
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Fulfilling OCaml modules with transparent existentials

CLÉMENT BLAUDEAU and DIDIER RÉMY, Cambiun, INRIA, France
GABRIEL RADANNE, CASH, INRIA, EnsL, UCBL, CNRS, LIP, France, France

MLmodules, provided as an additional layer on top of the core language, offer large-scale notions of composition
and modularity that have been essential for developing complex applications. While modules are easy to use
for common cases, their intensive use may become tricky. Additionally, despite a long line of works, their
meta-theory remains difficult to comprehend, requiring heavy machinery to prove their soundness. As a matter
of fact, the module layer of OCaml does not currently have a clear specification and its implementation has
some surprising behaviors. We propose a new comprehensive description of a large subset of OCaml modules,
with both applicative and generative functors, excluding abstract signatures but extended with transparent
ascription. Building on a previous translation from ML modules to F

𝜔 , we introduce an intermediate system,
called canonical, that mediates between the source language and F

𝜔 , keeping the convenient path-based
syntactic notation of ML modules with the precise and well-established type-theory of F𝜔 . From the canonical
system, we both elaborate terms in F

𝜔 , which ensures type soundness, and extract derived ML-style typing
rules, which provides a deeper insight into, and better solutions to, the signature avoidance problem.

ACM Reference Format:
Clément Blaudeau, Didier Rémy, and Gabriel Radanne. 2023. Fulfilling OCaml modules with transparent
existentials. 1, 1 (March 2023), 38 pages.

1 INTRODUCTION
Modularity is a key technique to build software at scale: by breaking down a complex program into
smaller parts, it allows several teams of developers to work simultaneously on the same program.
An essential property of modularity is encapsulation, which allows hiding away implementation
details, and expose a simpler, more abstract, external interface. Instead of dealing with technical
details and complex invariants at all times, programmers can split the code base into manageable
parts, called modules, and structure the relationship between those modules by specifying their
interfaces and interactions. Code might be packed into a module to make a component, such as
the implementation of a data-structure, reusable and often polymorphic—effectively factorizing
development—or just to structure the overall program. Details, such as internal invariants which
are not revealed by the public signature, are kept hidden thanks to language-level mechanisms.

A wide variety of techniques can be used to apply modularity concepts to software development:
simple compilation units, classes, packages, crates, etc. In languages of the ML-family, modularity
is provided by a module system, which forms a separate language layer built on top of the core
language. The interactions between modules are controlled statically by a strict type system, making
modularity work in practice and with little to no run-time overhead. A module is described by its
interface, called a signature, which serves as both a light specification and an API.
The OCaml module system is especially rich and still receiving new features. It provides both

developer-side and user-side abstraction mechanisms: developers can control the outside view of a
module by explicitly restricting its interface via ascription, while users can abstract over a module
with a given interface using a functor. The signature language allows to both restrict and control
the interface of a module, specifically by hiding fields (making them private), or by abstracting type
components—keeping types accessible while hiding their definitions.

Authors’ addresses: Clément Blaudeau; Didier Rémy, Cambiun, INRIA, France; Gabriel Radanne, CASH, INRIA, EnsL, UCBL,
CNRS, LIP, France, France.

2023. XXXX-XXXX/2023/3-ART $15.00
https://doi.org/

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

All sizable OCaml projects use modules to access libraries or define parametric instances of
data structures (sets, hash-tables, streams, etc.). Several successful projects have made heavy use of
modules, as in MirageOS [9] where modules and functors are assembled on demand using a DSL
[13]. Despite the successes and the interest of the community regarding ML modules, giving them
a formal type-theoretic definition and establishing its properties has proven to be a difficult task.

Besides the academic interest, having a formal semantics is made even more necessary to envision
extensions such as modular implicits [19] where new modules could be built automatically from
their signatures by applications of functors to other modules. Moreover, while we often just need a
clear understanding of programs that typecheck, modular implicit also require a clear specification
of those that fail to typecheck, so as to ensure coherence.
A particularly successful and elegant approach to model ML module systems, combining ideas

from several years of research (see §6), is the elaboration of a significant subset of SML into F𝜔 done
by Rossberg et al. [15]. We built on the insights of their work that we adapted for an OCaml-like
language extended with transparent ascription. However, as the elaboration into F

𝜔 introduces
encoding artifacts and complexity—especially with applicative functors—we considered a middle
point between the OCaml signature syntax and F

𝜔 , which we call the canonical system.

Our contributions are:
• A simple specification of a large subset of OCaml modules, including both applicative and

generative functors, and extended with transparent ascription, via a signature syntax enriched
with F

𝜔 quantifiers.
• A self-contained path-based specification of the same subset with a detailed explanation of its
specific mechanisms (notably, strengthening) and its limitations.

• A principled approach, description, and solution to the signature avoidance problem in the
presence of applicative functors and transparent ascription.

• The introduction of transparent existential types in F
𝜔 , a weaker form of existential types that

allows their lifting through arrows types and universal quantifiers.
• A simpler encoding of applicative functors that reduces the difference between applicative
and generative functors down to the transparency and opacity nature of existential types.

Plan. The paper is organized as follows. In §2, we give an overview of the key features, strengths
and weaknesses of the OCaml module system and present the syntax of our language. In §3, we
give a precise, formal specification of our canonical system, which bridges the gap between source
signatures and F

𝜔 types. We then provide two independent developments based on our canonical
system. In §4, we present a similar type system directly on the source syntax, explained through
the lens of the canonical system. This includes detailed description and solution to the signature
avoidance problem. In §5, we present our novel elaboration of modules into F

𝜔 through the use of
transparent existential types. Finally, we discuss related and future works in §6 and §7.

2 A MODERN MODULE SYSTEM
In this section, we introduce some key features of ML module systems and specificity of the OCaml
one, extended to handle transparent ascription. We end this section with a detailed grammar of the
module system we study and a discussion of some technical choices.

2.1 Applicative and generative functors
The notion of functor is central to ML module systems as it allows to define modules parameterized
by other modules: it is both the user-side abstraction mechanism and a means of composition.
There are two different types of functors, applicative and generative, that correspond to different

, Vol. 1, No. 1, Article . Publication date: March 2023.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Fulfilling OCaml modules with transparent existentials 3

use-cases and that have different semantics; both are supported by OCaml. Their key difference
comes from the way their abstract types are handled.
A generative functor is used when the parameterized module is thought of as a sub-program.

Such module can thus have its own internal state, can product effect or dynamically choose the
internal representation of its abstract types. Calling a generative functor twice thus generates
two incompatible subprograms: their abstract types are incompatible. Programmers can also use
generativity to enforce incompatibility between otherwise compatible data-structures that represent
different objects in the program.
An applicative functor is used when the parameterized module is thought of as a library. Such

modules should be pure and have made a static choice of internal representation of their abstract
types. Calling an applicative functor twice with the same argument produces compatible libraries:
values from the first can be handled by the second. Modules that provide generic functionalities
(such as hash-maps, sets, lists, etc.) are typically written with applicative functors: values and
functions contained there-in might still be impure, but, crucially, the functor in itself is pure.

A key aspect regarding applicative functors is their granularity: when are twomodules considered
as same arguments, and thus, when should two applications produce compatible abstract types?
A first vision is to consider modules similar when they have the same type fields. This vision is
type-safe, as the abstract types produced by the functor can only depend on the type fields of
its parameter, not the values. However, it is not abstraction-safe, as the functor can use values
of its parameter. However, tracking the equality of values is undecidable in general and, even
in a restricted form, tracking the equality of both values and type fields is too fine-grained as
modules may have numerous value fields. OCaml follows a compromise, coarser-grained approach
to enforce abstraction-safety: tracking equality only at the module level. Two modules are deemed
similar when they can be resolved to the same original module. This was originally introduced as a
syntactic criterion [6] and has proved effective in the OCaml ecosystem.

2.2 A key strength: module identity
To allow a fine tracking of aliasing, OCaml offers a notion of module aliases in its signature
language: a module can be indicated as an alias of another module. This concept of module identity
is central in OCaml, as the applicativity of functors relies on it. However, module aliasing can
clash with subtyping, depending on the semantic model. In OCaml, subtyping of modules, which
can reorder and delete fields, is not code-free and can induce a runtime copy of the module. In
this case, considering a module as an alias of another module while its memory representation
is different would be unsound1. This problem motivates the current set of ad-hoc restrictions in
OCaml, designed to prevent aliases between a functor body and its parameter, as the argument
is subtyped at functor application. Interestingly, a known feature, transparent ascription, would
solve this issue. As a generalization of aliasing, transparent ascription consists of extending the
signature syntax with an entry (= 𝑃 < S) that stores both the aliasing information (to some path)
and the signature.

Transparent ascription is already implemented in SML, and used to hide fields of modules while
keeping all type equalities. This is especially useful to prevent writing cumbersome with type
equalities on signatures. However, another uses-case would also appear in OCaml: the additional
identity information obtained via transparent ascriptions would allow multiple applications of an
applicative functor to be considered equal (whereas SML only features generative functors). This
pattern of code already exists in the OCaml ecosystem [18], we demonstrate it in Figure 1.

1Several OCaml bug reports discuss this issue, notably OCaml#7818, OCaml#2051, OCaml#10435 and OCaml#10612.

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://github.com/ocaml/ocaml/issues/7818
https://github.com/ocaml/ocaml/pull/2051
https://github.com/ocaml/ocaml/pull/2051
https://github.com/ocaml/ocaml/pull/2051

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

1 module type Field = ...
2 module type VS = sig (* Vector space *)
3 module Scalar : Field
4 ... (* more fields *)
5 end
6 module Set(Y:...) = ...
7 module LinearAlg(V:VS) = struct
8 module SSet = Set(V.Scalar)
9 ...
10 end

11 module Make3D(K:Field) = (struct
12 module Scalar = K
13 ... (* built from K *)
14 end : sig
15 module Scalar : (= K < Field)
16 ...
17 end)
18 module Reals = ...
19 module Space3D = LinearAlg(Make3D(Reals))
20 (* Space3D.SSet.t =? Set(Reals).t *)

Fig. 1. An example of code pattern where transparent ascription is necessary. On the left-hand side, VS defines
an interface for vector spaces which contains a sub-module Scalar for the field of scalar numbers. Line 7,

the functor LinearAlgebra uses a vector space to define linear algebra operations, one of them being sets of

scalar numbers. At some other point in the development, here on line 11, 3D vector spaces are built directly

from any field K via the functor Make3D. Its signature contains a transparent ascription on its parameter K.
Finally, on line 19, the module Space3D implements linear algebra for the vector space R3

. We want the inner

sets Space3D.SSet.t, and Set(Reals).t to be compatible. This is only possible if the aliasing information

between the parameter and the body of the functor Make3D is kept. Here, transparent ascription is essential

to preserve both identity and subtyping information.

Finally, the notion of module identity is also essential tomodular implicits [19], a proposed feature
which aims at leaving implicit some module expressions, inferring them from a pre-declared set of
modules and functors. In order to ensure coherence, one must guarantee that an inferred module is
unique, up to some notion of equivalence. With transparent ascription, more module expressions
have the same identity and are considered equivalent, reducing false-positive incoherence errors.

