
Ornaments in Practice

Thomas Williams Pierre-Évariste Dagand Didier Rémy
INRIA

{Thomas.Williams,Pierre-Evariste.Dagand,Didier.Remy}@inria.fr

Abstract
Ornaments have been introduced as a way to describe some
changes in datatype definitions that preserve their recursive struc-
ture, reorganizing, adding, or dropping some pieces of data. After
a new data structure has been described as an ornament of older
one, some functions operating on the bare structure can be par-
tially or sometimes totally lifted into functions operating on the
ornamented structure. We explore the feasibility and the interest
of using ornaments in practice by applying these notions in an
ML-like programming language. We propose a concrete syntax for
defining ornaments of datatypes and the lifting of bare functions
to their ornamented counterparts, describe the lifting process, and
present several interesting use cases of ornaments.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms Design; Languages; Experimentation

Keywords Ornament; Datatypes; Code inference; Refactoring;
Dependent types; Generalized Algebraic Datatypes

1. Introduction
Inductive datatypes and parametric polymorphism were two key
new features introduced in the ML family of languages in the
1980’s. Datatypes stress the algebraic structure of data while para-
metric polymorphism allows to exploit universal properties of al-
gorithms working on algebraic structures. Arguably, ML has struck
a balance between a precise classifying principle (datatypes) and a
powerful abstraction mechanism (parametric polymorphism).

Datatype definitions are inductively defined as labeled sums and
products over primitive types. This restricted language allows the
programmer to describe, on the one hand, their recursive structures
and, on the other hand, how to populate these structures with data
of either primitive types or types given as parameters. A quick look
at an ML library reveals that datatypes can be factorized through
their recursive structures. For example, the type of leaf binary trees
and the type of node binary trees both share a common binary-
branching structure:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WGP’14, August 31, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3042-8/14/08. . . $15.00.
http://dx.doi.org/10.1145/2633628.2633631

type α ltree =
| LLeaf of α
| LNode of α ltree × α ltree

type α ntree =
| NLeaf
| NNode of α ntree × α × α ntree

This realization is mutatis mutandis at the heart of the work
on numerical representations (Knuth 1981) in functional set-
tings (Okasaki 1998; Hinze 1998). Having established the struc-
tural ties between two datatypes, one soon realizes that both admit
strikingly similar functions, operating similarly over their common
recursive structures. The user sometimes feels like repeatedly pro-
gramming the same operations over and over again with only minor
variations. The refactoring process by which one adapts existing
code to work on another, similarly-structured datatype requires
non-negligible efforts from the programmer. Could this process be
automated?

Another tension arises from the recent adoption of indexed
types, such as Generalized Algebraic Data Types (GADTs) (Ch-
eney and Hinze 2003; Schrijvers et al. 2009; Pottier and Régis-
Gianas 2006) or refinement types (Freeman and Pfenning 1991;
Bengtson et al. 2011). Indexed datatypes go one step beyond spec-
ifying the dynamic structure of data: they introduce a logical infor-
mation enforcing precise static invariants. For example, while the
type of lists is merely classifying data
type α list = Nil | Cons of α × α list

we can index its definition (here, using a GADT) to bake in an
invariant over its length, thus obtaining the type of lists indexed by
their length:
type zero = Zero type _ succ = Succ
type (_, α) vec =
| VNil : (zero, α) vec
| VCons : α × (n, α) vec→ (n succ, α) vec
Modern ML languages are thus offering novel, more precise

datatypes. This puts at risk the fragile balance between classify-
ing power and abstraction mechanism in ML. Indeed, parametric
polymorphism appears too coarse-grained to write program manip-
ulating indifferently lists and vectors (but not, say, binary trees).
We would like to abstract over the logical invariants (introduced by
indexing) without abstracting away the common, underlying struc-
ture of datatypes.

The recent theory of ornaments (McBride 2014) aims at an-
swering these challenges. It defines conditions under which a new
datatype definition can be described as an ornament of another. In
essence, a datatype ornaments another if they both share the same
recursive skeleton. Thanks to the structural ties relating a datatype
and its ornamented counterpart, the functions that operate only on
the structure of the original datatype can be semi-automatically
lifted to its ornamented version.

The idea of ornaments is quite appealing but has so far only been
explored formally, leaving open the question of whether ornaments
are just a theoretician pearl or have real practical applications. This

paper aims at addressing this very question. Although this is still
work in progress and we cannot yet draw firm conclusions at this
stage, our preliminary investigation is rather encouraging.

Our contributions are fourfold: first, we present a concrete syn-
tax for describing ornaments of datatypes and specifying the lift-
ing of functions working on bare types to ornamented functions
operating on ornamented types (§2); second, we describe the al-
gorithm that given such a lifting specification transforms the def-
inition of a function on bare types to a function operating on or-
namented types (§2); third, we present a few typical use cases of
ornaments where our semi-automatic lifting performs rather well
in Sections §3 and §4; finally, we have identified several interesting
issues related to the implementation of ornaments that need to be
investigated in future works (§5).

We have a very preliminary prototype implementation of orna-
ments. It has been used to process the examples presented below,
up to some minor syntactical differences. Many type annotations
have been omitted to mimic what could be done if we had ML-
style type inference; our prototype still requires annotations on all
function parameters. In this article, examples are typeset in a styl-
ized, OCaml-like syntax: the actual definitions, as processed by our
prototype, are available online1.

2. Ornaments by examples
Informally, ornaments are relating “similar” datatypes. In this sec-
tion, we aim at clarifying what we mean by “similar” and justify-
ing why, from a software engineering standpoint, one would benefit
from organizing datatypes by their “similarities”.

