆1 L̀ U1 : s1 = ∆3 L̀ U3 : s3

∀(Γ1,Γ3) ≤ (∆1,∆3),

Γ1 L̀ u ? U1 = Γ3 L̀ u
′ ? U3 =⇒ Γ1 L̀ t1

?u : T1[u/x] = Γ3 L̀ t3
?u′ : T3[u′/x]

Proving U1 = U3 still works inductively. But then, given context (Γ1,Γ3) we
have a (u, u′) pair at (U1, U3). What we want to do is, as in the homogeneous
proof (3.2, page 14), to use type conversion to get (u, u) at (U1, U2) and (u, u′)
at (U2, U3), before using transitivity at T . But to do this, we shall provide some
context Γ2 ≤ ∆2. There is no immediate choice for this Γ2, and because of that no
immediate proof of transitivity. We didn’t have this problem in the homogeneous
case, because all implications were quantified over the same context Γ ≤ ∆.

If we cannot prove transitivity of the logical relation, then we don’t have a
fundamental lemma, as it relies on the fact that all definitional rules are admissible,
in particular transitivity.

Context conversion Our intuition of why the transitivity of the logical relation
should hold is that if ∆2 and ∆3, really have pairwise (shape-)equal types, then we
should be able to build a suitable Γ2 ≤ ∆2 by “applying to Γ3 the changes between
∆3 and ∆2”.

This intuition can be made precise by defining a context conversion operation
{∆⇒∆′} for equal contexts ∆` = ∆′ `, that would transform a well-typed term in
context ∆ to a corresponding well-typed term in context ∆′. This can be done by a
simple directed reading of the already-existing compatibility rules for heterogeneous
equality, Γ ` t : T ⇒ Γ′ ` t′ : T ′, for example:

(x : U) ∈ Γ (x : U ′) ∈ Γ′

Γ ` x : U ⇒ Γ′ ` x : U ′

Γ ` U : s⇒ Γ′ ` U ′ : s′ Γ. x?U ` t : T ⇒ Γ′. x?U ′ ` t′ : T ′

Γ ` λx?U. t : (x?U)→ T ⇒ Γ′ ` λx?U ′. t′ : (x?U ′)→ T ′

Given Γ` = Γ′ ` and a well-typed t (Γ ` t : T for some T), Γ ` t : T ⇒ Γ `
t′ : T ′ always holds. As the compositionality rules are syntax-directed, it uniquely
defines a t′. We write t{Γ⇒Γ′} for such a t′.

28

Lemma 44 Context conversion also applies on the type component: if Γ` = Γ′ `
and Γ ` t : T , then Γ ` t{Γ⇒Γ′} : T{Γ⇒Γ′}.

We can then extend {Γ⇒Γ′} on contexts ∆ ≤ Γ:

• Γ{Γ⇒Γ′} := Γ′

• If ∆ ≤ Γ, then (∆. x?U){Γ⇒Γ′} := ∆{Γ⇒Γ′}. x?(U{Γ⇒Γ′})

Lemma 45 (Context conversion is compatible with weakening) If ∆ ≤ Γ,
then ∆{Γ⇒Γ′} ≤ Γ′.

Logical transitivity with context conversion The previous definition of con-
text conversion was done in the definitional setting. Using the very similar prop-
erties of type conversion at the logical relation level, we are able to transpose the
definition to logical context relation Γ L̀ = Γ′ L̀. We will write {Γ⇒Γ′} as well for
this new operation, as it is always clear from the context which is applied.

The {Γ⇒Γ′} operation is used in the heterogeneous version of the type conversion
lemma — lemma which was used in the homogeneous proof of transitivity of the
logical relation.

Lemma 46 (Type conversion) If ∆1 L̀ t1 : T1 = ∆2 L̀ t2 : T2 and ∆2 L̀ T2 :
s2 = ∆3 L̀ T3 : s3 then ∆1 L̀ t1 : T1 = ∆3 L̀ t2{∆2⇒∆3} : T3.

We can now proceed with the proof of transitivity. The core idea is that we had
∆1 ` = ∆2 ` = ∆3 `, plus (Γ1,Γ3) ≤ (∆1,∆3), but we missed a Γ2 ≤ ∆2 to use the
hypothesis implications. We can now build it, using context conversion, as either
Γ1{∆1⇒∆2} or Γ3{∆3⇒∆2}; both choices make the proof proceed.

29

References

[Abe11] Andreas Abel. Irrelevance in type theory with a heterogeneous equality
judgement. In Martin Hofmann, editor, Foundations of Software Science
and Computational Structures, 14th International Conference, FOSSACS
2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26 -
April 3, 2011. Proceedings, volume 6604 of Lecture Notes in Computer
Science, pages 57–71. Springer-Verlag, 2011.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by
evaluation for Martin-Löf Type Theory with typed equality judgements.
In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-
12 July 2007, Wroclaw, Poland, Proceedings, pages 3–12. IEEE Computer
Society Press, 2007.

