
Contents 1/32

I Beginning

I Isomorphisms of recursive types

I Recursive types

I Bipartite graphs

I Algorithm

I Complexity

I Conclusions



Subtyping Recursive Types modulo

Associative Commutative Products

Didier Rémy INRIA-Rocquencourt

Joint work with:

Roberto Di Cosmo University of Paris 7

François Pottier INRIA-Rocquencourt

IFIP, December 2003



What is an isomorphism? 3/32

I A and B are isomorphic iff there exist f and g such that

A B

f

g

idA idB

A and B may be:

I types in a λ-calculus

I objects in a category

I formulae of a logic

I specifications of software components

I • • •



We strive to find all type isomorphisms 4/32

Usually, one tries to be very precise about:

I the types under consideration

I the language allowed for building converters

I the equational theory used to prove the isomorphism

We want, if possible:

I a complete characterization

I an efficient decision algorithm

I a way to build the converters



Sometimes, we know all the isomorphisms 5/32

(swap) A → (B → C) = B → (A → C)
o

Th1

1. A × B = B × A

2. A × (B × C) = (A × B) × C

3. (A × B) → C = A → (B → C)

4. A → (B × C) = (A → B) × (A → C)

5. A × T = A

6. A → T = T

7. T → A = A

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Th1
×T

8. ∀X.∀Y.A = ∀Y.∀X.A

9. ∀X.A = ∀Y.A[Y/X] (a)

10. ∀X.(A → B) = A → ∀X.B (b)

9

>

>

=

>

>

;

+swap

= Th2

11. ∀X.A × B = ∀X.A × ∀X.B

12. ∀X.T = T

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Th2
×T

split ∀X.A × B = ∀X.∀Y.A × (B[Y/X])

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

− 10, 11 = ThML

(a) X free for Y in A and Y 6∈ FTV (A). (b) X 6∈ FTV (A). /



Isomorphisms of recursive types 6/32

We want to have explicit recursive types for

Search in OO libraries

recursive types (µ) are a key tool to describe objects and

classes

Automatic adapter synthesis

recursive types (µ) are a key tools in Mockingbird, together

with sum types

But isomorphisms of recursive types

is a very tricky subject!



Isomorphism of recursive types 7/32

three kinds

Identity A = B because [[A]]=[[B]]. e.g.

µX.A × X = µX.A × (A × X)

Captured by Amadio/Cardelli/Fiore/Abadi’s “fix” rule:
A = F (A)

A = µX.F (X)

Identity realised A = B is proved by terms that erase to the

identity. e.g. ∀X.∀Y.A = ∀Y.∀X.A

Proper A = B has a computational content, e.g. A × B = B × A



Isomorphism of recursive types 8/32

Different kinds must not be mixed!

For any A and B we have the “proper” isomorphisms

A = A × 1 B = B × 1

If we mix them with “identity” isomorphisms, we can apply fix

A = A × 1

A = µX.X × 1

B = B × 1

B = µX.X × 1

And then, we conclude A = B!

The system Th1
×T ∪ Amadio/Cardelli is inconsistent!



Isomorphisms of recursive types. . . 9/32

However, we can get some useful results if we give up the quest

for completeness:

Side-by-side strategy

Theorem (Di Cosmo-Lopez)

The system (=Amadio/Cardelli ∪ =
Th1

×T
)∗ is consistent.

This seems to suffice to validate many of the Mockingbird

rules.

Workable-subsystem strategy

Approach used by Palsberg and Zhao: consider only the

isomorphisms of recursive types generated by applying the

associativity and commutativity rule to finite sets of products.

This is also the approach we will follow here.



Chronology 10/32

1996 Abadi-Fiore’s “Syntactic considerations on recursive types”: find the

coercions between “identity” isomorphic types, discover the problem with

A = A × 1

1997 IBM’s Mockingbird project: motivational examples for proper recursive

isomoprhisms

1998 Brandt-Henglein “Coinductive axiomatization of recursive type equality

and subtyping”

2000 Palsberg-Zhao: efficient equality of recursive types up to AC(×) via

perfect bipartite graph matching in O(n2)

2002 Jha-Palsberg-Zhao: more efficient equality of recursive types up to

AC(×) via size-stable graph partitions in O(n log n)

2002 Jha-Palsberg-Zhao-Henglein: minor variant of above

2002 Di Cosmo-Pottier-Rémy: subtyping of recursive types up to AC(×) via

bipartite graph matching this work



Recursive types 11/32

A recursive type can be equivalently presented as:

µ-notation a finite set of recursive equations

(can be coded with the µ operator)

I = int× I (µα.int × α)

regular trees a (possibly infinite) tree having only a finite

number of distinct subtrees (can be represented as a graph)

×

int ×

int ...

