
Fulfilling OCaml Modules with Transparency

BLAUDEAU CLEMENT, Inria, France and Université Paris Cité, France
DIDIER RÉMY, Inria, France
GABRIEL RADANNE, Inria, France

ML modules come as an additional layer on top of a core language to offer large-scale notions of composition
and abstraction. They largely contributed to the success of OCaml and SML. While modules are easy to write
for common cases, their advanced use may become tricky. Additionally, despite a long line of works, their
meta-theory remains difficult to comprehend, with involved soundness proofs. In fact, the module layer of
OCaml does not currently have a formal specification and its implementation has some surprising behaviors.

Building on previous translations from ML modules to F
𝜔 , we propose a type system, called M

𝜔 , that
covers a large subset of OCaml modules, including both applicative and generative functors, and extended
with transparent ascription. This system produces signatures in an OCaml-like syntax extended with F

𝜔

quantifiers. We provide a reverse translation from M
𝜔 signatures to path-based source signatures along with

a characterization of signature avoidance cases, makingM𝜔 signatures well suited to serve as a new internal
representation for a typechecker. The soundness of the type system is shown by elaboration in F𝜔 . We improve
over previous encodings of sealing within applicative functors, by the introduction of transparent existential
types, a weaker form of existential types that can be lifted out of universal and arrow types. This shines a new
light on the form of abstraction provided by applicative functors and brings their treatment much closer to
those of generative functors.

CCS Concepts: • Software and its engineering → Functional languages; Semantics; Modules / packages; •
Theory of computation→ Type theory; Type structures.

Additional Key Words and Phrases: existential types, signature avoidance, applicative functors, F-omega, ML

ACM Reference Format:
Blaudeau Clement, Didier Rémy, and Gabriel Radanne. 2024. Fulfilling OCaml Modules with Transparency.
Proc. ACM Program. Lang. 8, OOPSLA1, Article 101 (April 2024), 29 pages. https://doi.org/10.1145/3649818

1 INTRODUCTION
Modularity is a key concept to build and maintain complex systems. Large code bases are broken
down into smaller components, called modules, both to give structure to the whole system and to
build standardized and reusable units. Complexity is made manageable by channeling interactions
through reduced interfaces. To that regard, language-level mechanisms are essential for keeping
implementation details and internal invariants hidden from interface, while allowing modules to be
combined in subtle ways. A wide variety of modularity techniques appear in different programming
languages: from simple functions to libraries, compilation units, objects, type-classes, packages, etc.
In languages of the ML family, modularity is provided by a module system, which forms a separate
language layer built on top of the core language. To quote Rossberg [21], “ML is two languages in

one”. The interactions between modules are controlled statically by a strict type system, making

Authors’ addresses: Blaudeau Clement, Inria, Paris, France and Université Paris Cité, Paris, France, clement.blaudeau@inria.fr;
Didier Rémy, Inria, Paris, France, didier.remy@inria.fr; Gabriel Radanne, Inria, Lyon, France, gabriel.radanne@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART101
https://doi.org/10.1145/3649818

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0002-6333-6092
HTTPS://ORCID.ORG/0000-0002-0693-6278
HTTPS://ORCID.ORG/0000-0002-2107-7678
https://doi.org/10.1145/3649818
https://orcid.org/0000-0002-6333-6092
https://orcid.org/0000-0002-0693-6278
https://orcid.org/0000-0002-2107-7678
https://doi.org/10.1145/3649818

101:2 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

modularity work in practice with little run-time overhead. A module is described by its interface,
called a signature, which serves both as a lightweight specification and as an API.
The OCaml module system is extensively used and particularly rich in features: it provides

applicative and generative functors, module aliases, recursive modules, first-class modules, etc.
Most sizable OCaml projects use modules to access libraries or define parametric instances of data
structures; several successful projects have made heavy use of modules, as in MirageOS [16] where
modules and functors are assembled on demand using a DSL [20].

However, despite the successes and the interest of the community regardingML modules, giving
them a formal type-theoretic definition and proving their properties (type soundness, abstraction
safety), turned out to be technically involved. In the case of OCaml, the foundational works of
Leroy [13, 14], have not been extended to include the numerous new features. The current situation
is a module system that is widely used but still unspecified. Adding, modifying, or even fixing a
feature requires a deep knowledge of the technical internals of the typechecker. For substantial
extensions which could have unforeseen breaking changes, such as transparent ascription or
modular implicits [29], lacking a specification is a show-stopper.
Combining ideas from many years of research, a successful and elegant approach to model

ML-modules is their translation into F𝜔 , the higher-order polymorphic lambda calculus. Extending
the work of Russo [25], who provided a type system interpreting signatures as F𝜔 types, a milestone
was achieved by Rossberg et al. [23], who also gave an elaboration of module expressions as
F
𝜔 -terms, proving soundness of the system.
We build on the insights of the work of Rossberg et al. [23], which we adapt and improve for an

OCaml-like language extended with transparent ascription. To separate the concerns of specification
and soundness, we present a standalone type system, called M

𝜔 , that produces signatures in an
OCaml-like syntax extended with F

𝜔 quantifiers à la Russo [25]—but are actually syntactic sugar
over F𝜔 types. The M𝜔 system is central to our work: it provides an up-to-date specification of
OCaml modules, may serve as a new internal representation of signatures for the typechecker, and
can be used to reason about the design and issues of module systems. To ensure type soundness of
M

𝜔 , we give an elaboration à la Rossberg et al. [23]. Yet, we remove some artifacts and complexity
of the treatment of aliasing and, more importantly, of the encoding of applicative functors. This is
achieved by introducing transparent existential types which enable skolemization and bring the
treatment of generative and applicative functors much closer to one another.
Our contributions are:

• The introduction of transparent existential types in F
𝜔 , a weak form of existential types

that allows their lifting through arrow types and universal quantifiers. Using transparent
existentials, we provide a simpler encoding of applicative functors, significantly reducing the
difference with the one of generative functors.

• A specification of a large subset of OCaml modules in M
𝜔 , including both applicative and

generative functors, and extended with transparent ascription, usingML-style signature syntax
but explicit F𝜔 -style quantifiers.

• An anchoring algorithm that translates M𝜔 signatures back into the path-based source signa-
tures with a principled approach to the signature avoidance problem.

• A source-to-source encoding of aliasing—a key to abstraction safety, that relies solely on type
abstraction, hence removing the need for a primitive treatment by the type system.

Plan. In §2, we start with an overview of the key features, strengths, and weaknesses of the
OCamlmodule system. In §3, we presentM𝜔 , a type system for OCamlmodules relying on a richer
signature language based on F

𝜔 . In §4, we discuss the signature avoidance problem and introduce
anchoring—the backward translation fromM

𝜔 signatures to source signatures. In §5, we present

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:3

1 module Complex = struct
2 type t = int * int
3 let zero = (0, 0)
4 let one = (1, 0)
5 let add u v = ...
6 end

7 module type Ring = sig
8 type t
9 val zero : t val one : t
10 val add : t -> t -> t
11 end

12 module CRing = (Complex : Ring)

13 module Polynomials = functor (R : Ring) ->
14 struct
15 type t = R.t list
16 let zero = [] let one = [R.one]
17 let add = ...
18 end

19 module CX = Polynomials(Complex)
20 module PolynomialsXY (R : Ring) =
21 Polynomials(Polynomials(R))

Fig. 1. Basic modularity.

the elaboration of modules into F
𝜔 terms as an extension of theM𝜔 type system. To this end, we

introduce transparent existential types and show how they simplify the treatment of applicative
functors. Finally, we discuss related works (§6.1), omitted features (§6.2), and future works (§6.1).

2 A MODERN MODULE SYSTEM
This section is an introduction to the design space of ML-modules focusing on the concepts,
problems, and solutions that should help understand the rest of the paper. The ideas are not new
and have been discussed in more details in the literature, as in the introduction of [8] for instance.
We start with a quick overview of the basic features: structures, signatures, sealing, and functors. We
then focus on the difference between generative and applicative functors. The design of applicative
functors is linked with the property of abstraction safety, which leads to a notion of module-level
aliases and module identity. To improve the current situation of module aliases, we propose and
discuss an extension to concrete ascription. Finally, we explain the signature avoidance problem.

2.1 Basic ML Modularity
An introductory example is given in Figure 1. Modules are created by gathering term and type

definitions in a structure, which can be named, as illustrated by module Complex. Definitions inside
a structure are called bindings which can be type declarations (line 2), values (line 3), submodules,
or module types, also called signatures (line 7). Definitions inside a signature are called declarations.
Type declarations can be left abstract, as the one at line 8.

Module types are used to control interactions between modules in two ways. First, the outside
view of a module can be restricted to protect internal invariants by an explicit ascription to a given
module type (line 12). Ascriptions can be used to hide fields (making them inaccessible from the
outside) or abstract type components, which hides the underlying implementation while keeping
the name visible. Here, CRing.t is an available type, but its implementation as a pair of integers is
hidden: one cannot coerce a pair of integers into a CRing.t value. Second, module types can be used
to restrict how a given module depends on other modules. This is achieved by turning the module
into a functor. Here, Polynomials is a functor that can take any implementation R satisfying the Ring
interface and that returns an implementation of the ring of polynomials over R. The body of the
functor is polymorphic with respect to the abstract type fields of its argument, and thus, does not
depend on their actual implementations. Functors can then be called and composed: Polynomials
can be applied to modules satisfying Ring such as Complex and CRing (lines 19), but also the output of
Polynomials itself (line 21). This check is structural, as a module doesn’t need to nominally mention
the Ring signature, it is sufficient to have the appropriate fields. Finally, modules can be packed
inside other modules as sub-modules, functors can be higher order, and ascriptions can be used at
any point, allowing functor applications to also produce abstract types.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:4 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

1 module Tokens () = (struct
2 type t = int
3 let x = ref 0 ...
4 end : sig type t ... end)
5 module PublicTokens = Tokens()
6 module PrivateTokens = Tokens()
7 (** PublicTokens.t =/= PrivateTokens.t *)

(a) A generative functor — OCaml functors are made

generative by having () as their last parameter. Here,

each application of the Tokens functor produces a mod-

ule with its own internal state that generates fresh tokens

independently.

1 module OrderedSet (E:Ordered) = (struct
2 type t = E.t list
3 let empty : t = [] ...
4 end : sig type t ... end)
5 module S1 = OrderedSet(Integers)
6 module S2 = OrderedSet(Integers)
7 (** S1.t === S2.t *)

(b) An applicative functor — Functors are applicative

by default in OCaml. Here, OrderedSets(E) is a module

implementing (ordered) sets of elements of type E.t. Ap-
plicative functors can be used in paths directly, leading to

S1.t = OrderedSets(Integer).t.

Fig. 2. Examples of generative and applicative functors.

2.2 Applicative and Generative Functors
Both modules and functors can be used to either structure the code base or to build reusable

components. In the latter case, several instances of a given module might be available in the
context when combining different pieces of code. This is typically the case for modules providing
common data-structures such as lists, hash-tables, sets, etc. When such a module is the result of
a functor application, a question arises: should every instance of the same application produce
incompatible abstract types, i.e., types not considered equal by the typechecker? This question
leads to the distinction between applicative and generative functors, which have different semantics
and correspond to different use cases. Both are supported by OCaml and illustrated in Figure 2.
If two instances have equal abstract types, there are effectively compatible and the functions and
values from each module can be used together. We say that two instances are incompatible when
they have different abstract types.
Applying a generative functor twice generates two incompatible modules, with incompatible

abstract types. The body of such functor might be stateful, emits effects, or dynamically choose the
implementations of its abstract types (using first-class modules). Generativity can also be used by
programmers as a strong abstraction barrier to force incompatibility between otherwise pure and
compatible data-structures that represent different objects in the program. OCaml syntactically
distinguishes generative functors from applicative ones by requiring the last argument to be a
special unit argument “()” (we expand on the reasons behind this choice in §3.1).

Conversely, applying an applicative functor twice with the same argument produces compatible
modules, with the same abstract types. The body of such a functor must be pure1 and have a static
implementation of its abstract types. Applicativity acts as a weaker abstraction barrier, making
several instances of the same structure compatible. This is especially useful to provide generic
functionalities (such as hash-maps2, sets, lists, etc.) that may appear in several places and yet be
compatible. Applicative functors are the default in OCaml.

2.3 Abstraction Safety and Granularity of Applicativity
A key design point is the granularity of applicative functors: under what criterion should two
applications of a functor produce compatible modules? We say that two modules are similar

when applying the same functor to both yields compatible modules. An option, used inMoscow
ML, is to consider modules to be similar when they have the same type fields (same names and
same definitions). This criterion is called static equivalence [7, 24, 27]. It is type-safe, as the actual

1In OCaml, it is left to the user’s responsibility to mark impure functors as generative, the typechecker does not track
effects, only preventing unpacking of first-class modules and calling generative functors inside the body of applicative ones.
2Hashtbl.Make is actually pure, as it does not produce a new hash table itself, even though it contains impure functions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:5

implementation of the abstract types produced by the functor can only depend statically3 on its
parameters, thus only on its statically known type fields.
However, the static equivalence criterion can make two functor applications compatible while

they actually have different internal invariants. In the example on Figure 2, the lists used to
represent sets are ordered with respect to the comparison function of E. Therefore, a typechecker
implementing the static equivalence criterion would allow a user to mix sets ordered with different
ordering functions, which would produce wrong results—but not crash.

Yet, developers often expect a stronger property called abstraction safety: abstract types should
protect arbitrary local invariants that may also depend on values. In the example on Figure 2,
applications of OrderedSets should produce compatible abstract types only when both the type E.t
and the values, in particular E.compare, are the same.
To preserve abstraction safety, modules should be deemed similar only when both their type

and value fields are equal. Unfortunately, the equality (or equivalence) of values is undecidable
in general. Besides, tracking even an approximation of the equality of value fields would be too
fine-grained and cumbersome, as modules may have numerous value fields. To enforce abstraction
safety while remaining practical, OCaml follows a coarse-grain approach: tracking equalities only at
the module level. This was originally introduced as a syntactic criterion by Leroy [13]: two functor
applications produce the same abstract types when they are syntactically identical.

2.4 Aliasing and Ascription
The syntactic criterion is however limited: when aliasing a module, as in the expression module X' = X,
X' and X are not considered similar—they are syntactically different. To allow for a better tracking of
module equalities, module aliases

4 [9] were added to OCaml: the signature language was extended
with the alias signature construct5 (= 𝑃) to express that a module is a statically known alias of
the module at the path 𝑃 . Keeping as much aliasing information as possible allows for more type
equalities when using applicative functors.

