Multi-focusing on extensional rewriting with sums (introduction)

Gabriel Scherer

Gallium - INRIA

March 11, 2014

$$\begin{aligned} &(\lambda(x) t) \ u \to_{\beta} t[u/x] &(t:A \to B) =_{\eta} \lambda(x) t x \\ &\pi_i \ (t_1, t_2) \to_{\beta} t_i &(t:A * B) =_{\eta} (\pi_1 \ t, \pi_2 \ t) \end{aligned}$$

$$\begin{aligned} (\lambda(x) t) & u \rightarrow_{\beta} t[u/x] & (t : A \rightarrow B) =_{\eta} \lambda(x) t x \\ \pi_i (t_1, t_2) \rightarrow_{\beta} t_i & (t : A * B) =_{\eta} (\pi_1 t, \pi_2 t) \\ & \delta(\sigma_i t, x_1.u_1, x_2.u_2) \rightarrow_{\beta} u_i[t/x_i] \\ & (t : A + B) =_{\eta} \delta(t, x_1.\sigma_1 x_1, x_2.\sigma_2 x_2) \end{aligned}$$

$$\begin{aligned} (\lambda(x) t) & u \rightarrow_{\beta} t[u/x] & (t:A \rightarrow B) =_{\eta} \lambda(x) t x \\ \pi_i (t_1, t_2) \rightarrow_{\beta} t_i & (t:A * B) =_{\eta} (\pi_1 t, \pi_2 t) \\ & \delta(\sigma_i t, x_1.u_1, x_2.u_2) \rightarrow_{\beta} u_i[t/x_i] \\ & (t:A + B) =_{\eta} \delta(t, x_1.\sigma_1 x_1, x_2.\sigma_2 x_2) \\ & (t, u) \stackrel{?}{=} \delta(t, x_1.(\sigma_1 x_1, u), x_2.(\sigma_2 x_2, u)) \end{aligned}$$

$$\begin{aligned} (\lambda(x) t) & u \rightarrow_{\beta} t[u/x] & (t : A \rightarrow B) =_{\eta} \lambda(x) t x \\ \pi_i (t_1, t_2) \rightarrow_{\beta} t_i & (t : A * B) =_{\eta} (\pi_1 t, \pi_2 t) \\ & \delta(\sigma_i t, x_1.u_1, x_2.u_2) \rightarrow_{\beta} u_i[t/x_i] \\ & (t : A + B) =_{\eta} \delta(t, x_1.\sigma_1 x_1, x_2.\sigma_2 x_2) \\ & (t, u) \stackrel{?}{=} \delta(t, x_1.(\sigma_1 x_1, u), x_2.(\sigma_2 x_2, u)) & K = (\Box, u) \end{aligned}$$

Current research topic: does a given type have a **unique** inhabitant (modulo program equivalence)?

$$\begin{aligned} (\lambda(x) t) & u \to_{\beta} t[u/x] & (t : A \to B) =_{\eta} \lambda(x) t x \\ \pi_i (t_1, t_2) \to_{\beta} t_i & (t : A * B) =_{\eta} (\pi_1 t, \pi_2 t) \\ \delta(\sigma_i t, x_1.u_1, x_2.u_2) \to_{\beta} u_i[t/x_i] \end{aligned}$$

 $\forall (\mathcal{K}[\mathcal{A}_1 + \mathcal{A}_2] : \mathcal{B}), \quad \mathcal{K}[t] =_{\eta} \delta(t, x_1.\mathcal{K}[\sigma_1 x_1], x_2.\mathcal{K}[\sigma_2 x_2])$

Current research topic: does a given type have a **unique** inhabitant (modulo program equivalence)?

$$\begin{aligned} &(\lambda(x) t) \ u \to_{\beta} t[u/x] &(t : A \to B) =_{\eta} \lambda(x) t \ x \\ &\pi_i \ (t_1, t_2) \to_{\beta} t_i &(t : A * B) =_{\eta} (\pi_1 t, \pi_2 t) \\ &\delta(\sigma_i t, x_1.u_1, x_2.u_2) \to_{\beta} u_i[t/x_i] \end{aligned}$$

 $\forall (\mathcal{K}[\mathcal{A}_1 + \mathcal{A}_2] : \mathcal{B}), \quad \mathcal{K}[t] =_{\eta} \delta(t, x_1.\mathcal{K}[\sigma_1 x_1], x_2.\mathcal{K}[\sigma_2 x_2])$

- Sum equivalence looks hard. Can we implement it?
- Are there representations of programs (proofs) that quotient over those equivalences?

