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Avoiding signature avoidance in ML modules with zippers

CLÉMENT BLAUDEAU and DIDIER RÉMY, Cambiun, INRIA, France
GABRIEL RADANNE, CASH, INRIA, EnsL, UCBL, CNRS, LIP, France

We present ZipML, a new path-based type system for a fully fledged ML-module language that avoids the
signature avoidance problem. This is achieved by introducing floating fields, which act as additional fields of a
signature, invisible to the user but still accessible to the typechecker. In practice, they are handled as zippers
on signatures, and can be seen as a lightweight extension of existing signatures. Floating fields allow to delay
the resolution of instances of the signature avoidance problem as long as possible or desired. Since they do not
exist at runtime, they can be simplified along type equivalence, and dropped once they became unreachable.
We give a simple equivalence criterion for the simplification of floating fields without loss of type-sharing. We
present a principled strategy that implements this criterion and performs much better than OCaml. Remaining
floating fields partially disappear at functor applications and fully disappear at signature ascription, including
toplevel interfaces. Residual unavoidable floating fields can be shown to the user as a last resort, improving the
quality of error messages. Besides, ZipML implements early and lazy strengthening, as well as lazy inlining of
definitions, preventing duplication of signatures inside the typechecker. The correctness of the type system is
proved by elaboration into M𝜔 , which has itself been proved sound by translation to F𝜔 . ZipML has been
designed to be an improvement over OCaml that could be retrofitted into the existing implementation.

ACM Reference Format:
Clément Blaudeau, Didier Rémy, and Gabriel Radanne. 2024. Avoiding signature avoidance in ML modules
with zippers. 1, 1 (October 2024), 30 pages.

1 Introduction

Modularity is essential to the design, development, and maintenance of complex systems. For
software systems, language-level mechanisms are crucial to manage namespaces, enforce interfaces,
provide encapsulation, and promote code factorization and reuse. A wide variety of modularity
techniques appear in different programming languages: from simple functions to libraries, com-
pilation units, objects, type-classes, packages, etc. In languages of the ML family (OCaml, SML,
Moscow ML, 1ML, etc.), modularity is provided by a module system, which forms a separate lan-
guage layer built on top of the core language.1 ML modules are renowned for their expressiveness
and flexibility, making them adaptable to numerous contexts, from large-scale OS-libraries [15] to
complex parameterized interpreters [20]. At the most basic level, types and values are gathered in
modules. Such modules can be parameterized, similarly to templates. Signatures govern the public
interface of a module.
A key feature of ML modules is encapsulation, provided by ascription: a module can be forced

to a certain signature. If the signature contains abstract type fields of the form type t, the actual
definition of the type t, hence the implementation details, are hidden. By using ascription, a
developer can make sure that the data-structures are accessed only through the functions defined
inside the module, before the ascription. In essence, this allows enforcing complex invariants,
ranging from simple validity, for instance in a date library, to involved runtime properties, as is
essential in most data-structures. The library designers only have to ensure that public functions
preserve such properties, thanks to the language-wide guarantee that users cannot break the
1Except for 1ML, which in principle unifies the two layers, although some stratification will persist in practice.
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2 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

abstractions. In practice, an abstract type field type t introduces a name for a new type, accessible
for the rest of the scope. A recent overview of the other advanced features (generative and applicative
functors, transparent ascription, etc.) can be found in [2].

Providing a theoretical background for the seemingly simple mechanism of abstract type fields
turned out to be the crux of module systems. In their foundational paper of 1985, Mitchell and
Plotkin [18] suggested to represent abstract types as existential types. This idea was extended
by Russo [27] who explained the extrusion mechanism: existential types defined in a module are
gathered and actually quantified at the top of modules to extend their scope. Applicative functors
were identified as having higher-order existential types by Biswas [1], and the extrusion mechanism
was extended to support skolemization [2, 24, 27]. In this setting, syntactic, user-writable signatures
are elaborated in the more expressive language of types of F𝜔 , the higher-order polymorphic lambda
calculus and type-sharing between modules is expressed differently: abstract type fields actually
introduce existential type variables, possibly higher-order, quantified in front of the signature,
so that two modules that share an abstract type simply refer to the same type expression. This
has culminated in the successful, so-called, F-ing line of works [2, 22–24, 27, 28] among others
where most significant ML module features are specified and proved sound by elaboration in F𝜔 ,
thus benefiting from the meta-theoretical properties of the target language. This is a real benefit
compared with purely syntactic systems for ML modules, which use somewhat nonstandard typing
rules, whose meta-theory has to be redone from start, but also has proved hard to formalized, often
requiring complex syntactic techniques or semantic objects [4, 6, 7].

Yet, ML modules system remained a case where advanced theoretical works had a limited impact
on real-world implementations: neither OCaml nor SML compilers are based on an elaboration
into F𝜔 . Notably, OCaml relies on a path-based system, initially described by Leroy [10, 11], which
specification has not been extended to more complex constructs. The compiler has evolved to
support new features and be more efficient, but maintaining an internal representation of signatures
that is more-or-less syntactic. The SML compiler has an official specification [16, 17] and a subset
of the language have been mechanically formalized using singleton types. The language has also
evolved over the years, but not towards an elaboration in F𝜔 (see [14] for more details). Notably,
Moscow ML, an implementation of the SML standard extended with applicative functors, recursive
modules, and first-class modules [25–27], is an exception, as it uses F𝜔 -like types internally. To put
it somewhat provocatively: explainability, usability, and soundness can be misaligned goals. While
the F-ing approach fulfills the last goal, usability of industrial-grade F-ing based compiler remained
to be demonstrated.2

Moreover, the F-ing approach creates a significant gap between the user writable source signatures
and their internal representations in F𝜔 , which can undermine explainability. Requiring users to
think in terms of the internal language while still writing types in the surface language imposes
a mental gymnastics, as the elaboration between the surface and internal languages is quite
involved. Another option would be to conceal the internal representation with a reverse translation,
called anchoring in [2]. Unfortunately, it seems difficult to truly hide the internal representation:
(1) Anchoring can fail because types of F𝜔 are more expressive than the source language signatures.
Consequently, some inferred signatures cannot be expressed in the source signature syntax—and
the program must then be rejected. This issue, called signature avoidance, discussed in more details
below, is a serious problem in all syntactic approaches that has not found yet a good solution. Those
cases trigger a specific class of typechecking errors that might be tricky for users to understand,
as it might require exposing the internal representation of types. (2) The printing of a signature

2In particular, the lazy inlining of definitions, which seems essential for efficiency, has not been formalized nor implemented
in Moscow ML and could be problematic.
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Avoiding signature avoidance in ML modules with zippers 3

1 module type Comparable = sig type t val eq : t → t → bool end
2 module type Keys = sig type t type k val getKey : t → k val fast_eq : k → k → bool end

3 module Map (E: Comparable)
4 (K: Keys with type t := E.t) = struct
5 type map = (K.k * (E.t * int)) list
6 let insert x n (l : map) =
7 let k = K.getKey x in ...
8 if (K.fast_equal k k') then ...
9 if (E.equal x x') then ...
10 let get x m = ...
11 let get_from_key k m = ...
12 (* ... *)
13 end

14 module Map (E: Comparable)
15 (K: Keys with type t := E.t) : sig
16 type map
17 val insert
18 : E.t → int → map → map
19 val get : E.t → map
20 val get_from_key
21 : K.k → map → (E.t * int) list
22 (* ... *)
23 end

Fig. 1. Example of OCaml code which could trigger signature avoidance. The left-hand side is the code while
the right-hand side is the interface (typically, with the code in a .ml file and the interface in a .mli file). We
use consecutive line numbers only for reference in the text.

for error messages might cause an unrelated signature avoidance error, which might be confusing
for the user. (3) Even when the typechecking succeeds, the M𝜔 type-system [2] combined with
anchoring is not fully syntactic in the sense of [28]: if a module expression admits a signature,
not all sub-expressions necessarily do so. This might be counter-intuitive for the user, as simply
exposing a sub-module might make typechecking fail in non-trivial ways. Overall, we believe
that F-ing based systems cannot fully conceal their internal representation, which undermines
explainability and might affect usability.
In the remainder of this section, starting with examples in OCaml, we discuss our design for a

new syntactic module system, called ZipML. We address explainability by using syntactic signatures
as internal representation—hence the syntactic adjective—which should match the user’s intuitive
understanding of syntax. We address usability by proposing a somewhat conservative extension of a
path-based system, which should not interfere with other features or significantly affect performance
trade-offs. We have not implemented ZipML, so this claim is not backed by experiments yet. Finally,
we maintain soundness by translation in M𝜔 [2], leveraging the F-ing line of works.

Namely, (1) we explain, delay, and resolve the signature avoidance problem by zipping out-of-scope
components; (2) we handle applicative functors andmodule identities; (3) we ensure a proper sharing
of types, via the so-called strengthening operation [10], but with a new lazy and early strategy;
(4) we maintain intermediate types and module type definitions, only lazily inlining them, so as to
print concise interfaces respecting the user’s intent—an aspect previously left behind in the whole
F-ing line of works.

1.1 Modules, Abstraction, and Type Sharing

1.1.1 Introductory example. Let us start with a concrete example of modular code given in Figure 1.
We want to build a library that provides parametric maps to integer. To that aim, we define
the module-type Comparable (line 1) that represents the minimal signature that a module must
satisfy for our library to build maps on: it must contain a type definition type t (left abstract for
polymorphism), and an equality function val eq : t -> t -> bool. Then, we define Map (line 3) as
a functor that creates a structure given a module parameter E that satisfies the interface Comparable.
However, for performance reasons, we want to limit the number of equality tests. To do so, we
define a module-type Keys (line 2) for modules that provide a type k of keys, a key generator getKey,
and a fast equality test fast_eq for keys. Map then takes a second module parameter K : Keys
as input (line 4), used to shortcut equality tests. Note that the generator getKey does not have to

2024-10-29 15:50. Page 3 of 1–30. , Vol. 1, No. 1, Article . Publication date: October 2024.
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4 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

be injective: Map uses the default equality on elements when their keys are equal (lines 8 and 9).
Internally, Map represents maps as lists of triples containing a key, an element, and its associated
integer (line 5). Among the functions provided by Map, we have get_from_key (line 12) that returns
the list of stored elements that have the same key. In the interface of Map, we force the type map to
be abstract (line 16). It serves two purposes: first, it hides implementation details, especially the fact
that we used lists to represent maps; second, it prevents users from inserting objects along with the
wrong key, which would violate internal invariants of the module. A user can then instantiate Map
with any comparable module along with a type of keys. Here, we create a datatype for keys:

module T = struct type t = Node of string * t * t | Leaf let eq = ... end
module K = struct type k = Root of string | Length of int ... end
module M = Map(T)(K)

However, this reveals the implementation details of K. One might hide them by writing, directly:

module M = Map(T)(struct type k = Root of string | Length of int ... end)

The parameter cannot be eliminated in the result type.

Unfortunately, this fails to typecheck, as the interface of Map mentions the type K.k (line 21), while
there is no name to refer to it outside of its enclosing structure. This is a case of the signature
avoidance problem. Naming K solves this case. However, forcing users to name every module would
impact usability and make some code patterns impractical.

1.1.2 Signature Avoidance. At a more abstract level, the signature avoidance problem can occur
whenever type declarations become inaccessible while dependencies on those declarations remain.
We illustrated it above with a functor call on a structure, but for the sake of readability and
conciseness, we now use module-level let-binding like let X = M in M' and projection out of an
arbitrary module like M.X3. Neither one is present in OCaml which only allows projection out
of paths to prevent cases prone to signature avoidance. However, functor calls on structures and
generalized open statements can still trigger signature avoidance, so the core problem remains the
same: given a signature S that depends on a type t, can we extract S and keep it well-formed even
when t has become inaccessible?

module M = (... : sig type t module X : S end).X

There might not exist a principal signature S' that is equivalent to S while avoiding the type t.
The key issue here is to assume that hiding the field type t necessarily means deleting it. Indeed,
one could argue that hiding a field makes it inaccessible to the user but not necessarily to the
typechecker. This is the stance taken by Harper and Stone [8] and Dreyer et al. [4]: their approach
relies an elaboration with reserved names:

module M : sig module HIDDEN : sig type t end module VISIBLE : S end

We share their intuition, but we found the technical device to achieve it too rigid: we would like
to focus on S while keeping the rest of the fields on the side if needed. A classical technique in
functional programming, zippers [9], allows precisely to extend any tree-like type definition with
the ability to focus on certain parts of the tree while keeping the rest on the side. As signatures are

3Projection out of an arbitrary module expression and let-binding can each be encoded as syntactic sugar using
the other: let X = M in M' can be encoded as (struct module X = M module Y = M').Y while M.X can be en-
coded as let Y = M in Y.X. Both can encode functor call on an arbitrary module: F(M) is let X = M in F(X) or
(struct module Arg= M module Res = F(Arg) end).Res.
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Avoiding signature avoidance in ML modules with zippers 5

record trees, we can change the meaning of hiding to be the zipping of a signature onto the visible
field, keeping the rest, called floating fields, in the zipper context. Here, ZipML would return:

module M : ⟨⟨⟨ type t ⟩⟩⟩ S

ZipML uses zippers to preserve relevant type information and therefore delay the resolution of
signature avoidance until a source signature is forced by ascription. Zippers also behave gracefully
in case of errors, allowing to present users with the field names that were lost during typechecking.

