Ornamentation put into practice in ML

Didier Rémy

based on joined work with

Thomas Williams

 $\quad \text{and} \quad$

Lucas Baudin

informatics mathematics

MFSP 2018

All have in common...

- Datatypes & Pattern-matching
- Polymorphism
- Type inference
- First-class functions

All have in common...

- Datatypes & Pattern-matching
- Polymorphism
- Type inference
- First-class functions

Therefore,

- Programs are safer by construction
 - (and Haskell ones perhaps even more...)
- Still, they sometimes need to be modified...

All have in common...

- Datatypes & Pattern-matching
- Polymorphism
- Type inference
- First-class functions

Therefore,

- Programs are safer by construction (and Haskell ones perhaps even more...)
- Still, they sometimes need to be modified...

Program refactoring and evolution

- Surprisingly, it has been little explored by our communities
- But there are interesting things we can do, thanks to
 - programs being structured around datatypespolymorphism and type inference.

In this talk

- A restricted form of code refactoring and code refinement based on ornaments can be put into practice in ML.
- This can be seen as code generalization a posteriori
- ... and formalized using logical relations (in a richer language).
- Ornamentation generalizes to its inverse transformation, disornamentation with interesting applications.

In this talk

- A restricted form of code refactoring and code refinement based on ornaments can be put into practice in ML.
- This can be seen as code generalization a posteriori
- ... and formalized using logical relations (in a richer language).
- Ornamentation generalizes to its inverse transformation, disornamentation with interesting applications.

Notes

- Ornaments have been introduced by Conor McBride and explored widely with Pierre-Évariste Dagan in the context of Agda and also by Jeremy Gibbons and Hsiang-Shang Ko.
- Our approach is more syntactic, our goal being to bring ornaments-based program transformations to the ML programmer.

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e \ with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval u) (eval v)
| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e \ with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval u) (eval v)
| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, \ v) \rightarrow add (eval \ u) \ (eval \ v)
| Mul (u, \ v) \rightarrow mul (eval \ u) \ (eval \ v)
```

```
type binop' = Add' | Mul'

type exp' =

| Con' of int

| Bin' of binop' \times exp' \times exp'

let parse x = Add' (x, Con' 42)

let rec eval e = match e with

| Con' i \rightarrow i

| Add' (u, v) \rightarrow

add (eval' u) (eval v)

| Mul' (u, v) \rightarrow

mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, \ v) \rightarrow add (eval \ u) \ (eval \ v)
| Mul (u, \ v) \rightarrow mul (eval \ u) \ (eval \ v)
```

```
type binop' = Add' | Mul'

type exp' =

| Con' of int

| Bin' of binop' × exp' × exp'

let parse x = Add' (x, Con' 42)

let rec eval e = match e with

| Con' i \rightarrow i

| Add' (u, v) \rightarrow

add (eval' u) (eval v)

| Mul' (u, v) \rightarrow

mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, \ v) \rightarrow add (eval \ u) \ (eval \ v)
| Mul (u, \ v) \rightarrow mul (eval \ u) \ (eval \ v)
```

```
type binop' = Add' | Mul'
type exp' =
    | Con' of int
    | Bin' of binop' × exp' × exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match \ e with
    | Con' i \rightarrow i
    | Add' (u, v) \rightarrow
        add (eval' u) (eval v)
    | Mul' (u, v) \rightarrow
        mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, \ v) \rightarrow add (eval \ u) \ (eval \ v)
| Mul (u, \ v) \rightarrow mul (eval \ u) \ (eval \ v)
```

```
type binop' = Add' | Mul'
type exp' =
    | Con' of int
    | Bin' of binop' × exp' × exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    | Con' i \rightarrow i
    | Bin'(Add', u, v) \rightarrow
        add (eval u) (eval v)
    | Mul' (u, v) \rightarrow
        mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval \ u) (eval \ v)
| Mul (u, v) \rightarrow mul (eval \ u) (eval \ v)
```

```
type binop' = Add' | Mul'

type exp' =

| Con' of int

| Bin' of binop' \times exp' \times exp'

let parse x = Bin'(Add', x, Con' 42)

let rec eval e = match e with

| Con' i \rightarrow i

| Bin'(Add', u, v) \rightarrow

add (eval u) (eval v)

| Bin'(Mul', u, v) \rightarrow

mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp \times exp
| Mul of exp \times exp
let parse x = \text{Add}(x, \text{ Con 42})
let rec eval e = \text{match } e \text{ with}
| Con i \rightarrow i
| Add (u, v) \rightarrow add (\text{eval } u) (\text{eval } v)
| Mul (u, v) \rightarrow mul (\text{eval } u) (\text{eval } v)
```

However

- We have to do manually what could be done automatically
- This may be long and error prone !
- We should guarantee that the input and output programs are related

type binop' = Add' | Mul'

| Bin' of binop' $\times \exp' \times \exp'$

let rec eval e = match e with

let parse x = Bin'(Add', x, Con' 42)

add (eval u) (eval v)

mul (eval u) (eval v)

type exp' =

| Con' of int

Con' i \rightarrow i

| Bin'(Add', u, v) \rightarrow

| Bin'(Mul', u, v) \rightarrow

• We may miss places where a change is necessary (when types agree)

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e \ with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval u) (eval v)
| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e \ with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval u) (eval v)
| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