2.3 A key weakness: the signature avoidance problem
The signature avoidance problem is a key issue of ML-module systems. It originates from amismatch,
illustrated in Figure 2, between the expressiveness of the module and signature languages: the
reachable space of possible module expressions is larger than the describable space of signatures:
some modules can’t be described by a signature. This issue can be solved either by sticking to the
describable space and ensuring that the typechecker correctly covers it or by extending signatures
to make the reachable and describable spaces coincide. This mismatch is caused by the interaction
of three mechanisms. First, type abstraction, which is key to control access and protect invariants
by typing, creates new types that are only compatible with themselves (and their aliases). Second,
sharing abstract types between modules, which is essential for module interactions, produces
inter-module dependencies. Finally, hiding type or module components (either explicitly, or via
subtyping during functor applications) can break such dependencies by removing type aliases from
scope while they are still being referenced. For instance, an abstract type t can be hidden while a
value of type t list is in scope. An example of such pattern is given in Figure 3. Sometimes, no
possible signature exists for a module; other times there are several incompatible ones.

Strategies for solving signature avoidance. When a type declaration is referring to an out-of-scope
type (and similarly, when a transparent ascription is referring to an out-of-scope module), there
are mainly three strategies to correct the signature: (1) removing the dependency (by abstracting
the type field), (2) rewriting the type equalities using in-scope aliases (effectively rewiring the
dependency tree), or (3) extending the signature syntax with existential types. The first strategy
can lead to loss of type equalities, but is easy to implement—it is the one currently in use in the
OCaml typechecker. The cases where the second strategy succeeds constitute the solvable cases of
signature avoidance. The OCaml typechecker only tries to follow directed edges of the dependency

, Vol. 1, No. 1, Article . Publication date: March 2023.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Fulfilling OCaml modules with transparent existentials 5

Reachable space

Signature avoidance

Describable space

Incorrect avoidance

Over abstraction

Common use-cases

Fig. 2. A representation of the mismatch be-

tween the reachable space of module expres-

sions (outer-most circle) and the describable
space of signatures (inner ellipse). The com-

mon use-cases of OCaml are mainly within

the area where the typechecker behaves cor-

rectly. In some cases, the current OCaml type-

checker can lose type-equalities while still be-

ing in the describable space. This may lead

to (1) producing a signature where some type

fields are unnecessarily made abstract (over-

abstraction) or (2) failing at inferring the sig-

nature (incorrect avoidance).

Fig. 3. Example of a signature avoid-

ance situation and the associated type-

dependencies tree. The module M is built

by projecting on only the submodule Y,
which exposes unsolvable dependencies

with a type (X.t) that became unreach-

able. The function f is therefore not well-

typed. (The example is written with a gen-

eral projection that is not present in cur-

rent OCaml, but can be easily reproduced

with an anonymous functor call.)

1 module type S = sig type t end
2 module M = (struct
3 module X : S = struct
4 type t = int
5 end
6 module Y = struct
7 type a = X.t * bool
8 type b = X.t * int
9 end
10 end).Y
11 let f ((x,_): M.a) = ((x, 42): M.b)

int

X.t

M.a M.b

× ×

tree until it finds an accessible type, but does not follow reverse edges and thus does not have a
notion of connected components. Sometimes, no in-scope alias is available and signature avoidance
cannot be solved without an extended syntax: those are the general cases of signature avoidance.

Signature avoidance in practice. OCaml developers usually get around this limitation by explicitly
naming modules before using them, which adds always-accessible root points to the dependency
graphs. The module syntax of OCaml actually encourages this approach by limiting the places
where inlined, anonymous modules can be used. In particular, projection on an anonymous module
(as done in Figure 3) is forbidden. However, explicit naming is sometimes cumbersome, which
can limit the usability of module-based programming patterns such as modular implicits. It also
prevents a fine-grained management of types shown in public APIs.

2.4 Grammar and technical choices
In this subsection we introduce the language of module expressions and signatures that models the
OCaml module system and is used throughout the rest of the paper. Its grammar, given on Figure 4,
is built on top of a core language of expressions e and types u which we leave abstract, except for
value identifiers 𝑥 and type identifiers 𝑡 . We extend expressions and types with qualified accesses.

Syntactic choices. The language of module expressions and signatures is rather standard, except
for a few minor design choices:

• We consider the following conventions: module related meta-variables use typewriter uppercase
letters, M, S, etc., while lowercase letters are used for expressions and types of the core language.
Lists are written with an overhead bar. Identifiers 𝐼 and paths 𝑃 use a standard font.

• In order to simplify the treatment of scoping and shadowing, we introduce self-references,
ranged over by letter𝐴, in both structures and signatures. They are used to refer to the current

, Vol. 1, No. 1, Article . Publication date: March 2023.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Path and Prefix
𝑃 ::= 𝑄.𝑋 (Access)

| 𝑌 (Functor argument)
| 𝑃 (𝑃) (Applicative application)

𝑄 ::= 𝐴 | 𝑃 (Prefix)
Module Expression
M ::= 𝑃 (Path)

| M.𝑋 (Projection)
| (𝑃 : S) (Opaque ascription)
| 𝑃 () (Generative application)
| () → M (Generative Functor)
| (𝑌 : S) → M (Applicative Functor)
| struct𝐴 B end (Structure)

Binding
B ::= let 𝑥 = e (Value)

| type 𝑡 = u (Type)
| module 𝑋 = M (Module)
| module type 𝑇 = S (Module type)

Signature
S ::= 𝑄.𝑇 (Module type)

| () → S (Generative Functor)
| (𝑌 : S𝑎) → S (Applicative Functor)
| sig𝐴 D end (Structural signature)
| (= 𝑃 < S) (Transparent ascription)

Declarations
D ::= val 𝑥 : u (Value)

| type 𝑡 = u (Type)
| module 𝑋 : S (Module)
| module type 𝑇 = S (Module type)

Identifier
𝐼 ::= 𝑥 | 𝑡 | 𝑋 | 𝑌 | 𝑇 (Any identifier)

Core language
e ::= 𝑄.𝑥 (Qualified variable)

| . . . (Other expression)
u ::= 𝑄.𝑡 (Qualified type)

| . . . (Other type)
Fig. 4. Syntax of the module language

object; their binding occurrence appears as a subscript to the structure or signature they
belong to, so that self-references can freely be renamed.

• Prefixes, written with the letter 𝑄 , range over either a path 𝑃 or a self reference 𝐴.
• Abstract types are specified as types pointing to themselves, e.g., type 𝑡 = 𝐴.𝑡 where 𝐴 is the
self-reference of the current structure.

• As a convention, bindings and declarations can be seen of the form 𝐼 : B and 𝐼 : D, with the
identifier extracted i.e., a type binding type 𝑡 = u can be seen as 𝑡 : type u.

• We use a distinct class of variables, written 𝑌 , for functor parameters, which can be freely
renamed. By contrast, and as usual with modules, neither identifiers 𝑋 and 𝑇 for module
expressions and signatures, nor the identifiers 𝑥 and 𝑡 for core language expressions and types
can be renamed, as they play the role of both an internal and an external name.

Projections and accesses. Several restrictions are built into the grammar. First, field accesses inside
a module type are forbidden, since prefixes 𝑄 may not originate from a module type identifier 𝑇 .
Second, we allow projection on any module expression, but we restrict functor application to paths.
Current OCaml does the opposite, mainly to prevent cases prone to trigger signature avoidance.
Our choice is more general, as the OCaml one can be encoded, while the converse requires an
explicit signature annotation on the functor argument. That is, we may see M(M′) as syntactic sugar
for (struct𝐴 module 𝐹 = M module 𝑋 = M′ module Res = 𝐴.𝐹 (𝐴.𝑋) end) .Res.

Transparent ascription. In our grammar, transparent ascription is only available in signatures.
Transparent ascription in expressions can be easily encoded as an opaque ascription of a transparent
signature: (𝑃 < S) is syntactic sugar for (𝑃 : (= 𝑃 < 𝑆)).

Omitted features. We omit some constructs for the sake of simplicity: the include and open

operators, explicit constraints “S with type 𝑡 = u” (resp. module 𝑋 = 𝑃) and deleting constraints

, Vol. 1, No. 1, Article . Publication date: March 2023.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Fulfilling OCaml modules with transparent existentials 7

Canonical Types
𝜏 ::= 𝛼 (Existential identifier)

| 𝛼 (𝜏) (Type application)
Environment

Γ ::= ∅ (Empty)
| Γ, 𝛼 (Abstract types)
| Γ, (𝑌 : C) (Functor Argument)
| Γ, (𝐴.𝐼 : D) (Declaration)

Mode
♦ ::= ▽ (Applicative)

| ▼ (Generative)

Identity signatures
C ::= (𝜏,R)

Concrete signatures
R ::= sig D end (Structural signature)

| ∀𝛼.C → C (Applicative functor)
| () → ∃▼𝛼.C (Generative functor)

Declarations
D ::= val 𝑥 : 𝜏 (Values)

| type 𝑡 = 𝜏 (Types)
| module 𝑋 : C (Modules)
| module type 𝑇 = 𝜆𝛼.C (Module types)

Fig. 5. Syntax of canonical signatures

“S with type 𝑡 := u” (resp.module 𝑋 := 𝑃), and the “module type of” operator. We believe that they
do not impact the overall structure of the system, only adding more cases in the set of rules. We
also omit first-class modules, abstract signatures, and recursive modules.

3 A QUANTIFIER-BASED APPROACH: THE CANONICAL SYSTEM
In this section, we present a typing system, called canonical, that covers the set of features informally
explained in the previous section and that does not suffer from the signature avoidance problem.
The signatures produced by this system are written in a more expressive syntax, with explicit
F
𝜔 -style type binders (existential, universal, lambda). The key interest of this system is to provide
a description of the mechanisms behind the main features (type abstraction, module identity,
applicativity/generativity) via F𝜔 , while hiding the complexity and artifacts that come from the
encoding of module expressions in F

𝜔 .

3.1 Canonical system overview
The syntax for source modules and signatures remains the same. New syntactical categories,
described in Figure 5, the canonical language (and declarations) used for inferred signatures. By
convention, we use curvy capitals (C , R , D , . . .) for canonical objects. We distinguish between
three (mutually defined) types of canonical signatures enforcing a key invariant: the places where
quantifiers are allowed. Identity signaturesC combine an identity type 𝜏 with a concrete signature R
that contains the structural information (functors, signature), but no quantification. In the judgments,
identity signatures are handled with existential or lambda quantifiers in front. Existential quantifiers
are marked with a mode, either generative or applicative, that will be used during typing. With this
scheme, existential quantification is restricted to the front of a whole signature or to the top-level
of the body of generative functors in generative mode. Specifically, submodule declarations do
not have existential quantification. Universal quantifiers appear in front of applicative functors
to capture polymorphism from the abstract types of their parameter. Finally, signatures stored in
module type declarations are parameterized by their abstract types with F

𝜔 -style 𝜆-binding.: they
can later be existentially or universally quantified, depending on context. Module types variables
are inlined in concrete signatures and thus don’t appear there.
Finally, environments contain bindings with the identifier extracted and prefixed by a self-

reference:𝐴.𝐼 : D . To prevent shadowing, we consider awellformedness predicate over environments
wf(Γ), defined to check that identifiers appear at most once. As a simplifying convention for the
rest of this paper, we add wellformedness of the environment as a precondition to all rules.