×

int



representable term a (possibly infinite) term whose partial

function is related to the set of traces of a finite automaton



Motivation: retreive Java clases by interfaces 13/32

Problem:

Find a possible implementation of interface I in a Java

library S, but abstracting from method and interfaces names.

Coding interfaces as recursive types, forgetting names, it can be

Restated in terms of recursive types:

Given two recursive types A and B, is it possible to reorder

the products (using associativity and commutativity) in a way

that makes A and B coincide?

This is precisely equivalence of recursive types up to AC(×).

As usual, we will get rid of associativity by collapsing trees of

binary products into n-ary products Πn
i=1 (just Π in what follows).

A → (A × B) × C = A → Π(A, B, C)



Matching Java classes (Palsberg-Zhao)14/32

interface I1 {

float m1 (I1 a);

int m2 (I2 a);

}

interface I2 {

I1 m3 (float a);

I2 m4 (float a);

}

I1 = Π(I1 → float, I2 → int) I2 = Π(float → I1, f loat → I2)

interface J1 {

J1 n1 (float a);

J2 n2 (float a);

}

interface J2 {

int n3 (J1 a);

float n4 (J2 a);

}

J1 = Π(float → J1, f loat → J2) J2 = Π(J1 → int, J2 → float)

I1 ≡ J2 ?



Equivalence of recursive types 15/32

We know how to efficiently test for equality two recursive types:

I define equality coinductively as the largest relation satisfying

Eq-Top

t R t′

t(ε) = t′(ε)

Eq-Arrow

t1 → t2 R t′1 → t′2

t1 R t′1 t2 R t′2

Eq-Pi

Πn
i=1ti R Πn

i=1t
′
i

(ti R t′i)
i∈1..n

I to decide t R t′, start from the full relation R0= T × T ′, and

propagate inconsistencies with the definition of R



Examples (1) 16(1)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success

This can be schematically represented via a bipartite graph,

related nodes of both types (represented as graphs).



Examples (1) 16(2)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success

This can be schematically represented via a bipartite graph,

related nodes of both types (represented as graphs).



Examples (1) 16(3)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success

Immediately invalid relations are removed, . . .



Examples (1) 16(4)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success

Immediately invalid relations are removed, . . .



Examples (1) 16(5)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success

. . . , which in turn may immediately invalidate other relations.



Examples (1) 16(6)/32

1

×

2

int

3

×

4

int

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3), (2, 4)

R2 = (1, 3), (2, 4) success



Examples (2) 17(1)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Examples (2) 17(2)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Examples (2) 17(3)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Examples (2) 17(4)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Examples (2) 17(5)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Examples (2) 17(6)/32

1

×

2

int

3

×

4

float

R0 = (1, 3), (1, 4), (2, 3), (2, 4)

R1 = (1, 3)

R2 = ∅ failure



Equivalence of rec. types up to AC(×)18(1)/32

Modify the test for equality of two recursive types:

I = (equality)

is define coinductively as the largest relation R satisfying

t R t′

t(ε) = t′(ε)

t1 → t2 R t′1 → t′2

t1 R t′1 t2 R t′2

Πn
i=1ti R Πn

i=1t
′
i

∃σ ∈ Σn
n,

(ti

σ(i)

R t′i)
i∈1..n

I to decide t R t′, proceed as for usual equality, but at Π

nodes, use a “perfect graph matching” algorithm to check

consistency of Π(a1, .., an) = Π(b1, . . . , bn) with the relation Rn.



Equivalence of rec. types up to AC(×)18(2)/32

Modify the test for equality of two recursive types:

I =AC (equality up to AC(×))

is define coinductively as the largest relation R satisfying

t R t′

t(ε) = t′(ε)

t1 → t2 R t′1 → t′2

t1 R t′1 t2 R t′2

Πn
i=1ti R Πn

i=1t
′
i

∃σ ∈ Σn
n, (tσ(i) R t′i)

i∈1..n

I to decide t R t′, proceed as for usual equality, but at Π

nodes, use a “perfect graph matching” algorithm to check

consistency of Π(a1, .., an) = Π(b1, . . . , bn) with the relation Rn.



