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Polymorphism

◮ Type inference

⊲ First-class functions

Therefore,

◮ Programs are safer by construction
(and Haskell ones perhaps even more...)

◮ Still, they sometimes need to be modified...

Program refactoring and evolution
◮ Surprisingly, it has been little explored by our communities

◮ But there are interesting things we can do, thanks to

◮

{

programs being structured around datatypes
◮ polymorphism and type inference.
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In this talk

◮ A restricted form of code refactoring and code refinement based
on ornaments can be put into practice in ML.

◮ This can be seen as code generalization a posteriori

◮ . . . and formalized using logical relations (in a richer language).

◮ Ornamentation generalizes to its inverse transformation,
disornamentation with interesting applications.
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In this talk

◮ A restricted form of code refactoring and code refinement based
on ornaments can be put into practice in ML.

◮ This can be seen as code generalization a posteriori

◮ . . . and formalized using logical relations (in a richer language).

◮ Ornamentation generalizes to its inverse transformation,
disornamentation with interesting applications.

Notes

◮ Ornaments have been introduced by Conor McBride and explored
widely with Pierre-Évariste Dagan in the context of Agda and also by
Jeremy Gibbons and Hsiang-Shang Ko.

◮ Our approach is more syntactic, our goal being to bring
ornaments-based program transformations to the ML programmer.
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The poor man’s (good) tool
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The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x, Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)
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| Con i → i
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type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add’, x , Con’ 42)
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| Con’ i → i
| Bin’(Add ’, u, v) →
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However

◮ We have to do manually what could be done automatically
◮ This may be long – and error prone !
◮ We should guarantee that the input and output programs are related
◮ We may miss places where a change is necessary (when types agree)
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Can we do better? (reversed)

type exp =
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| Mul of exp × exp
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Enforcing more invariants

type exp =
| Con of int

| Abs of (exp → exp)
| App of exp × exp

let rec eval e = match e with

| Con i → Some (Con i )
| Abs f → Some (Abs f )
| App (u, v) →

(match eval u with

| Some (Con i ) → None

| Some (Abs f ) →

(match eval v with

Some x → eval ( f x) | ..))
| Some (App (u, v)) → None

| None → None
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Enforcing more invariants

type exp =
| Con of int

| Abs of (exp → exp)
| App of exp × exp

type exp’ =
| Val of value ’
| App’ of exp’ × exp’

and value ’ =
| Con’ of int

| Abs’ of ( value ’ → exp ’)

type relation oexp : exp ⇒ exp’ with

| Con i ⇒ Val (Con’ i )
| Abs f ⇒ Val (Abs’ f ) when f : ovalue → oexp
| App (u,v) ⇒ App’ (u, v) when u v : oexp

and ovalue : exp ⇒ value ’ with

| Con i ⇒ Con’ i
| Abs f ⇒ Abs’ f when f : ovalue → oexp
| App (u,v) ⇒ ∼

indicates an impossible case
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Porting operations on lists to tuples

Scenario

◮ Operations on lists are already implemented in a library

◮ Need for large homogeneous tuples

◮ Use lists for convenience.

◮ For efficiency (and safety) reasons, rewrite the code to use tuples

This can be automated
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Porting operations on lists to tuples

type α list = Nil | Cons of (α × α list )
let rec map f z = match z with

| Nil → Nil
| Cons(x , t) → Cons(f x , map f t)

type unit = U
type α triple =

T of α × (α × (α × unit))
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Porting operations on lists to tuples

type α list = Nil | Cons of (α × α list )
let rec map f z = match z with

| Nil → Nil
| Cons(x , t) → Cons(f x , map f t)

type unit = U
type α triple =

T of α × (α × (α × unit))

Simplifiedtype relation α list_triple : α list ⇒ α triple with

| Cons (x1 , Cons (x2 , Cons (x3 , Nil ))) ⇒ T (x1 , (x2 , (x3 , U)))

let map_tuple = lifting map : (α → β) → α list_triple → β list_triple

Automatically unfolding the recursion. . .
With manual inlininglet rec map_tuple f z =

match z with T(x1 , x2 , x3 , U) → T(f x1 , f x2 , f x3 , U)
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Generic programming Generic code

type α gen =
| Pair of (α gen × α gen)
| Value of α

| Unit

let rec map f z = match z with

| Pair (u,v) → Pair (map f u, map f v)
| Value x → Value ( f x)
| Unit → Unit
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Generic programming Lists

type α gen =
| Pair of (α gen × α gen)
| Value of α

| Unit

let rec map f z = match z with

| Pair (u,v) → Pair (map f u, map f v)
| Value x → Value ( f x)
| Unit → Unit

type α list = Nil | Cons of (α × α list )