, Vol. 1, No. 1, Article . Publication date: March 2023.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

System structure and judgments. The canonical system has three judgments:

Signature typing Γ
can⊢ S : 𝜆𝛼.C translates a source signature S into its canonical counterpart 𝜆𝛼.C ,

making the set of type parameters 𝛼 explicit. It is also defined for declarations.
Subtyping Γ

can⊢ C ≺ C ′ checks that a signature C is more restrictive than a signature C ′, meaning
that the former has more fields and introduces less abstract types. Equivalently, it means that
a module with signature C can be cast into a module of signature C ′. This judgment is defined
on C , R , and declarations D .

Module typing Γ
can⊢ M : ∃♦𝛼.C infers the canonical signature of a source module M. The signature

∃♦𝛼.C features an existential quantification that can be in applicative of generative mode.
In the following subsections, we first explain the signature typing judgment, as it illustrates the

key concepts of the canonical system; then we show the subtyping and module typing judgments.
We only show the key rules of each judgment, leaving the full set of rules in the appendix (§A).

3.2 Signature typing, the key concepts of the canonical system
We progressively introduce the key concepts of the system and highlight the relevant inference
rules. Let us start at the declaration level, inside a structural signature sig D end.

3.2.1 Abstract types and extension of scopes. The syntactic enforcement of the position of quan-
tifiers in the canonical system helps simplify the presentation. The intuition is that an abstract
type field type 𝑡 actually introduces a new abstract type 𝛼 that is accessible not only in the local
module, but in all the following ones. Therefore, the binder for that abstract type 𝛼 must be lifted
to enclose the whole region where 𝛼 is accessible. This existential lifting, pervasive throughout
the declaration typing rules, is a key concept. It is illustrated in the following rules. First, in Rule
C-Typ-Decl-TypeAbs, an abstract type declaration type 𝑡 = 𝐴.𝑡 is converted into a normal type
declaration type 𝑡 = 𝛼 , with a new abstract type quantified with a lambda binder. Then, in Rule
C-Typ-Decl-Mod when typing a submodule declaration, a set of abstract types quantified by the
submodule signature is extracted and put in front of the declaration. Finally, in Rule C-Typ-Decl-Seq,
the types 𝛼1 introduced by the first declaration D are put in the context for typing the rest of
declarations D. Then, both sets of abstract types 𝛼1 and 𝛼 are merged together in front of the list of
canonical declarations D1,D .

C-Typ-Decl-TypeAbs
Γ

can⊢𝐴 (type 𝑡 = 𝐴.𝑡) : 𝜆𝛼. (type 𝑡 = 𝛼)
C-Typ-Decl-Mod

Γ
can⊢ S : 𝜆𝛼.C

Γ
can⊢𝐴 (module 𝑋 : S) : 𝜆𝛼. (module 𝑋 : C)

C-Typ-Decl-Seq
Γ

can⊢𝐴 D : 𝜆𝛼1 .D Γ, 𝛼1, 𝐴.𝐼 : D
can⊢𝐴 D : 𝜆𝛼.D

Γ
can⊢𝐴 D, D : 𝜆𝛼1 𝛼.D ,D

3.2.2 At the signature level: module identities. At the signature level, the mechanism for abstract
types can be reused to track module identities by adjoining every concrete signature R with an
identity type to compose an identity signature C . Fresh identities are introduced when typing a new
signature, that is, a functor or a structural signature, as in Rule C-Typ-Sig-Str where a fresh identity
𝛼0 is parameterized. By contrast in Rule C-Typ-Sig-TrAscr, the identity type is preserved when
typing a transparent ascription signature of some path (= 𝑃 < S). This can be seen by the fact that
no abstract type is quantified in front, preserving both the identity type and all type definitions of
C .

C-Typ-Sig-Str
Γ

can⊢𝐴 D : 𝜆𝛼.D 𝐴 ∉ Γ

Γ
can⊢ sig𝐴 D end : 𝜆𝛼0, 𝛼 . (𝛼0, sig D end)

C-Typ-Sig-TrAscr
Γ

can⊢ 𝑃 : C Γ
can⊢ S : 𝜆𝛼.C ′ Γ

can⊢ C < C ′ [𝛼 ↦→ 𝜏]
Γ

can⊢ (= 𝑃 < S) : C ′ [𝛼 ↦→ 𝜏]

, Vol. 1, No. 1, Article . Publication date: March 2023.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Fulfilling OCaml modules with transparent existentials 9

3.2.3 Functors and higher-order abstract types. Rule C-Typ-Sig-GenFct for generative functors
shows how the scope of abstract types is limited: the lifting of abstract type quantifiers, 𝛼 here,
stops at the top-level of the functor body. The lambda-abstraction is turned into an existential one,
with a generative mode. Hence, every instantiation of the functor will generate new (incompatible)
types 𝛼 . Rule C-Typ-Sig-AppFct for applicative functors shows some key mechanisms. Unlike with
generative functors, two applications of the same functor to the same argument should produce
the same abstract types, which implies that the scope of those types should (at least) contain both
applications. A known solution to this problem is to lift the quantified abstract types 𝛽 outside of
the functor via a skolemisation, turning them into higher-order types 𝛽 ′, as we do here.

C-Typ-Sig-GenFct
Γ

can⊢ S : 𝜆𝛼.C

Γ
can⊢ () → S : 𝜆𝛼0 .

(
𝛼0, () → ∃▼𝛼.C

)
C-Typ-Sig-AppFct

Γ
can⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎

can⊢ S : 𝜆𝛽.C

Γ
can⊢ (𝑌 : S𝑎) → S : 𝜆𝛼0, 𝛽

′ .
(
𝛼0,∀𝛼.C𝑎 → C

[
𝛽 ↦→ 𝛽′ (𝛼)

])
3.3 Subtyping and Typing: a parsimonious system

Subtyping. The subtyping judgment is standard for ML-module systems, we highlight here some
key rules. When comparing identity signatures in Rule C-Sub-Sig-Id, the identity types are required
to be the same. This is crucial to enforce that a transparent ascription keeps the same identity as the
original module. When comparing two structural signatures in Rule C-Sub-Sig-Struct, deletion and
reordering of fields is allowed, as a subset of the left-hand side declarations is compared against the
full set of right-hand side ones. Finally, Rule C-Sub-Sig-GenFct for generative functors features an
instantiation of the abstract types before subtyping the identity signatures C and C ′. Finding such
instantiation in an algorithmic way, with higher-order abstract types, is not easy. We believe that
the argument used by [15] applies here, as the same notions of rooted and explicit can be defined
with canonical signatures.

C-Sub-Sig-Id
Γ

can⊢ R < R ′

Γ
can⊢ (𝜏,R) <

(
𝜏,R ′)

C-Sub-Sig-Struct
D0 ⊆ D Γ

can⊢ D0 < D ′

Γ
can⊢ sig D end < sig D ′

end

C-Sub-Sig-GenFct
Γ, 𝛼

can⊢ C < C ′ [𝛼 ′ ↦→ 𝜏
]

Γ
can⊢ () → ∃▼𝛼.C < () → ∃▼𝛼.C ′

Existential modes. The typing judgment Γ can⊢ M : ∃♦𝛼.C produces a signature with existential
quantification, either in applicative or generative mode. The mode prevents core and module ex-
pressions that are inherently generative, such as unpacking a first-class module, calling a generative
functor, or computing impure values, from appearing in the body of applicative functors. This
discipline is enforced by typing a generative (resp. applicative) functor application in generative
(resp. applicative) mode in Rule C-Typ-Mod-AppGen (resp. C-Typ-Mod-AppFct).

C-Typ-Mod-AppGen
Γ

can⊢ 𝑃 :
(
_ , () → ∃▼𝛼.C

)
Γ

can⊢ 𝑃 () : ∃▼𝛼.C

C-Typ-Mod-AppFct
Γ

can⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, (𝑌 : C𝑎)
can⊢ M : ∃▽𝛽.C

Γ
can⊢ (𝑌 : S𝑎) → M : ∃▽𝛼0, 𝛽

′ .
(
𝛼0, (∀𝛼.C𝑎 → C)

[
𝛽 ↦→ 𝛽′ (𝛼)

])
In addition, Rule C-Typ-Bind-Seq for bindings forces all the components of a structural signature
to have the same mode. We also rely on a core-language expression typing judgment2 Γ can⊢ ♦ e : 𝜏
equipped with a mode that tracks the presence of effects3. When typing a value field, the mode is
propagated via an empty existential (Rule C-Typ-Bind-Let). Finally, the mode of a module can be
downgraded from applicative to generative via Rule C-Typ-Mod-Mode. All other rules are agnostic

2This judgment is trivially extended by rules for accessing module paths; the added rules are given in A.2.
3In current OCaml, side effects in the core language are not tracked by the typing system, it is the user’s responsibility to
require the generative mode in such cases.

, Vol. 1, No. 1, Article . Publication date: March 2023.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

of the typing mode.
C-Typ-Bind-Seq
Γ

can⊢𝐴 B : ∃♦𝛼1 .D Γ, 𝛼1, 𝐴.𝐼 : D
can⊢𝐴 B : ∃♦𝛼.D

Γ
can⊢𝐴 B, B : ∃♦𝛼1, 𝛼 .D ,D

C-Typ-Bind-Let
Γ

can⊢ ♦ e : 𝜏

Γ
can⊢𝐴 (let 𝑥 = e) : ∃♦ . (val 𝑥 : 𝜏)

C-Typ-Mod-Mode
Γ

can⊢ M : ∃▽𝛼.C
Γ

can⊢ M : ∃▼𝛼.C

Module identities. Similarly to signature typing, fresh identities are introduced when typing a
functor (rules C-Typ-Mod-GenFct and C-Typ-Mod-AppFct, above) and a structure (rule C-Typ-Mod-
Struct). In addition, applications of a generative functor (rules C-Typ-Mod-AppGen, above) and
ascriptions (Rule C-Typ-Mod-Ascr) can introduce new identities, depending on whether or not the
identity type is a parameterized variable. If the identity type is not parameterized, it means that the
functor is actually concrete (does not introduce new types nor new identities) or that the ascription
is transparent. If the identity type is parameterized, it means that the functor or the ascription
introduces a new, fresh identity. In contrast, when typing an application of an applicative functor
(Rule C-Typ-Mod-AppApp), no new identity is introduced: two applications of similar functors to
modules with the same identity arguments produce results with the same identity.
C-Typ-Mod-Struct

Γ
can⊢𝐴 B : ∃♦𝛼.D 𝐴 ∉ Γ

Γ
can⊢ struct𝐴 B end : ∃♦𝛼0, 𝛼 . (𝛼0, sig D end)

C-Typ-Mod-Ascr
Γ

can⊢ 𝑃 : C Γ
can⊢ S : 𝜆𝛼.C ′ Γ

can⊢ C < C ′ [𝛼 ↦→ 𝜏]
Γ

can⊢ (𝑃 : S) : ∃▽𝛼.C ′

C-Typ-Mod-AppApp
Γ

can⊢ 𝑃 : (_ ,∀𝛼.C𝑎 → C) Γ
can⊢ 𝑃 ′ : C ′ Γ

can⊢ C ′ < C𝑎 [𝛼 ↦→ 𝜏]
Γ

can⊢ 𝑃 (𝑃 ′) : C [𝛼 ↦→ 𝜏]

C-Typ-Mod-GenFct
Γ

can⊢ M : ∃♦𝛼.C
Γ

can⊢ () → M : ∃▽𝛼0 .
(
𝛼0, () → ∃▼𝛼.C

)
Projection and signature avoidance. In the source signatures, dependencies between modules

are hard to track as modules can use arbitrary paths to access other modules. Signatures can
thus have complex internal dependencies, making the projection of a submodule M.𝑋 delicate: the
dependencies of 𝑋 might become dangling after the other components of signature of M are lost.
In canonical signatures however, dependencies only consist of the use of a common abstract type
that has been lifted in front. Thus, canonical signatures do not have internal dependencies and so,
do not need a self-reference. The projection rule C-Typ-Mod-Proj simply keeps the set of abstract
types 𝛼 to ensure that the submodule signature C has no dangling dependency.