My paper in one slide

The equivalence algorithm of

Sam Lindley. Extensional rewriting with sums. In *TLCA*, pages 255–271, 2007.

and the normalization of proof representations in

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin.
 Canonical sequent proofs via multi-focusing.
 In *IFIP TCS*, pages 383–396, 2008.

are doing (almost) the same thing – and we had not noticed.

In this talk

Sam Lindley's rewriting-based algorithm is the first **simple** solution (first solution: Neil Ghani, 1995) to deciding sum equivalences.

It's easy to understand and follow. But to me it felt a bit arbitrary.

On the other hand, (multi-)focusing is beautiful, but requires some background knowledge.

Providing it is the purpose of this talk.

Sequent calculus

(Can be done in natural deduction, but less regular)

$$\begin{array}{c}
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C} - \\
\frac{\Gamma, A_i \vdash C}{\Gamma, A_1 * A_2 \vdash C} - \\
\end{array}$$

$$\begin{array}{c}
\frac{\Gamma, A_i \vdash C}{\Gamma, A_1 + A_2 \vdash C} \\
\frac{\Gamma \vdash A_1 \quad \Gamma \vdash A_2}{\Gamma \vdash A_1 * A_2} + \\
\end{array}$$

Inversible vs. non-inversible rules.

Negatives (interesting on the left): products, arrow, atoms. Positives (interesting on the right): sum, atoms.

Inversible phase

$$\frac{\frac{?}{X+Y\vdash X}}{X+Y\vdash X+Y}$$

If applied too early, non-inversible rules can ruin your proof.

Inversible phase

$$\frac{?}{\overline{X+Y\vdash X}} \\ \overline{X+Y\vdash X+Y}$$

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases Inversible rules must be applied as soon and as long as possible – and their order does not matter.

Inversible phase

$$\frac{?}{\overline{X+Y\vdash X}} \\ \overline{X+Y\vdash X+Y}$$

If applied too early, non-inversible rules can ruin your proof.

Focusing restriction 1: inversible phases

Inversible rules must be applied as soon and as long as possible – and their order does not matter.

Imposing this restriction gives a single proof of $(X \to Y) \to (X \to Y)$ instead of two $(\lambda(f) f \text{ and } \lambda(f) \lambda(x) f x)$.

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be applied as long as possible – until its polarity changes.

Non-inversible phases

After all inversible rules, $\Gamma_n \vdash A_p$

Only step forward: select a formula, apply some non-inversible rules on it.

Focusing restriction 2: non-inversible phase

When a principal formula is selected for non-inversible rule, they should be applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. **Non-trivial !** Example of removed redundancy:

$$\frac{X_{2}, \qquad Y_{1} \vdash A}{X_{2} * X_{3}, \qquad Y_{1} \vdash A} \\ \overline{X_{2} * X_{3}, \qquad Y_{1} * Y_{2} \vdash A} \\ \overline{X_{1} * X_{2} * X_{3}, \qquad Y_{1} * Y_{2} \vdash A}$$

This was focusing

Focused proofs are structured in alternating phases, inversible (boring) and non-inversible (focus).

Phases are forced to be as long as possible – to eliminate duplicate proofs.

The idea is independent from the proof system. Applies to sequent calculus or natural deduction; intuitionistic, classical, linear, you-name-it logic.

On proof terms, these restrictions correspond to $\beta\eta$ -normal forms (at least for products and arrows). But the fun is in the search.

Demo Time

$(1 \rightarrow X \rightarrow (Y + Z)) \rightarrow X \rightarrow (Y \rightarrow W) \rightarrow (Z + W)$

$\Gamma; \Delta, A \vdash B$	$\Gamma; \Delta \vdash A \qquad \Gamma; \Delta \vdash B$		
$\overline{\Gamma; \Delta \vdash A ightarrow B}$	$\Gamma; \Delta \vdash A \ast B$		
$\Gamma; A, \Delta \vdash C \qquad \Gamma; B, \Delta \vdash C$	$\Gamma, A_n; \Delta \vdash C$		
$\overline{\Gamma; A + B, \Delta \vdash C}$	$\overline{\Gamma; A_n, \Delta \vdash C}$		