(Simplified)type relation α gen_list : α gen ⇒ α list with

| Unit ⇒ Nil
| Pair (Value x , t) ⇒ Cons (x , t) when t : α gen_list

let map_list = lifting map : (α → β) → α gen_list → β gen_list

(Inlined)let rec map_list f z = match z with

| Nil → Nil
| Cons (u, v) → Cons ( f u, map_list f v)
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Generic programming Trees

type α gen =
| Pair of (α gen × α gen)
| Value of α

| Unit

let rec map f z = match z with

| Pair (u,v) → Pair (map f u, map f v)
| Value x → Value ( f x)
| Unit → Unit

type α tree = Leaf | Node of (α × (α tree × α tree))

(Simplified)type relation α gen_tree : α gen ⇒ α tree with

| Unit ⇒ Leaf

| Pair (Value x , Pair ( t1 , t2 )) ⇒ Node (x , t1 , t2 ) when t1 , t2 : α gen_tree

let map_tree = lifting map : (α → β) → α gen_tree → β gen_tree

(Inlined)let rec map_tree f z = match z with

| Leaf → Leaf

| Node (x , t1 , t2 ) → Node ( f x , map_tree f t1 , map_tree t2 )
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More examples

◮ Code specialization sets as unit maps

◮ Code generalization from sets to maps
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More examples

◮ Code specialization sets as unit maps

◮ Code generalization from sets to maps

from nats to lists

(will be our running example)

〈2〉10 / 41



A simpler example nat & list

(used as a running example to explain the details of lifting.)

Similar types

type nat = Z | S of nat
type α list = Nil | Cons of α × α list

With similar values

Ornament

relation
lengthS ( S ( S ( Z )))

Cons (1, Cons (2, Cons (3, Nil )))

The ornament relation

type relation α na t l i s t : nat ⇒ α l i s t with
| Z ⇒ Nil

| S m ⇒ Cons (_, m ) when α na t l i s t : m ⇒ m

◮ _ stands for any value; may only appear on the right-hand side
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add & append

Lifting

let rec add m n = match m with

| Z → n

| S m’ → S (add m’ n)

let rec append m n = match m with

| Nil → n

| Cons(x, m’) → Cons(x, append m’ n)
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Lifting add into append

let rec add m n = match m with

| Z → n

| S m’ → S (add m’ n)

let append = l i f t i ng add : _ na t l i s t → _ nat l i s t → _ nat l i s t

let rec append m n = match m with

| Ni l → n

| Cons(x ,m’ ) → Cons ( #1 , append m’ n)
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Lifting add into append

let rec add m n = match m with

| Z → n

| S m’ → S (add m’ n)

let append = l i f t i ng add : _ na t l i s t → _ nat l i s t → _ nat l i s t

patch . . | Cons (x , _) → Cons (#, _) ← x

let rec append m n = match m with

| Ni l → n

| Cons(x ,m’ ) → Cons ( x , append m’ n)

How to proceed?
◮ in a principled manner—without arbitrary choices!
◮ so that the lifted program behaves similarly to the base one
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Lifting

No reasonable place for abstraction a priori

base
code

A
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Lifting

Need to ornament some of the datatypes

base
code

A

Find its lifted version
given an ornament specification

B

?
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Lifting by abstraction a posteriori

Find a (most) generic version
Λ(ᾱ) λ(x̄ : ρ̄) M

Agen

(1) Abstract over (depends only on) what is ornamented.

base
code

A

Find its lifted version
given an ornament specification

B

Inference
(1)
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Lifting by abstraction a posteriori

Find a (most) generic version
Λ(ᾱ) λ(x̄ : ρ̄) M

Agen

base
code

A = Agen idargs

Find its lifted version
given an ornament specification

B = Agen ornargs

idargs Inference
(1)
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Lifting by abstraction a posteriori

Find a (most) generic version
Λ(ᾱ) λ(x̄ : ρ̄) M

Agen

(2) Specialize according to the liftting specification

base
code

A = Agen idargs

Find its lifted version
given an ornament specification

B = Agen ornargs

idargs Inference
(1)