1 module X : T = (* ... *)
2 module F (Y:S) = Y (* reexport *)
3 module X' = F(X)

Unfortunately, the aliasing feature of OCaml is quite
restricted, as it does not compose with functors. As an
example, let us consider the code snippet to the right. The
module X' cannot be given the expected alias signature (= X), which contradicts the substitution-
based intuition. If the type system were to maintain module aliases through functor calls, it would
impose strong constraints on the compilation of structures and functors that would drastically
affect the performance trade-offs of modules. Indeed, in all ML-module systems, and OCaml in
particular, structures are accessed using static dispatch, i.e., with statically known offsets to be fast.
As a counterpart, the dynamic and static view must coincide and subtyping, which changes the
static view, is not code free. That is, explicit coercions are inserted at functor calls: typically, the
functor F does not receive X of signature T as argument but a copy with fewer, reordered fields, as
described by the signature S of the parameter Y. Therefore, the functor parameter Y cannot be given
the alias type (=X) which should at least be compatible with the type T6. Hence, the OCaml type

3In the absence of first-class modules, which are forbidden in applicative functor for that very reason.
4OCaml actually offers two distinct notions of aliases, which are respectively present or absent at runtime. Here and in the
rest of the paper, we only consider present aliases, even though they are not the default behavior, as they are the ones that
pose a theoretical challenge. Historically, the main motivation behind module aliases was rather the fine-grained control of
compilation units and name-spaces with absent aliases than the interaction with applicative functors and present aliases.
5OCaml actually only has alias declarations module X = P inside structural signatures. We present here alias signatures for
the sake of simplicity, which correspond to adding an enclosing structure with an alias declaration.
6Keeping aliases through functor calls would amount to give the functor a type that subsumes the bounded polymorphic
type ∀ (A ≤ S). A -> A, which, for records/structures, requires code-free subtyping.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:6 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

system does not follow the naive substitution semantics for aliases inside functors. Instead, it uses
a set of syntactically-based restrictions to prevent aliases in functor signatures. However, those
restrictions are not stable under substitution—and can currently be bypassed in some edge-cases7.

Interestingly, transparent ascription, originally introduced as a module expression written (M : S)
in SML, helps lifting this restriction. It restricts the outside view of a module M to the fields present
in the signature S while preserving all type equalities. However, this feature does not increase
expressiveness in SML as a similar result could be obtained via a usual (opaque) ascription of SML
with a signature where all type equalities have been made explicit. A proposal for OCaml8 is to
add transparent ascription as an extension not only of the module language, but of the signature
language, writing (= P < S) for the signature of a module that is an alias of P but restricted to the
fields of S, which we call a concrete signature. A module with such a signature has the identity
of P and the content S. Concrete signatures provide a generalization of aliasing, storing both the
aliasing information and the actual signature (hence, the memory representation). The transparent
ascription expression à la SML (M : S), is then just syntactic sugar for an opaque ascription with a
concrete signature (see §3.1). Thanks to concrete signatures, aliasing information can be preserved
through the implicit ascription at functor calls. As OCaml features applicative functors (unlike
SML), this would increase the expressiveness of the signature language. Besides, concrete signatures
are compatible with static dispatch and copying at function calls allows deletion and reordering of
fields while keeping type equalities. Concrete signatures (= P < S) are a special case of the more
general module sharing mechanism of F-ing [23], which could be obtained as (like (P : S)).9

Finally, module identity is essential for modular implicits [29], a proposal for adding inference of
module expressions from a pre-declared set of modules and functors. In order to ensure coherence,
one must guarantee that an inferred module is unique, up to some notion of equivalence. As
concrete signatures enable more sharing of identities in signatures of inferred modules, aliasing
becomes a good static approximation of that equivalence.

2.5 A Key Weakness: the Signature Avoidance Problem
The signature avoidance problem is a key issue of MLmodule systems. It originates from a mismatch
between the expressiveness of the module and signature languages: the reachable space of possible
module expressions is larger than the describable space of signatures: some modules simply cannot
be described by a signature. This mismatch is caused by the interaction of three mechanisms. First,
type abstraction creates new types that are only compatible with themselves (and their aliases).
Then, sharing abstract types between modules, which is essential for module interactions, produces
inter-module dependencies. Finally, hiding type or module components (either by a projection
or by implicit subtyping at a functor application) can break such dependencies by removing type
aliases from scope while they are still being referenced. For instance, an abstract type t can be
hidden while a value of type t list is still in scope. An example of such pattern is given in Figure 3.
Sometimes, no possible signature exists for a module; other times there are several incomparable
ones. Specifically with applicative functors, when higher-order abstract types are out of scope,
there are often only incomparable solutions.

Strategies for solving signature avoidance. When a type declaration refers to an out-of-scope type,
there are three main strategies to correct the signature: (1) removing the dependency by making the

7See the following issues: OCaml#7818, OCaml#2051, OCaml#10435, OCaml#10612 and OCaml#11441.
8OCaml#10612. Transparent ascription is written (P :> S) in OCaml#10612, the opposite of the SML convention.
9This sharing mechanism relies on a general notion of semantic paths (which stand for any module expression that does not
introduce new abstract types) whereas OCaml uses more restrictive syntactic paths. We argue that for the latter, concrete
signatures are an interesting expressiveness trade-off.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

https://github.com/ocaml/ocaml/issues/7818
https://github.com/ocaml/ocaml/pull/2051
https://github.com/ocaml/ocaml/pull/10435
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/issues/11441
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/pull/10612

Fulfilling OCaml Modules with Transparency 101:7

Fig. 3. Example of a signature avoidance situation

and the associated type-dependencies tree. The

module M is built by projecting only the submodule

Y, which exposes unsolvable dependencies with a

type (X.t) that became unreachable. The function f
is therefore not well-typed. (Here, we use a general

projection not present in current OCaml, but can

be easily reproduced with an anonymous functor

call, as done in [2, ??].)

1 module type S = sig type t end
2 module M = (struct
3 module X:S = struct type t = int end
4 module Y = struct
5 type a = X.t * bool
6 type b = X.t * int
7 end
8 end).Y
9 let f ((x,_): M.a): M.b = (x, 3)

int

X.t

M.a M.b

× ×

type declaration abstract, (2) rewriting the type equalities using in-scope aliases, or (3) extending
the signature syntax to account for the existence of out-of-scope types. The first strategy (1) can
lead to loss of type equalities, but is easy to implement—it is the one currently in use in the OCaml
typechecker. Cases where the second strategy (2) succeeds constitute the solvable cases of signature
avoidance. The OCaml typechecker has some heuristics for rewriting type-equalities, but they are
incomplete, lacking a notion of equivalence class. This results in unpredictable, hard to understand
signature avoidance errors that should, in principle, be solvable. Sometimes, no in-scope alias is
available and signature avoidance cannot be solved without an extended syntax: those are the
general cases of signature avoidance. We advocate for the third approach (3), embodied by M

𝜔 and
presented in §3—at least for the internal representation of the typechecker—which allows us to
separate the type system from the issue of dealing with the signature avoidance problem. However,
there are associated challenges. If the extended language is only used as an internal representation,
then a reverse translation is needed for printing the result to the user and for error messages. This
reverse translation has to deal with signature avoidance cases. If instead, the extended language is
made accessible to the user, the decidability of type-checking is not guaranteed in the presence of
higher-order abstract types; besides, it is still unclear whether it would be practical.

Signature avoidance in practice. OCaml users usually get around this limitation by explicitly
naming modules before using them, which adds always-accessible type definitions. The module syn-
tax of OCaml actually encourages this approach by limiting the places where inlined, anonymous
modules can be used. In particular, projection on an anonymous module (as done in Figure 3) is
forbidden. However, explicit naming can be cumbersome and limits the usability of module-based
programming patterns such as modular implicits.

3 THE QUANTIFIER-BASED M𝜔 APPROACH
In this section, we present the type system M

𝜔 that covers the set of features informally explained
in the previous section without suffering from the signature avoidance problem. M𝜔 distinguishes
between source signatures written by the user and M

𝜔 signatures used for typechecking. M𝜔

signatures use explicit binders (existential, universal, lambda) as in F
𝜔 (and F-ing) to express type

abstraction and polymorphism, including applicativity and generativity. We start with the grammar
of source expressions (§3.1) and an overview of M𝜔 (§3.2). Then, we present the three main typing
judgments with a type-only granularity of applicativity (§3.3, §3.4, and §3.5). To model the OCaml
style applicativity, we show how module identity and aliasing can be piggybacked on the type
abstraction mechanism by a simple source-to-source transformation (§3.6).

3.1 The Source Language
The source grammar, given on Figure 4, is built on top of a core language of expressions e and
types u which are mostly left abstract. We only consider value identifiers 𝑥 and type identifiers 𝑡 ,
extended with qualified values 𝑄.𝑥 and qualified types 𝑄.𝑡 : these are the only way for the core level

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:8 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

Path and Prefix
𝑃 ::= 𝑄.𝑋 (Access)

| 𝑌 (Functor parameter)
| 𝑃 (𝑃) (Applicative application)

𝑄 ::= 𝐴 | 𝑃 (Prefix)
Module Expression

M ::= 𝑃 (Path)
| M.𝑋 (Projection)
| (𝑃 : S) (Ascription)
| 𝑃 () (Generative application)
| () → M (Generative functor)
| (𝑌 : S) → M (Applicative functor)
| struct𝐴 B end (Structure)

Binding
B ::= let𝑥 = e (Value)

| type 𝑡 = u (Type)
| module𝑋 = M (Module)
| module type𝑇 = S (Module type)

Source signature
S ::= 𝑄.𝑇 (Module type)

| () → S (Generative functor)
| (𝑌 : S𝑎) → S (Applicative functor)
| sig𝐴 D end (Structural signature)
| (= 𝑃 ≤ S) (Concrete signature)

Source declaration
D ::= val𝑥 : u (Value)

| type 𝑡 = u (Type)
| module𝑋 : S (Module)
| module type𝑇 = S (Module type)

Identifier
𝐼 ::= 𝑥 | 𝑡 | 𝑋 | 𝑌 | 𝑇 (Any identifier)

Core language
e ::= 𝑄.𝑥 (Qualified value)

| . . . (Other expression)
u ::= 𝑄.𝑡 (Qualified type)

| . . . (Other type)
Fig. 4. Syntax of the source language.

M𝜔 Types
𝜏 ::= 𝛼 | 𝜏 (𝜏) | . . .

Environment
Γ ::= ∅ (Empty)

| Γ, 𝛼 (Abstract type)
| Γ, (𝑌 : C) (Functor parameter)
| Γ, (𝐴.D) (Declaration)

Opacity
♦ ::= ▽ (Transparent) | ▼ (Opaque)

M𝜔 signature
C ::= sig D end (Structural signature)

| ∀𝛼.C → C (Applicative functor)
| () → ∃▼𝛼.C (Generative functor)

M𝜔 declaration
D ::= val 𝑥 : 𝜏 (Values)

| type 𝑡 = 𝜏 (Types)
| module 𝑋 : C (Modules)
| module type 𝑇 = 𝜆𝛼.C (Module types)

Fig. 5. Syntax of M
𝜔
signatures.

to access the module level. The abstract syntax of module expressions and signatures is rather
standard and mostly follows the current OCaml syntax. There are a few minor technical choices:

• Module-related meta-variables use typewriter uppercase letters, M, S, etc., while lowercase letters
are used for expressions and types of the core language. Lists are written with an overhead
bar. Identifiers 𝐼 and paths 𝑃 use a standard font.

• In order to simplify the treatment of scoping and shadowing, we introduce self-references,
ranged over by letter𝐴, in both structures and signatures. They are used to refer to the current
object; their binding occurrence appears as a subscript to the structure or signature they
belong to (struct𝐴 . . . end), so that self-references can freely be renamed. They are not
present in OCaml and should be thought of as being added by a first pass before typing. We
explain how they help treat shadowing in §3.2.

• In order to have a uniform treatment for access to local and non-local variables, we use prefixes,
written with the letter 𝑄 , to range over either a path 𝑃 or a self reference 𝐴.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:9

• Abstract types are specified as types pointing to themselves, e.g., type 𝑡 = 𝐴.𝑡 where 𝐴 is the
self-reference of the current structure (and often grayed out for readability).

• Functor parameters 𝑌 are 𝛼-convertible. The other identifiers (𝑋 , 𝑇 , 𝑥 and 𝑡) are not, as they
play the role of both internal and external names.

Projectibility. Choosing (1) whether projection is allowed on any module expression or only on
a restricted subset, and (2) how the core language can refer to values and types of modules is an
important design choice in ML systems, coined projectibility by Dreyer et al. [7]. Contrary to F-ing,
but following Leroy [13] and Russo [25], we chose to use a syntactic notion of path.

• We allow projection on any module expression, but we restrict functor applications and
ascriptions to paths. Doing so, the only expression that can “cause” signature avoidance is
the projection. OCaml does the opposite, mainly to prevent code patterns prone to triggering
signature avoidance. Our choice is more general, as we can define a let construct for modules
using the following syntactic sugar:

let 𝑋 = M in M′ ≜ (struct𝐴 module𝑋 = M moduleRes = M′ end).Res
Using this construct, we easily get functor application and ascription on arbitrary module
expressions. The reverse encoding of projection as an anonymous functor call requires an
explicit signature annotation on the argument and thus cannot be seen as syntactic sugar.

• A qualified access inside a generative functor application, which would be of the form𝐺 ().𝑡 , is
syntactically ill-formed, as paths do not contain the unit argument (). By contrast, a qualified
access inside an applicative functor application 𝐹 (𝑋).𝑡 is permitted.

• A qualified access inside a module type, which would be of the form 𝑄.𝑇 .𝑡 , is syntactically
ill-formed, as paths do not contain module type identifiers 𝑇 .

• We only provide opaque ascription in module expressions, as concrete ascription is given by
the following syntactic sugar: (𝑃 < S) ≜ (𝑃 : (= 𝑃 ≤ S))

As both path and module expressions feature a projection dot, the grammar is slightly ambiguous.
However, this is not a problem as we see paths as a subset of module expressions. In particular, we
only consider the projection dot of module expressions in the typing rules.

N-ary functors. As in OCaml, our grammar features unary applicative functors and nullary
generative functors. A unary generative functor can be obtained as an applicative functor returning
a generative one. Indeed, we could add the usual currying notation sugar:

(𝑌 : S) () → M ≜ (𝑌 : S) → (() → M)
While n-ary applicative functors are straightforward, one might wonder if n-ary generative functors
require a unit argument between every parameter. Actually, the () acts as a generative barrier and
can be placed to control the sharing between partial applications .