```
type binop' = Add' | Mul'
type exp' =
    | Con' of int
    | Bin' of binop' × exp' × exp'
```

type relation	oex	p : $exp \Rightarrow exp'$ with	1
Con i	\Rightarrow	Con'i	
$Add(u, v)$	\Rightarrow	Bin'(Add', u, v)	when $u v$: oexp
$Mul(u, v)$	\Rightarrow	Bin'(Mul', u, v)	when $u v$: oexp

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e \ with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval u) (eval v)
| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

type relation	oe×	${f xp}$: exp \Rightarrow exp'wi	th
Con i	\Rightarrow	Con'i	
Add(u, v)	\Rightarrow	Bin'(Add', u , v)	when $u v$: oexp
$Mul(u, v)$	\Rightarrow	Bin'(Mul', u, v)	when $u v$: oexp

```
type exp =

| Con of int

| Add of exp \times exp

| Mul of exp \times exp

let parse x = \text{Add}(x, \text{ Con 42})

let rec eval e = \text{match } e \text{ with}

| Con i \rightarrow i

| Add (u, v) \rightarrow add (eval u) (eval v)

| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

type relation $oexp : exp \Rightarrow exp'$ with| Con i \Rightarrow Con' i| Add(u, v) \Rightarrow Bin'(Add', u, v)| Mul(u, v) \Rightarrow Bin'(Mul', u, v)

```
type exp =

| Con of int

| Add of exp \times exp

| Mul of exp \times exp

let parse x = \text{Add}(x, \text{ Con 42})

let rec eval e = \text{match } e \text{ with}

| Con i \rightarrow i

| Add (u, v) \rightarrow add (eval u) (eval v)

| Mul (u, v) \rightarrow mul (eval u) (eval v)
```

type relation $oexp : exp \Rightarrow exp'$ with| Con i \Rightarrow Con' i| Add(u, v) \Rightarrow Bin'(Add', u, v)when u v : oexp| Mul(u, v) \Rightarrow Bin'(Mul', u, v)when u v : oexp

lifting * with oexp

```
blue + red
⇒ green
```

```
type exp =
| Con of int
| Add of exp \times exp
| Mul of exp \times exp
let parse x = \text{Add}(x, \text{ Con 42})
let rec eval e = \text{match } e \text{ with}
| Con i \rightarrow i
| Add (u, v) \rightarrow add (\text{eval } u) (\text{eval } v)
| Mul (u, v) \rightarrow mul (\text{eval } u) (\text{eval } v)
```

```
type binop' = Add' | Mul'
type exp' =
    | Con' of int
    | Bin' of binop' × exp' × exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match \ e \ with
    | Con' i \rightarrow i
    | Bin'(Add', u, v) \rightarrow
        add (eval u) (eval v)
    | Bin'(Mul', u, v) \rightarrow
        mul (eval u) (eval v)
```

lifting * with oexp

```
blue + red
⇒ green
```

(reversed)

```
type exp =
| Con of int
| Add of exp × exp
| Mul of exp × exp
let parse x = Add (x, Con 42)
let rec eval e = match \ e with
| Con i \rightarrow i
| Add (u, v) \rightarrow add (eval \ u) \ (eval \ v)
| Mul (u, v) \rightarrow mul (eval \ u) \ (eval \ v)
```

```
type binop' = Add' | Mul'
type exp' =
    | Con' of int
    | Bin' of binop' × exp' × exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match \ e \ with
    | Con' i \rightarrow i
    | Bin'(Add', u, v) \rightarrow
        add (eval u) (eval v)
    | Bin'(Mul', u, v) \rightarrow
        mul (eval u) (eval v)
```

```
type relation oexp : exp' \Rightarrow exp with| Con' i\Rightarrow Con i| Bin'(Add', u, v)\Rightarrow Add(u, v)| Bin'(Mul', u, v)\Rightarrow Mul(u, v)
```