(inferred)
ornargs (2)
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Lifting by abstraction a posteriori

Find a (most) generic version
Λ(ᾱ) λ(x̄ : ρ̄) M

Agen

Agen ornargs

(3) Reduce and (4) Simplify

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs (2)

reduction (3)
simplification (4)
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Lifting by abstraction a posteriori

mML

Find a (most) generic version
Λ(ᾱ) λ(x̄ : ρ̄) M

Agen

Agen ornargs

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs (2)

meta-reduction (3)
simplification (4)

A ∼ B

idargs ∼ ornargs
⇓
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Representing ornaments of nat

type α natS = Z’ | S’ of α

◮ We introduce a skeleton (open definition) of nat, to allow for hybrid
nats where the head looks like a nat but the tail need not be a nat.
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Representing ornaments of nat

type α natS = Z’ | S’ of α

◮ The ornamented datatype piggy bags on this skeleton:

’a list (’a list) natS

list_proj

list_inj

let l i s t_pro j n =

match n with

| Nil → Z’
| Cons(_, t) → S’ t

let l i s t_ in j n x =

match n with

| Z’ → Nil
| S’ t → Cons(x, t)
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Representing ornaments of nat

type α natS = Z’ | S’ of α

◮ The ornamented datatype piggy bags on this skeleton:

’a list (’a list) natS

list_proj

list_inj

◮ For convenience, we pack them in a datatype

type (α,β,γ) orn =

{ inj : α → β → γ; proj : γ → α }

let na t l i s t =

({ inj = l i s t_ in j; proj = l i s t_pro j }

: ((α l i s t ) natS, α, α l i s t ) orn)
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From add to append

let add =

let rec add m n =

match m with

| Z → n

| S m’ → (S (add m’ n))

in add



From add to append

let append =
let rec add m n =

match m with

| Z’ → n

| S’ m’ → (S’ (add m’ n))

in add



From add to append

let append =
let rec add m n =

match natlist.proj m with

| Z’ → n

| S’ m’ → (S’ (add m’ n))

in add



From add to append

let append =
let rec add m n =

match natlist.proj m with

| Z’ → n

| S’ m’ → natlist.inj (S’ (add m’ n)) (List.hd m)

in add



From. . . add to a generic lifting. . .

let add_gen orn patch =

let rec add m n =

match orn.proj m with

| Z’ → n

| S’ m’ → orn.inj (S’ (add m’ n)) (patch m n)

in add
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From. . . a generic lifting back to append

let add_gen orn0 orn1 patch =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S’ m’ → orn1.inj (S’ (add m’ n)) (patch m n)

in add
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From. . . or back to add

let add_gen orn0 orn1 patch =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S’ m’ → orn1.inj (S’ (add m’ n)) (patch m n)

in add

From add_gen back to append

let append = add_gen natlist natlist

(fun m _ → match m with Cons(x,_) → x)
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From. . . or back to add

let add_gen orn0 orn1 patch =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S’ m’ → orn1.inj (S’ (add m’ n)) (patch m n)

in add

From add_gen back to append

let append = add_gen natlist natlist

(fun m _ → match m with Cons(x,_) → x)

From add_gen back to add: by passing the “identity” ornament

let add = add_gen natnat natnat (fun _ _ → ())

let natnat : (nat natSkel, α, nat) orn =
{ proj = (fun n → match n with Z → Z’ | S m → S’ m )

inj = (fun n x → match n with Z’ → Z | S’ m → S m )}
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Type Inference

let add_gen (orn0: (_,_,γ0) orn) (orn1: (_,β1,γ1) orn) p1 =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S’ m’ → orn1.inj (S’ (add m’ n)) (p1 m n : β1)

in add

Coherence

◮ the same base type may be ornamented differently in different places

◮ except if their values (may) communicate

ML-style type inference

◮ For the ornament natlist
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Type Inference

let add_gen (orn0: (_,_,γ0) orn) (orn1: (_,β1,γ1) orn) p1

(orn2: (_,β2,γ1) orn) p2 =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S1’ m’ → orn1.inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn2.inj (S2’ (add m’ n)) (p2 m n : β2)