3.2 M𝜔 Overview
In Figure 5, we introduce the syntax for M𝜔 -signatures C , a more expressive signature language.
By convention, we use curvy capitals (C ,D , . . .) forM𝜔 -objects, which also useM𝜔 -types 𝜏 instead
of source types u, obtained by replacing qualified types 𝑄.𝑡 by abstract types 𝛼 or applied abstract
types 𝛼 (𝜏) (or concrete types 𝜏) where 𝛼 range over a new collection of abstract type variables.

M
𝜔 signatures C use explicit quantifiers: universal quantification for functor parameters, and

existential for the body of generative functors. We annotate existential types with an opacity flag
♦ to indicate generativity (using the opaque flag ▼) or applicativity (using the transparent10 flag

10This notion of transparency is unrelated to the transparent vs. concrete notion of ascription.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:10 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

M-Typ-Sig-ModType
Γ ⊢ 𝑃 : sig D end module type 𝑇 = 𝜆𝛼.C ∈ D

Γ ⊢ 𝑃 .𝑇 : 𝜆𝛼.C

M-Typ-Sig-LocalModType
𝐴.(𝑇 : module type 𝜆𝛼.C) ∈ Γ

Γ ⊢𝐴.𝑇 : 𝜆𝛼.C

M-Typ-Sig-GenFct
Γ ⊢ S : 𝜆𝛼.C

Γ ⊢ () → S : () → ∃▼𝛼.C

M-Typ-Sig-AppFct
Γ ⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎 ⊢ S : 𝜆𝛽.C

Γ ⊢ (𝑌 : S𝑎) → S : 𝜆𝛽′ .∀𝛼.C𝑎 → C
[
𝛽 ↦→ 𝛽′ (𝛼)

]
M-Typ-Sig-Str

Γ ⊢𝐴 D : 𝜆𝛼.D 𝐴 ∉ Γ

Γ ⊢ sig𝐴 D end : 𝜆𝛼.sig D end

M-Typ-Sig-Con
Γ ⊢ 𝑃 : C Γ ⊢ S : 𝜆𝛼.C ′ Γ ⊢ C ≤ C ′ [𝛼 ↦→ 𝜏]

Γ ⊢ (= 𝑃 ≤ S) : C ′ [𝛼 ↦→ 𝜏]
Fig. 6. Signature typing rules.

▽). Transparent existentials do not appear directly in the grammar of Figure 5 but in the typing
judgment for module expressions, which uses existentially quantified signatures of either form
∃▽𝛼.C or ∃▼𝛼.C . Module types 𝜆𝛼.C are parametric11 in each type variable 𝛼 , which may later
become universally quantified, existentially quantified, or replaced by a concrete instance. We
considerM𝜔 types up to 𝛼𝛽𝜂-equivalence.
Typing environments contain three types of bindings: an abstract type variable 𝛼 , a functor

argument 𝑌 : C , or a declaration 𝐴.D . OCaml allows some form of shadowing, which, for the
sake of simplicity, we reject by requiring typing environments to have distinct bindings. However,
in addition, bindings made inside a submodule can also locally shadow a definition made in
an enclosing structure. We authorize this form of shadowing, as bindings made inside different
structures would have a different self-reference prefix (and are therefore considered as two different
bindings). Technically, this is achieved by using a well-formedness predicate over environments
wf(Γ) that, in addition to recursively checking well-formedness of all bindings in Γ, ensures that
variables 𝛼 and 𝑌 are bound at most once and that two bindings of the form 𝐴.D1 and 𝐴.D2 of the
same self-reference variable 𝐴 may only occur when D1 and D2 define disjoint identifiers.12 As a
simplifying convention for the rest of this paper, we consider well-formedness of the environment
as a precondition to all rules.
Besides the changes in the source language, and the annotation of existential quantifiers with

modes, the M
𝜔 typing judgments are very close to the ones of F-ing [23], but stripped of the

elaborated terms. We refer to it and to [2] for more details. There are three main judgments:
typechecking of signatures (and declarations), subtyping, and typechecking of module expressions
(and bindings), which we present in this order.

A “standard” typing system. Overall, the type system should be understood as a combination of
standard features—but usingML-modules nomenclature—together with specific mechanisms to
deal with abstraction. Structures are just records, with bindings being record-field expressions and
declarations being record-field types. Ascriptions are explicit coercions, and functors are functions.
However, in addition, some constructs introduce abstract type variables with an implicit scope.
Hence, the key technical point ofM𝜔 is how the type sharing is represented with explicit quantifiers.

3.3 Typechecking of Signatures
The key concepts of M𝜔 can be illustrated with the typechecking of signatures Γ ⊢ S : 𝜆𝛼.C , which
translates a source signature S into its M𝜔 counterpart 𝜆𝛼.C , making the set of abstract type 𝛼
explicit. The set of rules is given in Figure 6 and discussed below.

11Here, we follow Russo [25] rather than [23] and use a lambda quantifier for signatures.
12This amounts to see 𝐴.D as binding 𝐴𝐼 where 𝐼 is the identifier defined by D .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:11

Declarations. Typechecking of signatures uses a helper judgment Γ ⊢
𝐴
D : 𝜆𝛼.D for typechecking

declarations for which we only give the key rules, referring to [2, ??] for the full set of rules. The
syntactic enforcement of the position of quantifiers in this judgment helps understand the lifting of
abstract types, a key concept that is pervasive throughout the declaration typing rules. An abstract
type is introduced by an abstract type declarations:

Γ ⊢𝐴 𝐴.(type 𝑡 = 𝑡) : 𝜆𝛼.(type 𝑡 = 𝛼) (M-Typ-Decl-TypeAbs)

However, since type 𝑡 must also be accessible in the following declarations, the 𝜆-binder for 𝛼 must
be lifted to enclose the whole region where 𝑡 , hence 𝛼 , is accessible. This lifting is performed when
merging a list of declarations in Rule M-Typ-Decl-Seq where binders are merged together in front
of the list of declarations.

M-Typ-Decl-Seq
Γ ⊢𝐴 D0 : 𝜆𝛼0 .D0 Γ, 𝛼0, 𝐴.D0 ⊢𝐴 D : 𝜆𝛼.D

Γ ⊢𝐴 D0, D : 𝜆𝛼0 𝛼.D0,D

M-Typ-Decl-Mod
Γ ⊢ S : 𝜆𝛼.C

Γ ⊢𝐴 (module𝑋 : S) : 𝜆𝛼.(module 𝑋 : C)

Lifting also occurs when typing a submodule declaration (Rule M-Typ-Decl-Mod) where the set of
quantified types introduced by the submodule are lifted to the declaration itself.

Signatures. Typing rules for signatures can be found on Figure 6. Module type definitions are
inlined (rulesM-Typ-Sig-ModType andM-Typ-Sig-LocalModType), which explains whyM𝜔 signatures
do not have a counterpart for module types 𝑄.𝑇 in source signatures. In Rule M-Typ-Sig-Con for a
concrete signature (= 𝑃 ≤ S), the signature S is first elaborated into an M

𝜔 -signature 𝜆𝛼.C ′ that is
checked against theM𝜔 -signature C of path 𝑃 . The result signature is C ′ [𝛼 ↦→ 𝜏] after applying
the matching substitution [𝛼 ↦→ 𝜏] to C ′. Notably, no new abstract type is introduced.

Functors and scopes. Rule M-Typ-Sig-GenFct for generative functors shows how the scope of
abstract types 𝛼 introduced in their bodies is restricted the top-level of the functor body, leaving an
opaque existential signature ∃▼𝛼.C for the functor codomain. Hence, every instantiation of the
functor will generate new (incompatible) abstract types 𝛼 , as expected for generative functors. By
contrast, applicative functors should not be assigned a signature of the form ∀𝛼.C → ∃▼𝛽.C ′ where
all applications would produce new types, nor 𝜆𝛽.∀𝛼.C → C ′ where all applications would share
the same types regardless of their argument. The solution, introduced by Biswas [1] and reused in
F-ing, is to use a higher-order abstract type 𝛽 ′ applied to the universally quantified variables 𝛼 to
capture the fact that the type of the codomain is some type function of the arguments. This gives a
signature of the form 𝜆𝛽 ′ .∀𝛼.C → C [𝛽 ↦→ 𝛽 ′ (𝛼)] as can be seen in Rule M-Typ-Sig-AppFct.

3.4 Subtyping
The subtyping judgment Γ ⊢ C ≤ C ′ (and its helper judgment Γ ⊢ D ≤ D ′) checks that a signatureC
ismore restrictive than a signatureC ′, meaning that the former has more fields and introduces fewer
abstract types. It combines structural subtyping of records (with field deletion and reordering),
covariant subtyping of functions, and instantiation of quantifiers. We only highlight two key rules
below, referring to [2, ??] for the full set of rules:

M-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 ≤ D ′

Γ ⊢ sig D end ≤ sig D ′
end

M-Sub-Sig-GenFct
Γ, 𝛼 ⊢ C ≤ C ′ [𝛼 ′ ↦→ 𝜏

]
Γ ⊢ () → ∃▼𝛼.C ≤ () → ∃▼𝛼 ′ .C ′

Rule M-Sub-Sig-Struct compares two structural signatures. Rule M-Sub-Sig-GenFct for generative
functors amounts to check subtyping between existential types Γ ⊢ ∃▼𝛼.C ≤ ∃▼𝛼 ′ .C ′, which in
turn amounts to finding an instantiation [𝛼 ′ ↦→ 𝜏] of the abstract types so that C is a subtype
of C ′ [𝛼 ′ ↦→ 𝜏]. While this is the standard way of specifying subtyping for existential types, it is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:12 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

M-Typ-Mod-Var
(𝑌 : C) ∈ Γ

Γ ⊢𝑌 : C

M-Typ-Mod-Local
(𝐴.𝑋 : module C) ∈ Γ

Γ ⊢𝐴.𝑋 : C

M-Typ-Mod-Seal
Γ ⊢ M : ∃▽𝛼.C
Γ ⊢ M : ∃▼𝛼.C

M-Typ-Mod-Struct
Γ ⊢𝐴 B : ∃♦𝛼.D 𝐴 ∉ Γ

Γ ⊢ struct𝐴 B end : ∃♦𝛼. sig D end

M-Typ-Mod-Ascr
Γ ⊢ 𝑃 : C Γ ⊢ S : 𝜆𝛼.C ′ Γ ⊢ C ≤ C ′ [𝛼 ↦→ 𝜏]

Γ ⊢ (𝑃 : S) : ∃▽𝛼.C ′

M-Typ-Mod-AppFct
Γ ⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, (𝑌 : C𝑎) ⊢ M : ∃▽𝛽.C
Γ ⊢ (𝑌 : S𝑎) → M : ∃▽𝛽′ .∀𝛼.C𝑎 → C

[
𝛽 ↦→ 𝛽′ (𝛼)

]
M-Typ-Mod-GenFct

Γ ⊢ M : ∃♦𝛼.C
Γ ⊢ () → M : () → ∃▼𝛼.C

M-Typ-Mod-AppApp
Γ ⊢ 𝑃 : ∀𝛼.C𝑎 → C Γ ⊢ 𝑃 ′ : C ′ Γ ⊢ C ′ ≤ C𝑎 [𝛼 ↦→ 𝜏]

Γ ⊢ 𝑃 (𝑃 ′) : C [𝛼 ↦→ 𝜏]

M-Typ-Mod-AppGen
Γ ⊢ 𝑃 : () → ∃▼𝛼.C

Γ ⊢ 𝑃 () : ∃▼𝛼.C

M-Typ-Mod-Proj
Γ ⊢ M : ∃♦𝛼. sig D end module 𝑋 : C ∈ D 𝛼 ′ = fv(C) ∩ 𝛼

Γ ⊢ M.𝑋 : ∃♦𝛼 ′ .C
Fig. 7. Module (and path) typing rules.

algorithmically challenging in the presence of higher-order abstract types, and could potentially
lead to undecidability of subtyping. This problem has already been identified by Rossberg et al. [23],
but shown to be decidable for certain pairs of signatures (C , C ′) satisfying a syntactic condition,13
which happens to be true for signatures encountered during subtyping. This results from the fact
that subtyping is always checked against signatures C ′ that are the elaboration of source signatures.

3.5 Typechecking of Module Expressions
Typechecking of expressions Γ ⊢ M : ∃♦𝛼.C infers the M𝜔 -signature ∃♦𝛼.C of a source module M.
The signature features an existential quantification annotated with an opacity flag ♦. In particular,
the opacity is the same for all abstract variables (which are all transparent or all opaque). In fact,
the judgment should be read Γ ⊢♦ M : ∃♦𝛼.C where the opacity flag on the judgment is a typing
mode, applicative or generative, respectively, which implies that the existentials, if any, should all
be transparent or all be opaque, respectively. However, to lighten the notation, we omit the mode
except when it is generative and there is no existential type to enforce it. Thus, when we write
Γ ⊢ M : ∃▼∅.C or Γ ⊢ M : ∃▽∅.C when 𝛼 is empty, we actually mean Γ ⊢▼ M : C and Γ ⊢▽ M : C . The
same convention applies to typing rules for bindings M-Typ-Decl-* which can be found in [2, ??].
Typing rules for expressions M-Typ-Mod-* are given on Figure 7.

Skolemization. The need for two modes of typing comes from the treatment of applicative
functors, specifically Rule M-Typ-Mod-AppFct. In order to share the abstract types 𝛽 produced by
the body of the functor, we lift them out of the universal quantification (and out of the right-hand
side of the arrow) by making them higher-order. This is known as skolemization and has been
introduced by Russo [25] in the context of modules. However, this is only sound when the abstract
types have a statically known witness,14 which we enforce by requiring transparent existentials for
the body of the functor.

Propagation of modes. Signatures with transparent existentials are inferred by default and are
required for the body of applicative functors. Module expressions that are inherently generative,
such as calling a generative functor or computing impure core expressions (or unpacking a first-class
module), can only be typed with opaque existential signatures in generative mode. This discipline
is enforced by forcing the body of a functor to be typed transparently when it is applicative
13[23] defines the syntactic notions of valid and explicit signatures. They enforce that during typechecking, subtyping only
happens between valid signatures on the right-hand side and explicit signatures on the left, for which it is decidable.
14Technical reasons will be given in §5.4.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:13

(Rule M-Typ-Mod-AppFct) and opaquely when it is generative (Rule M-Typ-Mod-GenFct). Rule
M-Typ-Bind-Seq forces all components of a structural signature to have the same opacity:

M-Typ-Bind-Seq
Γ ⊢𝐴 B0 : ∃♦𝛼0 .D Γ, 𝛼0, 𝐴.D ⊢𝐴 B : ∃♦𝛼.D

Γ ⊢𝐴 B0, B : ∃♦𝛼0, 𝛼 .D ,D

M-Typ-Bind-Let
Γ ⊢♦ e : 𝜏

Γ ⊢♦𝐴 (let𝑥 = e) : (val 𝑥 : 𝜏)

We also rely on a core-language expression typing judgment15 Γ ⊢♦ e : 𝜏 equipped with a mode that
tracks the presence of effects16. When typing a value field, the mode is propagated via an empty
existential (Rule M-Typ-Bind-Let). Signatures can also be downgraded from transparent to opaque
via subsumption (Rule M-Typ-Mod-Seal). All other rules are agnostic of the typing mode. With the
convention that M-Typ-Mod-Seal is only used when the generative mode is required for the premise
of another rule, i.e., applicative signatures are inferred by default, the system is syntax directed.