Γ
can⊢ M : ∃♦𝛼. (_ , sig D end) module 𝑋 : C ∈ D

Γ
can⊢ M.𝑋 : ∃♦𝛼.C

(C-Typ-Mod-Proj)

The canonical system serves as a basis for understanding OCaml modules, as it models key
mechanisms with the rigor and simplicity of F𝜔 types, without the encoding artifacts of F𝜔 and
without the user-friendly but problematic path-based presentation of the source OCaml.

4 A PATH-BASED APPROACH: THE SOURCE SYSTEM
In this section, we use the insights of the canonical system to build a self-contained source system
that uses the source signatures S both as internal representation (in the typing environment) and
as result of the inference. The source system models the behavior of OCaml-style modules and
could be presented standalone. However, it mimics the mechanisms of the canonical system but
without the flexibility of explicit quantifiers, and is thus cumbersome. Hence, the presentation of
the source system as derived from the canonical system helps understand it.
The presentation of the canonical system started with the translation of source signatures into

canonical ones, which illustrates how the canonical system models the source language. We now
follow the reverse approach: to present the judgments and rules of the source system, we actually

, Vol. 1, No. 1, Article . Publication date: March 2023.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Fulfilling OCaml modules with transparent existentials 11

Concrete signature
R ::= sig D end (Structural signature)

| () → S (Generative functor)
| (𝑌 : S) → C (Applicative functor)

Identity signature
C ::= (= 𝑃 < R)

Concrete declarations
D ::= val 𝑥 : u (Value)

| type 𝑡 = u (Type)
| module 𝑋 : C (Submodule)
| module type 𝑇 = S (Module type)

Fig. 6. Source signature sub-categories. Identity and con-

crete signatures are subsets of source signatures S, concrete
declarations are a subset of source declarations D.

Γsrc ::= ∅ (Empty)
| Γsrc, (𝑌 : C) (Functor Argument)
| Γsrc, 𝐴.𝐼 : D (Declaration)

Fig. 7. Source typing environment Γsrc

Path typing
Γsrc

src⊢ 𝑃 : C

Subtyping
Γsrc

src⊢ S ≺ S′

Signature Typing
Γsrc

src⊢ S : S′
Module Typing

Γsrc
src⊢ ♦ M : S

Fig. 8. Structure of judgments for the source

system, all depending on strengthening.

focus on the process of translating canonical signatures back into the source syntax, which we call
anchoring. The anchoring is defined on canonical signatures, which have been obtained either by
canonical signature typing or by module type inference. In the former case, anchoring is relatively
easy. In the latter case however, the signature avoidance problem arises, making it non-obvious
whether a corresponding source signature even exists and how to reconstruct it. In a nutshell,
the anchoring aims at reverting the existential lifting that happens during the canonical typing.
The core of this process is to build an anchoring map 𝜃 that associates to every abstract type 𝛼 a
corresponding valid path 𝑃 .𝑡 in the source signature. We define the three following judgments:

Signature anchoring Γ
anch⊢ C ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ S : 𝜃 takes a canonical signature C (or resp. a declara-

tion D), an environment Γ and its source anchoring Γsrc, along with the anchoring map of the
environment 𝜃Γ ; it produces a source signature S (or resp. a declaration D) and its associated
anchoring map 𝜃 . The judgment is parameterized by an optional path (written 𝑃?): if a path is
given, it will prefix all anchorings paths of the resulting map 𝜃 .

Type anchoring Γ
anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ 𝑧 takes a canonical type 𝜏 (and Γsrc, Γ, and 𝜃Γ as above) and

returns an anchor 𝑧 that is either a path 𝑃 .𝑡 when 𝜏 is an abstract type or a pair (𝑃,R) when 𝜏
is an identity type.

Environment anchoring Γ ↩→ Γsrc : 𝜃Γ takes a canonical environment Γ and returns a source
environment Γsrc with its associated anchoring map 𝜃Γ .

In the rest of this section, we present conjointly the anchoring judgments and the building blocks
of a source-only typing system. We first explain the structure of the source typing system. Then, in
each following subsection, we explore a difference of expressivity between the canonical and source
signature syntaxes, regarding, the management of, successively, (1) abstract types, (2) module
identities, and (3) higher-order types. From each difference, we extract an anchoring principle. We
then show how the application of the principle can be seen in the anchoring judgment and how it
impacts the design of typing in the source system.

4.1 Source system overview
The source system reuses the grammar of Figure 4. However, to ease the enforcement of some
invariants, we introduce syntactical subcategories of the source signature syntax, which are summed
up in Figure 6. They mimic the corresponding canonical signatures categories. Specifically, concrete

, Vol. 1, No. 1, Article . Publication date: March 2023.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

signatures D do not introduce new abstract types, which can be seen in structural signatures
(sig D end): they do not feature a self-reference and thus forbids self-referring fields; all paths (for
types and modules) must be absolute ones.

The source system is built on four judgments illustrated in Figure 8 and a strengthening operation:
Signature typing Γsrc

src⊢ S : S′ checks the wellformedness of a source signature S and returns the
signature with inlined module types and type aliases S′.

Subtyping Γsrc
src⊢ S ≺ S′ checks that a signature S is more restrictive than a signature S′, meaning

that the former has more fields and introduces less abstract types. The judgment is defined over
both identity and concrete signatures. We also introduce a subset of the subtyping relation,
called abstraction-subtyping, written Γsrc

src⊢ S ⊏ S′, where both signatures must have the same
fields in the same order, but may differ in their abstract type fields.

Module typing Γsrc
src⊢ ♦ M : S infers the signature S of a module M, given a typing mode ♦.

Path typing Γsrc
src⊢ 𝑃 : C retrieves a signature C for a module path 𝑃 . It is a subset of the more

general module typing, extracted from the latter to prevent circular dependencies.
Strengthening S/𝑃 ≫ C rewrites fields in S, i.e., abstract type into concrete type and modules into

transparent ascriptions pointing to paths prefixed by 𝑃 . The resulting signature is therefore
an identity signature, with a concrete content.

Simplifying assumptions. In order to limit the complexity of the source system, we removed the
three sources of indirections in the inferred signatures. (1) Type aliases are inlined, making type
definitions always use the oldest available alias of a type: it simplifies the equality checking of
two types. (2) Transparent ascriptions of transparent ascriptions are inlined, making all modules
sharing the same identity transparent ascriptions of a single root module. (3) Module types are
inlined to have direct access to their content. In a real-world implementation, the latter would pose
a usability problem, as module types can have hundreds of fields and inlining them would make
signatures unreadable. We consider this problem orthogonal to the formalization (and thoroughly
explored in the OCaml implementation). Finally, our presentation is purposefully not algorithmic.

4.2 The issue of abstract type fields
A key insight is the difference in the source syntax between the declaration of a concrete type
(type 𝑡 = u) and that of an abstract type (type 𝑡 = 𝐴.𝑡). An abstract type declaration states the
introduction of both a new abstract type and a new field that may later be used as a handle to refer
to this abstract type. For a signature used in a covariant position, an abstract type declaration
effectively creates a new abstract type (using existential quantification) and adds a type field
(structural information) to the signature. By contrast, a concrete type definition only introduces
structural information—adding a field to refer to an existing type definition.

A canonical signature separates the quantification information (existential, universal, or lambda
binders) from the structural information (fields). Thus, it makes the scope of abstract types explicit,
using the explicit binders. More importantly, it allows referring to types that do not have a handle,
while the source system cannot.

1st Anchoring Principle. Source signatures can only express module types whose structure coincide
with the quantification, i.e. where the first occurrence of every abstract type 𝛼 is of the form
type 𝑡 = 𝛼 . Such a declaration is called an anchoring point for the type 𝛼 .

4.2.1 Consequence for the anchoring judgment. The first step in translating signatures is thus to
identify the anchoring point of every parameterized abstract type. We do so by going through
signatures (and declarations) while building the anchoring map 𝜃 , which is extended whenever an
anchoring point is encountered. A simplified version of the rule for an anchoring point (ignoring

, Vol. 1, No. 1, Article . Publication date: March 2023.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Fulfilling OCaml modules with transparent existentials 13

high-order types) is:

𝛼 ∉ dom(𝜃Γ) Γ ↩→ Γsrc : 𝜃Γ

Γ
anch⊢ type 𝑡 = 𝛼 ↩→ Γsrc;𝜃Γ ⊢ type 𝑡 = 𝐴.𝑡 : (𝛼 ↦→ 𝑡)

(A-Decl-Anchor-Simplified)

Here, the trivial anchoring map 𝛼 ↦→ 𝑡 is returned. By contrast, the empty map ∅ is returned when
reaching a declaration that is not an anchoring point, i.e., a type declaration (Rule A-Decl-Type) or
a value declaration (Rule C-Ach-Decl-Val). Instead, the anchoring map of the environment 𝜃Γ is
used to translate the canonical type 𝜏 into a source type u, via the type anchoring judgment.

A-Decl-Type
Γ

anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ u

Γ
anch⊢ type 𝑡 = 𝜏 ↩→ Γsrc;𝜃Γ ⊢type 𝑡 = u : ∅

A-Decl-Val
Γ

anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ u

Γ
anch⊢ val 𝑥 : 𝜏 ↩→ Γsrc;𝜃Γ ⊢ (val 𝑥 : 𝜏) : ∅

4.2.2 Abstract type fields in the source system. In the source syntax, abstract type fields thus play
a special role, as they state the introduction of a new type, and in addition, acts as an implicit
quantifier. As consequence, retrieving a signature from the environment naively could duplicate
the quantification information and re-introduce new (incompatible) abstract types.

Strengthening – S/𝑃 ≫ C. To prevent this, a standard solution is to define a strengthening operator
that rewrites all local links of S (notably, abstract type fields) into absolute links prefixed by 𝑃 .
Similarly, modules fields are rewritten as transparent ascriptions of their counterpart in 𝑃 to prevent
duplication of identities. The returned signature C is itself a transparent ascription of 𝑃 . We show
here two key rules. Rule S-Str-Sig-Struct deals with structural signatures: the self reference 𝐴
is replaced by 𝑃 , which amounts to replacing all local links prefixed by the self-reference 𝐴 by
absolute ones prefixed by the path 𝑃 . Rule S-Str-Decl-Mod for strengthening declarations by a path
𝑃 replaces the signature S of a submodule 𝑋 by the strengthening of S by the path 𝑃 .𝑋 . The full set
of rules is given in §C.1.