lifting * with oexp

```
blue + red
\implies green
```

```
type exp =

| Con of int

| Abs of (exp \rightarrow exp)

| App of exp \times exp
```

```
let rec eval e = match e with

| Con i \rightarrow Some (Con i)

| Abs f \rightarrow Some (Abs f)

| App (u, v) \rightarrow

(match eval u with

| Some (Abs f) \rightarrow

(match eval v with

Some x \rightarrow eval (f x) | ...))

| Some (App (u, v)) \rightarrow None

| None \rightarrow None
```

```
type exp =

| Con of int

| Abs of (exp \rightarrow exp)

| App of exp \times exp
```

```
let rec eval e = match e with

| Con i \rightarrow Some (Con i)

| Abs f \rightarrow Some (Abs f)

| App (u, v) \rightarrow

(match eval u with

| Some (Abs f) \rightarrow

(match eval v with

Some x \rightarrow eval (f x) | ...))

| Some (App (u, v)) \rightarrow None

| None \rightarrow None
```

```
type exp' =

| Val of value'

| App' of exp' \times exp'

and value' =

| Con' of int

| Abs' of (value' \rightarrow exp')
```

```
type exp =

| Con of int

| Abs of (exp \rightarrow exp)

| App of exp \times exp
```

```
let rec eval e = match e with

| Con i \rightarrow Some (Con i)

| Abs f \rightarrow Some (Abs f)

| App (u, v) \rightarrow

(match eval u with

| Some (Abs f) \rightarrow

(match eval v with

Some x \rightarrow eval (f x) | ...))

| Some (App (u, v)) \rightarrow None

| None \rightarrow None
```

```
type exp' =
   Val of value'
   App' of exp' \times exp'
and value' =
   Con' of int
   Abs' of (value' \rightarrow \exp')
let rec eval' e = match e with
   Con' i \rightarrow Some (Int i)
   Abs' f \rightarrow Some (Fun f)
   App'(u, v) \rightarrow
    (match eval' u with
       Some (Con' i) \rightarrow None
       Some (Abs' f) \rightarrow
       (match eval' v with
          Some x \to \text{eval'}(f x) \mid ...)
       None \rightarrow None
```

```
type exp' =
type exp =
                                                  Val of value
   Con of int
  Abs of (exp \rightarrow exp)
                                                  | App' of exp' \times exp'
                                                and value' =
   App of exp \times exp
                                                    Con' of int
                                                  | Abs' of (value' \rightarrow exp')
          type relation oexp : exp \Rightarrow exp' with
             Con i \Rightarrow Val (Con' i)
           | Abs f \Rightarrow Val (Abs' f) when f : ovalue \rightarrow oexp
           | App (u, v) \Rightarrow App' (u, v)  when u v : oexp
          and ovalue : exp \Rightarrow value' with
            Con i \Rightarrow Con' i
           Abs f \Rightarrow Abs' f when f : ovalue \rightarrow oexp
            | App (u, v) \Rightarrow \sim
```

indicates an impossible case

Scenario

- > Operations on lists are already implemented in a library
- Need for large homogeneous tuples
- Use lists for convenience.
- ► For efficiency (and safety) reasons, rewrite the code to use tuples

This can be automated

type unit = U type α triple = T of $\alpha \times (\alpha \times (\alpha \times \text{unit}))$

type α list = Nil | Cons of $(\alpha \times \alpha$ list) let rec map f z = match z with | Nil \rightarrow Nil | Cons $(x, t) \rightarrow$ Cons(f x, map f t) type unit = U type α triple = T of $\alpha \times (\alpha \times (\alpha \times \text{unit}))$

type relation α list_triple : α list $\Rightarrow \alpha$ triple withSimplified| Cons $(x_1, \text{ Cons } (x_2, \text{ Cons } (x_3, \text{ Nil }))) \Rightarrow T (x_1, (x_2, (x_3, \text{ U})))$

type α list = Nil | Cons of $(\alpha \times \alpha$ list) let rec map f z = match z with | Nil \rightarrow Nil | Cons $(x, t) \rightarrow$ Cons(f x, map f t) type unit = U type α triple = T of $\alpha \times (\alpha \times (\alpha \times \text{unit}))$

type relation α list_triple : α list $\Rightarrow \alpha$ triple withSimplified| Cons $(x_1, \text{ Cons } (x_2, \text{ Cons } (x_3, \text{ Nil }))) \Rightarrow T (x_1, (x_2, (x_3, U)))$ let map_tuple = lifting map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ list_triple $\rightarrow \beta$ list_triple

type α list = Nil | Cons of $(\alpha \times \alpha$ list) let rec map f z = match z with | Nil \rightarrow Nil | Cons $(x, t) \rightarrow$ Cons(f x, map f t) type unit = U type α triple = T of $\alpha \times (\alpha \times (\alpha \times \text{unit}))$

type relation α list_triple : α list $\Rightarrow \alpha$ triple withSimplified| Cons $(x_1, \text{ Cons } (x_2, \text{ Cons } (x_3, \text{ Nil }))) \Rightarrow T (x_1, (x_2, (x_3, U)))$ let map_tuple = lifting map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ list_triple $\rightarrow \beta$ list_triple

Automatically unfolding the recursion... let rec map_tuple f z =match z with $T(x_1, x_2, x_3, U) \rightarrow T(f x_1, f x_2, f x_3, U)$

Generic programming

Generic code

type α gen = | Pair of (α gen $\times \alpha$ gen) | Value of α | Unit let rec map f z = match z with | Pair $(u, v) \rightarrow \text{Pair} (\text{map f } u, \text{ map f } v)$ | Value $x \rightarrow \text{Value } (f x)$ | Unit $\rightarrow \text{Unit}$