Introduction of abstract types. Rule M-Typ-Mod-Ascr for signature ascription (𝑃 : S) has some
resemblance with Rule M-Typ-Sig-Con for typechecking of concrete signatures (= 𝑃 ≤ S): in both
cases, we check that theM𝜔 signature of 𝑃 is a subtype of theM𝜔 -signature 𝜆𝛼.C ′ of S. By contrast,
however, we here drop the matching substitution in the result signature ∃▽𝛼.C ′ and instead
introduce the abstract types 𝛼 , transparently. In particular, when S is concrete, i.e., 𝛼 is empty, no
abstract type is actually introduced. That is, concrete ascription (𝑃 <: S), which is syntactic sugar
for (𝑃 : (= 𝑃 ≤ S)), i.e., the opaque ascription of 𝑃 to the concrete signature (= 𝑃 ≤ S), behaves
as expected, filtering out components of 𝑃 as prescribed by S but without creating new abstract
types. Note that applications of an applicative functor (Rule M-Typ-Mod-AppApp) do not introduce
new abstract types per se, but applications of already existing higher-order abstract types—which is
the key to the sharing between different applications of the same (or an equivalent) functor to the
same (or equivalent) arguments.

Projection and signature avoidance. In the source signature syntax, dependencies betweenmodules
are hard to track, as modules can use arbitrary paths to access other modules. Signatures can thus
have non-obvious internal dependencies. In a type system that works directly on source signatures,
as is OCaml, typechecking the projection of a submodule M.𝑋 is delicate: the dependencies of the
source signature of 𝑋 might become dangling after the other components of the signature of M have
been lost. By contrast, M𝜔 signatures do not have internal dependencies; they are non-dependent
records, as all paths present in concrete type definitions have been inlined and binders for abstract
types have been lifted.
In principle, the projection rule M-Typ-Mod-Proj could return the signature ∃♦𝛼.C , leaving all

variables in scope after projection. However, it performs some form of garbage collection by just
keeping the subset 𝛼 ′ of abstract types 𝛼 that appear free in the submodule signature C so as to
avoid keeping useless, unreachable abstract types.

3.6 Identity, Aliasing, and Type Abstraction
So far, our system handles applicativity with a granularity of type-only applicativity, as promoted
by [25] and F-ing. To obtain abstraction safety, Rossberg et al. [23] introduced semantic paths:
marking value andmodule fields with phantom abstract types and using the type sharingmechanism
to track value (or module) sharing. Then, type-only applicativity can be transformed into either (1)
fine-grained applicativity by marking all values, or (2) coarse-grained applicativity (à la OCaml) by
marking only modules.

15This judgment is trivially extended by rules for accessing qualified variables and types, see [2, ??].
16Not present in current OCaml, where it is the user’s responsibility to use the generative functors in such cases.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:14 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

Tagging
Tag {M} ≜ struct𝐴 moduleVal = M type id = 𝐴.id end

Tag {S} ≜ sig𝐴 moduleVal : S type id = 𝐴.id end

Paths
J𝐴.𝑋 K ≜ 𝐴.𝑋 J𝑃 .𝑋 K ≜ J𝑃K.Val.𝑋

J𝑌 K ≜ 𝑌 J𝑃 (𝑃 ′)K ≜ J𝑃K.Val(J𝑃 ′K)

Module expressions
JM.𝑋 K ≜ JMK .Val.𝑋 J𝑃 ()K ≜ J𝑃K .Val()

J(𝑃 : S)K ≜ (J𝑃K : JSK)
J() → MK ≜ Tag {() → JMK}

J(𝑌 : S) → MK ≜ Tag {(𝑌 : JSK) → JMK}
Jstruct𝐴 B endK ≜ Tag {struct𝐴 JBK end}

Signatures
J𝐴.𝑇 K ≜ 𝐴.𝑇 J𝑃 .𝑇 K ≜ J𝑃K.Val.𝑇
J(= 𝑃 ≤ S)K ≜ (= J𝑃K ≤ JSK)

J() → SK ≜ Tag {() → JSK}
J(𝑌 : S𝑎) → SK ≜ Tag {(𝑌 : JS𝑎K) → JSK}
Jsig𝐴 D endK ≜ Tag {sig𝐴 JDK end}

Fig. 8. Source-to-source transformation introducing identity tags for structures and functors using two

reserved identifiers id and Val. Bindings and declarations are transformed by immediatemap over submodules

and submodule-types.

However, as phantom abstract types act exactly as regular abstract types, we can split the
introduction of those types from the typing. We propose a simple, compositional source-to-source
transformation that explicitly introduces a special abstract type field id, called an identity tag in
Figure 8. We call tagged expressions those resulting from the transformation, so as to distinguish
them from raw (untagged) expressions. Structures and functors are wrapped inside a two-field
structure with its identity tag and the actual value. New (abstract) identity tags are introduced
when typing structures and functors, or via an ascription. Conversely, identity tags are shared
when aliasing a module.

Controlling the applicativity granularity by a source-to-source transformation allows for a
simpler set of typing rules. Besides, it leaves open the choice to apply the transformation so as
to obtain OCaml coarse granularity (and abstraction safety), or just stay with the default static
equivalence. (Of course, we may recover derived rules by inlining the transformation, which may
be useful, for instance in an optimized implementation, to avoid an intermediate pass.)

Identity tags ensure that two module expressions that share the same identity tag originate from
a common ancestor with a better signature, as stated by the following theorem:

Theorem 3.1 (Identity tags).
Γ ⊢ JM1K : sig module Val : C1 type id = 𝜏 end

Γ ⊢ JM2K : sig module Val : C2 type id = 𝜏 end

}
=⇒ ∃C0,

{
Γ ⊢ C0 ≤ C1

Γ ⊢ C0 ≤ C2

Proof sketch. The proof uses bounded polymorphism to add a supertype bound to every
identity tag, namely the signature of the original module where the identity has been introduced.
We may show that typing in M

𝜔 implies typing in a refined system with bounds, which in turn
ensures that the type of a Val field is always a supertype of the bound of its identity tag. Details
can be found in [2, ??]. □

4 REBUILDING SOURCE SIGNATURES
In order to also enable the useM𝜔 just as an internal representation of the typechecker, we need to
output signatures in the OCaml syntax, whether typechecking succeeds (to print module interfaces)
or fails (to print error messages). Hence, we provide a reverse translation from M

𝜔 signatures back
into the source OCaml syntax, called anchoring. This translation is necessarily incomplete as some
inferred signatures cannot be expressed in the (less expressive) source syntax. However, using
M

𝜔 signatures, we can precisely describe three different sources of incompleteness, i.e., signature

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:15

avoidance, from which we extract three guidelines. Violation of one of these guidelines constitute
a specific kind of (anchoring) typechecking errors. We argue that these guidelines lead to more
understandable signature avoidance error messages.

Anchoring relies on identity tags, and therefore assumes that we have tagged source programs
as described in §3.6 prior to type checking. That is, anchoring translates tagged signatures back
into source (hence untagged) signatures.

4.1 The Expressiveness Gaps of the Source Syntax
4.1.1 Abstract Type Fields. A first key insight is the difference in the source syntax between
the declaration of a concrete type (type 𝑡 = u) and that of an abstract type (type 𝑡 = 𝐴.𝑡). An
abstract type declaration type 𝑡 = 𝐴.𝑡 in covariant position effectively creates a new abstract type
(introducing an existential quantifier inM𝜔) and adds a type field 𝑡 to the signature, while a concrete
type definition type 𝑡 = u in covariant position only introduces structural information—adding a
field 𝑡 to refer to the existing type u. By contrast, M𝜔 signatures separate the introduction of new
abstract types from the introduction of fields by using explicit quantifiers. In particular, they may
mention an abstract type without having a type declaration to refer to it.
Guideline 1. Source signatures can only express situations where the first occurrence of any

abstract type 𝛼 is in a type declaration type 𝑡 = 𝛼 , called the anchoring point for the type 𝛼 .

4.1.2 Module Identities. Source signatures can only express identity sharing via concrete signatures
(= 𝑃 ≤ S), thus only when all modules sharing the (same) identity of 𝑃 have a signature that is
a subtype of (the signature of) the module at 𝑃 . This imposes a subtyping order on the modules
sharing the same identity.
Guideline 2. Source signatures can only express identity sharing via concrete signatures. All

modules sharing the same identity must have signatures that are supertypes of the first occurrence.

4.1.3 Higher-order Abstract Types. In a source signature, an abstract type 𝑡 inside an applicative
functor 𝐹 is only reachable via a path with a functor application, as 𝐹 (𝑋).𝑡 . This type is therefore
restricted to a certain domain that corresponds to the parameter signature 𝑆 of 𝐹 . If we want to share
the type 𝐹 (𝑋).𝑡 with another functor 𝐹 ′, the domain S′ of 𝐹 ′ has to be a subtype of the domain S of 𝐹 .
By contrast, M𝜔 signatures can express sharing of a higher-order abstract type between functors
with arbitrary domains. As an example, let us consider the following M𝜔 signature, resulting from
a projection where the functor that introduced 𝜑 became unreachable while two uses of 𝜑 remain:

∃𝜑 .module 𝑀 : sig module 𝐹 : ∀𝛼.C → sig type 𝑡 = 𝜑 (𝛼) end
module 𝐹 ′ : ∀𝛼.C ′ → sig type 𝑡 = 𝜑 (𝛼) end end

The source syntax can express the sharing between 𝐹 and 𝐹 ′ only if the domain of the anchoring
point (inside 𝐹) covers the use inside 𝐹 ′, which requires that the domain S′ of 𝐹 ′ be a subtype of
the domain S of 𝐹 :

module𝑀 : sig module 𝐹 : (𝑌 : S) → sig𝐴 type 𝑡 = 𝐴.𝑡 end
module 𝐹 ′ : (𝑌 : S′) → sig𝐴 type 𝑡 = 𝐹 (𝑌).𝑡 end end

Guideline 3. A source signature S can express sharing of an abstract type between several applica-
tive functors only when the first of them (say, 𝐹) has an abstract type declaration type 𝑡 = 𝐴.𝑡 and
all following ones have a concrete type declaration of the form type 𝑡 = 𝐹 (𝑌).𝑡 (and, consequently,
a domain included in the domain of 𝐹).

Decidability. Guideline 3 for anchoring higher-order abstract types is sound, but too permissive.
Indeed, the problem of finding an arbitrary combination of applications of modules in scope to
obtain a given type field reduces to a higher-order unification problem, which is undecidable. Hence,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:16 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

we propose to restrict anchoring further by considering a type declaration type 𝑡 = 𝜑 (𝛼) to be a
suitable anchoring point only when it occurs inside an applicative functor that is parametric in
exactly 𝛼 . For instance, both anchoring points are suitable in the example above.

Disabling functor applications out of thin air. The decidability heuristic still allows functor ap-
plications out of thin air. That is, it may invent paths with new functor applications that never
appeared in the source, just for referring to abstract types that have lost their original path. This
would be quite surprising, if not misleading, as it suggests a computation that will never happen.

Following the example above, a type expression of the form 𝐹 (𝑋).𝑡 that is elaborated to 𝜑 (𝛼)
may have to be anchored in a context where 𝐹 became unreachable. Should we allow 𝜑 (𝛼) to
be anchored to a new application 𝐹 ′ (𝑋).𝑡 where 𝐹 ′ might be a totally different functor that just
happens to copy the right type field ? To strike the balance between expressiveness and usability,
we argue that this should be accepted only when 𝐹 ′ is an alias of 𝐹—and rejected otherwise.

To distinguish between both cases, we slightly instrument the typing rules17 by tracking functor
applications: when a type expression inside a declaration type 𝑡 = 𝜑 (𝛼) is obtained via a functor
application, we mark it as unsuitable for anchoring while aliasing a functor keeps its signature
unmarked, letting its type declarations available for anchoring.

4.2 The Anchoring Process
For pedagogical purposes, the anchoring algorithm is split in two steps: we first translate M

𝜔

signatures into tagged source signatures, before removing tags to obtain source signatures. Both
algorithms are presented as relations, although they are deterministic. We first explain some
instrumentation added to the typing judgment, including the marking of functors. Then, we
highlight the key rules of both steps (the full sets of rules can be found in [2, ??]).

Instrumenting the typing judgment. First, we extend the grammar of environments with barriers:
we write Γ · Γ′ for an environment that behaves as Γ, Γ′ but with a barrier between Γ and Γ′ and let
Δ range over environments without barriers. Hence, by writing Γ ·Δ, we mean that Δ is the part of
the environment right after the rightmost mark. This is used to indicate scopes (adding a barrier)
and prevent anchoring of types that have been introduced in a larger scope. Marks are introduced
in the context by typing rules that open scopes18. We also instrument Rule M-Typ-Mod-AppFct to
mark skolemization steps, writing 𝛽 ′⟨𝛼⟩ instead of 𝛽 ′ (𝛼) but to mean the same, so that anchoring
may pattern-match on list of lists of arguments rather than on a flat list.