	$\Gamma; \Delta, A \vdash B$	$\Gamma; \Delta \vdash A$	$\Gamma; \Delta \vdash B$
Г	$\overline{\Gamma; \Delta \vdash A \to B} \qquad \qquad \overline{\Gamma; \Delta \vdash A * E}$		A * B
Γ ; $A, \Delta \vdash C$	$\Gamma; B, \Delta \vdash C$	$\Gamma, A_n; \Delta \vdash C$	$\Gamma_n, B_n B_n \vdash C_p$
$\Gamma; A + E$	$B, \Delta \vdash C$	$\overline{\Gamma; A_n, \Delta \vdash C}$	$\Gamma_n, B_n; \emptyset \vdash C_p$

$$\frac{\Gamma_n \vdash \boxed{C_p}}{\Gamma_n; \emptyset \vdash C_p}$$

	$\Gamma; \Delta, A \vdash B$		$\frac{\Gamma; \Delta \vdash B}{\Delta \vdash B}$
I	; $\Delta \vdash A ightarrow B$	Ι;Δ	- A * B
	$\frac{\Gamma; B, \Delta \vdash C}{B, \Delta \vdash C}$	$\frac{\Gamma, A_n; \Delta \vdash C}{\Gamma; A_n, \Delta \vdash C}$	$\frac{\left \Gamma_n, B_n \right \left B_n \right \vdash C_p}{\left \Gamma_n, B_n \right \emptyset \vdash C_p}$
$\frac{\Gamma_n \vdash C_p}{\Gamma_n; \emptyset \vdash C_p}$		$\begin{vmatrix} A_i \end{vmatrix} \vdash C$ $A_1 * A_2 \vdash C$	$\frac{\Gamma \vdash A \qquad \Gamma \boxed{B} \vdash C}{\Gamma \boxed{A \to B} \vdash C}$
$\frac{\Gamma \vdash}{\Gamma \vdash \boxed{A_2}}$			

	$A \vdash B$ $\overline{A \rightarrow B}$	-	$\Gamma; \Delta$ $\Delta \vdash A * B$	<i>⊢ B</i>
$\frac{\Gamma; A, \Delta \vdash C \qquad \Gamma}{\Gamma; A + B, \Delta}$		$\frac{\Gamma, A_n; \Delta \vdash C}{\Gamma; A_n, \Delta \vdash C}$		$\frac{\Gamma_n, B_n}{\Gamma_n, B_n; \emptyset \vdash C_p}$
$\frac{\Gamma_n \vdash \boxed{C_p}}{\Gamma_n; \emptyset \vdash C_p}$		$A_i \vdash C$ $A_1 \vdash C$		$ \Gamma \boxed{B} \vdash C $ $ \rightarrow B \vdash C $
$\frac{\Gamma \vdash \boxed{A_i}}{\Gamma \vdash \boxed{A_1 + \lambda}}$	4 ₂	$\frac{\Gamma; B \vdash \alpha}{\Gamma B_p} \vdash$		$\frac{\Gamma; \emptyset \vdash C}{\Gamma \vdash \boxed{C_n}}$

Success stories

Focusing was introduced by Andreoli in 1992. Revolution in logic programming.

Forward-chaining and backward-chaining expressed in a single system by assigning polarities to atoms. Funnier stuff (magic sets?) with dynamic polarity changes.

Syntethic connectives: state-of-the-art automated theorem proving for non-classical logics

(+ Jumbo connectives, Paul Blain Levy, 2006)

Lazy vs. strict: focusing, polarization (Zeilberger (2008), Munch-Maccagnoni (2013)).

A sequent calculus with cut-free search bisimilar to DPLL (Lengrand, 2013).

This is **not** the end

$$(A+A)
ightarrow A$$

 $(1
ightarrow (A+A))
ightarrow A$

$$\begin{split} \lambda(x) \, \delta(x \, 1, \, y.y, \, y.y) \\ \lambda(x) \, \delta(x \, 1, \, y.\delta(x \, 1, \, y'.y', \, y'.y'), \, y.y) \\ \lambda(x) \, \delta(x \, 1, \, y.y, \, y.\delta(x \, 1, \, y'.y, \, y'.y)) \end{split}$$

. . .

Multi-focusing

Sometimes several independent foci are possible to make progress in a proof.

Multi-focusing (Miller and Saurin, 2007): do them all at once, in parallel.

$$\frac{\begin{array}{ccc} X_{2}, & Y_{1} \vdash A \\ \hline X_{2} * X_{3}, & Y_{1} \vdash A \\ \hline X_{2} * X_{3}, & Y_{1} * Y_{2} \vdash A \\ \hline X_{1} * X_{2} * X_{3}, & Y_{1} * Y_{2} \vdash A \end{array}}{\Rightarrow \qquad \begin{array}{c} X_{2}, & Y_{1} \vdash A \\ \hline X_{2} * X_{3}, & Y_{1} \vdash A \\ \hline X_{2} * X_{3}, & Y_{1} * Y_{2} \vdash A \\ \hline X_{1} * X_{2} * X_{3}, & Y_{1} * Y_{2} \vdash A \end{array}$$

$$\frac{\Gamma_n, \Delta_n | \Delta_n \vdash A_p^?, B_p^?}{\Gamma_n, \Delta_n \vdash A_p^?, B_p^?}$$

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a maximally parallel multi-focused proof?