Generic programming

type α gen = | Pair of (α gen $\times \alpha$ gen) | Value of α | Unit

type α list = Nil | Cons of $(\alpha \times \alpha$ list)

```
type relation \alpha gen_list : \alpha gen \Rightarrow \alpha list with(Simplified)| Unit \Rightarrow Nil| Pair (Value x, t) \Rightarrow Cons (x, t) when t : \alpha gen_list
```

let map_list = lifting map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ gen_list $\rightarrow \beta$ gen_list

```
let rec map_list f z = match z with(Inlined)| Nil \rightarrow Nil| Cons (u, v) \rightarrow Cons (f u, map_list f v)
```

Generic programming

Trees

type α gen = | Pair of (α gen $\times \alpha$ gen) | Value of α | Unit type α tree = Leaf | Node of ($\alpha \times (\alpha \text{ tree} \times \alpha \text{ tree})$)

```
type relation \alpha gen_tree : \alpha gen \Rightarrow \alpha tree with(Simplified)| Unit \Rightarrow Leaf|| Pair (Value x, Pair(t_1, t_2)) \Rightarrow Node (x, t_1, t_2) when t_1, t_2 : \alpha gen_tree
```

let map_tree = lifting map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ gen_tree $\rightarrow \beta$ gen_tree

```
let rec map_tree f z = \text{match } z with

| Leaf \rightarrow Leaf

| Node (x, t_1, t_2) \rightarrow Node (f x, map tree f t_1, map tree t_2)

(Inlined)
```

More examples

- Code specialization
- Code generalization

sets as unit maps from sets to maps
More examples

- Code specialization
- Code generalization

sets as unit maps

from sets to maps

from nats to lists (will be our running example)

(used as a running example to explain the details of lifting.)

Similar types

typenat=Z|Sofnattype α list=Nil|Consof $\alpha \times \alpha$ list

With similar values

The ornament relation

type relation
$$\alpha$$
 natlist : nat $\Rightarrow \alpha$ list **with**
 $\mid Z \Rightarrow Nil$
 $\mid S m \Rightarrow Cons (_, m)$ when α natlist : $m \Rightarrow m$

stands for any value; may only appear on the right-hand side

add & append

let rec add m n = match m with | Z $\rightarrow n$ | S $m' \rightarrow$ S (add m' n) let append = lifting add : _ natlist \rightarrow _ natlist \rightarrow _ natlist let rec append m n = match m with | Nil $\rightarrow n$ | Cons $(x,m') \rightarrow$ Cons (#1, append m' n)

let rec add $m n =$ match m with
$ Z \rightarrow n$
\mid S m' \rightarrow S (add m' n)
let append = lifting add :natlist \rightarrow natlist \rightarrow natlist patch Cons $(x, _) \rightarrow$ Cons $(\#, _) \leftarrow x$
let rec append $m n = match m$ with
$ $ Nil $\rightarrow n$
\mid Cons $(x,m') \rightarrow$ Cons (x, m) append $m'(n)$

How to proceed?

- in a principled manner—without arbitrary choices!
- so that the lifted program behaves similarly to the base one

Lifting

No reasonable place for abstraction a priori

Lifting

Need to ornament some of the datatypes

 $by \ abstraction \ a \ posteriori$

(1) Abstract over (depends only on) what is ornamented.

Lifting

Find its lifted version given an ornament specification

$$B = A_{gen} \ orn_{args}$$

(2) Specialize according to the liftting specification

Lifting

by abstraction a posteriori

Lifting

(3) Reduce and (4) Simplify

Lifting

(9)14 / 41

Representing ornaments of nat

type α natS = Z' | S' of α

▶ We introduce a skeleton (open definition) of nat, to allow for hybrid nats where the head looks like a nat but the tail need not be a nat.

Representing ornaments of nat

type α natS = Z' | S' of α

• The ornamented datatype piggy bags on this skeleton:

Representing ornaments of nat

type α natS = Z' | S' of α

• The ornamented datatype piggy bags on this skeleton:

list_proj 'a list ('a list) natS list_inj ▶ For convenience, we pack them in a datatype type (α, β, γ) orn = { inj : $\alpha \to \beta \to \gamma$; proj : $\gamma \to \alpha$ } **let** natlist = ({ inj = list inj; proj = list proj } : ((α list) natS, α , α list) orn)

From... add to a generic lifting...