Marking higher-order abstract types. Finally, we modify the typing rule for functor application
M-Typ-Mod-AppApp to mark higher-order abstract types. To do so, we first use a syntactic mark 𝜏†
on types, which can be seen as the introduction of a postfixed constant † that behaves as 𝜆𝛼.𝛼 . That
is, 𝜏† syntactically differ from 𝜏 but really means 𝜏 . We write C † for the signature C where all type
declarations type 𝑡 = 𝜏 of the structure and substructures have been rewritten into type 𝑡 = 𝜏†—but
the marking does not go inside the body of functors nor inside module types. Therefore, we only
change the resulting signature of the rule M-Typ-Mod-AppApp to a marked signature C ′† [𝛼 ↦→ 𝜏].
Marks are kept syntactically but are ignored by typing and subtyping rules.19

4.2.1 From M𝜔 Signatures to Tagged Source Signatures. The algorithm proceeds by visiting theM𝜔

signature in left-to-right depth-first order. Along the way, it removes all universal and existential
17This information cannot be reconstructed just from types.
18More precisely, (1) when entering a generative functor (M-Typ-Mod-GenFct andM-Typ-Sig-GenFct), (2) when
entering a module type and (3) when typing the argument of an applicative functor (M-Typ-Mod-AppApp andM-Typ-
Sig-AppFct)
19Alternatively, we could see marks as the identity type function 𝜆𝛼.𝛼 and eliminate them by 𝛽-equivalence.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:17

quantifiers from theM𝜔 signature and replaces occurrences of the corresponding abstract types by
either a self-reference (at its first occurrence becoming its anchoring point) or a path referring to
its anchoring point. An anchoring map 𝜃 from M

𝜔 types to type expressions with qualified types
is built and updated during the visit. The main judgment Γ ; 𝜃Γ ⊢ C ↩

𝑃−→ S : 𝜃 is the anchoring of
signatures: given a path 𝑃 , it translates theM𝜔 tagged signature C into a tagged source signature S
and produces a (possibly empty) local anchoring map 𝜃 of the abstract types anchored in S, prefixed
by 𝑃 . This judgment is also defined for declarations and types. The key rules are those that extend,
update, or use the anchoring map to reconstruct source type expressions. They are highlighted
below. We refer the reader to [2, ??] for the full set of rules.
A new anchoring point is introduced when reaching a type declaration of the form type 𝑡 = 𝛼

where 𝛼 is not anchored yet, i.e., not in the domain of 𝜃Γ . A simplified rule for first-order types is:
𝛼 ∉ dom(𝜃Γ) 𝛼 ∈ Δ args(Δ) = ∅

Γ ·Δ ; 𝜃Γ ⊢ type 𝑡 = 𝛼 ↩
𝐴−→ type 𝑡 = 𝐴.𝑡 : (𝛼 ↦→ 𝐴.𝑡)

We ensure that the type 𝛼 was introduced after the left-most barrier, by requiring 𝛼 ∈ Δ, and
check that the type declaration has not been made inside an applicative functor by requiring that
the environment Δ contains no universally quantified types.20 We then return the singleton map
(𝛼 ↦→ 𝐴.𝑡). The general version of the rule considers a declaration for a possibly higher-order
unmarked type expression 𝜑 :

𝜑 ∉ dom(𝜃Γ) 𝜑 ∈ Δ args(Δ) = 𝛼1 ; . . . 𝛼𝑛

Γ ·Δ ; 𝜃Γ ⊢ type 𝑡 = 𝜑 ⟨𝛼1⟩ . . . ⟨𝛼𝑛⟩ ↩
𝐴−→ type 𝑡 = 𝐴.𝑡 : (𝜑 ↦→ 𝐴.𝑡)

(A-Decl-Anchor)

In particular, this rule only applies when 𝜑 is both unmarked and applied to exactly the sequence
args(Δ) of abstract types in Δ (which necessarily follow 𝜑). Anchoring fails if one of the conditions
does not hold. The process could be made more (or less) permissible by tweaking this rule.

The anchoring map 𝜃 is updated in the two places where access paths to types must be changed
as we exit scopes: (1) in Rule A-Sig-StrPath, locally anchored abstract types are made available
through the path 𝑃 and (2) in Rule A-Sig-FctApp, paths to anchored types of 𝜃 are point-wise
abstracted over the functor parameter 𝑌 in the returned map 𝜆𝑌 .𝜃 .

A-Sig-StrPath

Γ ; 𝜃Γ ⊢ D ↩
𝐴−→ D : 𝜃 𝐴 ∉ Γ

Γ ; 𝜃Γ ⊢ sig D end ↩
𝑃−→ sig𝐴 D end : 𝜃 [𝐴 ↦→ 𝑃]

A-Sig-FctApp Γ ·𝛼 ; 𝜃Γ ⊢ C𝑎 ↩−→ S𝑎 : 𝜃𝑎
dom(𝜃) = 𝛼 Γ, 𝛼, 𝑌 : C𝑎 ; 𝜃Γ ⊎ 𝜃𝑎 ⊢ C ↩

𝐴.Val(𝑌)
−−−−−−−→ S : 𝜃

Γ ; 𝜃Γ ⊢ ∀𝛼.C𝑎 → C ↩
𝐴.Val−−−−→ (𝑌 : S𝑎) → S : 𝜆𝑌 .𝜃

By contrast, the anchoring map of the body of a generative functor is thrown away, as generative
functors cannot appear in paths, and a barrier is added in the premise, as the body cannot capture
types defined outside of the functor.

Finally, the anchoring map is used for anchoring an M
𝜔 -types 𝜏 into a source one:

𝜏 = 𝜑 ⟨𝜏1 . . . ⟩ . . . ⟨𝜏𝑛 . . . ⟩ 𝜃Γ (𝜑) = 𝜆𝑌𝑘 𝜆𝑌𝑛 . 𝑃 .𝑡

∀𝑖 ∈ J𝑘, 𝑛K . Γ ; 𝜃Γ ⊢ 𝜏𝑖 ↩→ 𝑃𝑖 .id u = 𝜃Γ (𝜑) (𝑃𝑘) . . . (𝑃𝑛) Γ ⊢ u : 𝜏
Γ ; 𝜃Γ ⊢ 𝜏 ↩→ u

(A-Type-Application)

This rule is designed to allow anchoring of a type 𝜏 that is abstract over a certain number of
parameters (here, 𝑛 − 𝑘 + 1) even if 𝜏 is actually applied to more parameters (here, 𝑛). This comes
from the fact that source signatures do not display the depth of enclosing applicative functors.
More details are given in [2, ??]. The resulting type u is the path (resulting from the mathematical
20We extract the list of (list of) universally quantified types from the environment using an operator args(Δ) , which returns
a list of lists of variables. Those type variables are easily identified as they immediately precede functor parameters in Δ.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:18 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

application) 𝜃Γ (𝜑) (𝑃𝑘) . . . (𝑃𝑛). However, u must be re-typechecked to ensure that paths occurring
in 𝜏 only contain valid functor applications21 and that it returns the same type as the input type 𝜏 .

4.2.2 Untagging. The first step of anchoring returns a tagged source signature S. It remains to
remove the tags, i.e., to return a signature S′ with the id and Val fields stripped of S, recursively, but
expressing the same sharing using concrete signatures. This is defined as a judgment Γ ⊢ S ↩→ S′.
The two interesting rules are for untagging structural signatures:

U-Sig-Fresh
Γ ⊢ S ↩→ S′

Γ ⊢ Tag[S] ↩→ S′

U-Sig-Con
Γ ⊢ S ↩→ S′ Γ ⊢ S′ : C ′ Γ ⊢ 𝑃 : C Γ ⊢ C ≤ C ′

Γ ⊢ sig𝐴 type id = 𝑃 .id moduleVal : S end ↩→ (= 𝑃 ≤ S′)

When the identity type declaration is an abstract type declaration Tag[S] (Rule U-Sig-Fresh), i.e.,
of the form sig𝐴 type id = 𝑃 .id moduleVal : S end, the identity of the module is fresh, hence
the anchored signature of the value is returned directly. Otherwise (Rule U-Sig-Con), the identity
type declaration is concrete, i.e., of the form 𝑃 .id; that is, the signature of a module that shares
its identity with the module 𝑃 . We retrieve the M𝜔 -signature C of the module 𝑃 and check that
it is a subtype of the M𝜔 -signature C ′ of the untagging S′ of S, so as to ensure that the concrete
signature (= 𝑃 ≤ S′) to be returned is valid. The other rules, omitted here, only remove the access
to Val-fields and inductively call untagging.

4.3 Properties of Anchoring
Anchoring and typechecking of signatures are conceptually inverse of each other, with a few
caveats. First, typechecking is not injective: several source signatures can express the same type
sharing information. We quotient source signatures by the equivalence induced by M

𝜔 typing:

Γ ⊢ S ≈ S′ ≜ Γ ⊢ S : 𝜆𝛼.C ∧ Γ ⊢ S′ : 𝜆𝛼.C

Second, M𝜔 signatures can express the fact that they are inside an applicative functor, as their
abstract types are applied to universally quantified type variables. This does not appear in source
signatures, requiring a correspondence up to skolemization.

Theorem 4.1 (Anchoring of typed signatures). Typed source signatures are anchorable22:

Γ ⊢ S : 𝜆𝛼.C ∧ Γ ↩→ 𝜃Γ =⇒ Γ ·𝛼 ; 𝜃Γ ⊢ C ↩−→ S′ : (𝛼 ↦→ _) ∧ Γ ⊢ S ≈ S′

Theorem 4.2 (Anchoring correctness). Typing back the anchoring gives the original signature,
up to re-skolemization of current universally quantified types.

Γ ·Δ ; 𝜃Γ ⊢ C ↩−→ S : 𝜃 ∧ dom(𝜃) = 𝛼 ∧ Γ ↩→ 𝜃Γ =⇒ Γ ⊢ S : 𝜆𝛽.C ′ ∧ C ′ [𝛽 ↦→ 𝛼 (args(Δ))] = C

Both results are proved by induction. Finally, untagging is inverse of tagging, as expected. See [2,
??] for more details.

Theorem 4.3 (Untagging). Γ ⊢ S ↩→ S′ =⇒ Γ ⊢ S ≈ JS′K

21Indeed, it can happen that a module X is lost, while a transparent ascription X’ is kept. The types resulting from a functor
application F(X).t may not be anchorable as F(X’).t if X’ lacks certain fields.
22We use the judgment Γ ↩→ 𝜃Γ as a wellformedness condition to relate Γ and 𝜃Γ : it is defined as a fold of anchoring over Γ.
See the [2, ??] for more details.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:19

4.4 Discussion
M

𝜔 signatures are more expressive than source signature, but they may also keep too much

information, revealing the history of the module operations. This may lead to an inferred signature
that is not anchorable, while intuitively providing the same type-sharing information as a simpler,
anchorable signature. This typically happens when a type variable has become “unreachable”, only
appearing in sub-expressions. We have identified two such patterns.

Loss of a type argument. The signature23 ∃𝜑, 𝛼 . C [𝜑, (𝜑 𝛼)], could be obtained by exporting a
functor (providing 𝜑) along with a type obtained by applying this functor to an argument that has
latter been hidden. The application 𝜑 𝛼 keeps trace that the type was obtained by applying 𝜑 to 𝛼 .
However, since the argument 𝛼 is not accessible, this information became useless. By subtyping,
we could safely give the module the simpler signature ∃𝜑, 𝛽. C [𝜑, 𝛽] cutting the (original) link to
the functor. Anchoring the left-hand side will fail since 𝛼 cannot be anchored, while anchoring the
right-hand might succeed. We do not currently allow this simplification during anchoring, since
both signatures are not isomorphic in F

𝜔 .

Loss of a type operator. Similarly, the application of a functor may be exported while the functor
itself became unreachable. For instance, with two applications of the same functor, we may have a
signature of the form ∃𝜑, 𝛼, 𝛽. C [𝛼, 𝛽, (𝜑 𝛼), (𝜑 𝛽)], which is a subtype of, but not isomorphic to
∃𝛼, 𝛽, 𝛼 ′, 𝛽 ′ . C [𝛼, 𝛽, 𝛼 ′, 𝛽 ′].24

5 THE FOUNDATIONS: F𝜔 ELABORATION
TheM𝜔 system is designed to offer a standard, standalone, and expressive approach to the typing of
OCamlmodules, while hiding the complexity and artifacts of its encoding in F𝜔 . Yet, the elaboration
of module expressions and signatures ofM𝜔 in F

𝜔 , which we now present, served as a basis for the
design ofM𝜔 and still shines a new light on its internal mechanisms. It is also used as a proof of type
soundness. This elaboration is largely based on the work of Rossberg et al. [23], but differs in a key
manner for the treatment of abstract types defined inside applicative functors. A main contribution
is the introduction of transparent existential types, an intermediate between the standard existential
types, called opaque existential types, and the absence of abstraction. They bring the treatment of
applicative and generative functors closer, and significantly simplify the elaboration.

5.1 F𝜔 with Kind Polymorphism
We use a variant of explicitly typed F

𝜔 with primitive records (including record concatenation),
existential types, and predicative kind polymorphism. While primitive records and existential
types are standard, kind polymorphism is less common. Predicativity of kind polymorphism is
not needed for type soundness. However, it ensures coherence (of types used as a logic), that is, it
prevents typing terms with the empty type ∀(𝛼 :★).𝛼 , whose evaluation would not terminate. For
that purpose, kinds are split into two categories: large and small. Polymorphic kinds, which are
large, can only be instantiated by small kinds, which in turn do not contain polymorphic kinds.
In our setting, kind polymorphism is not essential, as it is only used to internalize the encoding
of transparent existential types as F𝜔 -terms. Alternatively, we could have assumed a family of
transparent existential type operators indexed by small kinds, so as to never use large kinds, moving
part of the encoding at the meta-level.

23Here, we use the notation C [𝛼, . . .] to indicate that 𝛼 appears freely in C and the notation C [(𝜑 𝛼), . . .] to indicate that
𝛼 appears only in the subexpression (𝜑 𝛼) . In particular, C [𝜑, (𝜑 𝛼)] means that 𝛼 only appears as an argument of 𝜑 in C .
24Actually, if the functor were called only once, the signature would be of the form ∃𝜑, 𝛼. C [𝛼, (𝜑 𝛼)], which in this
simpler case is actually isomorphic to ∃𝛼, 𝛼 ′ . C [𝛼, 𝛼 ′].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:20 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

𝜍 := ★ | 𝜘 | 𝜍 � 𝜍 (small kinds)
𝜅 := 𝜍 | ∀𝜘.𝜅 | 𝜅 � 𝜅 (large kinds)

𝜏 := 𝛼 | 𝜏 → 𝜏 | {ℓ : 𝜏} | ∀(𝛼 :𝜅).𝜏 | ∃▼(𝛼 :𝜅).𝜏 | 𝜆(𝛼 :𝜅).𝜏 | 𝜏 𝜏 | ∀𝜘.𝜏 | Λ𝜘.𝜏 | 𝜏 𝜍 | () (types)

𝑒 := 𝑥 | 𝜆(𝑥 : 𝜏).𝑒 | 𝑒 𝑒 | Λ(𝛼 :𝜅) .𝑒 | 𝑒 𝜏 | Λ𝜘.𝑒 | 𝑒 𝜍 | 𝑒 @ 𝑒 | {ℓ = 𝑒} | 𝑒.ℓ
| pack ⟨𝜏, 𝑒⟩ as ∃▼(𝛼 :𝜅).𝜏 | unpack ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒 | () (terms)

Γ := · | Γ, 𝜘 | Γ, 𝛼 :𝜅 | Γ, 𝑥 : 𝜏 (environments)
Fig. 9. Syntax of F

𝜔

The syntax of F𝜔 is given in Figure 9. Typing rules are standard and available in [2, ??]. Type
equivalence, defined by 𝛽𝜂-conversion and reordering of record fields, is also standard and omitted.
We use letters 𝜏 and 𝑒 to range over types and expressions to distinguish them from types u and
expressions e of the core language, even though these should actually be seen as a subset of 𝜏
and 𝑒 . We consider F𝜔 to be explicitly typed and explicitly kinded. As a convention, we use a
wildcard “_” when a type annotation is unambiguously determined by an immediate subexpression
and may be omitted. This is just a syntactic convenience to avoid redundant type information and
improve readability, but the underlying terms should always be understood as explicitly-typed F

𝜔

terms. We write 𝜘 for kind variables, 𝛼 and 𝛽 for type variables of any kind, and 𝜑 and𝜓 for type
variables known to be of higher-order kinds. Application of expressions 𝑒 𝜍 and types 𝜏 𝜍 to kinds
are restricted to small kinds 𝜍 . In expressions and type expressions, we actually write kinds 𝜅 (and
kind abstraction Λ𝜘.) in pale color so that they are nonintrusive, and we often leave them implicit.
We actually always do so in the elaboration typing rules below for conciseness.