1.1.3 Applicativity, abstraction safety, and aliasing. Applicative functors, introduced by Leroy [11],
are one of the key features of OCaml. They initially relied on a simple syntactic criterion: two paths
with functor applications are considered equal when they are syntactically equal:

module F (Y : sig end) = struct end
module G (Y : sig end) = struct type t end
module X = struct end
let f : G(F(X)).t → G(F(X)).t = fun x → x (* typechecks *)

The strength of this criterion is that it preserves abstraction safety (see [2, 24]). However, it is also
fragile, as naming a subexpression can break syntactic equality:

module FX = F(X)

let f': G(FX).t → G(F(X)).t = fun x → x (* fails *)

Here, the type of module FX should manifest its module-level equality with F(X). For this purpose,
ZipML reuses a syntactic construction, transparent signatures (= P < S), proposed by Blaudeau
et al. [2], which generalizes module aliases [5] and allows expressing module level-sharing.4

1.1.4 Strengthening. In path-based systems, type sharing is expressed with manifest types [10]
using explicit equalities between type fields. As a consequence, to avoid a loss of type sharing when
copying or aliasing a module, its signature must be rewritten, hence copied, to refer to the type fields
of the original module. This operation, called strengthening, is central to path-based systems such
as OCaml. However, rewriting a whole signature can be costly5 and hinder performance for very
large libraries. To prevent useless rewriting while keeping type sharing, ZipML implements three
innovations: strengthening is made lazy and early. Laziness is achieved also by using transparent
signatures (= P < S) to mark the strengthening of S by P in the syntax tree, but delay the actual
duplication of S. Besides, strengthening is used when signatures enters the typing environment
(earliness) rather than when retrieving them, which makes for a simpler typing rule for accesses.

1.1.5 Lazy expansion. Module languages allow for both type definitions (type t = int * float)
and module type definitions (module type T = sig .. end). However, while OCaml retains such
definitions internally, as any real-word implementation, both M𝜔 and F-ing handle them by eager

inlining. Inlining of module-type definitions in signatures might considerably increase their size
and make typechecking of large-scale libraries with intensive use of modules quite expensive.
It also loses the programmer’s intent by inferring large signatures whose names or aliases have
been lost. ZipML keeps module-type definitions internally and in inferred signatures, instead
of systematically inlining them. This makes ZipML closer to an actual implementation, such as
OCaml, which could quickly and easily benefit from our solution to signature avoidance, as well as
transparent ascriptions.

4In fact, transparent signatures were already expressible in F-ing [24]—see [2] for details.
5See the discussion at https://github.com/ocaml-flambda/flambda-backend/pull/1337
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6 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

1.2 ZipML

In this paper, we propose ZipML, a fully-syntactic specification of an OCaml-like module system
that supports both generative and applicative (higher-order) functors, opaque and transparent
ascription, type and module-type definitions, extended with transparent signatures and the new
concept of zippers.

Floating fields follow the way the user would resolve instances of signature avoidance manually,
by adding extra fields in structures. However, while this pollutes the namespace with fields that
were not meant to be visible, ZipML floating fields are added automatically and can only be used
internally: they are not accessible to the user and are absent at runtime. Besides, floating fields
can be simplified and dropped after they became unreferenced. This mechanism is an internalized,
improved counterpart of the anchoring of [2].

Our contributions are:

• The introduction of a syntactic type system for a fully-fledged OCaml-like module language,
including both generative and applicative functors, and extended with transparent signatures.
• A new concept of floating fields, implemented as zippers, that enables to internalize and avoid
(or delay) signature avoidance resolution.
• An equivalence criterion for signature avoidance resolution without loss of type sharing, along
with the description of an algorithm to compute such resolution.
• A formal treatment of type and module type definitions that are kept during inference and in
inferred signatures.
• A systematic, lazy and early treatment of strengthening that prevents useless inlining of
module type definitions and increases sharing inside the typechecker.
• A soundness proof by elaboration of ZipML into M𝜔 .

Plan. In §2, we start with a more detailed overview of floating fields and zippers. In §3, we present
the syntax and typing rules of ZipML. In §4, we define an equivalence on signatures that allows for
the simplification of floating fields. We present an algorithm that computes such simplification. In §5,
we state formal properties of ZipML, including type soundness, for which we give the structure of
a proof by elaboration into M𝜔 . Finally, we discuss missing features and future works in §6.

2 An introduction to floating fields

The main novelty of ZipML is the introduction of floating fields as a way to delay and resolve
instances of the signature avoidance problem. Floating fields provide additional expressiveness that
allows to describe all inferred signatures. We use OCaml-like syntax [12] for examples. However,
we use self-references for signatures6 to refer to other components of themselves. That is, while
we would write in OCaml, e.g.,:

sig type t type u = t → t val f : u end

we instead write:

sig(A) type t = A.t type u = A.t → A.t val f : A.u end

The first occurrence of A is a binder that refers to the whole signature, so that all internal references
to a field of that signature go through this self-reference. This is also used for abstract types who
are represented as aliases to themselves as type t = A.t. Self-references are just a convenient
syntactic notation that does not bring additional expressiveness, nor any cyclic references, but
avoids some forms of shadowing and simplifies the definition of strengthening.

6ZipML also uses self-references in structures, but we do not in examples to keep closer to OCaml syntax.
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Avoiding signature avoidance in ML modules with zippers 7

We show examples with a module-level let-binding. We also use type t to introduce abstract
types directly in a structure (a feature present in OCaml), but more realistic examples would use
algebraic data-types7 or ascriptions. We start with a simple example:

let module M = struct type t module X = struct let l : t list = [] end end in M.X

The value "l" has no valid type if "X" is hidden.

Instead, ZipML will return8 the following zipper signature:

⟨⟨⟨ B: type t = B.t ⟩⟩⟩ sig(A) val l : B.t list end

The highlighted expression is the zipper-context. It contains a single floating field type t = B.t,
bound to the self-reference B. Intuitively, the zipper signature is obtained as follows. Before projec-
tion, the signature of M is:

sig(B) type t = B.t module X : sig(A) val l : B.t list end end

When projecting on field X, we would like to return sig(A) val l : B.t list end, but the refer-
ence B.twould become dangling. The solution is to keep the type of t defined as a floating field B.t,
which gives exactly the signature just above.

Another typical situation of signature avoidance is when a type is used in other type definitions:

(struct type t module Z = struct type u = t list type v = t list end end).Z

sig(A) type u type v end (* over-abstraction *)

Here, instead of failing, OCaml silently turns u and v into abstract types, not only losing their
list structure but also forgetting that these are actually equal types. We describe this as being
erroneously resolved by over-abstraction. While abstraction is safe, as it could be achieved through
an ascription, it is incomplete and therefore should be performed only when explicitly required by
the user. In ZipML, we would return the following signature:

⟨⟨⟨ B: type t = B.t ⟩⟩⟩ sig(A) type u = B.t list type v = B.t list end

This is a correct answer, as no type information has been lost.
We now consider a module M with some nested submodules X and Y. We then project on a deeply

nested module M.X.Y.

let M = struct type t
module X = struct type u = t list

module Y = struct type v = t type w = u end end
end in M.X.Y

sig(C) type v type w end

In ZipML, we first return the following signature S0 with floating fields:

⟨⟨⟨ A: type t = A.t end ⟩⟩⟩ ⟨⟨⟨ B: type u = A.t list ⟩⟩⟩ (* S0 *)
sig(C) type v = A.t type w = B.u end

which we can then simplify to its equivalent final form S1:

sig(C) type v type w = C.v list end (* S1 *)

7From a module level point of view, a declaration of an ADT type t = A of int | B of bool can be thought of as an
abstract type type t followed by value bindings val A:int -> t and val B: bool -> t.
8By default, input programs are colored in blue; errors in red; output signatures in green with floating fields in yellow.
We may still temporarily use other colors to emphasize specific subexpressions.
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8 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

We now explain both steps, projection and simplification, separately.

2.1 Chaining zippers

To understand how S0 was generated, let us look at the signature of M, before the projection:

M : sig(A) type t = A.t
module X : sig(B) type u = A.t list

module Y : sig(C) type v = A.t type w = B.u end end
end

It is of the form S𝐴
[
S𝐵 [S𝐶 ]

]
, where the signature S𝐶 is placed in the context S𝐴

[
S𝐵 [·]

]
and S𝐴

and S𝐵 are the outer and inner contexts. Unfortunately, the signature S𝐶 is ill-formed outside of
those contexts. Let us detail the process. For the first projection M.X, we turn the outer signature into
a zipper context, which gives

〈
S𝐴

〉
S𝐵 [S𝐶 ] . For the second projection (M.X).Y, we need to project

out of a zipper signature, which is not a structural signature. However, it actually composes well:
any operation on a zipped signature correspond to pushing the zipper context in the environment,
doing the operation and popping the zipper context back. For our projection, we therefore first push
the zipper context in the typing environment, leaving us with S𝐵 [S𝐶 ] . Projecting gives

〈
S𝐵

〉
S𝐶 ,

and popping the zipper context back again gives:
〈
S𝐴

〉 (〈
S𝐵

〉
S𝐶

)
. Finally, we merge the two zipper

contexts into a single one and obtain
〈
S𝐴 ; S𝐵

〉
S𝐶 , which is exactly S0. Conceptually, we may can

sum up those steps as:(
S𝐴 [S𝐵 [S𝐶 ] ] .𝑋

)
.𝑌 ⇝

(〈
S𝐴

〉
S𝐵 [S𝐶 ]

)
.𝑌 ⇝

〈
S𝐴

〉 (
S𝐵 [S𝐶 ] .𝑌

)
⇝

〈
S𝐴

〉 (〈
S𝐵

〉
S𝐶

)
⇝

〈
S𝐴 ; S𝐵

〉
S𝐶

2.2 Simplifying zippers

We now explain the simplification process from S0 to S1. Interestingly, each component of the
zipper contexts ⟨A : S𝐴⟩ and ⟨B : S𝐵⟩ can be directly accessed from S𝐶 via its self-reference name,
respectively 𝐴 and 𝐵. Hence, S𝐶 need not be renamed—provided we have chosen disjoint self-
references while zipping. We may first inline the definition of B.u in the field w of S𝐶 , leading to
the signature:

⟨⟨⟨ A: type t = A.t ⟩⟩⟩ ⟨⟨⟨ B: type u = A.t list ⟩⟩⟩
sig(C) type v = A.t type w = A.t list end

The floating component B is now unreferenced from the signature C and can be dropped. Since
the type C.v is equal to A.t, the field C.w can be rewritten as C.v list. We obtain the signature S3:

⟨⟨⟨ A: type t = A.t ⟩⟩⟩ sig(C) type v = A.t type w = A.t list end (* S3 *)

The signature could also be seen as the projection of the unzipped signature (using some reserved
field Z for the lost9 projection path):

(sig(A) type t = A.t module Z : sig(C) type v = A.t type w = C.v list end end).Z

Currently C.v is an alias to the floating abstract type A.t, which comes first. However, since the
module X will become a floating field, absent at runtime, it may be moved after field Z, letting C.v
become the defining occurrence for the abstract type and A.t be an alias to C.v. The key is that the
two unzipped signatures, before their projection, are subtype of one another, hence equivalent.

9Our zippers are partial, since we dropped both the name of the field we projected on and the fields following the projection.
We could have used full zippers to keep all the information necessary to recover the original signature, but this is actually
never needed, as we may always bake another signature using a reserved field Z and ignore the following fields, as above.
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Avoiding signature avoidance in ML modules with zippers 9

(sig(A) Z : sig(C) type v type w = C.v end type t = A.t end).Z

We may now project back the signature on field Z. It no longer depends on fields of the following
submodule X, which can safely be dropped. This leads to the signature S1 (repeated below), which
is thus equivalent to S3 and then to S0.

sig(C) type v type w = C.v list end (* S1 *)

In this case, we were able to eliminate all floating fields and therefore successfully and correctly
resolve signature avoidance, while OCaml incorrectly removes the equality between types v and w.
In general, simplification may remove some, but not necessarily all, floating fields. This is

acceptable, as we are able to pursue typechecking in presence of floating fields, which may be
dropped later on. For example, while S3 could be simplified by removing its floating field, this was
not the case of the signature S2, since the floating field A.t is referenced in S𝐵 [S𝐶 ] as A.t before
being aliased. If we disallowed floating fields, we would have failed at that program point—or
used over-abstraction as in OCaml in this case, likely causing a failure later as a consequencenof
over-abstraction.

Interestingly, when typechecking an ascription (M : S), the signature returned in case of success
will be the elaboration of the source signature S, which never contains floating fields. Thus, an
OCaml library defined by an implementation file M together with an interface file S will never
return floating fields in ZipML, even if internally some signatures will carry floating fields. In other
cases, we may return an answer with floating fields, giving the user the possibility to remove them
via a signature ascription. As a last resort, we may still keep them until link time—or fail, leaving
both options to the language designer—or the user.

3 Formal presentation

3.1 Overview

An overview of the type system is given in Figure 2. The core of the system is composed of three
judgments: module typing (§3.7), signature typing (§3.6) and subtyping (§3.5). Module typ-
ing Γ ⊢ M : S is themain judgment: given amodule expression M, it infers its signature S. Sincemodule
expressions may contain signatures, module typing relies on signature typing (1), which is used
to check them10. We use subtyping to check ascription in module expressions (2) and transparent
signatures (3). Since paths appear in signatures, we extract path typing (§3.4.2) from module typing
to avoid all typing judgments to be recursively defined. All judgments handle paths and therefore
depend on path typing (dashed blue arrows). Path typing also depends on subtyping (4) since paths
include functor applications to cope for applicative functors.11 As ZipML maintains user-written
definitions of core-language types and module types, we need a notion of normalization (dotted
gray arrows). Finally, we use helper judgments to handle lazy and shallow strengthening (§3.3) and
early-strengthening environment extension. After presenting the grammar and some technical
choices in §3.2, we detail the judgments in reverse order of dependencies (from right to left).