[Ama08] Roberto M. Amadio, editor. Foundations of Software Science and Compu-
tational Structures, 11th International Conference, FOSSACS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008.
Proceedings, volume 4962 of Lecture Notes in Computer Science. Springer-
Verlag, 2008.

[AS11] Andreas Abel and Gabriel Scherer. Irrelevance in type theory with a
heterogeneous equality judgement. Unpublished, 2011.

[BB08] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions
as a programming language with dependent types. In Amadio [Ama08],
pages 365–379.

[Bro06] Daniel Brown. Exploring universe polymorphism in omega. Master’s
thesis, 2006.

[BW97] Bruno Barras and Benjamin Werner. Coq in coq. Technical report, 1997.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory.
In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 255–279.
Cambridge University Press, 1991.

[Cou02] Judicaël Courant. Explicit universes for the calculus of constructions. In
Proceedings of the 15th International Conference on Theorem Proving in
Higher Order Logics, pages 115–130, 2002.

[Fef04] Solomon Feferman. Typical ambiguity: Trying to have your cake and eat
it too. In One Hundred Years Of Russell’s Paradox: Mathematics, Logic,
Philosophy, pages 135–151. Walter De Gruyter Inc., 2004.

[Gog00] Healfdene Goguen. A Kripke-style model for the admissibility of struc-
tural rules. In Paul Callaghan, Zhaohui Luo, James McKinna, and Robert
Pollack, editors, Types for Proofs and Programs, International Workshop,
TYPES 2000, Durham, UK, December 8-12, 2000, Selected Papers, vol-
ume 2277 of Lecture Notes in Computer Science, pages 112–124. Springer-
Verlag, 2000.

[HP91] Robert Harper and Robert Pollack. Type checking with universes.
Theoretical Computer Science, 89:107–136, 1991. doi:10.1016/

0304-3975(90)90108-T.

30

http://dx.doi.org/10.1016/0304-3975(90)90108-T
http://dx.doi.org/10.1016/0304-3975(90)90108-T

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical
forms in the LF type theory. ACM Transactions on Computational
Logic, 6(1):61–101, 2005. doi:http://doi.acm.org/10.1145/1042038.

1042041.

[Luo90] Zhaohui Luo. ECC: An Extended Calculus of Constructions. PhD thesis,
University of Edinburgh, 1990. Available from: http://www.lfcs.inf.

ed.ac.uk/reports/90/ECS-LFCS-90-118/.

[McB11] Conor McBride. Crude but effective stratification, 2011. Available from:
http://www.e-pig.org/epilogue/?p=857.

[Miq01] Alexandre Miquel. The implicit calculus of constructions. In Samson
Abramsky, editor, Typed Lambda Calculi and Applications, 5th Interna-
tional Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceed-
ings, volume 2044 of Lecture Notes in Computer Science, pages 344–359.
Springer-Verlag, 2001.

[MLS08] Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in
pure type systems. In Amadio [Ama08], pages 350–364.

[Nor07] Ulf Norell. Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Göteborg, Sweden, September 2007.

[Pfe01] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In 16th IEEE Symposium on Logic in Computer Sci-
ence (LICS 2001), 16-19 June 2001, Boston University, USA, Proceed-
ings. IEEE Computer Society Press, 2001.

[Ree03] Jason Reed. Extending higher-order unification to support proof irrele-
vance. In David A. Basin and Burkhart Wolff, editors, Theorem Proving
in Higher Order Logics, 16th International Conference, TPHOLs 2003,
Rom, Italy, September 8-12, 2003, Proceedings, volume 2758 of Lecture
Notes in Computer Science, pages 238–252. Springer-Verlag, 2003.

[VC02] Joseph C. Vanderwaart and Karl Crary. A simplified account of the
metatheory of Linear LF. In Third International Workshop on Logical
Frameworks and Metalanguages (LFM 2002), FLoC’02 affiliated work-
shop, Copenhagen, Denmark, 2002. An extended version appeared as
CMU Technical Report CMU-CS-01-154.

31

http://dx.doi.org/http://doi.acm.org/10.1145/1042038.1042041
http://dx.doi.org/http://doi.acm.org/10.1145/1042038.1042041
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/
http://www.e-pig.org/epilogue/?p=857

	Goals, challenges, related works and design space
	Definitional and Algorithmic equality
	Definitional equality
	Algorithmic type checking and equality
	Cumulativity

	Equivalence of definitional and algorithmic system: logical relations
	An informal introduction to Kripke logical relations
	Formal presentation of a generic logical relation
	Validity and substitutions

	The eagerly awaited metatheoretic results
	Metatheory of the definitional rules
	Metatheory of the algorithmic equality
	Completeness of algorithmic equality

	Universe polymorphism, level irrelevance and heterogeneous equality
	Appendices
	An informal introduction to Kripke logical relations
	Level polymorphism, irrelevance and heterogeneous equality
	Level polymorphism
	Irrelevance
	Heterogeneous equality