For convenience, we use n-ary notations for homogeneous sequences of type-binders. We
introduce let-binding let 𝑥 = 𝑒1 in 𝑒2 as syntactic sugar for (𝜆(𝑥 : _).𝑒2) 𝑒1; we define n-ary pack
and unpack operators defined as follows:

pack ⟨𝜏𝜏, 𝑒⟩ as ∃▼𝛼𝛼.𝜎 ≜ pack⟨𝜏, pack ⟨𝜏, 𝑒⟩ as ∃▼𝛼.𝜎 [𝛼 ↦→ 𝜏]⟩ as ∃▼𝛼𝛼.𝜎
unpack ⟨𝛼𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in unpack ⟨𝛼, 𝑥⟩ = 𝑥 in 𝑒2
pack ⟨∅, 𝑒⟩ as 𝜎 ≜ 𝑒 unpack ⟨∅, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ let 𝑥 = 𝑒 in 𝑒2

5.2 Encoding of Signatures
M

𝜔 signatures are actually F
𝜔 types with some syntactic sugar. In F

𝜔 , we see 𝑌 and 𝐴𝐼 as term
variables, similar to 𝑥 ’s. We assume a collection ℓ𝐼 of record labels indexed by identifiers 𝐼 of the
source language. Structural signatures sig D end are just syntactic sugar for record types {D }. A
small trick is needed to represent type fields, which have no computational content, but cannot be
erased during elaboration as they carry additional typing constraints. We reuse the solution of F-ing,
encoding them as identity functions with type annotations. For this, we introduce the following
syntactic sugar for the term representing a type field (on the left). We overload the notation to also
mean its type (on the right).

⟨⟨𝜏 :𝜅⟩⟩ ≜ Λ(𝜑 :𝜅 → ★). 𝜆(𝑥 : 𝜑 𝜏).𝑥 (Term) ⟨⟨𝜏 :𝜅⟩⟩ ≜ ∀(𝜑 :𝜅 → ★) .𝜑 𝜏 → 𝜑 𝜏 (Type)

The type 𝜏 is used as argument of a higher-kinded type operator 𝜑 to uniformly handle the encoding
of types of any kind. The key (and only useful) property is that two types (of the same kind) are
equal if and only if their encodings are equal. Finally, declarations are syntactic sugar for record
entries (distinguished by the category of the identifier):

val 𝑥 : 𝜏 ≜ ℓ𝑥 : 𝜏
type 𝑡 = 𝜏 ≜ ℓ𝑡 : ⟨⟨𝜏⟩⟩

module 𝑋 : C ≜ ℓ𝑋 : C
module type 𝑇 = 𝜆𝛼.C ≜ ℓ𝑇 : ⟨⟨𝜆𝛼.C ⟩⟩

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:21

5.3 Sharing Existential Types by Repacking
The encoding of module expressions as F𝜔 terms is slightly more involved than for signatures.
Although structures and functors are simply encoded as records and functions, a difficulty arises
from the need to lift existential types to extend their scope, as explained in §3.3.
Let us first consider the easier generative case. The only construct for handling a term with

an abstract type is unpack, which allows using the term in a subexpression, hence with a limited
scope, but not to make an abstract type accessible to the rest of the program. Yet, abstract type
declarations inside modules have an open scope and are visible in the rest of the program. At a
technical level, the difficulty comes from the representation of structures. To model them, one needs
ordered records (also known as telescopes), where each component can introduce new abstract
types accessible to the rest of the record, while standard F

𝜔 only provides non-dependent records.
This observation was at the core of the design of open existential types [18] and of recursive type

generativity [6]. Here, in order to stay in plain F
𝜔 , we reuse and adapt the trick of F-ing: structures

are built field by field with a special repacking pattern: abstract types are unpacked, shared, but
abstractly, with the rest of the structure, and then repacked. This allows the terms to mimic the
existential lifting done in the types.

To capture this lifting of existentials out of records, we first introduce a combined syntactic form
repack

▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, which allows the abstract types of 𝑒1 to appear in the type of 𝑒2
25:

repack
▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in pack ⟨𝛼, 𝑒2⟩ as ∃▼𝛼._

Then, we use it to define a new construct to concatenate two records 𝑒1 and 𝑒2 with disjoint domains,
but where 𝑒2 might access the first record, via the bound name 𝑥1, and reuse its abstract types, via
the bound variables 𝛼 :

lift
▼ ⟨𝛼, 𝑥1 = 𝑒1 @ 𝑒2⟩ ≜ repack

▼ ⟨𝛼, 𝑥1⟩ = 𝑒1 in repack

〈
𝛽, 𝑥2

〉
= 𝑒2 in 𝑥1 @ 𝑥2

It is better understood by the following derived typing rule and its use in the example of [2, ??].

Γ ⊢ 𝑒1 : ∃▼𝛼. {ℓ1 : 𝜏1} Γ, 𝛼, 𝑥1 : {ℓ1 : 𝜏1} ⊢ 𝑒2 : ∃▼𝛽. {ℓ2 : 𝜏2} ℓ1 # ℓ2
Γ ⊢ lift⟨𝛼, 𝑥1 = 𝑒1 @ 𝑒2⟩ : ∃▼𝛼, 𝛽. {ℓ1 : 𝜏1.ℓ2 : 𝜏2}

5.4 Transparent Existential Types and Their Lifting Through Function Types
The repacking pattern allows lifting existential types outside of record types. Unfortunately, this
is insufficient for the applicative case, which uses skolemization to further lift abstract types out
of the functor body to the front of the functor. This lifting of existential types though universal
quantifiers by skolemization and through arrow types, as done in M

𝜔 , is not definable in F
𝜔 .

One solution is to avoid skolemization by a-priori abstraction over all possible type and term
variables, i.e., the whole typing context. Doing so, existential types are always introduced at the
front and need not be skolemized. This is the solution followed by the authors of F-ing and by
Shan [26]. While this suffices to prove soundness, the encoding is impractical for manual use of the
pattern—as it requires frequently abstracting over the whole environment—and therefore does not
provide a good intuition of what modules really are. The encoding could be slightly improved by
abstracting over fewer variables, without really solving the problem of a-priori abstraction.
We instead retain skolemization, following the intuition of the M𝜔 system, but we tweak the

definition of existential types to make their lifting though universal types definable. Namely, we
introduce transparent existential types, written ∃▽𝜏 (𝛼 :𝜅).𝜎 to described types that behave as usual
existentials ∃▼(𝛼 :𝜅).𝜎 but remembering the witness type 𝜏 for the abstract type 𝛼 .

25We leave the type implicit since the type of repacking is fully determined by the combination of 𝛼 and the type of 𝑒2

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:22 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

We create a transparent existential type with the expression pack 𝑒 as ∃▽𝜏 (𝛼 :𝜅).𝜎 , which
behaves much as pack ⟨𝜏, 𝑒⟩ as ∃▼(𝛼 :𝜅).𝜎 , except that the witness type 𝜏 remains visible in the
result type. A transparent existential type is thus weaker than a usual abstract type, as we still see
the witness type. It is still abstract, as 𝛼 cannot be turned back into its witness type 𝜏 and has to
be treated abstractly. Two transparent existential types with different witnesses are incompatible.
This could be seen as a weakness of transparent existentials, but it is actually a key to their lifting
through arrow types.
Transparent existential types do not replace usual existential types, which we here call opaque

existential types, but come in addition to them. Indeed, an expression of a transparent existential
type can be further abstracted to become opaque, using the expression seal 𝑒 , which behaves as
the identity but turns the expression 𝑒 of type ∃▽𝜏 (𝛼 :𝜅).𝜎 into one of type ∃▼(𝛼 :𝜅).𝜎 .
Transparent existential types may also be used abstractly, with the expression repack

▽ ⟨𝛼, 𝑥⟩ =
𝑒1 in 𝑒2, which is the analog of the expression repack

▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 but when 𝑒1 is a transparent
existential type ∃▽𝜏 (𝛼 :𝜅).𝜎1. In both cases, 𝑒2 is typed in a context extended with the abstract types
𝛼 and a variable 𝑥 of type 𝜎1. Crucially, 𝑒2 cannot see the witnesses 𝜏 . However, the abstract type
variables 𝛼 may still appear in the type 𝜎2 of the expression 𝑒2, and therefore it is made transparent
again in the result type of repack▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, which is ∃▽𝜏 (𝛼 :𝜅).𝜎2. We do not need a
primitive transparent version unpack

▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, since it can be defined as syntactic sugar
for unpack ⟨𝛼, 𝑥⟩ = seal 𝑒1 in 𝑒2.
So far, one may wonder what is the advantage of transparent existentials by comparison with

opaque existentials. We provide two key additional constructs for lifting transparent existentials
across arrow types and universal types—the only reason to have introduced them in the first place.
The lifting across an arrow type, written lift

→𝑒 , turns an expression of type 𝜎1 → ∃▽𝜏 (𝛼 :𝜅).𝜎2
into one of type ∃▽𝜏 (𝛼 :𝜅). (𝜎1 → 𝜎2) as long as 𝛼 is fresh for 𝜎1. Since we can observe the
witness 𝜏 , we can ensure that the choice of the witness does not depend on the value (of type
𝜎1), allowing us to lift it outside of the function. While this operation seems easy, it crucially
depends on existential types begin transparent—this transformation would be unsound with opaque
existentials. For instance, let us consider the following expression: 𝜆𝑥 . if 𝑥 then pack ⟨int, 42⟩ as
∃▼𝛼.𝛼 else pack ⟨float, 0.5⟩ as ∃▼𝛼.𝛼 It has type bool → ∃▼𝛼.𝛼 , but it would be unsound to
consider it at the type ∃▼𝛼.bool → 𝛼 .

Similarly, lifting across a universal type variable 𝛽 of kind 𝜅′, written lift
∀𝑒 , turns an expression

of type Λ(𝛽 :𝜅′) .∃▽𝜏 (𝛼 :𝜅).𝜎 into one of type ∃▽𝜆 (𝛽 :𝜅′) .𝜏 (𝛼 ′ :𝜅′ → 𝜅).∀(𝛽 :𝜅′).𝜎 [𝛼 ↦→ 𝛼 ′ 𝛽], pro-
vided 𝛽 is fresh for 𝜏 , using skolemization of both the existential variable 𝛼 and its witness type 𝜏 .
To summarize, we have extended the syntax of F𝜔 as follows:

𝜏 ::= . . . | ∃▽𝜏 (𝛼 :𝜅).𝜎
𝑒 ::= . . . | pack 𝑒 as ∃▽𝜏 (𝛼 :𝜅).𝜎 | seal 𝑒 | repack▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 | lift→𝑒 | lift∀𝑒

Their typing rules are given in [2, ??]. These constructs have no additional computational content,
namely repack▽ ⟨𝛼, 𝑥⟩ = 𝜏 in 𝜎 behaves as a let-binding, while the other constructs behave as 𝑒 . We
add syntactic sugar for n-ary versions of transparent packing and repacking, as we did for opaque
existentials. We write seal𝑛 for 𝑛 applications of seal.
We can define a lifting operation lift

▽⟨𝛼, 𝑥1 = 𝑒1 @ 𝑒2⟩ for dependent record concatenation as
the counterpart of the opaque version, by replacing opaque repacking by transparent repacking.
Finally, we also define a new operation lift

∗𝑒 that uses a combination of the primitive lift→ and
lift

∀ to turn an expression 𝑒 of type ∀𝛼.𝜎1 → ∃▽𝜏 (𝛽).𝜎2 into one of type ∃▽𝜆𝛼.𝜏 (𝛽 ′).∀𝛼.𝜎1 →
𝜎2

[
𝛽 ↦→ 𝛽 ′ 𝛼

]
, which is the key transformation for lifting existentials out of applicative functor

bodies. Its implementation is obvious and given in [2, ??].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:23

∃▼(E :∀𝜘. 𝜘 � (𝜘 �★) �★) .

𝜏E ≜

Pack : ∀𝜘.∀(𝛼 : 𝜘) .∀(𝜑 : 𝜘 �★).𝜑 𝛼 → E 𝜘 𝛼 𝜑

Seal : ∀𝜘.∀(𝛼 : 𝜘) .∀(𝜑 : 𝜘 �★).E 𝜘 𝛼 𝜑 → ∃▼(𝛼 : 𝜘). 𝜑 𝛼

Repack : ∀𝜘.∀(𝛼 : 𝜘) .∀(𝜑 : 𝜘 �★) .E 𝜘 𝛼 𝜑 → ∀(𝜓 : 𝜘 �★) . (∀(𝛼 : 𝜘). 𝜑 𝛼 → 𝜓 𝛼) → E 𝜘 𝛼 𝜓

Lift
→ : ∀𝜘.∀(𝛼 : 𝜘) .∀(𝜑 : 𝜘 �★) .∀(𝛽 :★) . (𝛽 → E 𝜘 𝛼 𝜑) → E 𝜘 𝛼 (𝜆(𝛼 : 𝜘) . 𝛽 → 𝜑 𝛼)

Lift
∀ : ∀𝜔.∀𝜘.∀(𝛼 :𝜔 � 𝜘) .∀(𝜑 :𝜔 � 𝜘 �★).