3.2 Grammar

The syntax of ZipML is given in Figure 3. It reuses the syntax of OCaml, but with a few differences
in notation, the addition of transparent ascriptions, and our key contribution: signatures with

10Signature typing is also used as a meta-theoretic well-formedness of signatures, which we maintain throughout the system
11Technically, this comes from the fact that we use path typing both as a path-well-formedness check and as a path-lookup.
We could have two separate judgments: the former would depend on subtyping and be quite costly, while the latter, only
used on known well-formed paths, would not recheck subtyping and would be faster.
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10 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

431

2

Normalization
Γ ⊢ S ↓ S′

Path typing
Γ ⊢ 𝑃 : S

Subtyping
Γ ⊢ S ≤ S′

Signature Typing
Γ ⊢ S

Module Typing
Γ ⊢♦ M : S

Strengthening
S // 𝑃 and S / 𝑃

Environment
extension Γ ⊎ D

Fig. 2. Relationship between the main judgments of ZipML

Path and Prefix
𝑃 ::= 𝑄.𝑋 (Module)
| 𝑌 (Module Parameter)
| 𝑃 (𝑃) (Applicative application)
| 𝑃 .𝐴 (Zipper access)

𝑄 ::= 𝐴 | 𝑃

Module Expression
M ::= ¥𝑃 (Path)
| M.𝑋 (Anonymous projection)
| ( ¥𝑃 : ¥S) (Ascription)
| ¥𝑃 () (Generative application)
| () → M (Generative functor)
| (𝑌 : ¥S) → M (Applicative functor)
| struct𝐴 B end (Structure)

Binding
B ::= let𝑥 = e (Value)
| type 𝑡 = ¥u (Type)
| module𝑋 = M (Module)
| module type 𝑇 = ¥S (Module type)

Core language types and expression
e ::= · · · | 𝑄.𝑥 (Qualified value)

Identifier
𝐼 ::= 𝑥 | 𝑡 | 𝑋 | 𝑇

Typing environment
Γ ::= ∅ | Γ, 𝐴.D | Γ, 𝑌 : S

Zipper context
𝛾 ::= ∅ | 𝐴 : D | 𝛾 ; 𝛾

Signature
S ::= ⟨𝛾⟩ S (Zipper)
| ¤S (Plain signature)

¤S ::= (= 𝑃 < ¤S) (Transparent signature)
| 𝑄.𝑇 (Module type)
| () → S (Generative functor)
| (𝑌 : ¥S) → S (Applicative functor)
| sig𝐴 D end (Structural signature)

Declaration
D ::= val𝑥 : u (Value)
| type 𝑡 = u (Type)
| module𝑋 : S (Module)
| module type 𝑇 = ¥S (Module type)

u ::= · · · | 𝑄.𝑡 (Qualified type)

Fig. 3. Syntax of ZipML

floating fields, also called zippers. As meta-syntactic conventions, we use lowercase letters (𝑥 , 𝑡 , . . . )
for elements of the core language, and uppercase letters (𝑋 ,𝑇 , . . . ) for modules. We also use slanted
letters (𝐼 , 𝐴, 𝑄 , . . . ) for identifiers and paths, and upright letters (M, e, D, . . . ) for syntactic categories.
Finally, we designate lists with an overbar: B is a list of B’s. We detail these syntactic categories
below.

Main module constructs. The two main categories are Module Expressions (M) and Signa-
tures (S). We put the content of structures and structural signatures, (expressions, types, modules,
module types) in the separate categories of Bindings (B) and Declarations (D). As in OCaml
we use a special unit argument to syntactically distinguish generative functors from applicative
functors. Both structures and signatures are annotated with a self-reference 𝐴, explained below.
Signatures contain transparent signatures (= 𝑃 < ¤S) to express that a module has the identity of 𝑃
but the interface of S. It partially subsumes type-level module aliases of OCaml.
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Avoiding signature avoidance in ML modules with zippers 11

Self-references. A special class of identifiers 𝐴 range over self-references, which are variables
used in both module structures struct𝐴 B end and structural signatures sig𝐴 D end to refer to the
structure or the signature itself from fields B or D. They are not used to define recursive structures,
but only to refer to previously defined fields in a telescope. The subcript annotation 𝐴 on a structure
or a signature is a binding occurrence whose scope extends to B or D and that can be freely renamed.
Thanks to self-references, field names are no longer binders and behave rather as record fields. We
write dom(D) and dom(B) the field name 𝐼 of D. We disallow field shadowing in signatures, which
is standard in module systems. By contrast with common usage, we also disallow field shadowing
in structures: all field names in the same structure must be disjoint. However, fields names do not
shadow other fields of the same name in a substructure (or subsignature) as these are accessed
through their self-references which can be renamed. This restriction of shadowing is for the sake
of simplicity and is just a matter of name resolution that has little interaction with typechecking.

Self-references are also used to represent abstract types: all type fields are of the form type 𝑡 = u
where u may be a core language type or an alias 𝑃 .𝑡 including the case 𝐴.𝑡 where 𝐴 is the self-
reference of the field under consideration, which in this case means that 𝐴.𝑡 is an abstract type.
This is merely a syntactic trick to simplify the treatment of telescopes and strengthening. We may
omit the self-reference and just write sig D end for sig𝐴 D end when 𝐴 does not appear free
in D. Conversely, when we write sig D end, we should read sig𝐴 D end where the anonymous
self-reference 𝐴 is chosen fresh for D.

Identifiers and Paths. Paths 𝑃 are the mechanism to access modules, statically. By static, we mean
that we always know statically the identity of the module a path refers to. Paths may access the
environment directly, either through a functor parameter 𝑌 or a field 𝐴.𝐼 , where 𝐼 spans over any
identifier. They may also access module fields by projection 𝑃 .𝑋 . In the absence of applicative
functors and floating fields, this would be sufficient. With applicative functors, a path may also
designate the result of an immediate module application 𝑃 (𝑃). Floating fields are accessed with 𝑃 .𝐴.
The letter 𝑄 designates a distant access via a path 𝑃 or a local access via a self-reference 𝐴. Finally,
we extend the core language with qualified values 𝑄.𝑥 and qualified types 𝑄.𝑡 .

Note that we distinguish module names 𝑋 from module parameters 𝑌 . The latter are variables,
can be renamed when in binding position and substituted during typechecking. By contrast, names
are never used in a binding position.

Typing environments. Typing environments Γ bind module fields to declarations and functor
parameters to signatures. Module fields are always prefixed by a self-reference in typing environ-
ments. As we disallow shadowing, 𝐴.D can only be added to Γ if Γ does is not already contain
some 𝐴.D′ where D and D′ define the same field. For convenience, we may write Γ, 𝐴.D for the
sequence Γ, 𝐴.D, where fields of D have been added one by one.

Zippers. Finally, the novelty is the introduction of zippers ⟨𝛾⟩ S where 𝛾 is a zipper context, i.e.,
a sequence of floating fields 𝐴 : D. The self-reference 𝐴, now used as a label to access fields of D
from S, cannot be freely renamed any longer12: the introduction of zippers turns an 𝛼-convertible
self-reference into a fixed label. The concatenation of zippers 𝛾1 ; 𝛾2 is only defined when the
domains, i.e., the set of self-references, of 𝛾1 and 𝛾2 are disjoint.

We may then see a zipper as a map from self-references to declarations and define 𝛾 (𝐴) accord-
ingly. The concatenation of zippers “;” is associative and the empty zipper ∅ is a neutral element.
We identify ⟨∅⟩ S with S and ⟨𝛾1⟩ ⟨𝛾2⟩ S with ⟨𝛾1 ; 𝛾2⟩ S whenever 𝛾1 and 𝛾2 have disjoint domains.

12In section §4, we will allow for consistent renaming under certain conditions.
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12 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Therefore, a signature 𝑆 can always be written as ⟨𝛾⟩ ¤S where ¤S is a plain signature and 𝛾 concate-
nates all consecutive zipper contexts or is ∅ if there were none. The introduction of zippers requires
a new form of path 𝑃 .𝐴, invalid in source programs, to access floating fields.13

Zipper-free signatures. We define plain signatures ¤S as those without an initial zipper (but where
subterms may contain zippers) and source signatures ¥S as those that do not contain any zipper at
all, which are used in source types appearing in source expressions, i.e., in a transparent ascription
or the domain of a functor. Similarly, we let ¥𝑃 stand for source paths 𝑃 that do not contain any
(direct or recursive) access to some zipper context (of the form 𝑃 ′ .𝐴). Consistently, ¥𝑄 means ¥𝑃 or 𝐴
and source types ¥u means types u where all paths occurring in u are source paths.

Invariants. We also define several syntactic subcategories of signatures to capture some invari-
ants.14 The head value form Sv of a signature gives the actual shape of a signature, which is either a
structural signature or a functor. The head normal form Sn is similar, but still contains the identity
of a signature, if it has one, via a transparent ascription.

Sv ::= sig𝐴 D end | (𝑌 : ¥S) → S | () → S Sn ::= Sv | (= 𝑃 < Sv)

Notice that head normal forms (and value forms) are superficial and a signature appearing under
a value form may itself be any signature and therefore contain inner zippers. A Transparent

signature S is a generalization of the syntactic form (= 𝑃 < ¤S) that also allows zippers provided
their signatures eventually start with transparent signatures. The definition is the following:

S ::= ⟨𝛾⟩ S | ¤S ¤S ::= (= 𝑃 < ¤S) 𝛾 ::= 𝐴 : D | 𝛾 ; 𝛾 | ∅
D ::= module𝑋 : S | val𝑥 : u | module type 𝑇 = ¥S | type 𝑡 = u

Syntactic choices and syntactic sugar. Our grammar has some superficial syntactic restrictions that
simplify the presentation without reducing expressiveness. In particular, we only allow applications
of paths to paths. The more general application M1 (M2) may be encoded as syntactic sugar for
(struct𝐴 module 𝑋1 = M1 module 𝑋2 = M2 module 𝑋 = 𝐴.𝑋1 (𝐴.𝑋2) end).𝑋 . Indeed, our
projection M.𝑋 is unrestricted. By contrast, OCaml restricts M to be a path 𝑃 and must encode
general projection with an application. Our choice is more general, as it does not require any
additional type annotation. Similarly, we restricted ascriptions to source paths, ( ¥𝑃 : ¥S), but the
general case can be encoded as (struct𝐴 module 𝑋1 = M module 𝑋 = (𝐴.𝑋1 : ¥S) end).𝑋 . Finally,
note some grammatical ambiguity: 𝑃 .𝑋 may be a projection from a path 𝑃 or from a module
expression M which may itself be a path. This is not an issue as their typing will be the same.

3.3 Strengthening

Strengthening is a key operation in path-based module systems: intuitively, it is used to give module
signatures and abstract types an identity that will then be preserved by aliasing. ZipML reuses
transparent ascription (= 𝑃 < S) to express strengthening of the signature S by the path 𝑃 , which
effectively gives an identity, i.e., the path 𝑃 , to an existing signature S—under a subtyping condition
between the signature of 𝑃 and S. In other words, transparent ascription allows strengthening to
be directly represented in the syntax of signatures. This can be advantageously used to implement
strengthening lazily, by contrast with OCaml’s eager version.15

13In the absence of floating fields, self references could only be at the origin of a path𝑄 .
14For sake of readability, we do not always use the most precise syntactic categories and sometimes just write S when S
may actually be of a more specific form. Conversely, we may use subcategories to restrict the application of a rule that only
applies for signatures of a specific shape.
15There is actually a proposal to add lazy strengthening in OCaml for efficiency purposes, see https://github.com/ocaml-
flambda/flambda-backend/pull/1337
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Avoiding signature avoidance in ML modules with zippers 13

Delayed strengthening (signatures)
(= 𝑃 ′ < S) // 𝑃 ≜ (= 𝑃 ′ < S)
⟨𝛾 ; 𝛾 ′⟩ S // 𝑃 ≜

(
⟨𝛾⟩

(
⟨𝛾 ′⟩ S

) )
// 𝑃〈

𝐴 : D
〉
S // 𝑃 ≜

〈
𝐴 : D // 𝑃

〉 (
S[𝐴← 𝑃 .𝐴] // 𝑃

)
S // 𝑃 ≜ (= 𝑃 < S)

Shallow strengthening

sig𝐴 D end / 𝑃 ≜ sig D[𝐴← 𝑃] // 𝑃 end

(𝑌 : ¥S) → S / 𝑃 ≜ (𝑌 : ¥S) → (S // 𝑃 (𝑌 ))
() → S / 𝑃 ≜ () → S

Delayed strengthening (declarations)
(val𝑥 : u) //𝑄 ≜ val𝑥 : u (module𝑋 : S) //𝑄 ≜ module𝑋 : (S //𝑄.𝑋 )
(type 𝑡 = u) //𝑄 ≜ type 𝑡 = u (module type 𝑇 = S) //𝑄 ≜ module type 𝑇 = S

Environment strengthening
Γ ⊎ (𝑌 : S) ≜ Γ, 𝑌 : (S // 𝑌 ) Γ ⊎𝐴.D ≜ Γ, 𝐴.(D //𝐴.dom(D))

Γ ⊎ (𝐴 : D ; 𝛾) ≜ (Γ, 𝐴.(D //𝐴)) ⊎ 𝛾
Fig. 4. Strengthening (delayed by default) – S / 𝑃 and S // 𝑃 and D //𝑄

Given a signature S and a path 𝑃 , we consider two forms of strengthening: delayed strengthen-
ing S//𝑃 and shallow strengthening S/𝑃 , defined in Figure 4. Shallow strengthening is only defined
on signatures in head normal form and is called during normalization to push strengthening just
one level down. It then delegates the work to delayed strengthening S // 𝑃 , which will insert a
transparent ascription in a signature, if there is not one already, and push it under zippers if any. In
particular, the shallow strengthening of a structural signature is a structural signature that does
not use its self-reference any longer. Since the very purpose of strengthening is to make signatures
transparent, both forms of strengthening indeed return a transparent signature S. The rules for
delayed signature strengthening should be read in order of appearance, as they pattern match on
the head of the signature:

• Delayed strengthening stops at a transparent ascription, since it is already transparent.
• It strengthens (zipped) signatures step by step. We decompose compound zippers as two suc-

cessive zippers. For a simple zipper, we strengthen both the zipper context and the underlying
signature in which we replaced the self-reference 𝐴 by the strengthened path. We ignore the
empty zipper, which is neutral for zipping.
• Otherwise, delayed strengthening just inserts a transparent ascription, which is actually the
materialization of the delaying.

We also defined delayed strengthening on declarations D //𝑄 , which is called by strengthening on
zipper contexts, shallow strengthening, and strengthening of the typing context: delayed strength-
ening is pushed inside module declarations and dropped on other fields. (Module type definitions
never have an identity, so they cannot be strengthened.) Definition strengthening may be called on
a zipper self-variable 𝐴, which will them immediately expand to a recursive call 𝑆 //𝐴.𝑋 , hence
on a path 𝐴.𝑋 . We also define a binary operator ⊎ that strengthens bindings as they enter the
typing environment. We use it to maintain the invariant that all signatures entering the typing
environment are transparent signatures S, so that they can be duplicated without loss of sharing.