S-Str-Sig-Struct
D[𝐴 ↦→ 𝑃] /𝑃 ≫ D

sig𝐴 D end/𝑃 ≫ (= 𝑃 < sig D end)

S-Str-Decl-Mod
S/𝑃 .𝑋 ≫ C

(module 𝑋 : S) /𝑃 ≫ module 𝑋 : C

Strengthening is used in all judgments to enforce a key invariant: to unify the representation of
abstract types and of modules with a fresh identity, we strengthen the signatures and declarations
before pushing them in the context. In signatures, we represent abstract types as (local) pointers to
themselves (of the form type 𝑡 = 𝐴.𝑡). Similarly, in the environment, we represent abstract types as
absolute pointers to themselves (of the form type 𝑡 = 𝑃 .𝑡) and modules declarations as transparent
ascription, possibly to themselves (of the form module 𝑋 : (= 𝑃 < R)).

4.3 The treatment of module identities
The canonical signature syntax can express identity sharing between modules regardless of their
signatures, as long as they share the same identity type. In contrast, source signatures, as they rely
solely on transparent ascriptions, can only express identity sharing when all modules sharing the
same identity have a signature that is a subtype of the (syntactical) first occurrence. As transparent
ascription includes a subtyping check, it is a more restricted form of identity sharing than the
identity types of the canonical system.

2nd Anchoring Principle. Source signatures can only express identity sharing via transparent
ascription. All modules sharing the same identity must have signatures that are suptypes of the
first occurrence. The absence of transparent ascription expresses the freshness of identity.

, Vol. 1, No. 1, Article . Publication date: March 2023.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

4.3.1 Consequence for the anchoring judgment. The only conditions for anchoring an abstract
type are checked at its anchoring point, and then all usage points are unrestricted. By contrast,
when anchoring a module identity 𝛼 , the conditions at the anchoring point are not sufficient. After
anchoring 𝛼 at a module definition with a signature C , all usage points must also be at module
definitions with a signature that is a subtype of C . To account for this, we extend the anchoring
map to store both a module path and the signature at the anchoring point for identity types.

A-Sig-Id-TrAsrc

Γ
anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ (𝑃,R ′) Γ

anch⊢ R ↩
𝑃?−−→ Γsrc;𝜃Γ

src⊢ S : ∅ Γ
can⊢ R ′ < R

Γ
anch⊢ (𝜏,R) ↩𝑃?−−→ Γsrc;𝜃Γ

src⊢ (= 𝑃 < S) : ∅

A-Sig-Id-Anchor-Simplified

Γ
anch⊢ R ↩

𝑃−→ Γsrc;𝜃Γ
src⊢ S : 𝜃 𝛼 ∉ dom(𝜃Γ)

Γ
anch⊢ (𝛼,R) ↩𝑃−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 ⊎ (𝛼 ↦→ (𝑃,R))

A-Sig-Id-Ignore-Simplified
Γ

anch⊢ R ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 𝛼 ∉ dom(𝜃Γ)

Γ
anch⊢ (𝛼,R) ↩∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 ⊎ (𝛼 ↦→ (×,∅))

The signature stored in the anchoring map is used in A-Sig-Id-TrAsrc to ensure (via a subtyping
check), that the returned transparent ascription (= 𝑃 < S) is well-typed. Rules A-Sig-Id-Anchor-
Simplified and A-Sig-Id-Ignore-Simplified illustrate the new mechanism of optional paths. They
both handle anchoring of an identity signature (simplified to remove high-order types) with and
without a path. Rule A-Sig-Id-Anchor-Simplified requires the optional path argument to contain an
actual path 𝑃 that will be used as anchoring path. On the opposite, in rule A-Sig-Id-Ignore, when
the optional path is be empty, which is the case when entering a module type of a generative
functor, the identity type 𝛼 is anchored to an invalid path ×. This prevents its sharing with any
other module.

4.3.2 The special role of paths in the source system.

Path typing – Γsrc
src⊢ 𝑃 : C. Paths play a special role inMLmodule systems, and especially in OCaml.

Checking equality between two types or aliasing between two modules boils down to checking
that both paths resolve to the same component, hence making paths central to the presentation.
The path-typing judgment is defined as a restriction of module typing. By handling only paths, it
never introduces new abstract types and identities: it always returns an identity signature with
a concrete signature attached. In all the rules, this relies on the invariant stated above that only
strengthened signatures are pushed in the context. For instance, in rule S-Typ-Path-LocalMod, the
signatures stored in Γ for 𝐴.𝑋 is an identity signature, thus featuring a transparent ascription
(which can point to 𝐴.𝑋 itself, if the module had a fresh identity). In rule S-Typ-Path-Proj, the
ascription of 𝑃 is the premise is ignored: the strengthening invariant ensures that C, the signature
of the submodule 𝑋 , is an identity signature, pointing to 𝑃 .𝑋 (or to an older module). Finally, in
S-Typ-Path-AppFct, a subtyping check is done between the parameter signature S and the argument
signature R. Substituting 𝑌 with 𝑃 ′ in the result corresponds to an instantiation.

S-Typ-Path-LocalMod
(𝐴.𝑋 : module C) ∈ Γ

Γ
src⊢ 𝐴.𝑋 : C

S-Typ-Path-Proj
(module 𝑋 : C) ∈ D

Γ
src⊢ 𝑃 : (= _ < sig D end)

Γ
src⊢ 𝑃 .𝑋 : C

S-Typ-Path-AppFct
Γ

src⊢ 𝑃0 :
(
= 𝑃 ′0 < (𝑌 : S) → C

)
Γ

src⊢ 𝑃 :
(
= 𝑃 ′ < R

)
Γ

src⊢ R < S

Γ
src⊢ 𝑃0 (𝑃) :

(
= 𝑃 ′0 (𝑃

′) < C
[
𝑌 ↦→ 𝑃 ′

])
Signature typing – Γsrc

src⊢ S : S′. In the source presentation, the signature typing judgment is
used both as a wellformedness check and to remove the three indirections mentioned above, by
inlining module types, type aliases, and transparent ascriptions of transparent ascriptions. Rule
S-Typ-Sig-TrAscr in the subtle one. If the path 𝑃 points to another 𝑃 ′, the transparent signature

, Vol. 1, No. 1, Article . Publication date: March 2023.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Fulfilling OCaml modules with transparent existentials 15

Source code
1 module M = (struct
2 module F(Y:S): sig type t end = ..
3 module Proj = struct
4 module G (Y:S') = struct
5 type t = F(Y).t
6 end
7 module H (Y:S'') = struct
8 type t = F(Y).t
9 end
10 end).Proj

Canonical signature

∃𝛼𝑡 .module𝑀 : sig
module 𝐺 : ∀𝛽.C ′ → sig

type 𝑡 = 𝛼𝑡 (𝛽)
end

module 𝐻 : ∀𝛽.C ′′ → sig

type 𝑡 = 𝛼𝑡 (𝛽)
end

end

Possible source signature

module𝑀 : sig𝐴
module 𝐺 : (𝑌 : S′) → sig𝐵

type 𝑡 = 𝐵.𝑡

end
module 𝐻 : (𝑌 : S′′) → sig𝐶

type 𝑡 = 𝐴.𝐺 (𝑌) .𝑡
end

end
Fig. 9. An example of the issue with the anchoring higher-order abstract types. In the canonical signature,

identities are hidden for simplicity. In the source signature, the artifacts of self-references are in gray.

(= 𝑃 < S) must be rewritten to refer to 𝑃 ′; this is achieved by the subtyping check, which rewrites
the signature C as an identity signature C′ pointing to 𝑃 ′ (and with a concrete signature attached).

Γ
src⊢ 𝑃 : C Γ

src⊢ S : S′ S′/𝑃 ≫ C′ Γ
src⊢ C ≺ C′

Γ
src⊢ (= 𝑃 < S) : C′

(S-Typ-Sig-TrAscr)

Therefore, the signatures inferred by signature typing form a subset of the whole syntactical
category S, without module types and types aliases, and where transparent ascriptions have been
rewritten to identity signatures (by the rule above).

Subtyping. The subtyping judgment is standard, extended with specific rules do deal with trans-
parent ascription. We show here only the key rules.

S-Sub-Sig-TrAscrAbs
Γ

src⊢ (= 𝑃 < R) < R

S-Sub-Sig-TrAscr
Γ

src⊢ 𝑃 < 𝑃 ′ Γ
src⊢ R < R′

Γ
src⊢ (= 𝑃 < R) <

(
= 𝑃 ′ < R′

)
S-Sub-Sig-Struct
D0 ⊆ D Γ, 𝐴.D

src⊢𝐴 D0 < D′

Γ
src⊢ sig𝐴 D end < sig𝐴 D′ end

Just as concrete type fields are subtypes of abstract ones, Rule S-Sub-Sig-TrAscrAbs may remove
transparent ascriptions by subtyping. In rule S-Sub-Sig-TrAscr. the transparent ascription is kept,
but with a different associated signature. Those rules are defined only for identity signatures, as
subtyping is checked only between signatures inferred by signature typing. Given our self-referring
representation for abstract types, the rule S-Sub-Sig-Struct for structural signatures only needs to
push the left-hand side set of fields D prefixed by 𝐴 before comparing declaration by declaration.

4.4 High-order abstract types and identities
So far, we have not considered abstract types and module identities inside applicative functors. The
main consequence is that paths stored in the anchoring map did not contain functor applications.
However, applications of higher-order abstract types are anchored as pathswith functor applications,
which poses further challenges.

Let us consider the example of Figure 9. When typing the applicative functor 𝐹 , an higher-order
abstract type 𝛼𝑡 is introduced. A mention of this type in the canonical signature can only appear
via the typing of a path with an application of this functor: here 𝐹 (𝑌).𝑡 in the body of 𝐺 and 𝐻 .
But, as always for signature avoidance, the key issue is that the definition point (the functor 𝐹) can
be lost by projection, while mentions of the abstract type 𝛼𝑡 remain. Even if the first mention is a
suitable anchoring point, as it is the case inside the functor 𝐺 , the signature restriction S′ on the
parameter of 𝐺 might be stricter than the original one in 𝐹 , making some applications ill-typed
when using 𝐺 instead of 𝐹 . Specifically, inside the functor 𝐻 , the path 𝐺 (𝑌).𝑡 is either valid or not,
depending of the subtyping relationship between S′ and S′′.

, Vol. 1, No. 1, Article . Publication date: March 2023.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Higher-order abstract types, when presented as fields inside applicative functors, are thus
restricted to a certain domain that depends on the parameter signature (and the number and order
of arguments). Even though a qualified type with an application, such as 𝐹 (𝑌).𝑡 , corresponds to a
higher-order type application 𝛼𝑡 (𝛽), the former is more restricted than the latter, as it requires a
subtyping relationship between the signature of 𝑌 and the parameter of 𝐹 . Again, the path-based
approach gives a special role to the first occurrence. Here, for a type field that mentions a higher-
order abstract type, its domain must cover all uses of that type. By contrast, canonical signatures
can express sharing of a higher-order abstract type between functors with any domains.

3rd Anchoring Principle. Source signatures can only express sharing of higher-order abstract types
and identities when all uses are within the domain of the anchoring point.