in add

Coherence

◮ the same base type may be ornamented differently in different places

◮ except if their values (may) communicate

ML-style type inference

◮ If nat had 2 successor nodes, we would get . . .
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Type Inference

let add_gen (orn0: (_,_,γ0) orn) (orn1: (_,β1,γ1) orn) p1

p2 =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S1’ m’ → orn1.inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn1.inj (S2’ (add m’ n)) (p2 m n : β1)

in add

Coherence

◮ the same base type may be ornamented differently in different places

◮ except if their values (may) communicate

ML-style type inference

◮ . . . and orn1 and orn2 should be identified
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Type Inference

let add_gen (orn0: (_,_,γ0) orn) (orn1: (_,β1,γ1) orn) p1

p2 =

let rec add m n =

match orn0.proj m with

| Z’ → n

| S1’ m’ → orn1.inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn1.inj (S2’ (add m’ n)) (p2 m n : β2)

in add

Coherence

◮ the same base type may be ornamented differently in different places

◮ except if their values (may) communicate

ML-style type inference

⊲ Suffices here, but the injection need a dependent type in fine
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Staging

let add_gen = fun orn0 orn1 patch →

let rec add m n =

match orn0.proj m with

| Z’ → n

| S’ m’ → orn1.inj S’ (add m’ n) (patch m n)

in add

let append = add_gen natlist # natlist

(fun m _ → match m with Cons(x,_) → x)

Meta-reduction

◮ We use meta abstractions and applications for the encoding

◮ To only reduce those redexes at compile time

〈1〉18 / 41



Staging

let add_gen = fun orn0 orn1 patch //=⇒

let rec add m n =

match orn0.proj # m with

| Z’ → n

| S’ m’ → orn1.inj # S’ (add m’ n) # (patch m n)
in add

let append = add_gen # natlist # natlist

# (fun m _ → match m with Cons(x,_) → x)

Meta-reduction

◮ We use meta abstractions and applications for the encoding

◮ To only reduce those redexes at compile time
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Staging

let add_gen = fun orn0 orn1 patch //=⇒

let rec add m n =

match orn0.proj # m with

| Z’ → n

| S’ m’ → orn1.inj # S’ (add m’ n) # (patch m n)
in add

let append = add_gen # natlist # natlist

# (fun m _ → match m with Cons(x,_) → x)

Meta-reduction

◮ We use meta abstractions and applications for the encoding

◮ To only reduce those redexes at compile time

◮ All #-abstractions and #-applications can actually be reduced.

◮ This is ensured just by a typing argument!
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After meta-reduction

let rec append m n =

match (match m with

| Nil → Z’

| Cons(_, m’) → S’ m’) with

| Z’ → n

| S’ m’ →
(match S’ (append m’ n) with

| Z’ → Nil

| S’ t → Cons((match m with Cons(x,_) → x), t ))

◮ There remains some redundant pattern matchings...

◮ Decoding list to natS and encoding natS to list.

〈1〉19 / 41



Elimination of the encoding

let rec append m n =

match (match m with

| Nil → Z’

| Cons(_, m’) → S’ m’) with

| Z’ → n

| S’ m’ →
(match S’ (append m’ n) with

| Z’ → Nil

| S’ t → Cons((match m with Cons(x,_) → x), t ))

◮ There remains some redundant pattern matchings...

◮ Decoding list to natS and encoding natS to list.

◮ We can eliminate the last one by reduction
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Elimination of the encoding

let rec append m n =

match (match m with

| Nil → Z’

| Cons(_, m’) → S’ m’) with

| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n)

◮ And the other by extrusion... (commuting matches)
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Elimination of the encoding

let rec append m n =

match (match m with

| Nil → Z’

| Cons(_, m’) → S’ m’) with

| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n)

◮ And the other by extrusion... (commuting matches)
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Elimination of the encoding

let rec append m n =

match m with

| Nil →

(match Z’ with

| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

| Cons(_, m’) →

(match S’ m’ with

| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

◮ and reducing again
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Elimination of the encoding

let rec append m n =

match m with

| Nil →

(match Z’ with
| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

| Cons(_, m’) →

(match S’ m’ with

| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

◮ and reducing again
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Elimination of the encoding

let rec append m n =

match m with

| Nil →

n

| Cons(_, m’) →

Cons((match m with Cons(x,_) → x), append m’ n))
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Elimination of the encoding back to ML

let rec append m n =

match m with

| Nil → n

| Cons ( x , m’) →

Cons ((match m with Cons x → x ), append m’ n)
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Elimination of the encoding back to ML

let rec append m n =

match m with

| Nil → n

| Cons ( x , m’) →

Cons ((match m with Cons x → x ), append m’ n)
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Elimination of the encoding back to ML

let rec append m n =

match m with

| Nil → n

| Cons ( x , m’) →

Cons ( x , append m’ n)
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Elimination of the encoding back to ML

let rec append m n =

match m with

| Nil → n

| Cons ( x , m’) →

Cons ( x, append m’ n)

◮ We obtain the code for append.