For example, compare Peano’s natural numbers and lists:
type nat = Z | S of nat
type α list = Nil | Cons of α × α list

The two datatype definitions have a similar structure, which can be
put in close correspondence if we mapα list to nat, Nil to Z, and
Cons to S. Moreover, the constructor Cons takes a recursive argu-
ment (of type α list) that coincides with the recursive argument
of the constructor S of type nat. The only difference is that the con-
structor Cons takes an extra argument of type α. Indeed, if we take
a list, erase the elements, and change the name of the constructor,
we get back a natural number that represents the length of the list,
as illustrated below:

Cons(1, Cons(2, Cons(3, Nil)))

S (S (S (Z)))

This analysis also admits a converse interpretation, which is per-
haps more enlightening from a software evolution perspective: lists
can be understood as an extension of natural numbers that is ob-
tained by grafting some information to the S constructor. To em-
phasize this correspondence, we say that the type α list is an or-
nament of the type nat with an extra field of typeαon the construc-
tor S.

One may then ask whether functions over natural numbers can
be lifted to functions over lists (Dagand and McBride 2014). For
instance, the addition of Peano-encoded natural numbers
let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

is strikingly similar to the append function over lists:
let rec append xs ys = match xs with
| Nil→ ys
| Cons(x, xs’)→ Cons(x, append xs’ ys)

Intuitively, addition can be recovered from the operation on lists by
changing the constructors to their counterpart on natural numbers

1 http://cristal.inria.fr/~remy/ornaments/

and simultaneously erasing the head field. (Bernardy and Guilhem
2013). However, this view of erasing information is not so interest-
ing from a software engineering perspective, as one must decide in
advance on a sufficiently rich datatype from which only a limited
number of simpler versions can be derived.

Conversely, our interest lies in being able to lift a function
operating on basic types, such as natural numbers to a function
operating over some of its ornament, such as lists.

The example of append is not a fortunate coincidence: several
functions operating on lists admit a counterpart operating solely on
integers. Rather than duplicating these programs, we would like
to take advantage of this invariant to lift the code operating on
numbers over to lists.

One should hasten to add that not every function over lists
admits a counterpart over integers: for example, a function filter
that takes a predicate p and a list l and returns the list of all the
elements satisfying p, has no counterpart on integers, as the length
of the returned list is not determined by the length of l.

From this informal description of ornaments, we can describe
a recipe for programming with ornaments: start with a few ba-
sic structures (such as natural numbers, trees, etc.), build an orna-
mented structure by extending one of these with additional informa-
tion and invariants, then (hopefully automatically) lift the functions
from the base structure to the ornamented structure.

In this work, ornaments are a primitive language construct and
are not definable using polytypic programming on a reflection of
the definition of datatypes into the host language as is the case in
(Dagand and McBride 2013). Our goal here is to explore program-
ming with ornaments and not programming ornaments themselves.

2.1 A syntax for ornaments
Informally, an ornament is any transformation of a datatype that
preserves its underlying recursive structure, and provides a map-
ping from the values of the ornamented type to the values of the
bare type. From an operational standpoint, this mapping is able to

• drop the extra information introduced by the ornament,
• transform the arguments of the ornamented type down to the

bare type,
• while leaving untouched the common structure of the datatypes.

Dropping the extra-information can be easily described by a total
projection function from the ornamented type to the bare type. For
the nat/list case, the projection is the length function:
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

Instead of providing a language for describing these transfor-
mations of types, we assume that both the bare type and the or-
namented type are already defined. Then, an ornament is defined
by the associated projection function, provided that it respects the
structure of the datatypes. Hence, the ornamentation of natural
numbers into lists is simply specified by the declaration
ornament from length : α list→ nat

subject to certain conditions that we describe now.
The condition by which a projection “preserves the recursive

structure” of its underlying datatype is somewhat harder to charac-
terize syntactically. Let us first clarify what we mean by recursive
structure. If we limit ourselves to a single, regular recursive type,
the fields of each constructor can be divided into two sets: the recur-
sive ones (for example, the tail of a list, or the left and right subtrees
of a binary tree), and the non-recursive ones (for example, primitive
types or parameters). A function preserves the recursive structure of
a pair of datatypes (its domain and codomain) if it bijectively maps

http://cristal.inria.fr/~remy/ornaments/

the recursive fields of the domain datatype (the ornament) onto the
codomain datatype (its bare type).

From this definition, binary trees cannot be ornaments of lists,
since trees have a constructor with two recursive fields, while lists
only have a constant constructor and a constructor with a single
recursive field; thus no function from trees to lists can preserve the
recursive structure.

While we have a good semantic understanding of these con-
ditions (Dagand and McBride 2013), this paper aims at giving a
syntactic treatment. We are thus faced with the challenge of trans-
lating these notions to ML datatypes, which supports, for example,
mutually-recursive datatypes.

From the categorical definition of ornaments, we can nonethe-
less extract a few sufficient syntactic conditions for a projection to
define an ornament. For the sake of presentation, we will assume
that the arguments of datatypes constructors are always ordered,
non-recursive fields coming first, followed by recursive fields. The
projection h defining the ornament must immediately pattern match
on its argument, and the argument must not be used elsewhere. The
constraints are expressed on each clause p → e of this pattern
matching:

1. The pattern p must be of the form C†(p1, . . . , pm, x1, . . . , xn)
where C† is a constructor of the ornamented type, the pi are
patterns matching the non-recursive fields, and the xi’s are
variables matching the recursive fields.

2. The expression emust be of the formC(e1, . . . , eq, h y1, ..., h
yn) where C is a constructor of the base type, the ei’s are ex-
pressions that do not use the xj’s, and the yj’s are a permutation
of the xi’s.