Equivalence of rec. types up to AC(×)18(3)/32

Modify the test for equality of two recursive types:

I =AC (equality up to AC(×))

is define coinductively as the largest relation R satisfying

t R t′

t(ε) = t′(ε)

t1 → t2 R t′1 → t′2

t1 R t′1 t2 R t′2

Πn
i=1ti R Πn

i=1t
′
i

∃σ ∈ Σn
n, (tσ(i) R t′i)

i∈1..n

I to decide t R t′, proceed as for usual equality, but at Π

nodes, use a “perfect graph matching” algorithm to check

consistency of Π(a1, .., an) = Π(b1, . . . , bn) with the relation Rn.



Stocktaking 19/32

From previous work we have a very efficient algorithm for =AC .

What is missing?

Subtyping up to AC(×): the type of a queried interface

may be very complex: the user wants to ask only for a supertype.

A reasonable query for the Collection type (with 15 methods) is

public interface SomeCollection {

public void add (Object o);

public void remove (Object o);

public boolean contains (Object o);

public int size ();

}

Bad news: the optimizations used in Palsberg et al. fail here.

Glue code We want the search tool to also build coercions...



Subtyping up to AC(×) 20(1)/32

Let ≤0 be the ordering on symbols generated by:

⊥ ≤0 s s ≤0 > → ≤0 →
n ≥ m

Πn ≤0 Πm

Definition 1 (=AC-simulation) [Reminder]

A relation R is an =AC-simulation if it satisfies

t1 R t2

t1(ε) = t2(ε)

t1 → t2 R t′1 → t′2

t′1 R t1 t2 R t′2

Πn
i=1ti R Π

m

i=1t
′
i

∃σ ∈ Σ
m

n , (tσ(i) R t′i)
i∈1.. m

Definition 2 ≤AC is the largest ≤AC-simulation.

Theorem 1 The relation ≤AC and =AC ◦ ≤ ◦ =AC coincide.



Subtyping up to AC(×) 20(2)/32

Let ≤0 be the ordering on symbols generated by:

⊥ ≤0 s s ≤0 > → ≤0 →
n ≥ m

Πn ≤0 Πm

Definition 2 (≤AC-simulation)

A relation R is an ≤AC-simulation if it satisfies

t1 R t2

t1(ε) ≤0 t2(ε)

t1 → t2 R t′1 → t′2

t′1 R t1 t2 R t′2

Πn
i=1ti R Π

m

i=1t
′
i

∃σ ∈ Σ
m

n , (tσ(i) R t′i)
i∈1.. m

Definition 2 ≤AC is the largest ≤AC-simulation.

Theorem 1 The relation ≤AC and =AC ◦ ≤ ◦ =AC coincide.



Subtyping up to AC(×) 20(3)/32

Let ≤0 be the ordering on symbols generated by:

⊥ ≤0 s s ≤0 > → ≤0 →
n ≥ m

Πn ≤0 Πm

Definition 2 (≤AC-simulation)

A relation R is an ≤AC-simulation if it satisfies

t1 R t2

t1(ε) ≤0 t2(ε)

t1 → t2 R t′1 → t′2

t′1 R t1 t2 R t′2

Πn
i=1ti R Π

m

i=1t
′
i

∃σ ∈ Σ
m

n , (tσ(i) R t′i)
i∈1.. m

Definition 2 ≤AC is the largest ≤AC-simulation.

Theorem 1 The relation ≤AC and =AC ◦ ≤ ◦ =AC coincide.



The decision algorithm 21/32

Idea: to decide t ≤AC t′, start from the full relation R0 = T × T ,

and propagate inconsistencies with the definition of ≤AC.

Now, a pair (p, q) ∈ Rk is ordered

(p is subtype of q, up to AC(×) at stage k).

To check validity of (Π(a1, . . . , am), Π(b1, . . . , bn)) at stage k,

we must check that, for some injection σ : n → m, we have

∀i ∈ 1..n, (aσ(i), bi) ∈ Rk

This can easily verified by looking for a maximal matching in

the bipartite graph ({a1, .., am}, {b1, .., bn}, Rk), and checking

that all the bi are covered.