◮ This transformation also always eliminates all uses of dependent types
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Some technical points
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Stratification

ML ⊆ eML ⊆ mML
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Stratification

ML ⊆ eML ⊆ mML

◮ The source language is (explicitly typed) ML
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Stratification

ML ⊆ eML ⊆ mML

◮ The source language is (explicitly typed) ML

◮ eML adds dependent types over term equalities to ML

Needed for typing the injection functions:

list_inj : Λ♯α. Π(m : natS(list α)).
Π((x : match m with Z′ → unit | S′ _→ α).
list α
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Stratification

ML ⊆ eML ⊆ mML

generic lifting

◮ The source language is (explicitly typed) ML

◮ eML adds dependent types over term equalities to ML

◮ mML adds (meta) abstractions and applications over all language
constructs, including type equalities.
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Stratification

ML ⊆ eML ⊆ mML

generic lifting

instantiation
#-reduction
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Stratification

ML ⊆ eML ⊆ mML

generic lifting

instantiation
#-reduction

simplifications

◮ By stratification, preservation of typing, and termination of
meta-reduction
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Stratification

ML ⊆ eML ⊆ mML

generic lifting

instantiation
#-reduction

simplifications

◮ Type equivalences in derivations of ML judgments can always be
eliminated
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eML Type equivalence

Types depend on expressions & typing contexts contain term equalities

match a with (P → τ | ..P → τ) Γ, a =τ b

Equations introduced on pattern matching are used in equalities, implicitly

Γ ⊢ a : ζ τ (di : ∀α . (τij)
j → ζ α )i

(Γ, (xij : τij [α ← τ])j , a =ζ τ di τ (xij )
j ⊢ bi : τ)

i

Γ ⊢ match a with (di τ (xij)
j → bi)

i : τ

Γ ⊢ a : τ1
Γ ⊢ τ1 ≃ τ2

Γ ⊢ a : τ2

Type equality, closed by equality on terms which includes

◮ term equalities assumptions, case splitting on pure terms

◮ reduction of type applications, pattern matchings, pure let-bindings

◮ closure by arbitrary context

Type equalities are necessary to check types defined by pattern matching
and detect dead branches.
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Logical relation

We first define a step-indexed logical relation E[τ ]γ and V[τ ]γ on mML.
(A bit involved, because of dependent types, but standard.)

Ornament types ω

◮ same as types, but extended with datatype ornaments χ (e.g. natlist )
◮ can be projected to types ω− and ω+ e.g.

α natlist → α natlist → α natlist

nat → nat → nat α list → α list → α list

− +

Logical relation naturally extends to ornament types:

◮ At ornament datatypes ω, we use the corresponding user defined
ornament relation, i.e. pairs of values of types ω− and ω+

(much as the interpretation of abstract types)

◮ Use the standard definition elsewhere.
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Ornament relations

An ornament definition

type relation α natlist : nat → α list with
| Z → Nil
| S t → Cons (_, t) when t : α natlist

defines a relation V[natlist ω]γ between values of type nat and list ω+

(Z,Nil) ∈ V[natlist ω]γ
(u−, u+) ∈ V[natlist ω]γ (v−, v+) ∈ V[ω]γ

(S u−,Cons (v+, u+)) ∈ V[natlist τ ]γ
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Ornament relations

An ornament definition

type relation α natlist : nat → α list with
| Z → Nil
| S t → Cons (_, t) when t : α natlist

defines a relation V[natlist ω]γ between values of type nat and list ω+

(Z,Nil) ∈ V[natlist ω]γ
(u−, u+) ∈ V[natlist ω]γ (v−, v+) ∈ V[ω]γ

(S u−,Cons (v+, u+)) ∈ V[natlist τ ]γ

Here, this relation happens to be the inverse of the length function

(u−, u+) ∈ V[natlist ω]γ ⇐⇒ u− = length u+ ∧

{

u− : nat
u+ : list ω+
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Correctness of ornamentation