3.4 Path typing and normalization

Since paths include projections and applications, which require recursive lookups and substitutions,
their types are not immediate to deduce. Moreover, signatures in the typing environment may
themselves be module type definitions that must be inlined to be analyzed. We use path resolution,
path typing, and normalization for this purpose.
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Res-P-Id
Γ ⊢ 𝑃 : ⟨𝛾⟩ (= 𝑃 ′ < ¤S)

Γ ⊢ 𝑃 ⊲ 𝑃 ′

Res-P-Val
Γ ⊢ 𝑃 : ⟨𝛾⟩ (= 𝑃 ′ < ¤S) ¤S / 𝑃 ′ = S′

Γ ⊢ 𝑃 ⊲ S′

Fig. 5. Path Resolution – Γ ⊢ 𝑃 ⊲ 𝑃 ′ and Γ ⊢ 𝑃 ⊲ ¤S
Typ-P-Arg
𝑌 : S ∈ Γ
Γ ⊢ 𝑌 : S

Typ-P-Module
𝐴. module𝑋 : S ∈ Γ

Γ ⊢ 𝐴.𝑋 : S

Typ-P-Zip
Γ ⊢ 𝑃 : ⟨𝛾⟩ S 𝛾 (𝐴) = D

Γ ⊢ 𝑃 .𝐴 : sig D end

Typ-P-Norm
Γ ⊢ 𝑃 : S Γ ⊢ S ↓ S′

Γ ⊢ 𝑃 : S′

Typ-P-Proj
Γ ⊢ 𝑃 ⊲ sig D end module𝑋 : S ∈ D

Γ ⊢ 𝑃 .𝑋 : S

Typ-P-AppA
Γ ⊢ 𝑃 ⊲ (𝑌 : ¥S0) → S Γ ⊢ 𝑃 ′ : S′ Γ ⊢ S′ ≤ ¥S0

Γ ⊢ 𝑃 (𝑃 ′) : S
[
𝑌 ← 𝑃 ′

]
Fig. 6. Path typing – Γ ⊢ 𝑃 : S

Path typing and path resolution. Intuitively, typing a path Γ ⊢ 𝑃 : S returns all the environment
information about the module at path 𝑃 , including a potential zipper, an aliasing information with
another path (or itself), and finally the signature. To factor out a common pattern-match on the
result of path typing, we also introduce path resolution to extract the content of the module Γ ⊢ 𝑃 ⊲ S,
by dropping the zipper and aliasing information and forcing a shallow strengthening, or the identity
of the module Γ ⊢ 𝑃 ⊲ 𝑃 ′, by dropping the zipper and signature.

3.4.1 Γ ⊢ 𝑃 ⊲ 𝑃 ′ and Γ ⊢ 𝑃 ⊲ S – Path resolution. The two judgments are defined in Figure 5 by a
single rule each. Rule Res-P-Id simply pattern-matches on the result of signature typing to return
the aliasing information. Rule Res-P-Val also pattern-matches on the result of signature typing both
to extract ¤S but also to force it to be in head-normal (so that ¤S / 𝑃 ′ is well-defined).

3.4.2 Γ ⊢ 𝑃 : S – Path typing. The judgment is defined in Figure 6. Rules Typ-P-Arg and Typ-P-
Module are straightforward lookups. Rule Typ-P-Zip accesses a zipper context through its self-
reference. Notice that the signature sig𝐴 D end of 𝑃 .𝐴 need not be put back inside the zipper
context 𝛾 , since the signature ⟨𝛾⟩ S, and hence the declarations D, are transparent and no longer
depend on the zipper context 𝛾 , but only on the environment Γ. Rule Typ-P-Norm means that
path typing is defined up to signature normalization, which allows the inlining of module type
definitions. This makes path typing non-deterministic, purposedly. The two remaining rules use
path resolution to pattern-match on the content of a signature. In Rule Typ-P-Proj, we omitted
the self-reference of the signature of 𝑃 since we know 𝑃 is transparent, hence S does not use its
self-reference and is well-formed in Γ. Typing of functors (Rule Typ-P-AppA) requires the domain
signature to be a super type of the argument signature.16. We then return the codomain signature
after substitution of the argument 𝑃 for the parameter 𝑌 .

The dependency between path typing and subtyping (the premise Γ ⊢ S′ ≤ ¥S0 in Typ-P-AppA) is
somewhat artificial. It comes from the fact that a single judgment is used for both path lookups and
path checking. We could have (and an efficient implementation would) used two separate judgments,
where path-lookup, only used valid paths, would not recheck subtyping.

3.4.3 Γ ⊢ S ↓ S′ – Normalization. The judgment Γ ⊢ S ↓ 𝑆 ′ allows the (head) normalization of a
signature S into S′, which inlines module type definitions, but only one step at a time. Hence, to
achieve the head normal form, we may call normalization repeatedly. Rule Norm-S-Zip normalizes
the signature part of a zipper. We never normalize the zipper context itself, as we will first access the

16The two first premises ensure that signatures S′ and S are well-typed as required when using the subtyping judgment.
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Avoiding signature avoidance in ML modules with zippers 15

Norm-S-Zip
Γ ⊎ 𝛾 ⊢ S ↓ S′

Γ ⊢ ⟨𝛾⟩ S ↓ ⟨𝛾⟩ S′

Norm-S-Trans-Some
Γ ⊢ S ↓ (= 𝑃 ′ < S′)

Γ ⊢ (= 𝑃 < S) ↓ (= 𝑃 ′ < S′)

Norm-S-Trans-None
Γ ⊢ 𝑃 ⊲ 𝑃 ′ Γ ⊢ S ↓ S′

Γ ⊢ (= 𝑃 < S) ↓ (= 𝑃 ′ < S′)

Norm-Typ-Res
Γ ⊢ 𝑃 ⊲ 𝑃 ′

Γ ⊢ 𝑃 .𝑡 ↓ 𝑃 ′ .𝑡

Norm-S-LocalModType
module type 𝐴.𝑇 = S ∈ Γ

Γ ⊢ 𝐴.𝑇 ↓ S

Norm-S-PathModType
Γ ⊢ 𝑃 ⊲ sig D end

module type 𝑇 = S ∈ D
Γ ⊢ 𝑃 .𝑇 ↓ S

Norm-Typ-Local
type𝐴.𝑡 = u ∈ Γ

Γ ⊢ 𝐴.𝑡 ↓ u

Norm-Typ-Path
Γ ⊢ 𝑃 ⊲ sig D end

type 𝑡 = u ∈ D
Γ ⊢ 𝑃 .𝑡 ↓ u

Fig. 7. Signature and type normalization – Γ ⊢ S ↓ S′

Sub-S-Sig
D0 ⊏ D1 Γ ⊎𝐴 : D1 ⊢ D0 //𝐴 ≼ D2

Γ ⊢ sig𝐴 D1 end ≼ sig𝐴 D2 end

Sub-S-Norm
Γ ⊢ S1 ↓ S′1 Γ ⊢ S2 ↓ S′2 Γ ⊢ S′1 ≼ S′2

Γ ⊢ S1 ≼ S2

Sub-S-ZipperL
Γ ⊎ 𝛾 ⊢ S1 ≼ S2

Γ ⊢ ⟨𝛾⟩ S1 ≼ S2

Sub-S-TrAscr
Γ ⊢ S1 / 𝑃 ≼ S2 / 𝑃

Γ ⊢ (= 𝑃 < S1) ≼ (= 𝑃 < S2)

Sub-S-LooseAlias
Γ ⊢ S1 / 𝑃 ≼ S2

Γ ⊢ (= 𝑃 < S1) ≼ S2

Sub-S-FctG
Γ ⊢ S1 ≼ S2

Γ ⊢ () → S1 ≼ () → S2

Sub-S-FctA
Γ ⊢ ¥S2 ≼ ¥S1 Γ ⊎ 𝑌 : ¥S2 ⊢ S′1 ≼ S′2
Γ ⊢ (𝑌 : ¥S1) → S′1 ≼ (𝑌 : ¥S2) → S′2

Sub-T-Norm
Γ ⊢ u1 ↓ u Γ ⊢ u2 ↓ u

Γ ⊢ u1 ≼ u2

Sub-D-Val
Γ ⊢ u1 ≼ u2

Γ ⊢ val𝑥 : u1 ≼ val𝑥 : u2

Sub-D-Mod
Γ ⊢ S1 ≼ S2

Γ ⊢ module𝑋 : S1 ≼ module𝑋 : S2

Sub-D-Modtype
Γ ⊢ ¥S1 ≈ ¥S2

Γ ⊢ module type 𝑇 = ¥S1
≼ module type 𝑇 = ¥S2

Sub-D-Type
Γ ⊢ u1 ≈ u2

Γ ⊢ type 𝑡 = u1 ≼ type 𝑡 = u2

Fig. 8. Code-free subtyping Γ ⊢ S1 ≲ S2 and coercion subtyping Γ ⊢ S1 ≤ S2

zipper context and normalize the result afterwards. Rules Norm-S-Trans-Some and Norm-S-Trans-
None allows normalization under a transparent ascription. If the head of S is itself a transparent
ascription, we return it as is; otherwise, we return its strengthened version by the resolved path 𝑃 ′.
Finally, rules Norm-S-LocalModType and Norm-S-PathModType expand a module type definition.
We also define Γ ⊢ 𝑃 .𝑡 ↓ u, the normalization of types. Rules Norm-Typ-Res allows the resolution of
the path 𝑃 while rules Norm-Typ-Local and Norm-Typ-Path inlined the type definition 𝑄.𝑡 .

3.5 Subtyping judgments Γ ⊢ S1 ≼ S2

We define two subtyping judgments, code-free subtyping Γ ⊢ S ≲ ¤S and coercion subtyping Γ ⊢ S ≤ ¤S.
The latter can only be used at type ascription and functor applications, as it requires changing the
representation of the underlying values.
To factor both definitions, we defined a set of subtyping rules R ⊏,­

≼ parameterized by three
relations in Figure 8. The key rule, which is also the main difference between ≤ and ≲ is Sub-S-
Sig. It uses the binary relation ⊏ to tell which components can be dropped or reordered when
subtyping between two structural signatures sig𝐴 D1 end and sig𝐴 D2 end. Namely, we must find
a sequence D0 related to D1 by ⊏ that is, after strengthening by 𝐴 (to keep all sharing), in pointwise
≼-subtyping relation with D2 in an environment extended with 𝐴.D1. We use two versions of ⊏ : for
coercion subtyping, we take ⊆, i.e., D0 can be any subset of D1 where fields may appear in a different
order; for code-free subtyping, we use the relation ⊏∼ that is the subrelation of ⊆ that preserves
dynamic fields (modules and values) and their order. Formally, D0 ⊏∼ D1 means both D0 ⊆ D1 and
dyn(D0) = dyn(D1) where dyn(D) returns the subsequence of D composed of dynamic fields only.
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16 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

The subtyping relations are defined in two steps: we first defined code-free subtyping ≲ as the
smallest relation that satisfies the rules R

⊏∼,≲
≲ . Once ≲ is defined and fixed, we then define coercion

subtyping ≤ as the smallest relation that satisfies the rules R ⊆,≲≤ .
Both subtyping judgments are of the form Γ ⊢ S1 ≼ S2 and only defined when S2 is a zipper-free

signature ¥S2 (we relax this in §4). The judgment should (and will) only be used when both signatures
are well-typed. Typically, the right-hand side signature is a source signature while the left-hand
side signature S results from the typing of either a source signature or a module expression—and
may contain zippers. The same invariants extend to auxiliary subtyping judgments for declarations
and paths. Type equivalence ≈ is thus only defined between zipper-free signatures.

When reading the subtyping rules, it may help to think of coercion subtyping first, i.e., reading
of ≼ as ≤ and ­ as ≲. The subtyping rules for signatures can be read by case analysis on the
left-hand-side signature, except for Rule Sub-S-Norm, which is not syntax directed and can be
applied anywhere and repeatedly to perform normalization before subtyping. For example, there
is no rule matching a signature 𝑄.𝑇 on the left-hand side. But normalization allows inlining the
definition before checking for subtyping. Since a zipper may only occur on the left-hand side,
Rule Sub-S-ZipperL just pushes the zipper context in the typing environment and pursues with
subtyping. For other cases, we require the left-hand side to be in head normal form, which can be
achieved by Rule Sub-S-Norm. When the left-hand side is a transparent ascription the right-hand
side may also be a transparent ascription, in which case, we check subtyping between the respective
signatures, but after pushing strengthening one level-down, lazily (Sub-S-TrAscr). Otherwise, we
drop the transparent ascription from the left-hand side, which amounts to a loss of transparency,
hence increase abstraction, as allowed by subtyping (Sub-S-LooseAlias). In the remaining cases,
the left-hand side is a head value form and the right-hand side must have the same shape. Functor
types are contravariant (rules Sub-S-FctG and Sub-S-FctA). Finally, Rule Sub-S-DynEq is just used to
define ≈ on signatures as the kernel of ≼.

Subtyping uses two other helper judgments, for type and declaration subtyping. There is a single
rule Sub-T-Norm for type subtyping that injects head type normalization into the subtyping relation,
which is the pending of Rule Sub-S-Norm for the normalization of core-language types. In fact, this
rule should also be made available in the subtyping relation of the core language, which should
be a congruent preorder. For module declarations (Rule Sub-D-Mod), we just require subtyping
covariantly. Rule Sub-D-Val for core language values is similar, requiring subtyping in the core
language. In OCaml, this would reduce to core-language type-scheme specialization, which we
haven’t formalized. Since module types may be used in both covariant and contravariant positions,
the rule Sub-D-Modtype requests code-free subtyping in both directions, i.e., type equivalence,
which is well-defined since module type definitions are source signatures.

Subtyping and well-typedness. Subtyping is only meant to be well-behaved on well-typed signa-
tures: it is the caller’s responsibility to ensure that both signatures are well-formed.

Subtyping and inlining. The premises of rules Sub-D-Modtype and Sub-D-Type, require code-free
equivalence between the definitions. This is because names are not always inlined, and therefore 𝑇
and 𝑡 may appear in both positive and negative positions later in the signature. If definitions
were fully inlined, subtyping would never see the names of module-type definitions but only their
original inlined expansion and covariance would suffice.