From... a generic lifting back to append

From...

or back to add

```
let add_gen orn_0 orn_1 patch =
    let rec add m n =
    match orn_0.proj m with
        | Z' \rightarrow n
        | S' m' \rightarrow orn_1.inj (S' (add m' n)) (patch m n)
    in add
From add_gen back to append
let append = add_gen natlist natlist
        (fun m \rightarrow match m with Cons(x, ) \rightarrow x)
```

From...

or back to add

```
let add gen orn<sub>0</sub> orn<sub>1</sub> patch =
     let rec add m n =
        match orn<sub>0</sub>.proj m with
           | Z' \rightarrow n
          | S' m' \rightarrow \text{orn}_1.inj (S' (add m' n)) (patch m n)
     in add
From add gen back to append
  let append = add gen natlist natlist
                               (fun m_{-} \rightarrow match m with Cons(x, ) \rightarrow x)
From add gen back to add: by passing the "identity" ornament
  let add = add gen natnat natnat (fun \_ \rightarrow ())
  let natnat : (nat natSkel, \alpha, nat) orn =
     { proj = (fun n \rightarrow match n with Z \rightarrow Z' | S m \rightarrow S' m )
        inj = (fun n x \rightarrow \text{match } n \text{ with } Z' \rightarrow Z \mid S' m \rightarrow S m ) \}
```

let add_gen (orn₀: (_,_, γ_0) orn) (orn₁: (_, β_1 , γ_1) orn) $p_1 =$ let rec add m n =match orn₀.proj m with | Z' $\rightarrow n$ | S' $m' \rightarrow \text{orn}_1.\text{inj}$ (S' (add m' n)) $(p_1 m n : \beta_1)$

in add

Coherence

- the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference

For the ornament natlist

let add_gen (orn₀: (_,_, γ_0) orn) (orn₁: (_, β_1 , γ_1) orn) p_1 (orn₂: (_, β_2 , γ_1) orn) p_2 = let rec add m n =match orn₀.proj m with | Z' $\rightarrow n$ | S₁' $m' \rightarrow$ orn₁.inj (S₁' (add m' n)) ($p_1 m n : \beta_1$) | S₂' $m' \rightarrow$ orn₂.inj (S₂' (add m' n)) ($p_2 m n : \beta_2$) in add

Coherence

- ▶ the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference

▶ If nat had 2 successor nodes, we would get

let add_gen (orn_0: (_,_, γ_0) orn) (orn_1: (_, β_1 , γ_1) orn) p_1 $p_2 =$ let rec add m n =match orn_0.proj m with
| Z' $\rightarrow n$ | S₁' $m' \rightarrow$ orn_1.inj (S₁' (add m' n)) ($p_1 m n : \beta_1$)
| S₂' $m' \rightarrow$ orn_1.inj (S₂' (add m' n)) ($p_2 m n : \beta_1$)
in add

Coherence

- ▶ the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference

... and orn₁ and orn₂ should be identified

let add_gen (orn_0: (_,_, γ_0) orn) (orn_1: (_, β_1 , γ_1) orn) p_1 $p_2 =$ let rec add m n =match orn_0.proj m with
| Z' $\rightarrow n$ | S₁' $m' \rightarrow$ orn_1.inj (S₁' (add m' n)) ($p_1 m n : \beta_1$)
| S₂' $m' \rightarrow$ orn_1.inj (S₂' (add m' n)) ($p_2 m n : \beta_2$)
in add

Coherence

- ▶ the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference

▷ Suffices here, but the injection need a dependent type in fine

Staging

Meta-reduction

- We use meta abstractions and applications for the encoding
- To only reduce those redexes at compile time

Staging

let add_gen = fun orno orni patch #>
let rec add m n =
 match orno.proj # m with
 | Z' → n
 | S' m' → orni.inj # S' (add m' n) # (patch m n)
 in add
let append = add_gen # natlist # natlist
 # (fun m__ → match m with Cons(x,_) → x)

Meta-reduction

- We use meta abstractions and applications for the encoding
- To only reduce those redexes at compile time

Staging

let add_gen = fun orno orni patch #>
let rec add m n =
 match orno.proj # m with
 | Z' → n
 | S' m' → orni.inj # S' (add m' n) # (patch m n)
 in add
let append = add_gen # natlist # natlist
 # (fun m__ → match m with Cons(x,_) → x)

Meta-reduction

- We use meta abstractions and applications for the encoding
- To only reduce those redexes at compile time
- ► All #-abstractions and #-applications can actually be reduced.
- This is ensured just by a typing argument!
After meta-reduction

- There remains some redundant pattern matchings...
- Decoding list to natS and encoding natS to list.