Dependencies in the general case. While sound, we argue that this anchoring principle is too
permissive. In the general case, the problem of checking if an arbitrary combination of applications
allows obtaining a given type expression corresponds to a higher-order unification problem, which is
undecidable. Moreover, some heuristics could invent convoluted pathswith new functor applications,
never mentioned by the user, just for referring to abstract types that have lost their original path.
This could be quite surprising, if not misleading. We thus extend the anchoring principle to restrict
the positions deemed suitable for anchoring. We consider only positions that resembles the original
definition point: a type field type 𝑡 = 𝜑 (𝛼) is suitable for anchoring only inside an applicative
functor that universally quantifies over exactly 𝛼 .

4th Anchoring Principle. For decidability and usability, we restrict anchoring of higher-order
abstract types (and identities) to functors that abstracts over the same number of arguments and in
the same order as their (possibly lost) definition point.

In the example of Figure 9, the functor 𝐺 universally quantifies over the same set of existentials
as the lost definition point, which can be seen in the kind of 𝛼𝑡 , making the anchoring point valid.

4.4.1 Consequence for the anchoring judgment. The adaptions for anchoring higher-order types
are two-fold. First, the anchoring map is extended to store paths parameterized functor arguments.
The signature of the functor parameter is also stored to verify subtyping when reconstructing
applications. Second, the list of arguments of the higher-order type at the anchoring point (of
the form type 𝑡 = 𝜑 (𝛼)), is also stored in the anchoring map. Generalizing to any number of
arguments, the anchoring 𝜃 (𝜑) is of the form either 𝜆𝛽.𝜆(𝑌 : C).(𝑃 .𝑡, 𝛼) when 𝜑 is an abstract type
or 𝜆𝛽.𝜆(𝑌 : C).((𝑃,R), 𝛼) when 𝜑 is an identity type. This can be seen in two key rules:

Γ ↩→ Γsrc : 𝜃Γ 𝜑 ∉ dom(𝜃Γ) Γ = Γ0, 𝜑, Γ1 args(Γ1) = 𝛼

Γ
anch⊢ type 𝑡 = 𝜑 (𝛼) ↩𝐴−→ Γsrc;𝜃Γ

src⊢type 𝑡 = 𝐴.𝑡 : (𝜑 ↦→ (𝐴.𝑡, 𝛼))
(A-Decl-Anchor)

Γ, 𝛼
anch⊢ C𝑎 ↩

𝑌−→ Γsrc;𝜃Γ
src⊢ S𝑎 : 𝜃𝑎 dom(𝜃𝑎) = 𝛼

Γ, 𝛼, (𝑌 : C𝑎)
anch⊢ C ↩

𝑃 (𝑌)?
−−−−−→ (Γsrc, 𝑌 : S𝑎) ;𝜃Γ ⊎ 𝑌 .𝜃𝑎

src⊢ S : 𝜃

Γ
anch⊢ ∀𝛼.C𝑎 → C ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ (𝑌 : S𝑎) → S : (𝛽 ↦→ 𝜆𝛼.𝜆(𝑌 : C𝑎) .𝜃 (𝛽))

(A-Sig-FctApp)

In Rule A-Decl-Anchor, a higher-order abstract type is associated with the name 𝑡 , and the list of
type variable arguments 𝛼 is stored. The operator args(Γ1) is defined to gather all the type variables
universally quantified in Γ1 (distinguished from existentially quantified ones, as they appear in
front of functor parameters), between the point where 𝜑 was introduced an the current point. In
Rule A-Sig-FctApp, the anchoring map 𝜃 of the body signature C is abstracted over the universally
quantified type variables 𝛼 and the parameter (𝑌 : C𝑎) in the result map.

, Vol. 1, No. 1, Article . Publication date: March 2023.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Fulfilling OCaml modules with transparent existentials 17

Type anchoring. The last step is to reconstruct a path (or a pair with a path and a signature) from
a canonical type, using the computed maps. The judgment is better understood by its properties:

Γ
anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ (𝑃 .𝑡, _) =⇒ Γ

can⊢ 𝑃 .𝑡 : 𝜏
Γ

anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ ((𝑃,R), _) =⇒ Γ
can⊢ 𝑃 : (𝜏,R)

For first-order types, the rule A-Type-Star retrieves the anchoring path from the environment.
For a higher-order type 𝜑 applied to a list of arguments 𝜏 , the rule A-Type-TypeApp is a bit more
involved. First, the list of arguments is split into an ignored prefix, then a list of identity types 𝜌𝑖
followed by abstract types 𝜏𝑖 . The length of this list (of lists) correspond to the number of functor
parameters. Each identity type is anchored to some path 𝑃𝑖 and signature R 𝑖 . Then, the anchoring
map is applied to the list of types, paths, and signatures. This application checks the subtyping
between the signatures and the stored parameter signatures, and returns a result 𝑧 (either a type
path or a pair of a path and an identity), and, crucially, the list of arguments of the anchored point.
This list must be equal to the list of arguments 𝜏 : it means that the anchoring point can indeed
produce the current use point.

A-Type-Star
𝜃Γ (𝛼) = (𝑧,∅)

Γ
anch⊢ 𝛼 ↩→ Γsrc;𝜃Γ ⊢ 𝑧

A-Type-TypeApplication
𝜏 = _ :: 𝜌𝑖 , 𝜏𝑖 Γ

anch⊢ 𝜌𝑖 ↩→ Γsrc;𝜃Γ ⊢ (𝑃𝑖 ,R 𝑖)
Γ

anch⊢ 𝜃Γ (𝜏) (𝜌𝑖 , 𝜏𝑖) (𝑃𝑖 , (𝜌𝑖 ,R 𝑖)) = (𝑧, 𝜏)

Γ
anch⊢ 𝜑 (𝜏) ↩→ Γsrc;𝜃Γ ⊢ 𝑧

4.4.2 A best-effort source system. As explained above, finding a principal signature in the source
syntax in presence of applicative functors would require inventing arbitrary complex paths. Instead,
our presentation takes a simpler approach.We first introduce a subset of subtyping called abstraction
subtyping, written Γsrc

src⊢ S ⊏ S′, that reuses all the same rules as subtyping, except for the structural
signatures one. It is changed to compare the same set of declarations, whereas S-SubGen-Sig-Struct
allowed to consider a subset of declarations: no reordering nor deletion of fields. This allows us
to define how the source module typing judgment handles the signature avoidance problem. The
judgment is written Γsrc

src⊢ ♦ M : S, and depends on an explicit typing mode mechanism to mimic the
mode that could be read of the signatures in the canonical system. The key rule is Rule S-Typ-Mod-
Proj for a projection. During a projection, a submodule𝑋 is extracted out of the module M. However,
its signature might have dependencies with other components in S. Here, we allow an abstraction
subtyping that can remove any dependencies, by rewriting any type expressions and remove
transparent ascriptions. Finally, the signature of the submodule S′ is checked to be wellformed, but
crucially, in an environment that does not contain the other declarations D: the signature must have
no dependencies left. This rule is not algorithmic, as the more abstract signature appears out of the
blue. It also allows for loosing precision by over-abstraction, i.e., turning type fields or identities that
could have been kept concrete into abstract types, which might return a non-principal signature.
The rest of the rule of module and binding typing are straightforward and given in §C.4.

S-SubAbs-Sig-Struct
Γ, 𝐴.D

src⊢𝐴 D ⊏ D′

Γ
src⊢ sig𝐴 D end ⊏ sig𝐴 D′ end

S-Typ-Mod-Proj
Γsrc

src⊢ ♦ M : S Γsrc
src⊢ S ⊏ sig𝐴 D end

module 𝑋 : S′ ∈ D Γsrc
src⊢ S′ : S′

Γsrc
src⊢ ♦ M.𝑋 : S′

The current implementation of OCaml allows an abstraction subtyping to prevent signature
avoidance, without providing any guarantees regarding the principality of the inferred signature–
and the implementation often does unnecessary and surprising over-abstractions.

, Vol. 1, No. 1, Article . Publication date: March 2023.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

4.5 Linking the source and canonical systems
The anchoring judgment allows us to link canonical and source typing. If all signatures used in a
canonical typing derivation were anchorable, then the typing derivation can be translated into the
source system. More formally, we define the anchorable canonical typing judgment Γ anch⊢ M : ∃♦𝛼.C
by only changing the projection rule to add an anchorability condition:

A-Typ-Mod-Proj

Γ
anch⊢ M : ∃♦𝛼. (_ , sig D end) module 𝑋 : C ∈ D Γ, 𝛼

anch⊢ C ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃

Γ
anch⊢ M.𝑋 : ∃♦𝛼.C

Theorem 4.1 (Anchoring of typing). Anchorable canonical typing derivations can be translated
to source typing derivations.

Γ
anch⊢ M : ∃♦𝛼.C =⇒ ∃Γsrc, 𝜃Γ, S, 𝜃, Γ, 𝛼

anch⊢ C ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 ∧ Γsrc
src⊢ ♦ M : S

The reader might wonder if the other way around is also true, i.e., if source typing derivations
can be translated into canonical ones, with inferred signatures linked by the anchoring judgment.
The answer is no, as the permissive abstraction subtyping of the source system allows it to remove
type equalities and transparent ascriptions that would make the anchoring fail. Future work is
required to characterize precisely these edge-cases.

5 THE FOUNDATIONS: F𝜔 ELABORATION
The canonical system is designed to offer a standalone, type-standard and expressive approach to
the typing of OCaml modules, while hiding the complexity and artifacts of the encoding in F

𝜔 .
Still, the encoding served as a basis for the design of the canonical system and is now used as a
proof of type soundness. The F𝜔 encoding of module expressions and signatures shines a new light
on the mechanisms of the canonical system. Our encoding is largely based on the work of Rossberg
et al. [15], but differs in a key manner in the treatment of skolemization used to encode abstract
types of applicative functors. One of our important contribution is the introduction of transparent
existential types, an intermediate between the standard opaque existential types and the absence of
abstraction, allowing us to bring the treatment of applicative and generative functors closer and
significantly simplifying the elaboration as well as the resulting programs.