Optimization. Judgments Γ ⊢ S1 / 𝑃 ≤ S2 and Γ ⊢ S1 / 𝑃 ≤ S2 / 𝑃 are in fact equivalent. Intu-
itively, a derivation of the former may abstract some types appearing in S1 / 𝑃 , but never has to, i.e.,
the same derivation could be reproduced without any abstraction. Therefore, Rule Sub-S-LooseAlias
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Typ-S-ModType
Γ ⊢ 𝑄.𝑇 : S
Γ ⊢ 𝑄.𝑇

Typ-S-GenFct
Γ ⊢ S

Γ ⊢ () → S

Typ-S-AppFct
Γ ⊢ ¥S Γ ⊎ (𝑌 : ¥S) ⊢ S′

Γ ⊢ (𝑌 : ¥S) → S′

Typ-S-Ascr
Γ ⊢ S Γ ⊢ 𝑃 : S′ Γ ⊢ S′ ≼ S

Γ ⊢ (= 𝑃 < S)

Typ-S-Str
Γ ⊢𝐴 D 𝐴 ∉ Γ

Γ ⊢ sig𝐴 D end

Typ-S-Zipper
Γ ⊢𝐴 D Γ ⊎𝐴 : D ⊢ S

Γ ⊢
〈
𝐴 : D

〉
S

Typ-D-Val
Γ ⊢ u

Γ ⊢𝐴 (val𝑥 : u)

Typ-D-Type
Γ ⊢ u

Γ ⊢𝐴 (type 𝑡 = u)

Typ-D-Nil
Γ ⊢𝐴 ∅

Typ-D-TypeAbs
Γ ⊢𝐴 (type 𝑡 = 𝐴.𝑡)

Typ-D-Mod
Γ ⊢ S

Γ ⊢𝐴 (module𝑋 : S)

Typ-D-ModType
Γ ⊢ S

Γ ⊢𝐴 (module type 𝑇 = S)

Typ-D-Seq
Γ ⊢𝐴 D0 Γ ⊎𝐴.D0 ⊢𝐴 D

Γ ⊢𝐴 (D0, D)
Fig. 9. Signature typing – Γ ⊢ S

could be replaced by rule Sub-S-LooseAlias-Opt:
Sub-S-LooseAlias-Opt
Γ ⊢ S1 / 𝑃 ≤ S2 / 𝑃
Γ ⊢ (= 𝑃 < S1) ≤ S2

Sub-S-Sig-Opt
D0 ⊆ D1 Γ ⊢ D0 ≤ D2

Γ ⊢ sig D1 end ≤ sig D2 end

We may then add Rule Sub-S-Optim, which is an instance of Sub-S-Sig that can be used when neither
side uses its self-reference avoiding pushing useless information in the typing environment.

3.6 Signature typing Γ ⊢ S
User-provided source signatures ¥S are not necessarily well-formed and are checked using the
judgment Γ ⊢ S, defined on Figure 9. We still defined and use the judgment on inferred signatures,
which may contain zippers.

Rule Typ-S-ModType uses path typing to check the well-formedness of paths. Rule Typ-S-Ascrmust
also check that the signature S of path 𝑃 is a subtype of the source signature S.17 Rule Typ-S-Str for
structural signatures delays most of the work to the elaboration judgment Γ ⊢𝐴 D for declarations,
which carries the self-reference variable 𝐴 that should be chosen fresh for Γ, as it now appears free
in declarations D. Rule Typ-D-Seq for sequence of declarations pushes 𝐴.D0 in the context while
typing the remaining sequence D. All the other rules are straightforward. In practice, typing of
signatures could simplify them on the fly, typically removing chains of transparent ascriptions if
any. This would then require replacing the typing judgment Γ ⊢ S by an elaboration judgment18.

3.7 Module typing Γ ⊢♦ M : S
The typing judgment Γ ⊢♦ M : S for module expressions is given in Figure 10. The ♦ symbol is a
metavariable for modes that ranges over the applicative (or transparent) mode ▽ and the generative
(or opaque) mode ▼. Rule Typ-M-Modemeans that we may always consider an applicative judgment
as a generative one. This is a floating rule that can be applied at any time. Judgments for pure module
expressions can be treated either as applicative or generative, hence they use the ♦ metavariable.
Many rules use the same metavariable ♦ in premises and conclusion, which then stands for the
same mode. This implies that if the premise can only be proved in generative mode, it will also be
the case for the conclusion.

When considering a source path ¥𝑃 as a module expression (Rule Typ-M-Path) we use path typing,
which returns a transparent signature S. However, we return (= ¥𝑃 < S), i.e., S with its most recent
identity ¥𝑃 , as this is probably the one the user would like to see and the older identities can always
17The two first premises ensure that signatures S and S′ are well-typed, as required when using the subtyping judgment.
18This would also be necessary if we allowed declarations open S and include S that should always be elaborated. We have
not included them, but the type system has been designed to allow them.
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18 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Typ-M-Norm
Γ ⊢♦ M : S Γ ⊢ S ↓ S′

Γ ⊢♦ M : S′

Typ-M-Mode
Γ ⊢▽ M : S
Γ ⊢▼ M : S

Typ-M-Path
Γ ⊢ ¥𝑃 : ⟨𝛾⟩ (= 𝑃 ′ < S)
Γ ⊢♦ ¥𝑃 : (= ¥𝑃 < S)

Typ-M-Ascr
Γ ⊢ ¥S Γ ⊢ ¥𝑃 : S Γ ⊢ S ≤ ¥S

Γ ⊢♦ ( ¥𝑃 : ¥S) : ¥S

Typ-M-FctA
Γ ⊢ ¥S Γ ⊎ 𝑌 : ¥S ⊢▽ M : S′

Γ ⊢♦ (𝑌 : ¥S) → M : (𝑌 : ¥S) → S′

Typ-M-FctG
Γ ⊢▼ M : S

Γ ⊢♦ () → M : () → S

Typ-M-AppG
Γ ⊢ 𝑃 ⊲ () → S

Γ ⊢▼ 𝑃 () : S

Typ-M-Str
Γ ⊢𝐴 B : D 𝐴 ∉ Γ

Γ ⊢ struct𝐴 B end : sig𝐴 D end

Typ-M-ProjT
Γ ⊢♦ M : ⟨𝛾⟩ (= 𝑃 < sig𝐴 D, module 𝑋 : S′, D′ end)

Γ ⊢♦ M.𝑋 : ⟨𝛾⟩ (= 𝑃 .𝑋 < S′ [𝐴← 𝑃])

Typ-M-ProjA
Γ ⊢♦ M : ⟨𝛾⟩ sig𝐴 D, module 𝑋 : S′, D′ end

Γ ⊢♦ M.𝑋 :
〈
𝛾 ;𝐴 : D

〉
S′

Typ-B-Seq
Γ ⊢𝐴♦ B0 : D0 Γ ⊎𝐴.D0 ⊢𝐴♦ B : D

Γ ⊢𝐴♦ B0, B : D0, D

Typ-B-Type-Bind
Γ ⊢ ¥u

Γ ⊢𝐴♦ (type 𝑡 = ¥u) : (type 𝑡 = ¥u)

Typ-B-Empty
Γ ⊢𝐴♦ ∅ : ∅

Typ-B-AbsType
Γ ⊢𝐴♦ (type 𝑡 = 𝐴.𝑡)

: (type 𝑡 = 𝐴.𝑡)

Typ-B-Let
Γ ⊢♦ e : u

Γ ⊢𝐴♦ (let𝑥 = e)
: (val𝑥 : u)

Typ-B-Mod
Γ ⊢♦ M : S

Γ ⊢𝐴♦ (module𝑋 = M)
: (module𝑋 : S)

Typ-B-ModType
Γ ⊢ ¤S

Γ ⊢𝐴♦ (module type 𝑇 = ¥S)
: (module type 𝑇 = ¥S)

Fig. 10. Typing rules

be recovered by normalization. Besides, we drop the zipper-context 𝛾 , which would be useless as
the information is already stored in Γ.
A signature ascription ( ¥𝑃 : ¥S) has the signature ¥S provided it is indeed a supertype19 of the

signature S of ¥𝑃 (Rule Typ-M-Ascr). This ascription is opaque20 since it returns the signature ¥Swhich
is not strengthened by ¥𝑃 . Since subtyping is not code free, it is not present a floating subtyping
rule but only allowed here and at functor applications.
A generative functor Typ-M-FctG is just an evaluation barrier: the functor itself is applicative

while the body is generative. Correspondingly, applying a generative functor, which amounts to
evaluating its body, is then generative. An applicative functor is typed in the obvious way.

Rule Typ-M-Str for structures delays the work to the typing rules for bindings, which carry the
self-variable 𝐴 of the structure as an annotation that should be chosen fresh for the context Γ. The
remaining rules are for typing of bindings, which works as expected. In particular, Rule Typ-B-Seq
pushes the declaration 𝐴.D0 into the context while typing the D, much as Typ-D-Seq for signatures.

Finally, we have two rules for projection. Rule Typ-M-ProjT projects on a module that is a known
alias of 𝑃 . Therefore, we do not need to introduce a new zipper, as we can strengthen the resulting
signature to mention 𝑃 instead of 𝐴, removing dependencies with D which are then dropped. By
contrast, Rule Typ-M-ProjA is the key rule that leverages zippers. Intuitively, it just returns the
signature S′ of the field 𝑋 of the signature S of M zipped around the initial fields D of S appearing
before the field𝑋 . Still, we have to consider that the signature of Mmay itself be in a zipper context𝛾 ,
which is then composed with the zipper context formed of the initial fields D, resulting in 𝛾 ;𝐴 : D.
As we pattern-match on the signature, this might require normalization. Importantly, the name 𝐴
becomes fixed during projection, and is no longer freely 𝛼-convertible afterwards.

19The two first premises ensure that signatures S and ¥S are both well-typed, as required when using subtyping.
20However, we can also use this construct to implement transparent ascription ( ¥𝑃 < ¥S) as syntactic sugar for ( ¥𝑃 : (= ¥𝑃 < ¥S) ) ,
which then returns the view ¥S but with the identity of ¥𝑃 .
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Avoiding signature avoidance in ML modules with zippers 19

4 Resolving signature avoidance by zipper simplification

So far, zippers allow us to delay signature avoidance, but are sometimes polluting the inferred
signatures. Indeed, zipper may be removed by ascription, but they are not simplified otherwise,
even when they became useless. Yet, floating fields are not present at runtime and should only
maintain the minimal amount of type information needed for a signature.

Typ-M-Simp
Γ ⊢ M : S Γ ⊢ S { S′

Γ ⊢ M : S′

In this section, we address this issue by extending the definition of
code-free subtyping ≲ and, indirectly, of type equivalence ≈ to enable
simplification of zippers. In particular, as we are interested in removing

floating fields whenever possible, we define signature simplification as
an oriented subset of equivalence, i.e., a rewriting judgment Γ ⊢ S1 { S2 that implies Γ ⊢ S1 ≈ S2.
This simplification is our actual solution to the signature avoidance problem. Simplifying along
the equivalence ensures that we never loose equalities between visible types, hence we never do
simplification by over-abstraction, or simplificatinos that could prevent further typing, by contrast
with OCaml. We may thus inject simplification into module typing with Rule Typ-M-Simp. While
the primary goal of zipper simplification is to eliminate (or reduce) floating fields in inferred types,
it also helps print simpler error messages. Early simplification may also speed up typechecking.

Overview. We start with the extension of subtyping in §4.1, where we allow subtyping with zipper
signatures on the right-hand side. The extended code-free equivalence becomes quite expressive
and allows for a complete reorganization of floating fields and zippers. In §4.2, we present a set of
four simplification rules defined on a single floating field, which suffice for our purpose. In §4.3, we
give an algorithm that computes an iteration of these simplification rules without revisiting the
signature multiple times.

4.1 Subtyping with zippers

We extend code-free subtyping to support zippers on both sides: Γ ⊢
〈
𝐴 : D1

〉
S1 ≲

〈
𝐴 : D2

〉
S2.

4.1.1 Adding fields by subtyping. Intuitively, subtyping between zippers should commute with
projection: it should be seen as if it happened before an hypothetical projection that created the
zipper. That is, we can see

〈
𝐴 : D1

〉
S1 and

〈
𝐴 : D2

〉
S2 as the result of a projection of S′1 and S

′
2 on a

module field, say Z. To avoid loosing generality, we can assume that S′1 is any well-formed signature
whose projection gives

〈
𝐴 : D1

〉
S1, while S′2 is the least signature (with respect to the subtyping

order) whose projection gives
〈
𝐴 : D2

〉
S2. Subtyping before projection would give:

Γ ⊢ sig𝐴 D1, module Z : S1, D
′
1 end ≲ sig𝐴 D2, module Z : S2 end

Γ ⊢
〈
𝐴 : D1

〉
S1 ≲

〈
𝐴 : D1

〉
S2

While sound, this would be weaker than necessary, as it would require code-free subtyping on
floating fields, hence preserving value and module floating fields, while these are actually not
present at run-time. On floating fields, coercion subtyping is actually code-free.

Therefore, we extend subtyping with the following stronger rule:
Sub-S-Zipper
Γ′ = Γ ⊎𝐴 : D1, moduleZ : S1, D

′
1 D0 ⊆ D1, D

′
1 Γ′ ⊢ D0 //𝐴 ≤ D2 Γ′ ⊢ S1 ≲ S2

Γ ⊢
〈
𝐴 : D1

〉
S1 ≲

〈
𝐴 : D2

〉
S2

To use it, one must find a set of additional floating fields D′1 that may refer to both the floating
fields D1 and the signature S1 via Z. Then, a subset D0 of D1, D

′
1 is subtyped against D2, and S1 is

subtyping against S2. This stronger rule (when allowed) make subtyping undecidable, as it may
require to instantiate the abstract types of D2 without any information from D1. This is not a
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Zipper-Unused〈
𝐴 : D, D′

〉
S〈

𝐴 : D
〉
S

∼∼∼∼∼∼∼∼∼∼∼

Zipper-Intro
sig𝐴 D end〈

𝐴 : D
〉
sig D //𝐴 end

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Zipper-Intro-Module
sig𝐴 D, module 𝑋 : S, D′ end

⟨𝐴0 : module 𝑋 : S⟩ sig𝐴 D, module 𝑋 : (= 𝐴0 .𝑋 < S), D′ end
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Zipper-Intro-Type
sig𝐴 D, type 𝑡 = 𝐴.𝑡, D

′
end

⟨𝐴0 : type 𝑡 = 𝐴0 .𝑡⟩ sig𝐴 D, type 𝑡 = 𝐴0 .𝑡, D
′
end

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Zipper-Extrude
sig𝐴 D, module 𝑋 :

〈
𝐴0 : D0

〉
S, D
′
end〈

𝐴0 : D0
〉
sig𝐴 D, module 𝑋 : S, D′ end

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Fig. 11. Noticeable Equivalences

problem, as this extended version of subtyping is only used at the meta-theoretical level to prove
the correctness of the simplification algorithm of §4.3.