- There remains some redundant pattern matchings...
- Decoding list to natS and encoding natS to list.
- We can eliminate the last one by reduction

And the other by extrusion... (commuting matches)

And the other by extrusion... (commuting matches)

| S' $m' \rightarrow$ Cons((match *m* with Cons(*x*,_) \rightarrow *x*), append *m' n*))

and reducing again

and reducing again

Cons((match m with Cons $(x,) \rightarrow x$), append m' n))


```
let rec append m n =

match m with

| Nil \rightarrow n

| Cons ( x , m') \rightarrow

Cons ( x, append m' n)
```

- We obtain the code for append.
- This transformation also always eliminates all uses of dependent types

Some technical points

$ML \subseteq eML \subseteq mML$

$\mathsf{ML} \subseteq \mathsf{eML} \subseteq \mathsf{mML}$

The source language is (explicitly typed) ML

$\mathsf{ML} \subseteq \underline{\mathsf{eML}} \subseteq \mathsf{mML}$

- The source language is (explicitly typed) ML
- eML adds dependent types over term equalities to ML
 Needed for typing the injection functions:

list_inj : $\Lambda^{\sharp} \alpha$. $\Pi(\underline{m} : natS(\text{list } \alpha))$. $\Pi((x : \text{match } \underline{m} \text{ with } Z' \to \text{unit } | S' \to \alpha)$. *list* α

$\mathsf{ML} \subseteq e\mathsf{ML} \subseteq \mathsf{mML}$

- The source language is (explicitly typed) ML
- eML adds dependent types over term equalities to ML
 Needed for typing the injection functions:

list_inj : $\Lambda^{\sharp} \alpha$. $\Pi(\underline{m} : natS(\text{list } \alpha))$. $\Pi(\underline{(x : \text{match } \underline{m} \text{ with } Z' \rightarrow \text{unit } | S' _ \rightarrow \alpha)$. *list* α

- The source language is (explicitly typed) ML
- eML adds dependent types over term equalities to ML
- mML adds (meta) abstractions and applications over all language constructs, including type equalities.

 By stratification, preservation of typing, and termination of meta-reduction

 Type equivalences in derivations of ML judgments can always be eliminated

eML

Types depend on expressions & typing contexts contain term equalities match **a** with $(P \rightarrow \tau \mid ..P \rightarrow \tau)$ $\Gamma, a =_{\tau} b$

Equations introduced on pattern matching are used in equalities, implicitly

$$\begin{array}{ccc} \Gamma \vdash \mathsf{a} : \zeta \ \overline{\tau} & (\mathsf{d}_i : \forall \ \overline{\alpha} . (\tau_{ij})^j \to \zeta \ \overline{\alpha})^i \\ (\Gamma, (\mathsf{x}_{ij} : \tau_{ij} [\overline{\alpha} \leftarrow \overline{\tau}])^j, \mathbf{a} =_{\zeta \ \overline{\tau}} \ \mathsf{d}_i \ \overline{\tau} (\mathsf{x}_{ij})^j \vdash b_i : \tau)^i \end{array} \qquad \begin{array}{c} \Gamma \vdash \mathsf{a} : \tau_1 \\ \Gamma \vdash \tau_1 \simeq \tau_2 \end{array}$$

 $\Gamma \vdash \text{match } a \text{ with } (d_i \,\overline{\tau} (x_{ij})^j \to b_i)^i : \tau \qquad \qquad \Gamma \vdash a : \tau_2$

Type equality, closed by equality on terms which includes

- term equalities assumptions, case splitting on pure terms
- reduction of type applications, pattern matchings, pure let-bindings
- closure by arbitrary context

Type equalities are necessary to check types defined by pattern matching and detect dead branches.

Logical relation

We first define a step-indexed logical relation $\mathcal{E}[\tau]_{\gamma}$ and $\mathcal{V}[\tau]_{\gamma}$ on *m*ML. (A bit involved, because of dependent types, but standard.)

Ornament types ω

- \blacktriangleright same as types, but extended with datatype ornaments χ (e.g. natlist)
- can be projected to types ω^- and ω^+ e.g.

Logical relation naturally extends to ornament types:

- At ornament datatypes ω, we use the corresponding user defined ornament relation, *i.e.* pairs of values of types ω⁻ and ω⁺ (much as the interpretation of abstract types)
- Use the standard definition elsewhere.

Ornament relations

An ornament definition

defines a relation $\mathcal{V}[$ natlist $\omega]_{\gamma}$ between values of type nat and list ω^+

$$(\mathsf{Z},\mathsf{Nil}) \in \mathcal{V}[\mathsf{natlist}\;\omega]_{\gamma} \qquad \frac{(u^-,u^+) \in \mathcal{V}[\mathsf{natlist}\;\omega]_{\gamma} \qquad (v^-,v^+) \in \mathcal{V}[\omega]_{\gamma}}{(\mathsf{S}\;u^-,\mathsf{Cons}\;(v^+,u^+)) \in \mathcal{V}[\mathsf{natlist}\;\tau]_{\gamma}}$$

Ornament relations

An ornament definition

defines a relation $\mathcal{V}[$ natlist $\omega]_{\gamma}$ between values of type nat and list ω^+

$$(\mathsf{Z},\mathsf{Nil}) \in \mathcal{V}[\mathsf{natlist}\;\omega]_{\gamma} \qquad \frac{(u^-,u^+) \in \mathcal{V}[\mathsf{natlist}\;\omega]_{\gamma} \qquad (v^-,\mathbf{v^+}) \in \mathcal{V}[\omega]_{\gamma}}{(\mathsf{S}\;u^-,\mathsf{Cons}\;(\mathbf{v^+},u^+)) \in \mathcal{V}[\mathsf{natlist}\;\tau]_{\gamma}}$$