In particular, a constructor C† of the ornamented type will be
mapped to a constructor C of the bare type with the same number
of recursive fields.
Remark 1. Unlike the original presentation of ornaments (McBride
2014), but following the categorical model (Dagand and McBride
2013), we allow the recursive arguments to be reordered.

This rules out all the following functions in the definition of
ornaments:
let rec length_div2 = function
| Nil→ Z
| Cons(_,Nil)→ Z
| Cons(x, Cons(y, xs))→ S(length_div2 xs)

The second (recursive) field of Cons is not matched by a variable in
length_div2.
let rec length2 = function
| Nil→ Z
| Cons(x, xs)→ S(S(length2 xs))

The argument of the outer occurrence of S is not a recursive appli-
cation of the projection length2.
let rec spine = function
| NLeaf→ Nil
| NNode(l, x, r)→ Cons(x, spine l)

let rec span = function
| Nil→ NLeaf
| Cons(x, xs)→ NNode(span xs, x, span xs)

The function spine is invalid because it discards the recursive field
r, and span is invalid because it duplicates the recursive field xs.

The syntactic restrictions we put on the specification of orna-
ments make projections incomplete, i.e. one may cook up some
valid ornaments that cannot be described this way, e.g. using arbi-
trary computation in the projection. However, it seems that inter-
esting ornaments can usually be expressed as valid projections.

As expected, length satisfies the conditions imposed on projec-
tions and thus defines an ornament from natural numbers to lists.

Perhaps surprisingly, by this definition, the unit type is an orna-
ment of lists (and, in fact, of any type inhabited by a non-recursive
value), witnessed by the following function:

let nil () = Nil
ornament from nil : unit→α list

This example actually belongs to a larger class of ornaments that
removes constructors from their underlying datatype (see more
advanced uses of such examples in §3.3. From a type theoretic
perspective, this is unsurprising: in the original presentation of
ornaments, removing a constructor is simply achieved by inserting
a field asking for an element of the empty set.

The conditions on the ornament projection can be generalized
to work with mutually recursive datatypes. To ornament a mutually
recursive family of datatypes, we simply define a mutually recur-
sive family of projections functions, one for each datatype. Indi-
vidually, each of these projection functions are then subject to the
usual syntactic conditions.

2.2 Lifting functions: syntax and automation
Using the ornament projection, we can also relate a lifted func-
tion operating on some ornamented types with the corresponding
function operating on their respective bare types. Intuitively, such
a coherence property states that the results of the ornamented func-
tion are partially determined by the result of the bare function (the
function on the bare type).

To give a more precise definition, let us define a syntax of
functional ornaments, describing how one function is a lifting of
another, and the coherence property that it defines. Suppose we
want to lift a function f of type σ → τ to the type σ† → τ†

using the ornaments. More precisely, suppose we want this lifting
to use the ornaments defined by the projections uσ : σ† → σ and
uτ : τ† → τ . We say that f† is a coherent lifting of f with the
ornaments uσ and uτ if and only if it satisfies the equation:

f (uσ x) = uτ (f† x)

for all x of type σ†.
This definition readily generalizes to any number of arguments.

For example, lifting the function add with the ornament length
from natural numbers to lists, the property becomes:
length (f† xs ys) = add (length xs) (length ys)

And indeed, taking the function append for f† satisfies this prop-
erty. Thus, we can say that append is a coherent lifting of add with
the ornament length used for both the arguments and the result.
But is it the only one? Can we find it automatically?

So far, we have only specified when a function is a coherent
lifting of another one. However, the whole point of ornaments is
to automate the generation of the code of the lifted function. For
instance, we would like to write
let lifting append from add
with {length}→ {length}→ {length}

where {length}→ {length}→ {length} specifies the ornaments
to be used for the arguments and the result (in the specification of
a lifting, ornaments are identified with their projection functions).
We then expect the compiler to automatically derive the definition
of append for us. In practice, we will not get exactly the right
definition, but almost.

To achieve this objective, the coherence property appears to be
insufficiently discriminating. For instance, there is a plethora of
coherent liftings of add with the ornament length beside append.
Rather than trying to enumerate all of them, we choose to ignore all
solutions whose syntactic form is not close enough to the original
function. Our prototype takes hints from the syntactic definition of

the bare function, thus sacrificing completeness. The system tries
to guess the lifting based on the form of the original function and
eventually relies on the programmer to supply code that could not
be inferred.

Let us unfold this process on the lifting of add along length, as
described above, where add is implemented as:
let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

The lifting specification {length}→ {length}→ {length} plays
several roles. First, its describes how the type of add should be
transformed to obtain the type of append. Indeed, knowing that
length has type α list→ nat and add has type nat→ nat→ nat,
append must have type α list→ β list→ γ list for some val-
ues of α, β, γ. Second, it describes how each argument and the
result should be lifted. During the lifting process, the ornaments
of the arguments and of the result play very different roles: lift-
ing an argument changes the context and thus requires lifting the
associated pattern, which introduces additional information in the
context; by contrast, lifting the return type requires lifting expres-
sions, which usually needs additional information to be passed to
the ornamented constructors; in general, this information cannot be
inferred and therefore must be provided by the user.

On our example, the lifting specification says that the arguments
m and n of the function add are lifted into some arguments ml and
nl of the function append such that length ml is m and length nl
is n. The matching on m can be automatically updated to work on
lists instead of numbers, by simply copying the structure of the
ornament declaration: the projection returns Z only when given Nil,
while the constructor S(-) is returned for every value matching
Cons(x,-) where - stands for the recursive argument. The variable
x is an additional argument to Cons that has no counterpart in S. As a
first approximation, we obtain the following skeleton (the left-hand
side gray vertical bar is used for code inferred by the prototype):
let rec append ml nl = match ml with
| Nil→ a1
| Cons(x, ml’)→ a2

where the expressions a1 and a2 are still to be determined. By
inspecting the projection function, it is clear that the variable ml’
is the lifting of m’. In order to have a valid lifting, we require a1 to
be a lifting of n and a2 to be a lifting of S(add m’ n), both along
length.