(Sketch)
◮ add_gen ∼ add_gen at a complicated ornament type
◮ natnat ∼ natlist
◮ pnat ∼ plist at ornament type natlist α→ natlist α→ ⊤

(we will never look into values returned by patches)
◮ add_gen natnat natnat pnat ∼ add_gen natlist natlist plist

Hence,
◮ add ∼ append at ornament type natlist α→ natlist α→ natlist α

Then:

append n m : α list

add (length n) (length m) : nat

α natlistlength

29 / 41



Disornamentation
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Disornamentation

S
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C
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Ornamentation
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Disornamentation
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Ornamentation

code
code

patch

#1
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Disornamentation
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Disornamentation

S

S

Z

C

1 C

2 N

Why useful?

◮ undo the ornamentation. . .

◮ offer a simplified view: locations, type annotations on ASTs, etc.

◮ . . .
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Disornamentation

S

S

Z

C

C

N

Trivial case

◮ (binop example): ornamentation is bijective (no green)
disornamentation is an ornamentation.
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Disornamentation

S

S

Z

C

1 C

2 N
code

code

code

✘

code

Easy case

◮ The source is an ornamentation of the target

◮ Green nodes may depend on blue nodes but not conversely

◮ Hence, green code becomes useless code, and green nodes can be
eliminated
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Disornamentation

S

S

Z

C

1 C

2 N
code

code

code

codecode

General case

◮

•

#1

patch code

The blue code may be depend on green nodes.

◮ Then a patch is needed in the target
to replace missed bindings in pattern matchings on green nodes.

◮ The green code is garbage collected.
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Disornamentation Ex. α list into nat

type (α, β) l i s tS = Nil ’ | Cons’ of α × β

Coercions

nat (α, nat) listS

nat_proj

nat_inj

l e t nat_proj n x = match n with

| Z → Nil ’
| S t → Cons ’ ( x , t )

l e t nat_inj n = match n with

| Nil ’ → Z
| Cons ’ (_, t ) → S t

type (α ,β ,γ) disorn = { in j : α → γ ; proj : γ → β → α }

let l ist_nat = { in j = nat_inj ; proj = nat_proj }

: ((α , nat) l i s tS , α , nat ) disorn )
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Disornamentation Ex. α list into nat

type (α, β) l i s tS = Nil ’ | Cons’ of α × β

Coercions

nat (α, nat) listS

nat_proj

nat_inj

l e t nat_proj n x = match n with

| Z → Nil ’
| S t → Cons ’ ( x , t )

l e t nat_inj n = match n with

| Nil ’ → Z
| Cons ’ (_, t ) → S t

Append generic version
let append_gen orn0 orn1 patch =
let rec append m n =
match orn0.proj m (patch m n) with
| Nil’ → n
| Cons’(x, m’) → orn1. i n j (Cons’ (x, append m’ n))

in append
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Disornamentation Ex. α list into nat

type (α, β) l i s tS = Nil ’ | Cons’ of α × β

Coercions

nat (α, nat) listS

nat_proj

nat_inj

l e t nat_proj n x = match n with

| Z → Nil ’
| S t → Cons ’ ( x , t )

l e t nat_inj n = match n with

| Nil ’ → Z
| Cons ’ (_, t ) → S t

Append generic version, specialized to nats and simplified
let add patch =
let rec append m n =

let x = (patch m n) in — Useless binding

match m with

| Z → Z
| S m’ → S (append m’ n)

in append
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Disornamentation Ex. α list into nat

type (α, β) l i s tS = Nil ’ | Cons’ of α × β

Coercions

nat (α, nat) listS

nat_proj

nat_inj

l e t nat_proj n x = match n with

| Z → Nil ’
| S t → Cons ’ ( x , t )

l e t nat_inj n = match n with

| Nil ’ → Z
| Cons ’ (_, t ) → S t

Append generic version, specialized to nats and simplified
let add =

let rec append m n =

match m with

| Z → Z
| S m’ → S (append m’ n)

in append
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Disornamentation scenarios

◮ Dropping balancing information from red-black trees

◮ Dropping location information from abstract syntax trees

◮ Better: maintaining two versions of the code in sync!