Here, this relation happens to be the inverse of the length function

$$(u^-, u^+) \in \mathcal{V}[\text{natlist } \omega]_{\gamma} \iff u^- = \textit{length } u^+ \land \begin{cases} u^- : \text{nat} \\ u^+ : \text{list } \omega^+ \end{cases}$$

Correctness of ornamentation

(Sketch)

- add_gen ~ add_gen at a complicated ornament type
 natnat ~ natlist
 p_{nat} ~ p_{list} at ornament type natlist α → natlist α → T (we will never look into values returned by patches)
 add_gen natnat natnat n ar add_gen natlist na
- \blacktriangleright add_gen natnat natnat p_{nat} \sim add_gen natlist natlist p_{list}

Hence,

 $\blacktriangleright \ \ \, {\rm add} \ \ \sim \ \ \, {\rm append} \ \ \, {\rm at\ ornament\ type\ natlist\ } \alpha \to {\rm natlist\ } \alpha \to {\rm natlist\ } \alpha$

Then:

Why useful?

► . . .

- undo the ornamentation...
- > offer a simplified view: locations, type annotations on ASTs, etc.

Trivial case

 (binop example): ornamentation is bijective (no green) disornamentation is an ornamentation.

Easy case

- The source is an ornamentation of the target
- Green nodes may depend on blue nodes but not conversely
- Hence, green code becomes useless code, and green nodes can be eliminated

General case

- ► The blue code may be depend on green nodes.
- Then a patch is needed in the target to replace missed bindings in pattern matchings on green nodes.
- The green code is garbage collected.

$$type (\alpha, \beta) \text{ listS} = \text{Nil'} | \text{ Cons' of } \alpha \times \beta$$
Coercions
$$nat_proj$$

$$nat \longrightarrow (\alpha, nat) \text{ listS}$$

$$nat_inj$$

$$let nat_proj n x = match n \text{ with}$$

$$| Z \rightarrow \text{Nil'} \qquad | \text{ let } nat_inj n = match n \text{ with}$$

$$| S t \rightarrow \text{Cons'}(x, t)$$

$$let nat_inj = nat_inj;$$

$$rype (\alpha, \beta, \gamma) \text{ disorn} = \{ \text{ inj} = nat_inj; \text{ proj} = nat_proj \}$$

$$let \text{ list}_nat = \{ \text{ inj} = nat_inj; \text{ proj} = nat_proj \}$$

type (
$$\alpha$$
, β) listS = Nil' | Cons' of $\alpha \times \beta$

.

Coercions

$$\begin{array}{c} \text{nat_proj} \\ \text{nat_inj} \end{array} (\alpha, \text{nat}) \text{ listS} \\ \text{nat_inj} \end{array}$$

$$\begin{array}{c} \text{let nat_proj } n \text{ } x = \text{match } n \text{ with} \\ | \text{ Z } \rightarrow \text{Nil'} \\ | \text{ S } t \rightarrow \text{Cons'} (x, t) \end{array} \qquad \begin{array}{c} \text{let nat_inj } n = \text{match } n \text{ with} \\ | \text{ Nil'} \rightarrow \text{Z} \\ | \text{ Cons'}(_, t) \rightarrow \text{S } t \end{array}$$

type (
$$\alpha$$
, β) listS = Nil' | Cons' of $\alpha \times \beta$

Coercions

$$\begin{array}{c} \text{nat_proj} \\ \text{nat_inj} \end{array} (\alpha, \text{nat}) \text{ listS} \\ \text{ist_inj} \end{array}$$

$$\begin{array}{c} \text{let nat_proj } n \text{ } x = \text{match } n \text{ with} \\ | \text{ Z } \rightarrow \text{Nil'} \\ | \text{ S } t \rightarrow \text{Cons'}(x, t) \end{array} \qquad \begin{array}{c} \text{let nat_inj } n = \text{match } n \text{ with} \\ | \text{ Nil' } \rightarrow \text{Z} \\ | \text{ Cons'}(_, t) \rightarrow \text{S } t \end{array}$$

Append generic version, specialized to nats and simplified let add patch = let rec append m n =let x = (patch m n) in — Useless binding match m with $| Z \rightarrow Z |$ $| S m' \rightarrow S$ (append m' n) in append
type (
$$\alpha$$
, β) listS = Nil' | Cons' of $\alpha \times \beta$

Coercions

I

$$nat_proj$$

$$nat_inj$$

$$(\alpha, nat) listS$$

$$nat_inj$$

$$let nat_proj n x = match n with$$

$$| Z \rightarrow Nil' | Nil' \rightarrow Z$$

$$| Cons'(_, t) \rightarrow S t$$

Append generic version, specialized to nats and simplified let add = let rec append m n =

```
\begin{array}{ccc} \textbf{match} \ m \ \textbf{with} \\ | \ \textbf{Z} \ \rightarrow \ \textbf{Z} \\ | \ \textbf{S} \ m' \ \rightarrow \ \textbf{S} \ (\texttt{append} \ m' \ n) \\ \textbf{in} \ \texttt{append} \end{array}
```


- Dropping balancing information from red-black trees
- Dropping location information from abstract syntax trees
- Better: maintaining two versions of the code in sync!