Let us focus on a1. There are several possible ornaments of n:
Indeed, we could compute the length of nl and return any list
of the same length. However, we choose to return nl because
we want to mirror the structure of the original function, and the
original function does not destruct n in this case. That is, we restrict
lifting of variables so that they are not destructed if they were not
destructed in the bare version.

In the other branch we know that the value of a2 must be an
ornament of S(add m’ n). To mimic the structure of the code, we
must construct an ornament of this value. In this case, it is obvious
by inspection of the ornament that there is only one possible con-
structor. Therefore a2 must be of the form Cons(a3,a4), where a3
is a term of the type α of the elements of the list and a4 a lifting of
add m’ n. Upon encountering a function call to be lifted, the sys-
tem tries to find a coherent lifting of the function among all previ-
ously declared liftings. Here, we know (recursively) that append is
lifted from add with ornaments {length}→ {length}→ {length}.
By looking at this specification, we may determine how the argu-
ments must be lifted: Both m and n must be lifted along length and
ml’ and nl are such coherent liftings—and are the only ones in
context.

To summarize, our prototype automatically generates the fol-
lowing code:

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x, ml’)→ Cons(? , append ml’ nl)

The notation ? represents a hole in the code: this part of the code
could not be automatically lifted, since it does not appear in the
original code, and it is up to the programmer to say what should be
done to generate the element of the list.

To obtain the append function, we can put x in the hole, but
there are other solutions that also satisfy the coherence property.
For example, we could choose to take the first element of nl if
it exists or x otherwise. The resulting function would also be a
lifting of add, since whatever is in the hole is discarded by length.
Note also that we could transform the list nl, instead of returning
it directly in the Nil case, or do something to the list returned by
append ml’ nl in the Cons case, as long as we do not change the
lengths.

While the generated code forces the type of nl to be equal to the
return type, we could even imagine valid liftings where the types of
the two arguments would be different and the elements of the list
would not be equal: for example, filling the hole with () yields a
function of typeα list→ unit list→ unit list. To ensure that
the obtained function is sufficiently polymorphic, it is possible to
add an explicit type annotation when declaring the lifting:
let lifting
append : type a. a list→ a list→ a list
from add with {length}→ {length}→ {length}

When provided with such a signature, the behavior of our functions
is greatly limited by parametricity: the elements must come from
one of the lists. Thus, a possible enhancement to our algorithm is
to try, in a post-processing pass, to fill the holes with a term of
the right type, if it is unique up to program equivalence—for some
appropriate notion of program equivalence. Since we have given
up completeness, we can add the additional constraint that the term
does not use any lifted value: the reason is that we do not want to
destruct lifted values further than in the unlifted version. With this
enhancement, the hole in append could be automatically filled with
the appropriate value (but our prototype does not do this yet).

Notice that if we had a version of list carrying two elements
per node, e.g. with a constructor Cons2 of typeα × α × α list, the
Cons branch would be left with two holes:

| Cons2(x1, x2, ml’)→
Cons2(? , ? , append ml’ nl)

In this case, the post-processing pass would have no choice but
leave the holes to be filled by the user, as each of them requires an
expression of type α and there are two variables x1 and x2 of type
α in the context.

Surprisingly, lifting the tail-recursive version add_bis of add:
let rec add_bis m n = match m with
| Z→ n
| S(m’)→ add_bis m’ (S n)

let lifting append_bis from add_bis
with {length}→ {length}→ {length}

yields a very different function:
let rec append_bis ml nl = match ml with
| Nil→ nl
| Cons(x, ml’)→

append_bis ml’ (Cons(? ,nl))

Filling the hole in the obvious way (whether manually or by post-
processing), we get the reverse append function.

This example shows that the result of the lifting process depends
not only on the observable behavior of a function (as expressed
by the coherence property), but also on its implementation. This
renders functional lifting sensitive to syntactic perturbations: one
should have a good knowledge of how the bare function is written
to have a good understanding of the function obtained by lifting.

Conversely, extensionally equivalent definitions of a single bare
function might yield observably distinct ornamented functions, as
is the case with append and append_bis.

The implementation of automatic lifting stays very close to the
syntax of the original function. This has interesting consequences:
we conjecture that if the projection has a constant cost per recursive
call, then the (asymptotic) complexity of the lifted function (ex-
cluding the complexity of computing what is placed in the holes) is
no greater than the complexity of the bare function. To stay close
to the intended meaning of the function, the automatic lifting will
not call the projection functions defining the ornaments in the gen-
erated code.

Open question: In this section, we have shown how our prototype
exploits the syntactic structure of the bare function to generate
coherent liftings. While our heuristics seem “reasonable”, we lack a
formal understanding of what “reasonable transformations” are. In
particular, parametricity falls short of providing such a mechanism.

2.3 Patching the generated code
When the lifting leaves a hole in the code because some part of it
can’t be automatically lifted, we could rely on a post-processing
code inference phase to fill in the missing parts, as we have already
mentioned. This may still fail—or make a wrong choice because
of heuristics. In this case, the user can play the post-processor and
edit the lifted code by hand. Yet another, perhaps more attractive
solution is to provide, along with the lifting declaration, a patch for
the generated function that will fill in or replace some parts of the
generated code.