5.1 F𝜔 with kind polymorphism
We use a standard variant of explicitly typed F

𝜔 with primitive records, existential types, and kind
polymorphism. Its syntax is given in Figure 10. Its typing rules are standards and available in §D.
Type equivalence defined by 𝛽𝜂-conversion and reordering of record fields is standard. We use
letters 𝜏 and 𝑒 to range over types and expressions to distinguish them from the core language
types and expressions, even though these should actually be seen as a subset of 𝜏 and 𝑒 with some
syntactic sugar. The syntax is presented with explicit kinds. We write 𝜘 for kind variables, 𝛼 and 𝛽

for type variables of any kind, and 𝜑 and𝜓 for type variables of higher kinds. We write kinds 𝜅 (and
kind abstraction Λ𝜘.) in pale color so that they are nonintrusive, and we often leave them implicit.
For the sake of conciseness and readability, we introduce some syntactic sugar. The first set of

syntax extensions is described on Figure 11—but more will be added later on. As a convention, we
use a wildcard when a type annotation unambiguously determined by an immediate subexpression
is omitted. This is just a syntactic convenience to avoid redundant type information and improve
readability, but the underlying terms should always be understood as explicitly-typed F𝜔 terms. We
allow packing and unpacking of a sequence of types altogether, as defined on Figure 11. We also
introduce a combined syntactic form repack

▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, which allows the abstract types of 𝑒1

, Vol. 1, No. 1, Article . Publication date: March 2023.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Fulfilling OCaml modules with transparent existentials 19

𝜅 := ★ | 𝜘 | 𝜅 � 𝜅 | ∀𝜘.𝜅 (kinds)

𝜏 := 𝛼 | 𝜏 → 𝜏 | {ℓ : 𝜏} | ∀(𝛼 :𝜅).𝜏 | ∃▼(𝛼 :𝜅).𝜏 | 𝜆(𝛼 :𝜅).𝜏 | 𝜏 𝜏 | ∀𝜘.𝜏 | Λ𝜘.𝜏 | 𝜏 𝜅 | () (types)

𝑒 := 𝑥 | 𝜆(𝑥 : 𝜏).𝑒 | 𝑒 𝑒 | Λ(𝛼 :𝜅).𝑒 | 𝑒 𝜏 | Λ𝜘.𝑒 | 𝑒 𝜅 | 𝑒 @ 𝑒 | {ℓ = 𝑒} | 𝑒.ℓ
| pack ⟨𝜏, 𝑒⟩ as ∃▼(𝛼 :𝜅).𝜏 | unpack ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒 | () (terms)

𝑣 := 𝜆(𝑥 : 𝜏).𝑒 |
{
ℓ = 𝑣

}
| Λ(𝛼 :𝜅). 𝑣 | 𝑣 𝜏 | Λ𝜘.𝑣 | 𝑣 𝜅 | pack ⟨𝜏, 𝑣⟩ as ∃▼(𝛼 :𝜅).𝜏 | () (values)

Γ := · | Γ, 𝜘 | Γ, 𝛼 :𝜅 | Γ, 𝑥 : 𝜏 (environments)
Fig. 10. Syntax of F

𝜔

let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆(𝑥 : _).𝑒2) 𝑒1

pack ⟨𝜏𝜏, 𝑒⟩ as ∃▼(𝛼𝛼 :𝜅).𝜎 ≜ pack ⟨𝜏, 𝑒0⟩ as ∃▼(𝛼𝛼 :𝜅).𝜎
where 𝑒0 is
pack ⟨𝜏, 𝑒⟩ as ∃▼(𝛼 :𝜅).𝜎

pack ⟨∅, 𝑒⟩ as 𝜎 ≜ 𝑒

unpack ⟨𝛼𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in

unpack ⟨𝛼, 𝑥⟩ = 𝑥 in 𝑒2
unpack ⟨∅, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ let 𝑥 = 𝑒1 in 𝑒2

repack
▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in

pack ⟨𝛼, 𝑒2⟩ as ∃▼(𝛼 :𝜅)._

Fig. 11. Syntactic sugar for F
𝜔
terms

Structural signature
sig D end ≜ {D }

Identity signature
(𝜏,R) ≜ {id : 𝜏,Val : R }

Declarations
val 𝑥 : 𝜏 ≜ ℓ𝑥 : 𝜏
type 𝑡 = 𝜏 ≜ ℓ𝑡 : ⟨⟨𝜏⟩⟩
module 𝑋 : C ≜ ℓ𝑋 : C
module type 𝑇 = 𝜆𝛼.C ≜ ℓ𝑇 : ⟨⟨𝜆𝛼.C ⟩⟩

Fig. 12. Syntactic sugar for canonical sig-

natures. Functors and abstract signatures

correspond directly to F
𝜔
types.

to appear in the type of 𝑒2. Since the type of repacking is here fully determined by the combination
of 𝛼 and the type of 𝑒2, we leave it implicit.

5.2 Encoding of signatures
Canonical signatures are actually F

𝜔 types with some syntactic sugar, which is shown in Figure 12.
To help with the elaboration, we assume a collection ℓ𝐼 of record labels indexed by identifiers
of the canonical (and source) systems. A small trick is needed to represent type fields, which
have no computational content, but cannot be erased during elaboration as they carry additional
typing constraints. We reuse the solution of F-ing, encoding them as identity functions with type
annotations. For this, we introduce the following syntactic sugar for the term representing a type
field (on the left). We overload the notation to also mean its type (on the right).

⟨⟨𝜏 :𝜅⟩⟩ := Λ(𝜑 :𝜅 → ★). 𝜆(𝑥 : 𝜑 𝜏) .𝑥 (Term) ⟨⟨𝜏 :𝜅⟩⟩ := ∀(𝜑 :𝜅 → ★) . 𝜑 𝜏 → 𝜑 𝜏 (Type)

The type 𝜏 is used as argument of a higher-kinded type operator 𝜑 to uniformly handle the encoding
of types of any kind. The key (and only useful) property is that two types (of the same kind) are
equal if and only if their encodings are equal.

5.3 Sharing existential types by repacking
While the correspondence between canonical signatures and F𝜔 types is straightforward, the actual
encoding of module expressions as F𝜔 terms is slightly more involved. Although structures and
functions are simply encoded as records and functions, a serious difficulty arises from the need to
lift existential types to extend their scope, as explained in §3.2.1.
Let us first consider the easier generative case. The only construct for handling a term with an

abstract type is the unpack operator, which allows using the term in a subexpression, hence with a

, Vol. 1, No. 1, Article . Publication date: March 2023.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

limited scope, but not to make an abstract type accessible to the rest of the program. This observation
was at the core of the design of open existential types [11] and of recursive type generativity [2].
Here, in order to stay in plain F

𝜔 , we adapt the trick of F-ing: abstract types are explicitly lifted out
of the record, component by component, via a rebinding pattern where abstract types are unpacked,
shared with the rest of the structure, and then repacked.

To capture this lifting of existential out of records, we define two new constructs, defined as:

lift
▼ {ℓ1 = 𝑒1, ℓ2 = 𝑒2} ≜ let 𝑥 = {ℓ1 = 𝑒1; ℓ2 = 𝑒2} in

repack
▼ ⟨𝛼, 𝑥1⟩ = 𝑥 .ℓ1 in repack

▼ ⟨𝛽, 𝑥2⟩ = 𝑥 .ℓ2 in {ℓ1 = 𝑥 .ℓ1, ℓ2 = 𝑥 .ℓ2}

lift
▼ ⟨𝛼, 𝑥 = 𝑒1 @ 𝑒2⟩ ≜ repack

▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in repack

〈
𝛽, 𝑥2

〉
= 𝑒2 in 𝑥1 @ 𝑥2

First, we introduce lift▼ {ℓ1 = 𝑒1, ℓ2 = 𝑒2} for lifting out of a 2-field independent4 record, which will
be used to manipulate identity fields. Second, we define a more general lift▼ ⟨𝛼, 𝑥 = 𝑒1 @ 𝑒2⟩ for
lifting out the concatenation of two “dependent” records, which is more involved, as 𝑒2 may refer to
the record 𝑒1 via 𝑥 and its abstract types 𝛼 , hence 𝛼 and 𝑥 act as binders whose scope is 𝑒2. These
are better understood by their derived typing rules:

Γ
𝐹𝜔⊢ 𝑒1 : ∃▼𝛼.𝜏1 Γ

𝐹𝜔⊢ 𝑒2 : ∃▼𝛽.𝜏2 ℓ1 # ℓ2

Γ
𝐹𝜔⊢ lift {ℓ1 = 𝑒1, ℓ2 = 𝑒2} : ∃▼𝛼, 𝛽. {ℓ1 : 𝜏1, ℓ2 : 𝜏2}

Γ
𝐹𝜔⊢ 𝑒1 : ∃▼𝛼. {ℓ1 : 𝜏1}

Γ, 𝛼, 𝑥 : {ℓ1 : 𝜏1}
𝐹𝜔⊢ 𝑒2 : ∃▼𝛽. {ℓ2 : 𝜏2} ℓ1 # ℓ2

Γ
𝐹𝜔⊢ lift ⟨𝛼, 𝑥 = 𝑒1 @ 𝑒2⟩ : ∃▼𝛼, 𝛽. {ℓ1 : 𝜏1 .ℓ2 : 𝜏2}

5.4 Transparent existential types and their lifting through function types
The repacking pattern allows lifting existential types outside of product types. Unfortunately this is
insufficient for the applicative case, which uses skolemization to lift abstract types out of the functor
body to the front of the functor. This lifting of existential types though universal quantifiers by
skolemization and through arrow types, as we have done in the canonical system, is not definable
in F

𝜔 . One solution is to avoid skolemization by a-priori abstraction over all possible type variables,
i.e., the whole typing context. This is the solution followed the authors of F-ing and Shan [17].
While this suffices to prove soundness, this encoding is impractical for manual use of the pattern
and does not provide a good intuition of what modules really are. The encoding could be slightly
improved by abstracting over fewer variables, but this would not solve the problem, which is
a-priori abstraction.

We instead retain skolemization, following the intuition of the canonical system, but we tweak
the definition of existential types to make their lifting though universal types definable. Namely,
we introduce transparent existential types, written ∃▽𝜏 (𝛼 :𝜅).𝜎 to described types that behave as
usual existentials ∃▼(𝛼 :𝜅).𝜎 but remembering the witness type 𝜏 of the abstract type 𝛼 .
We create a transparent existential type with the expression pack 𝑒 as ∃▽𝜏 (𝛼 :𝜅).𝜎 , which

behaves much as pack ⟨𝜏, 𝑒⟩ as ∃▼(𝛼 :𝜅).𝜎 , except that the witness type 𝜏 remains visible in the
result type. A transparent existential type is thus weaker than a usual abstract type, as we still
see the witness type. In particular, two transparent existential types with different witnesses are
incompatible. This could be seen as a weakness of transparent existentials, but it is actually a key
to their lifting through arrow types.
Transparent existential types do not replace usual existential types, which we here call opaque

existential types, but comes in addition to them. Indeed, an expression of a transparent existential
type can be further abstracted to become opaque, using the expression seal 𝑒 , which behaves as the
identity but turns the expression 𝑒 of type ∃▽𝜏 (𝛼 :𝜅).𝜎 into one of type ∃▼(𝛼 :𝜅).𝜎 . Transparent
existential types may also be used abstractly, with the expression repack

▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, which
is the pending of the expression repack

▼ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 but when 𝑒1 is a transparent existential
4The use of a let-binding prior to repacking ensures that 𝑒1 and 𝑒2 are independent.

, Vol. 1, No. 1, Article . Publication date: March 2023.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Fulfilling OCaml modules with transparent existentials 21

type ∃▽𝜏 (𝛼 :𝜅).𝜎1. We distinguish the two forms using the superscripts ▼ and ▽ for opaque and
transparent existentials. In both cases, 𝑒2 is typed in a context extended with the abstract type 𝛼 :𝜅
and 𝑥 of type 𝜎1. That is, 𝑒2 cannot see the witness type 𝜏 . However, the abstract type variable 𝛼
may still appear in the type 𝜎2 of the expression 𝑒2, and therefore it is made transparent again in
the result type of repack▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, which is ∃▽𝜏 (𝛼 :𝜅).𝜎2. We do not need a transparent
version of unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2, since it would be equivalent to unpack ⟨𝛼, 𝑥⟩ = seal 𝑒1 in 𝑒2.