4.1.2 Well-formedness when subtyping telescopes. However, Rule Sub-S-Zipper is not as monotonic

as one might expect. Specifically, we do not have a weakening result for well-formedness:

Γ ⊎ 𝑋 :
〈
𝐴 : D2

〉
S2 ⊢ S ∧ Γ ⊢

〈
𝐴 : D1

〉
S1 ≲

〈
𝐴 : D2

〉
S2 ≠⇒ Γ ⊎ 𝑋 :

〈
𝐴 : D1

〉
S1 ⊢ S

This comes from the fact that we consider the domain of the floating fields to be more or less
irrelevant in Rule Sub-S-Zipper: we allow D1 to have fewer fields than D2 (the inverse of the usual
rule), but we require the domain of S1 to be larger than the one of S2 (as usual). Yet, S might refer
to floating fields in D2 and therefore become ill-formed in the environment that only contains D1
and not D2. This is problematic: in the rule Sub-S-Sig for subtyping between structural signatures,
we rely on this property to maintain well-formedness when subtyping declaration by declaration.
Therefore, we change this rule to explicitly require an additional well-formedness condition:

Sub-S-SigCheck
D0 ⊆ D1 Γ ⊎𝐴 : D1 ⊢ D2 Γ ⊎𝐴 : D1 ⊢ D0 //𝐴 ≤ D2

Γ ⊢ sig𝐴 D1 end ≤ sig𝐴 D2 end

The well-formedness condition prevents the deletion of floating fields when those fields still appear
in the rest of the right-hand side declarations D2. Before we added Rule Sub-S-Zipper, this condition
was always implied by the other premises using weakening, as the domain of D1 included the
domain of D2. With Sub-S-Zipper, it must now be checked. The warning is that subtyping with

zippers and telescopes is not as compositional as one might expect: subtyping (or equivalence)
between sub-parts of signatures does not necessarily implies subtyping between those signatures.

4.1.3 A weaker rule. The extra well-formedness condition is only required when powerful Rule
Sig-S-Zipper is used in a derivation of the premises. However, we can often use a weaker rule, where
the domain of floating fields on the left-hand side is (as usual) just a subset of the right-hand side:

Sub-S-Zipper-Weak
D0 ⊆ D1 Γ ⊎𝐴 : D1 ⊢ D0 //𝐴 ≤ D2 Γ ⊎𝐴 : D1 ⊢ S1 ≤ S2

Γ ⊢
〈
𝐴 : D1

〉
S1 ≤

〈
𝐴 : D2

〉
S2

4.1.4 Equivalences. The additional expressiveness lies mainly in new equivalences between sig-
natures with zippers. In fact, the increase is considerable, and the equivalence allows for floating
fields—and therefore signatures—to be considerably reorganized. We illustrate this with some
noticeable equivalences in Figure 11. We present them as rules where the signatures S1 on top and
S2 on bottom are equivalent, leaving the context Γ and well-typedness of both sides implicit, as well
as some additional conditions. Hence, each rule should be read as, if Γ ⊢ S and Γ ⊢ S′ (and some
additional freshness conditions that we detailed below for each rule) then Γ ⊢ S ≈ S′. The reader
should keep in mind that those equivalences might not compose without extra well-formedness
conditions. That is, Γ ⊢ S ≈ S′ and Γ ⊢ 𝐶 [S] does not imply Γ ⊢ 𝐶 [S′] for all contexts 𝐶 .
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Simp-Drop
𝐼 = dom(D) 𝐴.𝐼 ∉ fv(S)

Γ ⊢ ⟨𝐴 : D⟩ S { S

Simp-Move
𝐼 = dom(D) anchor (Γ, 𝐴.𝐼 , S) = Z.𝑃 .𝐼 ′

Γ ⊢ ⟨𝐴 : D⟩ S { S[𝐴.𝐼 ⇐ Z.𝑃 .𝐼 ′]

Simp-Split-Type
Γ ⊢ ⟨𝐴0 : type 𝑡 = 𝐴0 .𝑡⟩

〈
𝐴 : module 𝑋 : sig𝐵 D0, type 𝑡 = 𝐴0 .𝑡, D

′
0 end

〉
S { ¤S

Γ ⊢
〈
𝐴 : module 𝑋 : sig𝐵 D0, type 𝑡 = 𝐴.𝑡, D

′
0 end

〉
S { ¤S

Simp-Split-Mod
Γ ⊢ S1 Γ ⊢ ⟨𝐴0 : module 𝑋1 : S1⟩

〈
𝐴 : module 𝑋 : sig𝐵 D0, module 𝑋1 : (= 𝐴0 .𝑋1 < S1), D

′
0 end

〉
S { ¤S

Γ ⊢
〈
𝐴 : module 𝑋 : (sig𝐵 D0, module 𝑋1 : S1, D

′
0 end)

〉
S { ¤S

Simp-Skip
dom(D) = 𝐼 Γ ⊢

〈
𝐴 : D1

〉
((sig𝐵 D, module Z : S end) [𝐴.𝐼 ← 𝐵.𝐼 ]) {

〈
𝐴 : D′1

〉
sig𝐵 D′, module Z : S′ end

Γ ⊢
〈
𝐴 : D1, D

〉
S {

〈
𝐴 : D′1, D

′
〉
S′ [𝐵.𝐼 ← 𝐴.𝐼 ]

Fig. 12. Simplification rules

As equivalences, the rules can be used in both directions, even if each direction reads differently.
Rule Zipper-Unused can be used to drop—or conversely introduce—unused floating components.
Well-typedness of both sides implies that fields in dom(D′) are unused in S. Rule Zipper-Intromove
all signature fields into a zipper context and let the body be a redirection to the zipper. The two
next rules do this selectively: Rule Zipper-Intro-Type extracts an abstract type field 𝑡 of a structural
signature in a zipper-context and redirects that field in the signature body to the one in the zipper
context. Zipper-Intro-Module is similar but for a module field. Well scoping implicitly requires that
𝐴0 ∉ fv(D, D′) for both rules. Finally, Rule Zipper-Extrude extrude a floating field from its enclosing
signature. Well-scoping requires that and 𝐴 ∉ fv(D0) and 𝐴0 ∉ fv(S′) or 𝐴0 ∉ fv(D′).

Renaming. A zipper ⟨𝐴 : D⟩ S uses a self-reference 𝐴 to access the zipper context D. Initially, D is
accessed from S but after normalization D may also be accessed by fields of a signature following
the one that introduced the zipper. When Γ ⊢ ⟨𝐴 : D⟩ S and 𝐴 does not appear free in Γ, and 𝐴′ is
fresh for both Γ and S, we actually have Γ ⊢ ⟨𝐴 : D⟩ S ≈ ⟨𝐴′ : D[𝐴← 𝐴′]⟩ S[𝐴← 𝐴′]. Hence, zipper
self-references can actually be renamed, but consistently.

4.2 Simplification Γ ⊢ S { S′

In this section, we present a small set of simplification rules that transforms a signature along ≈,
which we can use to reduce the size of the zipper. When we can remove the zipper altogether, this
coincides with solving signature avoidance. When some floating fields remain, this is just delaying
signature avoidance. At a high level, the simplification follows three elementary rules (drop, move,
split), as it tries to simplify a single floating component, and one rule to re-organize zippers (skip).
In this section, we consider a zipper signature ⟨𝐴 : D⟩ S where 𝐼 is the identifier of D. The rules are
given in §4.2 and discussed below.

Restrictions. Simplification covers a restricted subset of signature equivalence, namely: (1) Given a
signature ⟨𝛾⟩ S it can only remove floating fields from𝛾 , but will not introduce new fields (even if this
could result in a smaller zipper context). (2) it cannot move fields in the zipped signature S—while
toplevel-equivalence allows it, but it can rewrite the content of the fields, rewiring the type and
module equalities21. (3) it uses a first-order criterion for applicative functors: it only rewrites functor
21Substituting a module alias for another might rewrite the content of a signature and technically move fields, still in a
code-free manner.
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applications when aliases (for either a floating functor or a floating module argument) are available.
This is similar to the anchoring restriction of [2].

4.2.1 Dropping a floating field. First, if a floating field is useless, i.e., does not appear in the free
variables of the signature, we may just remove it, as done by Rule Simp-Drop. We may also use
normalization to make floating module type fields and floating concrete type fields useless (as their
name is replaced by their definition). Floating core-language value fields are always useless.

4.2.2 Moving a floating field. There are cases where the floating field D is not useless (𝐴.𝐼 appears
in the signature even after normalization), but can still be removed. Indeed, there might be a
declaration in S that can take up the same role as D, without loss of type information.

⟨𝐴 : type 𝑡 = 𝐴.𝑡⟩
sig𝐴0

D0
module𝑋1 : sig𝐴1

D1 . . .
D𝑛−1
module𝑋𝑛 : sig𝐴𝑛

D𝑛
type𝑢 = 𝐴.𝑡

D𝑛
′

end
D𝑛−1

′

. .
.

D
′
1

end
D
′
0

end

Anchoring points. We call such declaration an anchoring point

for 𝐴.𝐼 inside S, which we write anchor (Γ, 𝐴.𝐼 , S) if it exists. It
must validate three conditions: (1) when 𝐼 is a type field, then
D must be of the form type 𝑡 ′ = 𝐴.𝑡 ; when 𝐼 is a module field,
then D must be of the form module𝑋 ′ : (= 𝐴.𝑋 < S) where S is
equivalent to the signature of 𝐴.𝑋 (not just a supertype). (2) it
must be in a strictly positive position, inside neither a functor
nor a module type. (3) it must come before any other occurrence
of 𝐴.𝐼 (which are called usage points). Formally, we have for a
type field anchor (Γ, 𝐴.𝑡, S) = Z.𝑋1.(. . . ).𝑋𝑛 .𝑢 if and only if there
exists 𝑛 signatures S1, . . . , S𝑛 such that:

S = sig𝐴0 D0 module 𝑋1 : S1 D
′
0 end ∧ 𝐴.𝑡 ∉ fv(D0)

S1= sig𝐴1 D1 module 𝑋2 : S2 D
′
1 end ∧ 𝐴.𝑡 ∉ fv(D1)

...
S𝑛= sig𝐴𝑛

D𝑛 type 𝑢 = 𝐴.𝑡 D𝑛
′
end ∧ 𝐴.𝑡 ∉ fv(D𝑛)

That is, there is a cascade of depth 𝑛 of nested signatures
where 𝐴.𝑡 is not mentioned until the field type𝑢 = 𝐴.𝑡 . It is
illustrated on the right for a type field.

sig𝐴0
D0
module𝑋1 : sig𝐴1

D1 . . .
D𝑛−1
module𝑋𝑛 : sig𝐴𝑛

D𝑛
type𝑢 = 𝐴𝑛 .𝑢

D𝑛
′ [𝐴.𝑡 ← 𝐴𝑛 .𝑢]

end
D𝑛−1

′ [𝐴.𝑡 ← 𝐴𝑛−1 .𝑋𝑛 .𝑢]
. .
.

D
′
1[𝐴.𝑡 ← 𝐴1 .𝑋2 .(. . . ) .𝑋𝑛 .𝑢]

end
D
′
0 [𝐴.𝑡 ← 𝐴0 .𝑋1 .𝑋2 .(. . . ) .𝑋𝑛 .𝑢]

end

Contextual path substitution. If there exists an anchoring point
for𝐴.𝑡 atZ.𝑋1 .(. . . ).𝑋𝑛 .𝑢, wemay remove the floating field by (in-
tuitively) replacing occurrences of 𝐴.𝐼 by Z.𝑋1.(. . . ).𝑋𝑛 .𝑢. How-
ever, the path to access 𝑢 is not the same everywhere inside the
signature. Therefore, we need a special form of substitution, called
contextual path substitution, written S[𝐴.𝑡 ⇐ Z.𝑋1.(. . . ).𝑋𝑛 .𝑢]
that proceeds as follows:
• we replace type𝑢 = 𝐴.𝑡 by type𝑢 = 𝐴𝑛 .𝑢 (deep in the
signature)
• in D0, . . . , D𝑛 , there is nothing to substitute as 𝐴.𝑡 does not
appear free.
• then 𝑢 is accessible by 𝐴𝑛 .𝑢, so we may substitute 𝐴.𝑡
by 𝐴𝑛 .𝑢 in the declaration D𝑛−1

′,
by 𝐴𝑛−1 .𝑋𝑛 .𝑢 in the declaration D𝑛−1

′, and, finally,
by 𝐴0.𝑋1.(. . . ).𝑋𝑛 .𝑢 in the declarations D′0.