(∀(𝛽 :𝜔).E 𝜘 (𝛼 𝛽) (𝜑 𝛽))E (𝜔 � 𝜘) 𝛼 (𝜆(𝛼 :𝜔 � 𝜘) .∀(𝛽 :𝜔). 𝜑 𝛽 (𝛼 𝛽))

𝑒0 ≜

Pack = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).𝑥
Seal = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).pack ⟨𝛼, 𝑥⟩ as ∃▼(𝛼 : 𝜘). 𝜑 𝛼

Repack = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).Λ(𝜓 : 𝜘 �★) . 𝜆(𝑓 : ∀(𝛼 : 𝜘). 𝜑 𝛼 → 𝜓 𝛼). (𝑓 𝛼 𝑥)
Lift

→ = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★).Λ(𝛽 :★) . 𝜆(𝑓 : (𝛽 → 𝜑 𝛼)) . 𝑓
Lift

∀ = Λ𝜔.Λ𝜘.Λ(𝛼 :𝜔 � 𝜘).Λ(𝜑 :𝜔 � 𝜘 �★). 𝜆(𝑥 : (∀(𝛽 :𝜔) .𝜑 𝛽 (𝛼 𝛽))) .𝑥

𝜏0 ≜ Λ𝜘.𝜆(𝛼 : 𝜘) . 𝜆(𝜑 : 𝜘 �★) .𝜑 𝛼 𝑒E ≜ pack ⟨𝜏0, 𝑒0⟩ as 𝜏E

Fig. 10. Implementation of transparent existentials as a library in F
𝜔
with (predicative) kind polymorphism.

Notably, the type operator E has a polymorphic kind ∀𝜘.𝜘 � (𝜘 �★) �★

5.5 Implementation of Transparent Existential Types in F𝜔

Interestingly, transparent existential types are completely definable in plain F
𝜔 (with kind poly-

morphism). A concrete implementation is given on Figure 10. The implementation 𝑒0 is not itself
of much interest: most expressions are 𝜂-expansions of the identity. However, using regular F𝜔
existentials, 𝑒0 can be abstracted into 𝑒E = pack ⟨𝜏0, 𝑒0⟩ as 𝜏E where 𝜏0 is the interface type that
hides the implementation of the type E . Using this definition, we may see a program 𝑒 using
transparent existential types as a program unpack ⟨E , 𝑥E ⟩ = 𝑒E in 𝑒 in plain F𝜔 , with the following
additional syntactic sugar26:

∃▽𝜏 (𝛽 :𝜅) .𝜎 ≜ E𝜅 𝜏 (𝜆(𝛽 :𝜅) .𝜎)
pack 𝑒 as ∃▽𝜏 (𝛼) .𝜎 ≜ 𝑥E .Pack𝜏 (𝜆(𝛼 : _).𝜎) 𝑒

repack
▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ 𝑥E .Repack _ _ _ (Λ(𝛼 : _) . 𝜆(𝑥 : 𝛼) .𝑒2)

seal 𝑒 ≜ 𝑥E .Seal _ _ 𝑒
lift

→𝑒 ≜ 𝑥E .Lift
→ _ _ 𝑒

lift
∀ 𝑒 ≜ 𝑥E .Lift

∀ _ _ 𝑒

We also write repack♦ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 and lift
♦⟨𝛼, 𝑥1 = 𝑒1 @ 𝑒2⟩ where ♦ stands for either ▽ or ▼.

5.6 Elaboration Judgments
As forM𝜔 , the elaboration relies on a subtyping judgment and a typing judgment for both signatures
andmodules. However, asM𝜔 signatures are already F𝜔 types, we can reuse theM𝜔 typing judgment
(although we should now reread it with implicit kinds). Specifically, neither M𝜔 signatures nor
its typing contexts mention transparent existential types. This is a key observation: transparent
existential types may only appear in types of module expressions. This means that values of such
types are never bound to a variable (during elaboration), which would otherwise force them to
appear in the typing context. Instead, transparent existential types are always lifted to the top of
the expression (using the three lift operations).

There are two main elaboration judgments, for subtyping and typing.

Subtyping. The judgment Γ ⊢ C ≺ C ′⇝ 𝑓 extends M𝜔 subtyping to return an explicit coercion
function 𝑓 . The judgment is also defined for declarations Γ ⊢ D ≺ D ′ ⇝ 𝑓 . Interestingly, as
signatures do not contain transparent existential types, subtyping between signatures is (a subcase
of) standard subtyping in F

𝜔 . As they are similar to M𝜔 subtyping, we omit the rules and refer the

26As above _ stands for kinds or types that are left implicit as they can be straightforwardly inferred from other arguments.
We also extend transparent existentials with sequences of abstractions as we did for opaque existentials.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:24 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

reader to [2, ??]. The judgments satisfy the following properties regarding F
𝜔 typing:

Γ ⊢ C ≺ C ′⇝ 𝑓 =⇒ Γ ⊢ 𝑓 : C → C ′ Γ ⊢ D ≺ D ′⇝ 𝑓 =⇒ Γ ⊢ 𝑓 : {D } →
{
D ′}

Typing. To factor notations for the typing judgment, we introduce the meta-variable 𝜗 that
stands for either an opaque existential ▼ or a transparent one ▽𝜏 together with1 its witness type 𝜏 .
We write mode(𝜗) (resp. mode(𝜗)) for the mode of 𝜗 (resp. the homogeneous sequence 𝜗), which
is either ▽ or ▼. When a mode is expected without a witness type, we may leave the projection
implicit and just write 𝜗 instead of mode(𝜗). The convention is the same as for theM𝜔 system.
The judgment Γ ⊢♦ M : ∃𝜗𝛼.C ⇝ 𝑒 extendsM𝜔 typing with the elaborated module term 𝑒 . The

mode ♦must coincide with 𝜗 , and may be left implicit, as we did for the correspondingM𝜔 judgment.
Hence, we usually just write Γ ⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 . A similar, helper judgment Γ ⊢♦

𝐴
B : ∃𝜗𝛼.D ⇝ 𝑒

is also defined for bindings. The properties of both judgments are detailed below. When reading
anM

𝜔 type environment Γ in F
𝜔 , we must read 𝐴.(val 𝑥 : 𝜏) and 𝐴.(module 𝑋 : C) as 𝐴𝑥 : 𝜏 and

𝐴𝑋 : C , and drop 𝐴.D when D binds a type or a signature.

Theorem 5.1 (Soundness). When typing a module, the elaborated module term is well typed

regarding F𝜔 typing, and the source module term is well typed regarding M𝜔
typing.

Γ ⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 =⇒ Γ ⊢ 𝑒 : ∃𝜗𝛼.C ∧ Γ ⊢ M : ∃𝜗𝛼.C
Γ ⊢ B : ∃𝜗𝛼.D ⇝ 𝑒 =⇒ Γ ⊢ 𝑒 : ∃𝜗𝛼. {D } ∧ Γ ⊢ M : ∃𝜗𝛼.D

(1)

Theorem 5.2 (Completeness). Well-typed M𝜔
terms and bindings can always be elaborated:

Γ ⊢ M : ∃♦𝛼.C =⇒ ∃𝑒, 𝜗, Γ ⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 ∧ mode(𝜗) = ♦
Γ ⊢ B : ∃♦𝛼.D =⇒ ∃𝑒, 𝜗, Γ ⊢ B : ∃𝜗𝛼.D ⇝ 𝑒 ∧ mode(𝜗) = ♦

(2)

Proof Sketch. Soundness is by induction on the typing derivation. Completeness can be easily
established as the elaboration rules mimic the M

𝜔 typing rules with no additional constraints
on the premises, except for transparent existentials. However, these only appear on the types of
elaborated modules as a positive information, which is never restrictive. In particular, a transparent
existential type is always used abstractly and pushed in the context after dropping the witness type
exactly as an opaque existential type, i.e., as in M

𝜔 . □

5.7 Elaborated Typing Rules
We only present an excerpt of the most significant elaboration rules for expressions. The full set of
elaboration rules is given in [2, ??]. The key rule for structures is the sequence rule that combines
bindings. It may be concisely written as follows for generative and applicative modes:

E-Typ-Bind-SeqGen
Γ ⊢𝐴 B : ∃▼𝛼1 .D ⇝ 𝑒1

Γ, 𝛼1, 𝐴.D ⊢𝐴 B : ∃▼𝛼2 .D ⇝ 𝑒2

Γ ⊢𝐴 B, B : ∃▼𝛼1𝛼2 . (D ,D)⇝
lift
▼ ⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

E-Typ-Bind-SeqApp
Γ ⊢𝐴 B : ∃▽𝜏1 (𝛼1) .D ⇝ 𝑒1

Γ, 𝛼1, 𝐴.D ⊢𝐴 B : ∃▽𝜏2 (𝛼2).D ⇝ 𝑒2

Γ ⊢𝐴 B; B : ∃▽𝜏1𝜏2 (𝛼1𝛼2) . (D ,D)⇝
lift
▽⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

The single field of 𝑒1 is concatenated with the fields of 𝑒2 after lifting out their existential bindings.
In both cases, the field of 𝑒1 is made visible in 𝑒2, as well as the existentials in front of 𝑒1—but
abstractly. Interestingly, the generative and applicative versions can be factored as follows:

Γ ⊢𝐴 B : ∃𝜗1𝛼1 .D ⇝ 𝑒1 Γ, 𝛼1, 𝐴.D ⊢𝐴 B : ∃𝜗2𝛼2 .D ⇝ 𝑒2 ♦ = mode(𝜗1𝜗2)

Γ ⊢𝐴 B, B : ∃𝜗1𝜗2𝛼1𝛼2 . (D ,D)⇝ lift
♦⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

(E-Typ-Bind-Seq)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:25

We also have a unified rule for typing structures in both modes:

Γ ⊢𝐴 B : ∃𝜗𝛼.D ⇝ 𝑒 𝐴 ∉ Γ

Γ ⊢ struct𝐴 B end : ∃𝜗𝛼. sig D end⇝ 𝑒
(E-Typ-Mod-Struct)

By default, elaboration is done in applicative mode, hence inferring transparent existentials, but
it can be turned into generative mode when required, using Rule E-Typ-Mod-Seal. Since signature
ascription is defined on paths, it is applicative (rule E-Typ-Sig-App). That is, signature ascription
(𝑃 : S) may introduce new abstract types 𝛼 as prescribed by the (elaboration 𝜆𝛼.C of the) signature S,
but these are transparent existentials in the type of (𝑃 : S).

E-Typ-Mod-Seal
Γ ⊢ M : ∃▽𝜏 (𝛼).C ⇝ 𝑒

Γ ⊢ M : ∃▼𝛼.C ⇝ seal
|𝛼 | 𝑒

E-Typ-Sig-App
Γ ⊢ S : 𝜆𝛼.C Γ ⊢ 𝑃 : C ′⇝ 𝑒 Γ ⊢ C ′ ≺ C [𝛼 ↦→ 𝜏]⇝ 𝑓

Γ ⊢ (𝑃 : S) : ∃▽𝜏 (𝛼).C ⇝ pack 𝑓 𝑒 as ∃▽𝜏 (𝛼).C

Elaboration of functors. At first glance, the elaboration of functors seems to differ more signifi-
cantly in the applicative and generative cases:

E-Typ-Mod-AppFct
Γ ⊢ S : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎 ⊢ M : ∃▽𝜏 (𝛽).C ⇝ 𝑒

Γ ⊢𝐴 (𝑌 : S) → M : ∃▽𝜆𝛼.𝜏 (𝛽′) .∀𝛼.C𝑎 → C
[
𝛽 ↦→ 𝛽′ (𝛼)

]
⇝ lift

∗Λ𝛼.𝜆(𝑌 : C𝑎).𝑒

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼𝛼.C ⇝ 𝑒

Γ ⊢ () → M : () → ∃▼𝛼.C ⇝ 𝜆(_ : ()).𝑒

The body of an applicative functor is elaborated to transparent existentials which are lifted through
𝜆’s, while in the generative case, the existentials are opaque and cannot be lifted. However, this
difference is largely artificial as a result of using a special argument () to enforce generativity. Oth-
erwise, the main difference lies in enforcing the body of the functor to be typed in generative mode,
hence with an opaque existential type. Since lift∗ is neutral on terms that do not have transparent
existential types, the elaboration of the generative case could also be written lift

∗𝜆(_ : ()).𝑒 , so
that the two cases only differ by the modes of elaboration of their bodies.

6 DISCUSSION
6.1 Related Works
The literature regarding ML modules is rich and varied. The link between abstract types in ML
module systems and existential types in F

𝜔 was initially explored by Mitchell and Plotkin [17].
This vision was opposed by MacQueen [15] who considered existential types to be too weak
and proposed using a restriction of dependent types (strong sums) to describe module systems.
Further work on phase separation by Harper et al. [11] supported the idea that dependent types
may actually be too powerful for module systems. SML modules were described by Harper et al.
[11]. Two approaches for the formalization and improvement of abstract types in SML were later
independently yet simultaneously described by Leroy [12] using manifest types and Harper and
Lillibridge [10] via an adapted F𝜔 with translucent sums. The genesis of the OCaml module system
was specified by Leroy [12, 14] with, later, an extension to applicative functors [13].

The key idea for a simplified link between modules and F𝜔 , developed by Russo [25], was to use
existential types to interpret signatures. Pursing a related objective, Dreyer [6] proposed to model
generativity using stamps instead of existential types, while Montagu and Rémy [19] proposed a
similar, but logically-based approach, through the concept of open existential types.

Pushing Russo’s idea further, a milestone was achieved by Rossberg et al. [23] with the elabora-
tion of an expressive module system into F

𝜔 , dubbed the F-ing approach. F-ing gives a syntactic
translation from the syntax directly into F

𝜔 , thus providing semantics by elaboration. F-ing is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:26 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

safe by construction27, inheriting the property from F
𝜔 , but requires the programmer to think in

terms of the elaboration, which is quite involved in some cases, and only sees the elaborated types
instead of the usual signatures. Our anchoring algorithm removes the need for the user to know the
underlying F𝜔 encoding, except for a deep understanding of the tricky cases of signature avoidance.

Moving one step further, Rossberg [21] achieved a unification of the core and module languages
(thus, unstratified), called 1ML, using F

𝜔 as the underlying programming language and seeing
module constructs as syntactic sugar. This is appealing, even though the prototype implementation
only covered the generative case: the applicative case might have been unusable in practice, due to
a priori extrusion of quantifiers over the whole context. Hopefully, this could be fixed by applying
our a posteriori lifting of transparent-existential-types technique to 1ML. We decided to build on the
F-ing approach rather than 1ML because the clear separation between core and module languages
seems better suited to model a real-world language as OCaml, where the core language has a lot of
additional features which are orthogonal to the module system.