Our system includes an implementation of a preliminary lan-
guage of patches for code. Patches follow the structure of the code,
except that some parts can be omitted by replacing them with an
underscore, and not all patterns have to be provided. New code is
inserted by enclosing it in braces. This new code can use the names
bound by the patterns of the patch. For example, the following dec-
laration lifts the function append from add and fills the hole in Cons:
let append from add
with {length}→ {length}→ {length}
patch fun _→ match _ with Cons(x, _)→ Cons({x}, _)

Patches can also be used to change a piece of code when the
lifting or its post-processing took made a wrong choice. In the
lifting of add to append, the system chooses to return nl in the
base case. The following patch overrides this behavior, and returns
List.rev nl instead. This is still a valid lifting because nl and
List.rev nl have the same length.
let append_rev from add
with {length}→ {length}→ {length}
patch fun ml nl→ match _ with
| Nil→ List.rev nl
| Cons(x, _)→ Cons({x}, _)

The system then generates the following code:
let rec append_rev ml nl = match ml with
| Nil→ List.rev nl
| Cons(x, ml’)→ Cons(x, append_rev ml’ nl)

Currently, the implementation does not check that the user-supplied
code respects the coherence property, but this would be desirable,
at least to issue a warning when the coherence cannot be proved
and an error when the code is obviously not coherent. In most case,
we expect the user will only have to insert a constructor or choose a
variable from the context, so the coherence proofs should be simple
enough.

Open question: We have described a basic language of patches to
provide the code that cannot be inferred by the automatic lifting, but
this language could certainly be improved. A language of patches

may be evaluated on two criterions. It should be sufficiently pre-
dictable to allow the programmer to write the patch without look-
ing at the lifted code instead of working interactively. The patches
should also be robust to small changes in the original function.

3. Use cases
The examples in the previous sections have been chosen for expo-
sition of the concepts and may seem somewhat contrived. In this
section, we present two case studies that exercise ornaments in a
practical setting. First, we demonstrate the use of lifting operations
on a larger scale by transporting a library for sets into a library for
maps (§3.1). Second, we show that ornaments can be used to direct
code refactoring (§3.2 and §3.3), thus interpreting in a novel way
the information provided by the ornament as a recipe for software
evolution.

3.1 Lifting a library
The idea of lifting functions from one data structure to another one
carries to more complex data structures, beyond the toy example of
nat and list. In this section, we lift a (partial) implementation of
sets based on unbalanced binary search trees to associative maps.
We only illustrate the lifting of the key part of the library:
type key
val compare : key→ key→ int
type set = Empty | Node of key × set × set

let empty : set = Empty

let rec find : key→ set→ bool =
fun k→ function
| Empty→ false
| Node(k’, l, r)→
if compare k k’ = 0 then true
else if compare k k’ > 0 then find k l
else find k r

Our goal is to lift the two operations empty and find to associa-
tive maps. In this process, we shall change the return type of find
to α option to be able to return the value associated to the key. This
is possible because α option can be seen as an ornament of bool
where an extra field has been added to true:
type α option = None | Some of α
let is_some = function
| Some _→ true
| None→ false

ornament from is_some : α option→ bool
The interface of the map library should be:
type α map =
| MEmpty
| MNode of key × α × α map × α map

val mempty : α map
val mfind : key→α map→α option

We define the typeα map as an ornament of set:
let rec keys = function
| MEmpty→ Empty
| MNode(k, v, l, r)→ Node(k, keys l, keys r)

ornament from keys : α map→ set
We may now ask for a lifting of the two operations:
let lifting mempty from empty
with {keys}

let lifting mfind from find
with _→ {keys}→ {is_some}

In the specification of mfind the first argument should not be lifted,
which is indicated by writing an underscore instead of the name of
a projection function, which in this case would be the identity. This

information is exploited by the lifting process which can do more
automation by knowing that the argument is not lifted.

The lifting of mfind is only partial, and the system replies with
the lifted code below that contains a hole for the missing piece of
information:
let mempty = MEmpty
let rec mfind = fun k→ function
| MEmpty→ None
| MNode(k’, v, l, r)→
if compare k k’ = 0 then Some(?)
else if compare k k’ > 0 then mfind k l
else mfind k r

That is, the programmer is left with specifying which value should
be included in the map for every key. The solution is of course to
fill the hole with v (which here could be inferred from its type, as v
is the only variable of typeα in the current context).

Lifting OCaml’s Set library: As a larger-scale experiment, we
tried to automatically lift parts of OCaml’s Set library to associative
maps. Some functions can be lifted but their coherence properties
do not capture the desired behavior over maps. For example, the
lifting of the equal function on sets of keys to an equal function
on maps would only check for equality of the keys. Indeed, by
coherence, applying the lifted version to two maps should be the
same as applying equal to the sets of keys of the two maps.

Still, for many functions, the lifting makes sense and, as in the
find example above, the only holes we have to fill are those con-
taining the values associated to keys. This is a straightforward pro-
cess, at the cost of a few small, manual interventions from the pro-
grammer. Moreover, many of these could be avoided by performing
some limited form of code inference in a post-processing phase.

Lifting of higher-order functions: Surprisingly, even if the the-
ory of ornaments remains first-order, our syntactic lifting extends
seamlessly to higher-order functions. For example, OCaml’s Set li-
brary provides the following function to check if a predicate holds
for at least one element of the set:
let rec exists (p : elt→ bool) (s : set) : bool =
match s with
| Empty→ false
| Node(l, k, r, _)→ p k

|| exists p l || exists p r

We want to define a function on maps map_exists with type
(elt→α→ bool)→α map→ bool. To be able to express this lift-
ing, the syntax of lifting specifications is extended to allow higher-
order liftings.
let lifting map_exists from exists
with (_→ +_→ _)→ {keys}→ bool

The syntactic lifting yields the following definition:
let rec map_exists p m =
match m with
| Empty→ false
| Node(l, k, v, r, _)→ p k ?

|| map_exists p l || map_exists p r

which happens to be exactly the function we are expecting if we
plug the value v into the hole.