Yes. (In the good logics)

Maximal multi-focusing

Given a focused proof, it is possible to put focused sequences in parallel to exhibit some parallelism – without changing the operational meaning of the proof, seen as a pure program.

Does there exists a **maximally parallel** multi-focused proof?

Yes. (In the good logics)

Maximally multi-focusing is a powerful notion of canonical structure for proof.

- linear logic: proof nets (Chaudhuri, Miller, Saurin, 2008)
- first-order classical logic: expansion proofs (Chaudhuri, Hetzl, Miller, 2013)

"Evolution rather than revolution" (Dale Miller)

$$\left\{\begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array}\right\}$$

$$\left. \begin{array}{c} I_2 \\ NI_2 \\ I_1 & I_3 \\ NI_1 & NI_3 \end{array} \right\}$$

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\}$$

$$\left. \begin{array}{c} I_2 \\ NI_2 \\ I_1 & I_3 \\ NI_1 & NI_3 \end{array} \right\}$$

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} & NI_{3} \\ I_{1} \\ NI_{1} \end{array} \right\}$$

$$\left. \begin{array}{c} I_2 \\ NI_2 \\ I_1 \\ NI_1 \\ NI_1 \end{array} \right\}$$

 \rightarrow

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{3}; (I_{2}) \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} & NI_{3} \\ I_{1} \\ NI_{1} \end{array} \right\} \right\} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ I_{1} \\ NI_{1} \end{array} \right\} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{3}; (I_{1}) \\ NI_{1} \end{array} \right\} \right\} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{3}; (I_{1}) \\ NI_{1} \end{array} \right\} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{1} \end{array} \right\} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} \\ I_{1} & I_{3} \\ NI_{1} & NI_{3} \end{array} \right\} \\ \end{array} \right\}$$

 \rightarrow

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{3}; (I_{2}) \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} & NI_{3} \\ I_{1} \\ NI_{1} \end{array} \right\}$$

$$* \left\{ \begin{array}{c} I_{2} & I_{3} \\ I_{1} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{3}; (I_{1}) \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{1} \end{array} \right\} ? \left\{ \begin{array}{c} I_{2} \\ NI_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} ? \left\{ \begin{array}{c} I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\}$$

 \rightarrow

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{3}; (I_{2}) \\ I_{1} \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} & NI_{3} \\ I_{1} \\ NI_{1} \end{array} \right\}$$

$$* \left\{ \begin{array}{c} I_{2} & I_{3} \\ I_{1} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{3}; (I_{1}) \\ NI_{1} \end{array} \right\} \rightarrow^{*} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{1} \end{array} \right\} \triangleright \left\{ \begin{array}{c} I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \right\}$$

 \rightarrow

Preemptive rewriting temporarily breaks the focused structure to move foci as far down as possible.

$$\left\{ \begin{array}{c} I_{3} \\ NI_{3} \\ I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} * \left\{ \begin{array}{c} I_{3} \\ I_{2} \\ NI_{3}; (I_{2}) \\ NI_{3}; (I_{2}) \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2} & NI_{3} \\ I_{1} \\ NI_{1} \end{array} \right\} \\ \xrightarrow{} * \left\{ \begin{array}{c} I_{2} & I_{3} \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} * \left\{ \begin{array}{c} I_{2} & I_{3} \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} \\ * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{3}; (I_{1}) \\ NI_{1} \end{array} \right\} \xrightarrow{} * \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} I_{2} & I_{3} \\ NI_{2}; (I_{3}) \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} I_{2} \\ NI_{2} \\ I_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{} \\ NI_{1} \\ NI_{1} \end{array} \right\} \xrightarrow{}$$

(This is the heart of the correspondence with Sam Lindley's work)

Conclusion

Focusing imposes extra structure on proofs, based on rules permutability (inversible, non inversible).

Multi-focusing is a natural generalization of focusing, which gives very strong canonicity.

Existing equivalence-checking algorithms can be **logically justified** as maximalization techniques.

Multi-focusing may help me decide unicity of types.