⇒ Generate patches for reornamentation during disornamentation
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Disornamentation more

Adding a new constructor to an existing data-type

◮ Use an empty type on the left-hand side

type relation oexp : exp ⇒ exp’

...

and ovalue : value ⇒ exp’ with

| Con i ⇒ Con’ i
| Abs f ⇒ Abs’ f when f : ovalue → oexp
| ∼ ⇒ App’ (u,v)

◮ Every pattern-matching on App’ will require a patch on the
corresponding branch.

Mixing ornamentation and disornamentation in the same transformation
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Limitations and extensions
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Beyond ML

GADTs ?

◮ Ornamentation in the presence of GADTs

◮ Ornamentation of ADTs into GADTs

◮ Conversely, disornamentation of GADTs into ADTs
cf. Ghostbuster for Haskell [Trevor, McDonell, Zakian, Cimini, Newton]

Or more general dependent types?

Question

◮ Will the ornamented terms remain in the same source language ?

Side effects

◮ Ornamentation has been crafted to preserve the call-by-value
evaluation order, so it should be unsurprising in practice.

◮ But no formalization.
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Theoretical limits of (dis)ornamentation

Theorem
The lifted code behaves as the base code up to the relation between values
of the base type and values of the lifted type.

Corollary
Ornaments cannot change the behavior of the base code.

✘ fix bugs

✘ turn an implementation of merge sort into quick sort

Based on datatype transformations

✘ modify the control, CPS transform, deforestation, etc.
✓ add or remove arguments to functions

◮ viewing arguments of a given function as a specific tuple of arguments
which can then be ornamented or disornamented
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Practical limits of ornaments

Lifting is syntactic

✘ ornamentation points are derived from the syntax.

✘ η-expansion, if necessary, must be performed manually.
◮ cannot derive a duplicating function from the identity function

✓ Still, unfolding of recursion is possible.

Beyond syntactic lifting

◮ Semantic preserving transformations may always be applied manually
prior to ornamentation.

◮ Extend the notion of syntactic lifting? (maybe not necessary)
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Combining transformations

P Q
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Combining transformations
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Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

◮ Generate good names for new variables

◮ Pattern matching:
◮ Transform deep pattern matching into narrow one beforehand
◮ Inverse transformation that restores deep pattern matching afterwards
◮ Factor identical branches

◮ Introduce and/or inline let bindings
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Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

◮ Could autofill or propose some of the patches

◮ Inferring code from types, possibly with additional constraints

◮ Any other forms of code inference could be used.
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Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

◮ Extensible datatypes ?
See Trees that grows by Shayan Najd & Simon Peyton Jones:

– Ornamentation can already be used to add or remove constructors
– They also factor the evolution of datatypes
– Their solution is by abstraction a priori:
◮ Is there an abstraction a posteriori alternative?
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Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

Other useful semantic preserving transformations?

◮ CPS transformation, Defunctionalization, Deforestation, etc.

◮ Many compiler optimizations could be made available to the user
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Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

Other useful semantic preserving transformations?

Non-semantic preserving transformations

◮ Necessary, for completeness, and to fix bugs!

◮ Hopefully, can be reduced to only a few, small transformations
inserted between well-behaved ones.
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Modes of interaction

◮ The most appealing usage is probably in an interactive mode, in some
IDE with in place changes.

◮ But, we also need a batch mode

◮ to separate the concerns, be independent of any IDE
◮ we may wish to maintain two versions in sync (e.g. locations)
◮ or maintain older versions for archival

◮ Raises new questions:

◮ Design the right syntax for describing transformations
◮ Robustness to source changes:

◮ Up to which program transformations will a patch remain valid?
◮ Can a patch from A to B be adapted when A changes?

◮ Merging of two transformations done in parallel . . .
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Conclusion

We need a toolbox for safer, easier software evolution!

◮ With simple, composable, well-understood transformations

◮ Typed languages are a good setting:
◮ Focus on type transformations, prior to code transformations.
◮ Separate what can be automated, from what must be user provided
◮ Abstraction a posteriori provides guidance and ensures a semantic

preservation property

◮ Other applications of abstraction a posteriori? replace boiler plate code?

(Mixed) ornamentation is just one of the tools

◮ fits well within ML (see http://gallium.inria.fr/~remy/ornaments/)

Let’s automate more parts of programming!
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