 \Rightarrow Generate patches for reornamentation during disornamentation

more

Adding a new constructor to an existing data-type

Use an empty type on the left-hand side

```
type relation oexp : exp \Rightarrow exp'

...

and ovalue : value \Rightarrow exp' with

| Con i \Rightarrow Con' i

| Abs f \Rightarrow Abs' f when f : ovalue \rightarrow oexp

| \sim \Rightarrow App' (u, v)
```

 Every pattern-matching on App' will require a patch on the corresponding branch.

Mixing ornamentation and disornamentation in the same transformation

Limitations and extensions

GADTs ?

- Ornamentation in the presence of GADTs
- Ornamentation of ADTs into GADTs
- Conversely, disornamentation of GADTs into ADTs
 - cf. Ghostbuster for Haskell [Trevor, McDonell, Zakian, Cimini, Newton]

Or more general dependent types?

Question

▶ Will the ornamented terms remain in the same source language ?

Side effects

- Ornamentation has been crafted to preserve the call-by-value evaluation order, so it should be unsurprising in practice.
- But no formalization.

Theoretical limits of (dis)ornamentation

Theorem

The lifted code behaves as the base code up to the relation between values of the base type and values of the lifted type.

Corollary

Ornaments cannot change the behavior of the base code.

- X fix bugs
- X turn an implementation of merge sort into quick sort

Based on datatype transformations

- **X** modify the control, CPS transform, deforestation, *etc.*
- ✓ add or remove arguments to functions
 - viewing arguments of a given function as a specific tuple of arguments which can then be ornamented or disornamented

Practical limits of ornaments

Lifting is syntactic

- × ornamentation points are derived from the syntax.
- $\pmb{\times}$ η -expansion, if necessary, must be performed manually.
 - cannot derive a duplicating function from the identity function
- $\checkmark\,$ Still, unfolding of recursion is possible.

Beyond syntactic lifting

- Semantic preserving transformations may always be applied manually prior to ornamentation.
- Extend the notion of syntactic lifting? (maybe not necessary)

General tooling already needed for pre/post processing

- Generate good names for new variables
- Pattern matching:
 - Transform deep pattern matching into narrow one beforehand
 - Inverse transformation that restores deep pattern matching afterwards
 - Factor identical branches
- Introduce and/or inline let bindings

General tooling already needed for pre/post processing

Code inference

- Could autofill or propose some of the patches
- Inferring code from types, possibly with additional constraints
- Any other forms of code inference could be used.

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

Extensible datatypes ?

See Trees that grows by Shayan Najd & Simon Peyton Jones:

- Ornamentation can already be used to add or remove constructors
- They also factor the evolution of datatypes
- Their solution is by abstraction a priori:
- Is there an abstraction a posteriori alternative?

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

Other useful semantic preserving transformations?

- CPS transformation, Defunctionalization, Deforestation, etc.
- Many compiler optimizations could be made available to the user

General tooling already needed for pre/post processing

Code inference

Ornamentation-like transformations

Other useful semantic preserving transformations?

Non-semantic preserving transformations

- Necessary, for completeness, and to fix bugs!
- Hopefully, can be reduced to only a few, small transformations inserted between well-behaved ones.

Modes of interaction

- The most appealing usage is probably in an interactive mode, in some IDE with in place changes.
- But, we also need a batch mode
 - ▶ to separate the concerns, be independent of any IDE
 - we may wish to maintain two versions in sync (e.g. locations)
 - or maintain older versions for archival
- Raises new questions:
 - Design the right syntax for describing transformations
 - Robustness to source changes:
 - Up to which program transformations will a patch remain valid?
 - Can a patch from A to B be adapted when A changes?
 - Merging of two transformations done in parallel ...

Conclusion

We need a toolbox for safer, easier software evolution!

- ► With simple, composable, well-understood transformations
- Typed languages are a good setting:
 - ► Focus on type transformations, prior to code transformations.
 - Separate what can be automated, from what must be user provided
 - Abstraction a posteriori provides guidance and ensures a semantic preservation property
- Other applications of abstraction a posteriori? replace boiler plate code?

(Mixed) ornamentation is just one of the tools

fits well within ML (see http://gallium.inria.fr/~remy/ornaments/)

Let's automate more parts of programming!

Outline

Examples

- 2 Nats and lists
- 3 Abstraction a posteriori
- 4 Encoding and simplifications
- 5 Technical points
- 6 Disornamentation
- Discussion

Conclusion