More recently, Crary [5] used involved focusing techniques to solve signature avoidance in the
singleton-type approach for SML modules in a manner that turns out to have many similarities
with F-ing. Our work provides complementary information on the understanding of signature
avoidance, neither on its origin nor on how to avoid it, which was already well-understood in F-ing,
but on the difficulties and the principled way to solve it in the path-based approach of OCaml.

6.2 Features not Included
In our formalization, we omitted some features of OCaml both at the module level and at the
interface between the module and core languages. We see no difficulty in adding the following
features (already covered by [23]): first-class modules which are just values injected in and out of
the core language, (S with type 𝑡 = 𝜏) and (S with type 𝑡 := 𝜏) which only operate at the level
of signatures, (include 𝑃), which just flattens structures, and (open 𝑃) which just extends the
environment. Other main omitted features are discussed below.

Extracting signatures from modules. OCaml features a construct (module type of M). We could
easily add such a construct restricted to cases where M does not introduce any abstract type, which
includes all paths 𝑃 , and return the signature C of M28. This would be analogous to the (like M)
construct of F-ing [23]. However, this does not reflect the OCaml semantics, which returns a
signature (in the source language, corresponding to theM𝜔 signature) ∃♦𝛼.C with abstract type
fields 𝛼 whenever the definition of the module at 𝑃 introduced abstract types 𝛼 . This leads to a
surprising situation29 where (module type of 𝑃) and (module type of 𝑃 ′) may differ when 𝑃 ′ is an
alias of 𝑃 and 𝑃 is a module definition with abstract types.

Recursive modules. This raises both typechecking and compilation issues. Typechecking recursive
modules poses the double-vision problem explained and solved in [6] and also solved in [18]. A
similar solution should also apply to our encoding in F𝜔—after adding recursion at both the term and
type levels. A more ambitious solution would be to extend M𝜔 with mixin modules altogether [22].
This would not help improve their compilation, though.30

27Besides, their work has also been mechanized in Coq for the generative case. A Coq formalization of our approach,
including the applicative case, would be welcomed. It is left for future work.
28To preserve decidability of subtyping, they restricted the feature to their syntactic notion of explicit signatures, which we
would also need to do.
29To circumvent this behavior, users sometimes write module type of (struct include 𝑃 end) to force the “strengthening”
and obtain the concrete signature C rather then the abstract signature ∃♦𝛼.C . This trick does not apply to functors.
30Their compilation in a call-by-value setting requires a static analysis to ensure that the recursion is always well-founded
so that values will eventually be constructed before being destructed. OCaml uses a simple static analysis together with a
back-patch semantics, which can fail at runtime.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

Fulfilling OCaml Modules with Transparency 101:27

Abstract module types. Abstract module types are a particularity of OCaml, that does not fit well
in our framework. Instantiating an abstract module type 𝐴 appearing in a signature S by another
signature containing abstract types (or abstract module types) amounts in M

𝜔 to introducing new
quantifiers deep inside the signature, which must be universal or existential depending on the
polarity of the occurrences of𝐴 in S. This is not doable with F𝜔 type instantiation alone. Yet, adding
kind-level lambdas to F𝜔 (with predicative kind polymorphism) could cover a restricted case, where
an abstract module type cannot be instantiated by a signature that does itself contain abstract
module types. This seems to be sufficient for the cases found in real-world projects.

Richer type declarations. The type declarations mechanism of OCaml is much richer than what
we model. Adding parametric type definitions should not raise any problem, as F𝜔 already features
type functions. The various annotations for type parameters (variance, boxing, etc.) should be
encodable in a (light) extensions of F𝜔 with similar features. Algebraic datatypes (ADT) can be
represented as an abstract type definition followed by value declarations for the constructors, as
mentioned by [12]. Recent work has shown that generalized ADT are encodable in an extension of
F
𝜔 [28], which might be usable to extend our support for such type declarations.

6.3 Future Works
We have introduced and formalized M

𝜔 , a middle point between the source path-based module
system used in OCaml and F

𝜔 . First, we gave an improved elaboration of modules into F
𝜔 , using

the new notion of transparent existentials to treat applicative functors in almost the same simple
way as generative functors. Then, using M𝜔 as an intermediate language, we shone a new light on
the mechanisms of the OCaml type system, and provided a detailed description of the solvable and
unsolvable cases of signature avoidance.

An immediate application of our work is to use M𝜔 -signatures as an intermediate typing repre-
sentation for OCaml. We avoided the difficulty of maintaining module type names from the source
by inlining them, while a real implementation will definitely need strategies to maintain them.
Extending our formalization to do so would be an interesting, but orthogonal contribution.
We are currently faced with the following dilemma: we can present inferred signature to users

in the source syntax at the cost of dealing with the signature avoidance problem and explain it to
the user. Alternatively,M𝜔 signatures eliminate this artificial problem altogether but depart from
the path-based source notation that has proven user-friendly in many cases. Giving the user access
to fullM𝜔 signatures would make subtyping undecidable. Finding a set of good sense restrictions to
maintain decidability, as well as mixing the path-based andM𝜔 signatures constitutes an interesting
research and engineering topic. Characterizing the artifacts described in §4.4 and changing M𝜔 or
the anchoring to remove them in final signatures is also a topic of interest for future works.

The module identities of OCaml are probably abstraction safe31, as hinted by our Theorem 3.1.
Yet, the type-safety of F𝜔 is not sufficient to show abstraction-safety, even with the full tracking of
values à la F-ing (section 8), which seems obviously abstraction safe. A full semantic model of M𝜔

types would be needed and constitutes an interesting future work. This would probably benefit
from the insights of the recent works of Crary [3] [4] on logical relations and abstraction properties
for a rich module calculus.

The introduction of transparent existential types makes the treatment of applicative and genera-
tive functors much closer to one another. It could benefit other existing approaches to ML modules
which removed sealing inside applicative functors due to the cost of a-priori skolemization. Finally,
it could be interesting to explore extending F𝜔 with minimalist constructs so that we may program
with modules directly.
31Assuming that the typechecker could enforce that applicative functors only contain pure values.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

101:28 Blaudeau Clement, Didier Rémy, and Gabriel Radanne

REFERENCES
[1] Sandip K. Biswas. 1995. Higher-Order Functors with Transparent Signatures. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’95). Association
for Computing Machinery, New York, NY, USA, 154–163. https://doi.org/10.1145/199448.199478

[2] Clément Blaudeau, Didier Rémy, and Gabriel Radanne. 2024. Fulfilling OCaml modules with transparency (supplemen-
tary material). https://doi.org/10.1145/3649818

[3] Karl Crary. 2017. Modules, Abstraction, and Parametric Polymorphism. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 100–113. https://doi.org/
10.1145/3009837.3009892 event-place: Paris, France.

[4] Karl Crary. 2019. Fully abstract module compilation. Proc. ACM Program. Lang. 3, POPL, Article 10 (jan 2019), 29 pages.
https://doi.org/10.1145/3290323

[5] Karl Crary. 2020. A focused solution to the avoidance problem. Journal of Functional Programming 30 (2020), e24.
https://doi.org/10.1017/S0956796820000222

[6] Derek Dreyer. 2007. Recursive type generativity. Journal of Functional Programming 17, 4-5 (2007), 433–471. https:
//doi.org/10.1017/S0956796807006429

[7] Derek Dreyer, Karl Crary, and Robert Harper. 2003. A type system for higher-order modules. In Conference Record of

POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,

USA, January 15-17, 2003, Alex Aiken and Greg Morrisett (Eds.). ACM, 236–249. https://doi.org/10.1145/604131.604151
[8] Derek Dreyer, Robert Harper, and Karl Crary. 2005. Understanding and evolving the ML module system. Ph. D.

Dissertation. USA. AAI3166274.
[9] Jacques Guarrigue and Leo White. 2014. Type-level module aliases: independent and equal (ML Family/OCaml Users

and Developers workshops). https://www.math.nagoya-u.ac.jp/~garrigue/papers/modalias.pdf
[10] Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Approach to Higher-Order Modules with Sharing. In

Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon,
USA) (POPL ’94). Association for Computing Machinery, New York, NY, USA, 123–137. https://doi.org/10.1145/174675.
176927

[11] Robert Harper, John C. Mitchell, and Eugenio Moggi. 1989. Higher-Order Modules and the Phase Distinction. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,
California, USA) (POPL ’90). Association for Computing Machinery, New York, NY, USA, 341–354. https://doi.org/10.
1145/96709.96744

[12] Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). Association for
Computing Machinery, New York, NY, USA, 109–122. https://doi.org/10.1145/174675.176926

[13] Xavier Leroy. 1995. Applicative functors and fully transparent higher-order modules. In Proceedings of the 22nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’95. ACM Press, San Francisco, California,
United States, 142–153. https://doi.org/10.1145/199448.199476

[14] Xavier Leroy. 2000. A modular module system. J. Funct. Program. 10, 3 (2000), 269–303. http://journals.cambridge.org/
action/displayAbstract?aid=54525

[15] David B. MacQueen. 1986. Using Dependent Types to Express Modular Structure. Association for Computing Machinery,
New York, NY, USA, 277–286. https://doi.org/10.1145/512644.512670

[16] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David J. Scott, Balraj Singh, Thomas Gazagnaire, Steven
Smith, Steven Hand, and Jon Crowcroft. 2013. Unikernels: library operating systems for the cloud. In Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, Vivek
Sarkar and Rastislav Bodík (Eds.). ACM, 461–472. https://doi.org/10.1145/2451116.2451167

[17] John C. Mitchell and Gordon D. Plotkin. 1985. Abstract Types Have Existential Types. In Proceedings of the 12th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (New Orleans, Louisiana, USA) (POPL ’85).
Association for Computing Machinery, New York, NY, USA, 37–51. https://doi.org/10.1145/318593.318606

[18] Benoît Montagu. 2010. Programming with first-class modules in a core language with subtyping, singleton kinds and

open existential types. (Programmer avec des modules de première classe dans un langage noyau pourvu de sous-typage,

sortes singletons et types existentiels ouverts). PhD Thesis. École Polytechnique, Palaiseau, France. https://tel.archives-
ouvertes.fr/tel-00550331

[19] Benoît Montagu and Didier Rémy. 2009. Modeling Abstract Types in Modules with Open Existential Types. In
Proceedings of the 36th ACM Symposium on Principles of Programming Languages (POPL’09). Savannah, GA, USA,
354–365. https://doi.org/10.1145/1480881.1480926

[20] Gabriel Radanne, Thomas Gazagnaire, Anil Madhavapeddy, Jeremy Yallop, Richard Mortier, Hannes Mehnert,
Mindy Perston, and David Scott. 2019. Programming Unikernels in the Large via Functor Driven Development.
arXiv:1905.02529 [cs.PL]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

https://doi.org/10.1145/199448.199478
https://doi.org/10.1145/3649818
https://doi.org/10.1145/3009837.3009892
https://doi.org/10.1145/3009837.3009892
https://doi.org/10.1145/3290323
https://doi.org/10.1017/S0956796820000222
https://doi.org/10.1017/S0956796807006429
https://doi.org/10.1017/S0956796807006429
https://doi.org/10.1145/604131.604151
https://www.math.nagoya-u.ac.jp/~garrigue/papers/modalias.pdf
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/199448.199476
http://journals.cambridge.org/action/displayAbstract?aid=54525
http://journals.cambridge.org/action/displayAbstract?aid=54525
https://doi.org/10.1145/512644.512670
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/318593.318606
https://tel.archives-ouvertes.fr/tel-00550331
https://tel.archives-ouvertes.fr/tel-00550331
https://doi.org/10.1145/1480881.1480926
https://arxiv.org/abs/1905.02529

Fulfilling OCaml Modules with Transparency 101:29

[21] Andreas Rossberg. 2018. 1ML - Core and modules united. J. Funct. Program. 28 (2018), e22. https://doi.org/10.1017/
S0956796818000205

[22] Andreas Rossberg and Derek Dreyer. 2013. Mixin’Up the ML Module System. ACM Trans. Program. Lang. Syst. 35, 1
(April 2013), 2:1–2:84. https://doi.org/10.1145/2450136.2450137

[23] Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules. Journal of Functional Programming 24, 5
(Sept. 2014), 529–607. https://doi.org/10.1017/S0956796814000264

[24] Claudio V. Russo. 2000. First-Class Structures for Standard ML. Nord. J. Comput. 7, 4 (2000), 348–374.
[25] Claudio V. Russo. 2004. Types for Modules. Electronic Notes in Theoretical Computer Science 60 (2004), 3–421.

https://doi.org/10.1016/S1571-0661(05)82621-0
[26] Chung-Chieh Shan. 2004. Higher-order modules in System 𝐹𝜔 and Haskell. (01 2004).
[27] Zhong Shao. 1999. Transparent Modules with Fully Syntactic Signatures. In Proceedings of the fourth ACM SIGPLAN

International Conference on Functional Programming (ICFP ’99), Paris, France, September 27-29, 1999. ACM, 220–232.
https://doi.org/10.1145/317636.317801

[28] Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, and Lars Birkedal. 2024. The Essence of Generalized Algebraic
Data Types. Proc. ACM Program. Lang. 8, POPL, Article 24 (jan 2024), 29 pages. https://doi.org/10.1145/3632866

[29] Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular implicits. In Proceedings ML Family/OCaml Users and

Developers workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014. 22–63. https://doi.org/10.4204/EPTCS.
198.2

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 101. Publication date: April 2024.

https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1145/2450136.2450137
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1016/S1571-0661(05)82621-0
https://doi.org/10.1145/317636.317801
https://doi.org/10.1145/3632866
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.4204/EPTCS.198.2

	Abstract
	1 Introduction
	2 A Modern Module System
	2.1 Basic ML Modularity
	2.2 Applicative and Generative Functors
	2.3 Abstraction Safety and Granularity of Applicativity
	2.4 Aliasing and Ascription
	2.5 A Key Weakness: the Signature Avoidance Problem

	3 The Quantifier-based M Approach
	3.1 The Source Language
	3.2 M Overview
	3.3 Typechecking of Signatures
	3.4 Subtyping
	3.5 Typechecking of Module Expressions
	3.6 Identity, Aliasing, and Type Abstraction

	4 Rebuilding Source Signatures
	4.1 The Expressiveness Gaps of the Source Syntax
	4.2 The Anchoring Process
	4.3 Properties of Anchoring
	4.4 Discussion

	5 The Foundations: F Elaboration
	5.1 F with Kind Polymorphism
	5.2 Encoding of Signatures
	5.3 Sharing Existential Types by Repacking
	5.4 Transparent Existential Types and Their Lifting Through Function Types
	5.5 Implementation of Transparent Existential Types in F
	5.6 Elaboration Judgments
	5.7 Elaborated Typing Rules

	6 Discussion
	6.1 Related Works
	6.2 Features not Included
	6.3 Future Works

	References