Open question: While higher-order liftings work in practice,
their theory is not well understood yet: what exactly should the
coherence property for higher-order lifting be?

3.2 Refactoring
Another application of ornaments is related to code refactoring:
upon reorganizing a datatype definition, without adding or remov-
ing any information, we would like to automatically update pro-
grams that manipulate that datatype.

For instance, consider the abstract syntax of a small program-
ming language:
type expr =
| Const of int
| Add of expr × expr
| Mul of expr × expr

let rec eval = function
| Const(i)→ i
| Add(u, v)→ eval u + eval v
| Mul(u, v)→ eval u × eval v

As code evolves and the language gets bigger, a typical refactoring
is to use a single constructor for all binary operations and have a
separate datatype of operations, as follows:
type binop = Add’ | Mul’
type expr’ =
| Const’ of int
| BinOp’ of binop × expr’ × expr’

By defining the expr’ datatype as an ornament of expr, we get
access to the lifting machinery to transport programs operating over
expr to programs operating over expr’. This ornament is defined as
follows:
let rec convert = function
| Const’(i)→ Const(i)
| BinOp(Add’, u, v)→ Add(convert u, convert v)
| BinOp(Mul’, u, v)→ Mul(convert u, convert v)

ornament from convert : expr’→ expr

We may now lift the eval function to the new representation:
let lifting eval’ from eval
with {convert}→ _

In this case, the lifting is total and returns the following code:
let rec eval’ = function
| Const’(i)→ i
| BinOp’(Add’, u, v)→ eval’ u + eval’ v
| BinOp’(Mul’, u, v)→ eval’ u × eval’ v

Quite interestingly, the lifting is completely determined by the
coherence property for strict refactoring applications because the
ornament defines a bijection between the two types (here, expr
and expr’). Here, we have hit a sweet spot where the ornament is
sufficiently simple to be reversible on each constructor. This allows
our system to lift the source program in totality.

Open question: In order to fully automate the refactoring tasks,
we crucially rely on the good behavior of the ornament under
inversion. However, we cannot hope to give a complete syntactic
criterion for such a class of ornaments. We still have to devise a
syntactic presentation that would delineate a sufficiently expressive
subclass of reversible ornaments while being intuitive.

3.3 Removing constructors
Another subclass of ornaments consists of those that remove some
constructors from an existing type. Perhaps surprisingly, there are
some interesting uses of this pattern: for example, in a compiler,
the abstract syntax may have explicit nodes to represent syntactic
sugar since the early passes of the compiler may need to maintain
the difference between the sugared and desugared forms. However,
one may later want to flatten out these differences and reason in the
subset of the language that does not include the desugared forms—
thus ensuring the stronger invariant that the sugared forms do not
appear as inputs or ouputs.

Concretely, the language of expressions defined in the previous
section (§3.2) could have been defined with a let construct (denoted
by lexpr). The type expr is a subset of lexpr: we have an ornament
of lexpr whose projection to_lexpr injects expr into lexpr in the
obvious way:

type lexpr =
| LConst of int
| LAdd of lexpr × lexpr
| LMul of lexpr × lexpr
| Let of string × lexpr × lexpr
| Var of string

let rec to_lexpr : expr→ lexpr = function
| Const n→ LConst n
| Add(e1, e2)→ LAdd(to_lexpr e1, to_lexpr e2)
| Mul(e1, e2)→ LMul(to_lexpr e1, to_lexpr e2)

ornament from to_lexpr : expr→ lexpr
As with the refactoring, lifting a function f operating on lexpr

over to expr is completely determined by the coherence property.
Still for the lifting to exist, the function f must verify the coher-
ence property, namely that the images of f without sugared inputs
are expressions without sugared outputs, and the lifting will fail
whenever the system cannot verify this property, either because the
property is false or because of the incompleteness of the verifica-
tion. For example, the function mul_to_add introduces a let:
let mul_to_add = function
| LMul(LConst 2, x)→
let n = gen_name() in
Let(n, x, Add(Var n, Var n))

| y→ y
Hence, it is rejected (the left-hand side double bar is used to signal
incorrect code):
let lifting mul_to_add’ from mul_to_add
with {to_lexpr}→ {to_lexpr}

The system throws an error message and prints the partially lifted
code to indicate the error location:
let mul_to_add’ = function
| Mul(Const 2, x)→
let n = gen_name() in
!

| y→ y

4. GADTs as ornaments of ADTs
GADTs allow to express more precise invariants on datatypes.
In most cases, a GADT is obtained by indexing the definition
of another type with additional information. Depending on the
invariants needed in the code, multiple indexings of the same bare
type can coexist. But this expressiveness comes at a cost: for each
indexing, many operations available over the bare type must be
reimplemented over the finely-indexed types. Indeed, a well-typed
function between two GADTs describes not only a process for
transforming the data, but also a proof that the invariants of the
result follow from the invariants carried by the input arguments.
We would like to automatically generate these functions instead of
first duplicating the code and then editing the differences, which is
tedious and hinders maintainability.

The key idea is that indexing a type is an example of ornament.
Indeed, to transport a value of the indexed type back to the bare
type, it is only necessary to drop both the indices and the constraints
embedded in values. The projection will thus map every indexed
constructor back to its unindexed equivalent.