The decision algorithm (I) 22/32

1. Let R = T × T (T = subtrees(p0))

2. Repeat:

Foreach pair p in R, do:

If p is inconsistent, then remove p from R

done

until no pair is removed by the foreach loop

3. If p0 6∈ R, return false, otherwise return true.



Improving the decision algorithm (I) 23/32

Worst case complexity: n2 · n′2 · d5/2

Improvement: avoid the T × T overkill!

I Pairs like (Π(· · · ), t → t′) need not be considered at all!

I Perform an exploration of T × T starting from p0 to build

only the relevant universe U , i.e. the smallest set containing

p0 and closed under:

(t1 → t2, t′1 → t′2) ∈ U

(t′1, t1) ∈ U (t2, t
′
2) ∈ U

(Πn
i=1ti, Π

m
j=1t

′
j) ∈ U

((ti, t
′
j) ∈ U)i∈{1,...,n}, j∈{1,...,m}

We also turn U into a directed graph: p is parent of q if p is

a premise and q a conclusion of one of the rules.

I This can be done in time linear w.r.t. the size of U .



Improving the decision algorithm (II) 24/32

We can do better by accelerating the convergence.

I Our first algorithm, after removing the inconsistent pairs

p1, . . . , pk from the relation R at stage i, restarts exploring

blindly all pairs left at stage i + 1.

I It is enough to check only those pairs that are parents of the

just removed pairs!

(This idea is in Downey, Sethi and Tarjan’s 1980 paper).

I and, of course, stop as soon as p0 is no longer valid.



The worklist decision algorithm 25/32

1. Let W = U and S = F = ∅.

2. While W is nonempty, do:

(a) Take a pair p out of W ;

(b) If p is of the form (⊥, t′) or (t,>), then insert p into S;

(c) If p is of the form (t1 → t2, t
′
1 → t′2), then

If (t′1, t1) 6∈ F and (t2, t
′
2) 6∈ F then insert p into S else

invalidate p;

(d) If p is of the form (Πn
i=1ti, Π

m
j=1t

′
j), then

If there exists σ ∈ Σm
n such that, for all

j ∈ {1, . . . , m}, (tσ(j), t′j) 6∈ F holds, then insert p into

S else invalidate p;

(e) If p satisfied none of the three previous tests, then

invalidate p.



3. If p0 6∈ F , return true, otherwise return false.



Complexity of improved algorithm . 27/32

I The improved algorithm runs in time

size(U) · d 5/2 with size(U) ≤ N · N ′ ≤ n2 · n′2

I The worst case can be as bad as the näıve algorithm, but. . .

I In practice, it runs much better

(typically, it is fast in rejecting folkloristic queries).



Further Improvements . 28/32

There is space for further improvement

The order in which pairs are removed from W is relevant

I look first at pairs that fail earlier (touch Π last)

I go bottom-up on acyclic types:

nodes(U) · d5/2 with nodes(U) ≤ n · n′

I go bottom-up on strongly connected components of U :

nodes(U) · d5/2 < c < size(U) · d 5/2

≤ ≤

n · n′ N · N ′

≤ n2 · n′2



Searching for in a library . 29/32

I Set the database as a whole graph.

I The algorithm is incremental: keep the algorithm structure,

add new requests and continue.

I Sort the data-base along ≤AC . (pre-compiled ordering on the

data-base, so it does not cost) and start proceeds nodes

top-down.

. Gain in efficiency: no need to explore nodes below a

failure.

. Provide answers in group with their maximal element.



Conclusions 30(1)/32

We have shown

I subtyping up to AC(×) is a natural composition of subtyping

and AC(×):

≤AC ≡ =AC ◦ ≤ ◦ =AC

I subtyping up to AC(×) is decidable,

I an efficient decision algorithm,

I an efficient coercion construction algorithm,

I a realistic basis for OO library search.

We need

I large scale experimentation on Java classes

I more investigation/experimentation with building adapters.
/





Isomorphisms of ML-like types as an alternative to

weak IDLs (Auerbach, Barton, and Raghavachari) 32(1)/32

IBM’s Mockingbird project: how do we exchange data between

different languages?
Java:

public class Point {

private float x;

private float y;

. . . };

public class PVector

extends Vector {};

C++:

class Point {

float x;

float y;

public : . . . };

class PVector

{ int len ; float ∗xs ; float ∗ys ; . . . };

Solution 1: use an IDL (e.g. CORBA). . .

But IDLs are restrictive (e.g. CORBA), one needs to agree

beforehand

Solution 2: program freely, then produce automatically the

conversion code for each pair of peers.