Basically, when visiting S, contextual path substitution re-
places 𝐴.𝐼 by 𝐴1.𝑋2.(. . . ).𝑋𝑛 .𝑢 stripped of it common prefix with the path of the current point. It is
illustrated on the right for a type field.
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⟨𝐴1 : module 𝑋 : sig𝐴 type 𝑡 = 𝐴.𝑡 end⟩
sig𝐵 type𝑢 = 𝐴1 .𝑋 .𝑡 module𝑋 ′ : (= 𝐴1 .𝑋 < sig𝐴 type 𝑡 = 𝐴.𝑡 end) end

≈ ⟨𝐴0 : type 𝑡 = 𝐴0 .𝑡⟩ ⟨𝐴1 : module 𝑋 : sig𝐴 type 𝑡 = 𝐴0 .𝑡 end⟩
sig𝐵 type𝑢 = 𝐴1 .𝑋 .𝑡 module𝑋 ′ : (= 𝐴1 .𝑋 < sig𝐴 type 𝑡 = 𝐴.𝑡 end) end

(1)

≈ ⟨𝐴0 : type 𝑡 = 𝐴0 .𝑡⟩ ⟨𝐴1 : module 𝑋 : sig𝐴 type 𝑡 = 𝐴0 .𝑡 end⟩
sig𝐵 type𝑢 = 𝐴0 .𝑡 module𝑋 ′ : (= 𝐴1 .𝑋 < sig𝐴 type 𝑡 = 𝐴.𝑡 end) end

(2)

≈ ⟨𝐴0 : type 𝑡 = 𝐴0 .𝑡⟩ sig𝐵 type𝑢 = 𝐴0 .𝑡 module𝑋 ′ : sig𝐶 type 𝑡 = 𝐴0 .𝑡 end end (3)
≈ sig𝐵 type𝑢 = 𝐵.𝑢 module𝑋 ′ : sig𝐶 type 𝑡 = 𝐵.𝑢 end end (4)

Fig. 13. Illustration of simplification by splitting a type field (1). Here, we cannot drop the module field,
neither can we move it (a usage point appears before an anchoring point). Yet, by splitting the type field we
can simplify the zipper, but moving away the inner type (2) and module (3) fields, and the outer type field (4).

Floating module fields. For a floating module field ⟨𝐴 : module 𝑋 : S⟩, the definition of the an-
choring point is the same, except that it must be a module declaration with a transparent signature:

S𝑛 = sig𝐴𝑛
D𝑛 module 𝑋 ′ : (= 𝐴.𝑋 < S′) D𝑛

′
end ∧ 𝐴.𝑋 ∉ fv(D𝑛)

Besides, there is an additional equivalence condition to be satisfied:

Γ ⊎𝐴0 : D0 ⊎𝐴1 : D1 ⊎ . . . ⊎𝐴𝑛 : D𝑛 ⊢ S ≈ (S′ /𝐴.𝑋 )

4.2.3 Splitting a floating module field. The splitting rules, Simp-Split-Type for type fields and Simp-
Split-Mod for module fields, are meant to be used in conjunction with the rules for moving and
dropping fields. They simply allow to temporarily introduce new floating fields if and only if those
additional fields help the module field get simplified and removed in the end. An example is given
in Figure 13. Both rules pattern match on the absence of a zipper on the right-hand side signature,
therefore allowing only splitting when it helps simplification. Importantly, the rules apply only if the
module 𝑋 as a structural signature, not a functor signature. This is where the first-order restriction
can be seen, as we do not try to split individual fields of functors. Simplification of functors can only
use Rule Simp-Move-Mod. Implemented naively, splitting would require exponential backtracking
and would be impractical.

4.2.4 Skipping a field. The three simplification rules pattern-match on the right-most floating field.
If the right-most field does not fall into one of the three cases above, we can skip it and leave it as a
floating component. Rule Simp-Skip just amounts to consider the last field D as part of the visible
signature, simplify the rest, and put D back into the zipper. Implemented naively, skipping would
require two substitutions and the allocation of a signature for each skipped field.

4.3 Simplification algorithm

In this subsection we draft an algorithm that simplifies a whole zipper using the simplification
rules presented above. It works in three steps. First, scanning browses the zipper and the signature
to collect information about the usage points of each floating field. Then, constraint resolution
computes which floating field are going to be dropped,moved, split, or skipped. Finally, a simplification

pass revisits the signature to apply the corresponding transformations.
In the rest of this section we consider the simplification of a zipper signature ⟨𝐴 : D1, . . . D𝑛⟩ S,

assigned to variable Z. We denote by 𝐼𝑘 the identifier of the floating field D𝑘 .

4.3.1 Scanning. We start by a depth-traversal of the signature, updating a mutable map 𝜙 that
matches each identifier 𝐼𝑘 with a list of usage points stored in order of appearance. Each usage point
is one of three kinds:
• zipper (𝐴.𝐼ℓ ) indicates that 𝐴.𝐼𝑘 is used in the floating field 𝐴.Dℓ .
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• anchor (𝐴.𝐼𝑘 .𝑋 .𝐼 , Z.𝑋 ′.𝐼 ′) is used when the declaration at Z.𝑋 ′.𝐼 ′ could serve as an anchoring
point for the subfield 𝐴.𝐼𝑘 .𝑋 .𝐼 if no occurrence of 𝐴.𝐼𝑘 appears before Z.𝑋 ′.𝐼 ′.
• usage is used otherwise. For module fields where 𝐴.𝐼𝑘 is used as a prefix, we store the whole
path, as usage (𝐴.𝐼𝑘 .𝑋 .𝐼 ); otherwise, usage has no argument.

We then define a function visit𝑃 (·) that visits the zipper and the signature recursively, in order of
appearance, while updating the map (hence adding new elements to the tail of the list). 𝑃 is an
optional argument that is only be passed when visiting the zipper body S. Initially, 𝜙 maps each 𝐼𝑘
to an empty list. When visiting the zipper context, only zipper (·) usage points are used.
When visiting the signature S, the optional path argument 𝑃 indicates the path to the root Z

if still accessible, or none otherwise. The initial call is visitZ S. A type declaration is first check
as a possible anchoring point when the path is nonempty. If not an anchoring point or if the
path is empty, then it is a usage point. The path is set to none for recursive calls when entering,
(1) a functor or a module-type, (2) a submodule with a transparent signature, as paths reaching
inside the submodule are normalized away, and (3) a submodule with a module-type signature (as
normalization should be used first).

4.3.2 Constraint resolution. For constraint resolution, we use the information collected in the first
pass to compute the set of simplifications that can be applied to the signature. For that purpose, we
introduce a single assignment map Ω from paths of the form𝐴.𝐼𝑘 .𝑋 .𝐼 ′ to actions, initially undefined
everywhere, and which may be set once one value among drop, move, split, and skip. Constraint
resolution updates Ω and returns a list of substitutions Θ to be applied to S.
We visit the floating fields 𝐼𝑘 in reverse order, i.e., for k ranging from 𝑛 to 1. We consider

the list 𝜙 (𝐼𝑘 ) of usage points collected in the first phase. We first remove from 𝜙 (𝐼𝑘 ) all usage
points zipper (𝐴.𝐼ℓ ) for which Ω(𝐼ℓ ) is drop, move, or split, since then 𝐼ℓ will be removed during
the simplification. We then scan the list 𝜙 (𝐼𝑘 ) of remaining usage points in order:
• if 𝜙 (𝐼𝑘 ) is empty, we set Ω(𝐼𝑘 ) to drop.
• if the head of 𝜙 (𝐼𝑘 ) is anchor (𝑃, 𝑃 ′) we set Ω(𝐼𝑘 ) to move and Θ to [𝑃 ⇐ 𝑃 ′] ◦ Θ.
• Otherwise, the head of 𝜙 (𝐼𝑘 ) is a usage point. If the field 𝐼𝑘 is a module declaration, we try to
split that field. That is, we consider a local assignment map 𝜔 for suffixes of 𝐴.𝑋 and we go
through the list 𝜙 (𝐼𝑘 ) of usage points, with the following cases:
– usage (𝐴.𝐼𝑘 .𝑋 .𝐼 ) : if 𝐴.𝐼𝑘 .𝑋 .𝐼 or any prefix of the form 𝐴.𝐼𝑘 .𝑋

′ is already set to move
in 𝜔 , we remove the current usage point from 𝜙 (𝐼𝑘 ), and continue with the rest 𝜙 (𝐼𝑘 );
otherwise, we set Ω(𝐼𝑘 ) to skip, and proceed with the successor of 𝐼𝑘 (discarding 𝜔).

– anchor (𝑃, 𝑃 ′) : if no prefix of P is already set to move, we set 𝜔 (𝐴.𝐼𝑘 .𝑋 .𝐼 ) to move and Θ
to [𝑃 ⇐ 𝑃 ′] ◦ Θ.

If all usage points of the modules have been dealt with, we set Ω(𝐼𝑘 ) to split and discard 𝜔 .

4.3.3 Simplification. Finally, we return the zipper
〈
𝐴 : D𝑘𝑘∈1..𝑛∧Ω (𝐴.𝐼𝑘 )=skip

〉
(SΘ) whose context

just retained the floating fields set to skip, applying the path contextual substitution Θ to S.

5 Properties

The main property, type soundness, is proved by elaboration of ZipML intoM𝜔 [2], which is sound,
while preserving the underlying untyped semantics. This is done in §5.1. In §5.3, we present some
arguments supporting a completeness conjecture, i.e., that any M𝜔 program can be elaborated
into an equivalent ZipML program. However, since ZipML as a module-level notion of sharing,
the comparison should be made with version M𝜔

id
of M𝜔 instrumented with module-level sharing,

obtained by the composition of the source-to-source transformation that introduces identity tags at
the level of modules prior to typing in M𝜔 , as described in [2, §3.6], or equivalently, using derived
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rules operating directly on source terms without their translation. We choose the later below,
but just keep writingM𝜔 forM𝜔

id
. By contrast with [2], we use pairs to L𝜏,C M to represent tagged

signatures sig type id = 𝜏 moduleVal : C end and keep them concise and distinct from regular
signatures. We still keep letter C to range over either regular or tagged signatures.

5.1 Soundness of ZipML by Elaboration in M
𝜔

We expect the reader to be familiar with elaboration of ML modules into F𝜔 , ideally M𝜔 [2] (or
F-ing [24]). This elaboration serves as a proof of soundness of ZipML. Elaborating inM𝜔 rather
than directly in F𝜔 allows to benefit from the sound extrusion and skolemization of M𝜔 . By lack of
space, we must refer the reader to [2] for a precise definition of the typing judgments of M𝜔 .
As both ZipML andM𝜔 have the same source language and the same untyped semantics, the

goal is to show the following theorem, so that ZipML inherits type soundness fromM𝜔 :

Theorem 5.1 (Soundness). Every module expression that typechecks in ZipML (without the

simplification rule) also typechecks in M𝜔
. That is, ⊢♦ M : S implies ⊩ M : ∃♦𝛼.C for some 𝛼 and C .

We have only proved soundness in the absence of simplifications, i.e., using the subtyping relation
of §3 without rule Sub-S-Zipper. The soundness of simplifications is left for future work. It would
either require updating the elaboration of subtyping (Lemma 5.6), or done purely in ZipML by
showing that early simplifications can always be postponed, hence performed at the very end of
typechecking.
We write ⊩ for judgments inM𝜔 , as opposed to ⊢ for judgments in ZipML, and we use a light

red background. However, to prove this result by induction on the typing derivations we need to
extend it to a non-empty typing environment and link the two output signatures. To that aim, we
introduce an elaboration of source typing environments Γ intoM𝜔 ones, written ⊩ Γ ⇝ Γ𝜔 . The
induction hypothesis for the soundness statement becomes:

Γ ⊢♦ M : S ∧ ⊩ Γ ⇝ Γ𝜔 =⇒ ∃𝛼,C . Γ𝜔 ⊩ S : 𝜆𝛼.C ∧ Γ𝜔 ⊩ M : ∃♦𝛼.C

Yet, we need to extend M𝜔 elaboration of signatures to support zippers for this statement to make
sense. The rest of this section is composed as follows:
• we first explain the treatment of zippers;
• we discuss the elaboration of abstract types in the environment and extend the induction
hypothesis;
• we state the elaboration of strengthening, normalization, subtyping, and resolution;
• we state the elaboration of path typing, signature typing, and module typing;

5.1.1 Treatment of zippers. The first difficulty in the soundness statement is that the language of
inferred signatures of ZipML is larger than the source signatures of M𝜔 , with the introduction of
zippers signatures ⟨𝛾⟩ S and zipper-context accesses in paths 𝑃 .𝐴. Intuitively, zippers are removed
at runtime, and could be removed inM𝜔 . However, to establish a one-to-one correspondence on
inferred signatures, we need to keep zippers in both inferred signatures and the environment.
Therefore, we defineM𝜔

𝑧𝑖𝑝 , an extension ofM𝜔 with zippers. We add zippers toM𝜔 signatures with
the following signature elaboration rule, along with appropriate path typing extension.

MZip-Typ-S-Zip
Γ ⊩𝐴 D : 𝜆𝛼.D Γ, 𝐴 : D ⊩ S : 𝜆𝛽.C

Γ ⊩
〈
𝐴 : D

〉
S : 𝜆𝛼, 𝛽.

〈
𝐴 : D

〉
C

MZip-Typ-P-Zip
Γ ⊩ 𝑃 :

〈
𝐴 : D

〉
C

Γ ⊩ 𝑃 .𝐴 : sig D end

However, and this is a key point, those zippers are only used during the proof by induction for
typing the inferred signatures of ZipML. They should be seen as decorations on types and contexts
to build a typing derivation in M𝜔 , after which zippers can be erased. In a typing derivation of
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M𝜔
𝑧𝑖𝑝 that does not use MZip-Typ-S-Zip nor MZip-Typ-P-Zip, we can erase all zippers and obtain a

normal derivation of M𝜔 .

5.1.2 Elaboration of environments and strengthening. When elaborating a typing environment Γ of
ZipML into a typing environment Γ𝜔 of M𝜔 , a technical point arises from the fact that declarations
and signatures in Γ are always strengthened, and are therefore self-referring. By contrasts, abstract
types variables are inserted in Γ𝜔 before declarations and signatures. We define a (non-algorithmic)
rule M-Typ-E-Decl that captures the self-referring representation of abstract types in ZipML. It is
best understood by its key property, shown on the right:

M-Typ-E-Decl
⊩ Γ ⇝ Γ𝜔 Γ, 𝛼, 𝐴 : D ⊩𝐴 D :D

⊩ (Γ, 𝐴 : D)⇝ (Γ𝜔 , 𝛼, 𝐴 : D )
⊩ Γ ⇝ Γ𝜔 Γ𝜔 ⊩𝐴 D : 𝜆𝛼.D
⊩ (Γ ⊎𝐴 : D)⇝ (Γ𝜔 , 𝛼, 𝐴 : D )

The rule is not algorithmic as it requires guessing the set of abstract type variables 𝛼 and the result
of the elaboration D . However, as shown by the derived rule on the right, 𝛼 and D can be obtained
by elaborating the unstrengthened declaration D0, when it is added to the context. This is sufficient
to conduct our proof, as declarations are only added to the context with ⊎. We have similar rules
and properties for adding functor parameters and zippers to the environment.