Let us consider the example of lists indexed by their length (or
vectors) mentioned in the introduction:
type α list = Nil | Cons of α × α list
type zero = Zero type _ succ = Succ
type (_, α) vec =
| VNil : (zero, α) vec
| VCons : α × (n, α) vec→ (n succ, α) vec

We may define an ornament to_list returning the list of the ele-
ments of a vector (a type signature is required because to_list uses
polymorphic recursion on the index parameter).

let rec to_list : type n. (n, α) vec→α list =
function
| VNil→ Nil
| VCons(x, xs)→ Cons(x, xs)

ornament from to_list : (γ, α) vec→α list

This ornament maps, for all n, the type (n, α) vec to the
type α list. In most cases of indexing ornaments, the function
projecting the types is not injective: the additional constraints given
by the indexing are forgotten. However, the projection of the values
is injective. As for refactoring, the lifting of a function is thus
unique. For more complex GADTs, the projection may forget some
fields that only serve as a representation of a proof. Since proofs
should not influence the results of the program, this ambiguity
should not cause any issue.

In practice, lifting seems to work well for many functions. Take
for example the zip function on lists:
let rec zip xs ys = match xs, ys with
| Nil, Nil→ Nil
| Cons(x, xs), Cons(y, ys)→ Cons((x, y), zip xs ys)
| _→ failwith "different length"

When specifying the lifting of zip, we must also give the type of
vzip to express the relation between the length of the arguments. It
cannot be inferred automatically because the obtained function will
be polymorphic recursive.
let lifting vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
from zip with {to_list}→ {to_list}→ {to_list}

This lifting is fully automatic, thus generating the following code:
let rec vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
= fun xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzip xs ys)
| _→ failwith "different length"

Observe that the structure of the lifted function is identical to the
original. Indeed, the function on vectors could have been obtained
simply by adding a type annotation and replacing each constructor
by its vector equivalent. The last case of the pattern matching is
now redundant, it could be removed in a subsequent pass.

The automatic lifting ignores the indices: the proofs of the
invariants enforced by indexing is left to the typechecker. In the
case of vzip, the type annotations provide enough information for
OCaml’s type inference to accept the program. However, this is not
always the case. Take for example the function zipm that behaves
like zip but truncates one list to match the length of the other:
let rec zipm xs ys = match xs, ys with
| Nil, _→ Nil
| _, Nil→ Nil
| Cons(x, xs), Cons(y, ys)→ Cons((x, y), zipm xs ys)

To lift it to vectors, we need to encode the fact that one type-level
natural number is the minimum of two others. This is encoded in
the type min.
type (_, _, _) min =
| MinS : (α, β, γ) min→ (α su, β su, γ su) min
| MinZl : (ze, α, ze) min
| MinZr : (α, ze, ze) min

The lifting of zipm needs to take an additional argument that con-
taints a witness of type min: this is indicated by adding a “+” sign
in front of the corresponding argument in the lifting specification.
let lifting vzipm :
type n1 n2 nmin.
(n1, n2, nmin) min→

(n1, α) vec→ (n2, β) vec→ (nmin, α × β) vec
from zipm
with +_→ {to_list}→ {to_list}→ {to_list}

This lifting is partial, and actually fails:

let rec vzipm :
type n1 n2 nmin. (n1, n2, nmin) min
→ (n1, α) vec→ (n2, β) vec→ (nmin, α × β) vec
= fun m xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzipm ? xs ys)
| _, _→ failwith "different length"

Even though it behaves correctly, this function does not typecheck,
even if we put a correct witness inside the hole: some type equal-
ities need to be extracted from the witness min. This amounts to
writing the following code:

let rec vzipm :
type l1 l2 lm. (l1, l2, lm) min→
(α, l1) vec→ (β, l2) vec→ (α × β, lm) vec =

fun m xs ys→ match xs, ys with
| VNil, _→
(match m with MinZl→ VNil | MinZr→ VNil)

| _, VNil→
(match m with MinZr→ VNil | MinZl→ VNil)

| VCons(x, xs), VCons(y, ys)→
(match m with
| MinS m’→ VCons((x, y), vzipm m’ xs ys))

Generating such a code is out of reach of our current prototype.
Besides, it contradicts our simplification hypothesis that ornaments
should not (automatically) inspect arguments deeper than in the
original code.

Instead of attempting to directly generate this code, a possible
extension to our work would be to automatically search, in a post-
processing phase, for a proof of the required equalities to generate
code that typechecks, i.e. to generate the above code from the ouput
of the partial lifting.

5. Discussion
5.1 Implementation
Our preliminary implementation of ornaments is based on a small,
explicitly typed language. Once types are erased, it is a strict subset
of OCaml: in particular, it does not feature modules, objects, etc.,
but these are orthogonal to ornaments.

The lifting of ornaments does not depend on any type annota-
tions: it is purely directed by the ornament specifications provided
by the user. In our language with explicit types, ornaments have
explicit type parameters, but they are only used to generate type
annotations in the lifted code. Hence, our implementation could be
used, with very few modifications, in a language with type infer-
ence such as OCaml or Haskell: we could ignore everything related
to types and work directly on untyped terms, before running the
host language type inferencer on the lifted terms. Another solution
would be to run the type inference first to get explicitly typed terms
(including types on ornament declarations), lift these terms, erase
the types and run the host language type inferencer on the lifted
functions.

The theory of ornaments assumes no side effects. However, as
our implementation of lifting preserves the structure of functions,
the ornamented code should largely behave as the bare code with
respect to the order of computations. Still, we would have to be
more careful not to duplicate or delete computations, which could
be observed if side-effecting functions can be received as argu-
ments. Of course, it would also be safer to have some effect type
system to guard the programmer against indirect side-effecting per-
formed by lifted functions—but this would already be very useful
for bare programs.

5.2 Related works
Implicit arguments When the lifting process is partial, it returns
code with holes that have to be filled manually. One direction for
improvement is to add a post-processing pass to fill in some of the
holes by using code inference techniques such as implicit parame-
ters (Chambard and Henry 2012; Scala), which could return three
kinds of answers: a unique solution, a default solution, i.e. letting
the user know that the solution is perhaps not unique, or failure. In
fact, it seems that a very simple form of code inference might be
pertinent in many cases, similar to Agda’s instance arguments (De-
vriese and Piessens 2011), which only inserts variable present in
the context. However, code inference remains an orthogonal issue
that should be studied on its own.

Colored Type Systems Another approach to the problem of code
reuse in dependently-typed languages is the notion of colored type
system (Bernardy and Guilhem 2013). Compared to ornaments, the
point of view is reversed: one can mark some parts of types with
colors that can be erased to yield other types and functions.

This notion of erasure is backed by a specific type theory. The
theory of colors provides properties about the erased functions that
are similar to the coherence property given by ornaments, but does
not define any form of lifting.

Polytypism & datatype-generic programming The presentation
of ornaments given in this article is orthogonal to any form of poly-
typic or datatype-generic programming facility. We have chosen to
study ornaments as a primitive object in order to focus on the prac-
tical, syntactic aspects of the formalism.

In a datatype-generic framework, ornaments can be coded
through an indexed family, as demonstrated by the original pre-
sentation of ornaments (McBride 2014). In such a system, orna-
ments are thus first-class citizens that can be inspected or defined at
run-time: besides datatype-genericity, we can also write ornament-
generic programs. Being a primitive notion, the ornaments offered
by our system do not support these techniques.

Compared to polytypic programming, ornaments offer a more
fine-grained form of generic programming. Polytypic programming
makes no proviso of the recursive structure of types: a polytypic
program is defined at once over the entire grammar of types. With
ornaments, we can single out a particular data-structure, ornament
it into another datatype and take advantage of the structural ties
when lifting functions.

5.3 Future work
We have introduced a minimal language of patches to avoid having
to manually edit the lifted function once the code has been gen-
erated. While it is sufficient for our small examples, users would
probably benefit from more powerful patches that could, for exam-
ple, transform function calls in many places in the code at once.

Another direction for improvement is to enable the definition of
new ornaments by combination of existing ornaments of the same
type. This would be particularly useful for GADTs: an indexed
type could then be built from a bare type and a library of useful
properties expressed as GADTs.

Also, even if we are able to generate useful liftings for a number
of higher-order functions such as exists and filter, we are still
missing a theory of higher-order ornaments that would explain the
expected behavior of these liftings.

6. Conclusion
We have explored a non-intrusive extension of an ML-like language
with ornaments. The description of ornaments by their projection
seems quite convenient in most cases. Although our lifting algo-
rithm is syntax-directed and thus largely incomplete, it seems to be

rather predictable and intuitive, and it already covers a few inter-
esting applications. In fact, incompleteness improves automation:
by reducing the search space, much more code can be inferred be-
fore reaching a point where there are multiple choices. Moreover,
these restrictions lead to quite natural results (e.g. in the lifting of
add in §2.2). Still, it would be interesting to have a more semantic
characterization of our restricted form of lifting.

Our results are promising, if still preliminary. This invites us
to pursue the exploration of ornaments both on the practical and
theoretical sides, but more experience is really needed before we
can draw definite conclusions.

A question that remains unclear is what should be the status of
ornaments: should they become a first-class construct of program-
ming languages, remain a meta-language feature used to preprocess
programs into the core language, or a mere part of an integrated de-
velopment environment?

References
J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Re-

finement types for secure implementations. ACM Transactions on Pro-
gramming Languages and Systems, 33(2), 2011. doi: 10.1145/1890028.
1890031.

J.-P. Bernardy and M. Guilhem. Type-theory in color. In International
Conference on Functional Programming, pages 61–72, 2013. doi: 10.
1145/2500365.2500577.

P. Chambard and G. Henry. Experiments in generic programming: runtime
type representation and implicit values. Presentation at the OCaml Users
and Developers meeting, Copenhagen, Denmark, sep 2012. URL http:
//oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

P.-É. Dagand and C. McBride. A categorical treatment of ornaments. In
Logics in Computer Science, 2013. doi: 10.1109/LICS.2013.60.

P.-É. Dagand and C. McBride. Transporting functions across orna-
ments. Journal of Functional Programming, 2014. doi: 10.1017/
S0956796814000069.

D. Devriese and F. Piessens. On the bright side of type classes: Instance
arguments in agda. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’11, pages 143–
155, 2011. doi: 10.1145/2034773.2034796.

T. Freeman and F. Pfenning. Refinement types for ML. In Programming
Language Design and Implementation, pages 268–277, 1991. doi: 10.
1145/113445.113468.

R. Hinze. Numerical representations as Higher-Order nested datatypes.
Technical report, 1998.

D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, 1981. ISBN 0-201-03822-6.

C. McBride. Ornamental algebras, algebraic ornaments. Journal of Func-
tional Programming, 2014. To appear.

C. Okasaki. Purely functional data structures. Cambridge University Press,
1998. ISBN 978-0521663502.

F. Pottier and Y. Régis-Gianas. Stratified type inference for generalized
algebraic data types. In Principles of Programming Languages, pages
232–244, 2006. doi: 10.1145/1111037.1111058.

Scala. Implicit parameters. Scala documentation. URL http://docs.
scala-lang.org/tutorials/tour/implicit-parameters.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In International Conference on
Functional Programming, pages 341–352, 2009. doi: 10.1145/1596550.
1596599.

http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://docs.scala-lang.org/tutorials/tour/implicit-parameters
http://docs.scala-lang.org/tutorials/tour/implicit-parameters

	Introduction
	Ornaments by examples
	A syntax for ornaments
	Lifting functions: syntax and automation
	Patching the generated code

	Use cases
	Lifting a library
	Refactoring
	Removing constructors

	GADTs as ornaments of ADTs
	Discussion
	Implementation
	Related works
	Future work

	Conclusion