We have the following property for strengthening:

Lemma 5.2 (Elaboration of strengthening). Given a path 𝑃 and a signature S, such that

JΓK ⊩ 𝑃 : C ′ and JΓK ⊩ S : 𝜆𝛼.C and JΓK ⊩ C ′ ≤ C [𝛼 ← 𝜏] , we have JΓK ⊩ S // 𝑃 : (𝜆𝛼.C ) 𝜏 .

5.1.3 Elaboration of judgments. As normalization, path resolution, path typing, and subtyping are
mutually recursive, we state four combined properties that are proved by mutual induction. Type
and module type definitions are kept as such and only inlined on demand in ZipML, while they are
immediately inlined in M𝜔 . Therefore, ZipML normalization becomes the identity inM𝜔 .

Lemma 5.3 (Elaboration of normalization). If S normalizes to S′, i.e., Γ ⊢ S ↓ S′, and if we

have ⊩ Γ ⇝ Γ𝜔 , then both signatures have the same elaboration inM𝜔
. That is, Γ𝜔 ⊩ S : 𝜆𝛼.C implies

Γ𝜔 ⊩ S′ : 𝜆𝛼.C .

Lemma 5.4 (Elaboration of path-typing). If Γ ⊢ 𝑃 : S and ⊩ Γ ⇝ Γ𝜔 hold, then the typing of 𝑃

and of its signature S coincide in M𝜔
, i.e., we have both Γ𝜔 ⊩ 𝑃 : L𝜏,C M and Γ𝜔 ⊩ S : L𝜏,C M .

Lemma 5.5 (Elaboration of path resolution). Resolving a path 𝑃 allows to fetch either the

identity or the content of the signature. Assuming ⊩ Γ ⇝ Γ𝜔 , we have:

• If Γ ⊢ 𝑃 ⊲ S then we have Γ𝜔 ⊩ 𝑃 : L_ ,C M and Γ𝜔 ⊩ S : 𝜆𝛼.L_ ,C M ;
• If Γ ⊢ 𝑃 ⊲ 𝑃 ′ then we have Γ𝜔 ⊩ 𝑃 : L𝜏,C M and Γ𝜔 ⊩ 𝑃 ′ : L𝜏,C ′M and Γ𝜔 ⊩ C ′ ≤ C .

Lemma 5.6 (Elaboration of subtyping). The elaboration preserves the subtyping relationship: If

Γ𝜔 ⊩ S : 𝜆𝛼.C and Γ𝜔 ⊩ S′ : 𝜆𝛼 ′ .C ′ then Γ ⊢ S ≤ S′ implies Γ𝜔 ⊩ 𝜆𝛼.C ≤ 𝜆𝛼 ′ .C ′ .

Lemma 5.7 (Elaboration of signature typing). Well-typed signatures of ZipML can be elabo-

rated in M𝜔
. If Γ ⊢ S and ⊩ Γ ⇝ Γ𝜔 then ∃𝛼,C . Γ𝜔 ⊩ S : 𝜆𝛼.C .

Soundness as stated by Theorem 5.1 relies on the lemmas Lemmas 5.3 to 5.6], which are proved
by mutual induction over the typing derivations of their premises.

5.2 On abstraction safety

The languageM𝜔
id
has been designed to ensure abstraction safety. Although just conjectured, the

abstraction safety of M𝜔 , should transferred to ZipML by type soundness of the elaboration. In-
deed, assume that two programs M1 and M2 have compatible signatures S1 and S2 in ZipML, that
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is Γ ⊢ M𝑖 : (= 𝑃 < S𝑖 ) for 𝑖 in {1, 2} with the same identity 𝑃 . By the elaboration of path resolu-
tion lemma, we have Γ𝜔 ⊩ M𝑖 : L𝜏,C𝑖M (1), for a same identity type 𝜏 . Therefore, we can apply the
abstraction safety property of M𝜔 .

5.3 Completeness of ZipML with respect to M
𝜔

Conversely, one may wonder whether the type system of ZipML is powerful enough to simulateM𝜔 .
We argue that it is indeed the case. In this section, we present some key properties supporting this
claim. Namely, we remark that: (1) floating fields can be used to encode existentially quantified
variables; (2) code free equivalence on zippers can simulate the M𝜔 extrusion and skolemization of
variables; and (3) universally and lambda bound variables need not be encoded.

5.3.1 Encoding existentially quantified types with floating fields. Our claim is that floating fields
can encode all existentially quantified variables of M𝜔 . We first consider first-order type variables,
then module identities, and, finally, higher-order types.

First-order type variables. Let us consider aM𝜔 -signature with a single quantified type variable of
the base kind ★, which is of the form ∃𝛼.C . Inside C , the variable 𝛼 is accessible everywhere. This
is quite similar to a zipper signature ⟨𝐴 : type 𝑡 = 𝐴.𝑡⟩ S, where𝐴.𝑡 is a type accessible everywhere
inside S. Therefore, we could translate the M𝜔 -signature into a zipper signature by introducing a
floating field with a fresh name for every quantified variable. We may define a reverse elaboration
judgment Γ𝜔 ⊩ ∃𝛼.C ←↪ ⟨𝛾⟩ S, where we extend the environment to attach the name of a floating
field to every (existentially) quantified abstract type. We would have rules of the form:

Rev-S-Star
Γ𝜔 , 𝛼 ←↪ 𝐴.𝑡 ⊩ C ←↪ S 𝐴 fresh

Γ𝜔 ⊩ ∃𝛼.C ←↪ ⟨𝐴 : type 𝑡 = 𝐴.𝑡⟩ S

Rev-T-AbsType
𝛼 ←↪ 𝐴.𝑡 ∈ Γ𝜔
Γ𝜔 ⊩ 𝛼 ←↪ 𝐴.𝑡

𝛼-conversion. A difference between quantified variables and fields of zippers is that the latter
are not 𝛼-convertible. Technically, 𝛼-convertibility is part of type-equivalence and can be applied
anywhere in aM𝜔 derivation. However, in ZipML, self-references are 𝛼-convertible, which gives
us the following (top-level) equivalence: ⟨𝐴 : type 𝑡 = u⟩ S ≈ ⟨𝐵 : type 𝑡 = u⟩ S[𝐴← 𝐵]. For all
practical purposes, floating fields are as 𝛼-convertible as existential types.

Module identities. Modules identities of M𝜔 can be encoded as floating module fields. However,
there is a difficulty: what is the attached signature of an identity floating field? The simplest answer
is to extend ZipML with a bottom signature ⊥ that is a subtype of all signatures. Doing so, we would
get rules of the following form:

Rev-S-Mod
Γ, 𝛼

id
←↪ 𝐴.𝑋 ⊩ C ←↪ S 𝐴 fresh

Γ ⊩ ∃𝛼
id
.C ←↪ ⟨𝐴 : module 𝑋 : ⊥⟩ S

Rev-S-Transparent
𝛼
id
←↪ 𝐴.𝑋 ∈ Γ𝜔 Γ ⊩ C ←↪ S

Γ ⊩ L𝛼
id
,C M←↪ (= 𝐴.𝑋 < S)

However, as hinted in by [2, Theorem 3.1], module identities ofM𝜔 are always attached to signatures
that have a common ancestor in the subtyping order. Therefore, rather than extending ZipML with
a bottom signature ⊥, we could instrument the typing rules of M𝜔 to obtain the common ancestor
signature associated with each module identity and use it in the corresponding floating field.

Higher-order types. Higher-order types ofM𝜔 can be encoded as floating functors producing a
single type field. Again, there is a subtlety: what is the signature of the domain of such a functor?
The simplest answer is to extend ZipML with a top signature ⊤ that is a supertype of all signatures.
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Using it, we would get rules of the form:
Rev-S-HigherOrder

Γ, 𝜑 ←↪ 𝐴.𝐹 (·).𝑡 ⊩ C ←↪ S

Γ ⊩ ∃▼𝜑 .C ←↪ ⟨𝐴 : module 𝐹 : (𝑌 : ⊤) → sig𝐵 type 𝑡 = 𝐵.𝑡 end⟩ S

Rev-T-Transparent
𝜑 ←↪ 𝐴.𝐹 (·).𝑡 ∈ Γ𝜔 𝛼

id
←↪ 𝐵.𝑋

Γ ⊩ 𝜑 (𝛼
id
) ←↪ 𝐴.𝐹 (𝐵.𝑋 ) .𝑡

Higher-order module identities would work similarly. Following the same reasoning as for module
identities, we conjecture that, rather than extending ZipML with a top signature ⊤, we could
instrument the typing rules ofM𝜔 to obtain the domain of the functor that originally introduced 𝜑 ,
which is a supertype of all use-cases.

Universally and lambda quantified types. Our argument applies to existentially quantified types.
But the universal quantification and lambda quantification ofM𝜔 are always used for signatures that
come from elaboration of the source (namely, functor parameter and module type definitions), and
can therefore also be represented in ZipML, without using floating field to encode type variables.

5.3.2 Extrusion. Floating fields can also be extruded, similarly to existential types. For instance,
if we consider type components inside submodules, we can introduce floating fields and use
equivalence to emulate extrusion. For instance, we have the following equivalences:

sig𝐴 module𝑋1 : sig𝐵 type 𝑡 = 𝐵.𝑡 end module𝑋2 : sig𝐶 type 𝑡 = 𝐶.𝑡 end end
≈ sig𝐴 module𝑋1 : ⟨𝐴1 : type 𝑡 = 𝐴1 .𝑡⟩ sig type 𝑡 = 𝐴1 .𝑡 end

module𝑋2 : ⟨𝐴2 : type 𝑡 = 𝐴2 .𝑡⟩ sig type 𝑡 = 𝐴2 .𝑡 end end
≈ ⟨𝐴1 : type 𝑡 = 𝐴1 .𝑡 ;𝐴2 : type 𝑡 = 𝐴2 .𝑡⟩

sig𝐴 module𝑋1 : sig type 𝑡 = 𝐴1 .𝑡 end module𝑋2 : sig type 𝑡 = 𝐴2 .𝑡 end end

This also applies to skolemization, as we also have the following equivalences:

(𝑌 : S𝑎) → sig𝐴 type 𝑡 = 𝐴.𝑡 end
≈ (𝑌 : S𝑎) → ⟨𝐵 : type 𝑡 = 𝐵.𝑡⟩ sig type 𝑡 = 𝐵.𝑡 end
≈ ⟨𝐵 : module 𝐹 : (𝑌0 : S𝑎) → sig𝐷 type 𝑡 = 𝐷.𝑡 end⟩ (𝑌 : S𝑎) → sig type 𝑡 = 𝐵.𝐹 (𝑌 ).𝑡 end

Here, for the domain of the floating functor, we could also the top signature ⊤ instead of the
signature S𝑎 of the functor we extruded from, as we did.

Proof sketch. Overall, equivalence over floating fields allows us to mimic the extrusion and
skolemization mechanisms ofM𝜔 in ZipML. Informally, it should allow us to maintain a composi-
tional correspondence between typings inM𝜔 and typings in ZipML. At each step, we would be
able to combine the ZipML signatures obtained by induction hypothesis and use equivalence to
make them correspond to M𝜔 .

5.4 Other properties

Normalization is a floating typing rule that can be called anytime. Normalization itself may be
performed by need, but also in a strict manner. It is therefore left to the implementation to normalize
just as necessary—as one would typically do with 𝛽-reduction.

As a result, the inferred signature is not unique, returning different syntactic answers depending
on the amount of normalization that has been performed. Hence, wemay have Γ ⊢ M : S and Γ ⊢ M : S′
when S and S′ syntactically differ—even a lot! as one may contain a signature definition that has
been expanded in the other. Still, we should then have Γ ⊢ S′ ≈ S′′. That is, the inferred signatures
should only differ up to their presentation, but remain inter-convertible—and otherwise simplified in
the same manner. One might expect a stronger result, stating that there is a best presentation where
module names would have been expanded as little as possible. This would be worth formalizing,
although a bit delicate. In particular, we probably wish to keep names introduced by the user, but
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not let the algorithm reintroduce a name when it recognized an inferred anonymous signature that
happens to be equivalent to one with a name.

6 Missing features and Conclusion

We have presented ZipML, a source system for ML modules which uses a new feature, signature
zippers, to delay and resolve instances of signature avoidance. ZipML also models transparent
ascription, delayed strengthening, applicative and generative functors and parsimonious inlining
of signatures. Several features of OCaml are still missing in ZipML.

The open and include constructs allow users to access or inline a given module. While not
problematic when used on paths, OCaml also allows opening structures [13], which easily triggers
signature avoidance, as we have shown in §2 on a restricted case. We expect floating fields to easily
model the opening of structures although some adjustments will be needed. In particular, type
checking of signatures will have to become an elaboration judgment as mentioned in §3.6.

OCaml allows abstract signatures which amounts to quantifying over signatures in functors. This
feature, while rarely used in practice, unfortunately makes the system undecidable [21, 29]. In our
context, as ZipML expands module type names only by need. We conjecture that abstract signatures
could be added to the system, as they should not impact zippers. However, the undecidability of
subtyping should be addressed, maybe by restricting their instantiation.

Finally, the typechecking of recursive modules raises the question of double vision [3, 19]. By
contrast, OCaml requires full type annotations, along with an initialization semantics which can
fail at runtime. All these solutions are compatible with ZipML. Another potential proposal would
be to rely on Mixin modules [23], which could fit well with floating fields.

We leave these explorations to future work. An implementation of floating components into
OCaml, as well as transparent ascription, should not be difficult, now that we have a detailed
formalization that also fits well with the actual OCaml implementation. This remains to be done
to appreciate the gain in expressiveness and verify that we do not lose in typechecking speed. A
mechanization of ZipML metatheory for which we only have paper-sketched proofs would also be
worth doing and would fit well with other efforts towards a mechanized specification of OCaml
and formal proofs of OCaml programs.
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