So far, one may wonder what is the advantage of transparent existentials by comparison with
opaque existentials. We provide two key additional constructs for lifting transparent existentials
across arrows types and universal types—the only reason to have introduced them in the first place.
The lifting across an arrow type, written lift

→ 𝑒 , turns an expression of type 𝜎1 → ∃▽𝜏 (𝛼 :𝜅).𝜎2
into one of type ∃▽𝜏 (𝛼 :𝜅). (𝜎1 → 𝜎2) as long as 𝛼 is fresh for 𝜎1. While this operation seems
easy, it crucially depends on existential types begin transparent—this transformation would be
unsound with opaque existentials. Indeed, since we can observe the witness 𝜏 , we can ensure that
it can be expressed independently of 𝜎1, allowing us to lift it outside of the function. Similarly,
lifting across a universal type variable 𝛽 of kind 𝜅′, written lift

∀ 𝑒 , turns an expression of type
Λ(𝛽 :𝜅′).∃▽𝜏 (𝛼 :𝜅).𝜎 into one of type ∃▽𝜆 (𝛽 :𝜅′) .𝜏 (𝛼 ′ :𝜅′ → 𝜅).∀(𝛽 :𝜅′).𝜎 [𝛼 ↦→ 𝛼 ′ 𝛽], provided 𝛽

is fresh for 𝜏 , using skolemization of both the existential variable 𝛼 and its witness type 𝜏 .
To summarize, we have extended the syntax of F𝜔 as follows:

𝜏 ::= . . . | ∃▽𝜏 (𝛼 :𝜅) .𝜎
𝑒 ::= . . . | pack 𝑒 as ∃▽𝜏 (𝛼 :𝜅).𝜎 | seal 𝑒 | repack▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 | lift→ 𝑒 | lift∀ 𝑒

Their typing rules are given in §D. These constructs have no additional computational content,
namely repack

▽ ⟨𝛼, 𝑥⟩ = 𝜏 in 𝜎 behaves as a let-binding, while the other constructs behave as 𝑒 .

5.5 Implementation of transparent existential types in F𝜔

Interestingly, transparent existential types are completely definable in F
𝜔 , as shown in §D.1. It

defines an expression 𝑒E as pack ⟨𝜏0, 𝑒0⟩ as 𝜏E where 𝑒0 is the concrete implementation, and 𝜏0 is
the interface type that hides the implmentation of the type E . Using this definition, we may see a
program 𝑒 with transparent existential types as a program unpack ⟨E , 𝑥E ⟩ = 𝑒E in 𝑒 in plain F

𝜔 ,
with the following additional syntactic sugar5:

∃▽𝜏 (𝛽 :𝜅).𝜎 ≜ E𝜅 𝜏 (𝜆(𝛽 :𝜅).𝜎)
pack 𝑒 as ∃▽𝜏 (𝛼).𝜎 ≜ 𝑥E .Pack𝜏 (𝜆(𝛼 : _) .𝜎) 𝑒

repack
▽ ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 ≜ 𝑥E .Repack _ _ 𝑒1 (Λ(𝛼 : _). 𝜆(𝑥 : 𝛼) .𝑒2)

seal 𝑒 ≜ 𝑥E .Seal _ _ 𝑒
lift

→ 𝑒 ≜ 𝑥E .Lift
→ _ _ 𝑒

lift
∀ 𝑒 ≜ 𝑥E .Lift

∀ _ _ 𝑒

We define the lifting operations for records fields lift▽ {ℓ1 = 𝑒1, ℓ2 = 𝑒2} and dependent record
concatenation lift

▽ ⟨𝛼, 𝑥1 = 𝑒1 @ 𝑒2⟩ exactly as their opaque versions, but replacing opaque
repacking by transparent repacking. We also define a new operation lift

∗ 𝑒 that uses a combination
of the primitive lift→ and lift∀ to turn an expression 𝑒 of type ∀𝛼.𝜎1 → ∃▽𝜏 (𝛽).𝜎2 into one of type
∃▽𝜆𝛼.𝜏 (𝛽 ′).∀𝛼.𝜎1 → 𝜎2

[
𝛽 ↦→ 𝛽 ′ 𝛼

]
, which is the key transformation for lifting existentials out of

applicative functor bodies. This operator is defined from lift
∀𝑝→
𝑞 𝑒 where 𝑝 and 𝑞 represent the size

of 𝛼 and 𝛽6, which is it itself inductively defined as follows:

lift
∀𝑝→
𝑞+1 𝑒 ≜ repack

▽ ⟨𝛼, 𝑥⟩ = lift
∀𝑝→ 𝑒 in lift

∀𝑝→
𝑞 𝑥 lift

∀𝑝+1
𝑒 ≜ lift

∀ (Λ𝛼. lift∀𝑝

(𝑒 𝛼))

lift
∀𝑝→ 𝑒 ≜ lift

∀𝑝

(lift→ 𝑒) lift
∀𝑝→
0 𝑒 ≜ 𝑒 lift

∀0
𝑒 ≜ 𝑒 lift

∗ 𝑒 ≜ lift
∀𝑝→
𝑞 𝑒

5As above _ stands for kinds or types that are left implicit as they can be straightforwardly inferred from other arguments.
We also extend transparent existentials with sequences of abstractions as we did for opaque existentials.
6𝑝 and 𝑞 are left implicit as they can be determined from the type of the argument 𝑒

, Vol. 1, No. 1, Article . Publication date: March 2023.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

5.6 Elaboration judgments
As for the canonical system, the elaboration relies on a typing judgment for signatures and modules,
and a subtyping judgment. However, as canonical signatures are already F𝜔 types, we can reuse the
canonical typing judgment (easily modified to use implicit kinds). Specifically, canonical signatures
do not mention transparent existential types, and neither do typing contexts. This is a key observa-
tion: transparent existential types may only appear in types of module expressions. This means that
values of such types are never bound to a variable (during elaboration), which would otherwise
force them to appear in the typing context. Instead, transparent existential are always lifted to the
top of the expression (using the three lift operations). We have the two following judgments:

Subtyping Γ
elab⊢ C ≺ C ′⇝ 𝑓 extends canonical subtyping to return an explicit coercion function 𝑓 .

The judgment is also defined for declarations Γ elab⊢ D ≺ D ′⇝ 𝑓 . Interestingly, as signatures
do not contain transparent existential types, subtyping between signatures is (a subcase of)
standard subtyping in F

𝜔 . As they are similar to canonical subtyping, we left the rules in §E.1.
The judgments have the following property regarding F

𝜔 typing:

Γ
elab⊢ C ≺ C ′⇝ 𝑓 =⇒ Γ

𝐹𝜔⊢ 𝑓 : C → C ′ Γ
elab⊢ D ≺ D ′⇝ 𝑓 =⇒ Γ

𝐹𝜔⊢ 𝑓 : {D } →
{
D ′}

To factor notations for the typing judgment, we introduce the meta-variable 𝜗 that stands for
either the generative mode ▼ or the applicative mode ▽𝜏 together with a witness type 𝜏 . We write
mode(𝜗) (resp. mode(𝜗)) for the mode of 𝜗 (resp. the homogeneous sequence 𝜗), which is either ▽
or ▼. When a mode is expected without a witness type, we may leave the projection implicit and
just write 𝜗 instead of mode(𝜗).
Typing Γ

elab⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 extends canonical typing with the elaborated module term 𝑒 . The
judgment is also defined for bindings Γ elab⊢𝐴 B : ∃𝜗𝛼.D⇝𝑒 . The properties of the two judgments
are detailed below.

Theorem 5.1 (Soundness). When typing a module, the elaborated module term is well typed
regarding F𝜔 typing, and the source module term is well typed regarding canonical typing.

Γ
elab⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 =⇒ Γ

𝐹𝜔⊢ 𝑒 : ∃𝜗𝛼.C ∧ Γ
can⊢ M : ∃𝜗𝛼.C

Γ
elab⊢ B : ∃𝜗𝛼.D ⇝ 𝑒 =⇒ Γ

𝐹𝜔⊢ 𝑒 : ∃𝜗𝛼. {D } ∧ Γ
can⊢ M : ∃𝜗𝛼.D

(1)

Theorem 5.2 (Completeness). Well-typed canonical terms can always be elaborated, to either
opaque or transparent existentials (and similarly for bindings):

Γ
can⊢ M : ∃♦𝛼.C =⇒ ∃𝑒, 𝜗, Γ elab⊢ M : ∃𝜗𝛼.C ⇝ 𝑒 ∧ mode(𝜗) = ♦

Γ
can⊢ B : ∃♦𝛼.D =⇒ ∃𝑒, 𝜗, Γ elab⊢ B : ∃𝜗𝛼.D ⇝ 𝑒 ∧ mode(𝜗) = ♦

(2)

Proof Sketch. Soundness is obtained via induction on the typing rules. Completeness can be
easily established as the elaboration rules mimic the canonical typing rules with no additional
constraints on the premises, except for transparent existentials. However, these only appear on the
type of elaborated modules as a positive information, which is never restrictive. In particular, when
a transparent existential type is used, it is always abstractly and its abstract type variable is pushed
in the context after dropping the witness type, exactly as an opaque existential type, thus exactly
as the canonical system does. □

5.7 Elaborated typing rules
The full set of typing rules for expressions is given in appendix §E.2. Below, we only present an
except of the most significant rules. Contrary to canonical typing, elaborated typing does not
feature a typing mode, as it can be read directly in the type.

, Vol. 1, No. 1, Article . Publication date: March 2023.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Fulfilling OCaml modules with transparent existentials 23

Elaboration of structures. The key rule for structures is the sequence rule that combines bindings.
It concisely writes as follows for generative and applicative modes:
E-TypGen-Seq

Γ
elab⊢𝐴 B : ∃▼𝛼1 .D ⇝ 𝑒1 𝐼1 = dom(B)

Γ, 𝛼1, 𝐴.𝐼1 : D
elab⊢𝐴 B : ∃▼𝛼2 .D ⇝ 𝑒2

Γ
elab⊢𝐴 B, B : ∃▼𝛼1𝛼2 . (D ,D)⇝

lift
▼ ⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴.𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

E-TypApp-Seq

Γ
elab⊢𝐴 B : ∃▽𝜏 1 (𝛼1).D ⇝ 𝑒1 𝐼1 = dom(B)

Γ, 𝛼1, 𝐴.𝐼1 : D
elab⊢𝐴 B : ∃▽𝜏 2 (𝛼2).D ⇝ 𝑒2

Γ
elab⊢𝐴 B; B : ∃▽𝜏 1𝜏 2 (𝛼1𝛼2) . (D ,D)⇝

lift
▽ ⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴.𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

We concatenates the single field of 𝑒1 with the fields of 𝑒2 after lifting out their existential bindings.
In both cases, the field of 𝑒1 is made visible in 𝑒2, as well as the existentials in front of 𝑒1—but
abstractly. Notice that the generative and applicative versions of the rules can be factored as follows:

Γ
elab⊢𝐴 B : ∃𝜗1𝛼1 .D ⇝ 𝑒1 Γ, 𝛼1, 𝐴.𝐼1 : D

elab⊢𝐴 B : ∃𝜗2𝛼2 .D ⇝ 𝑒2

Γ
elab⊢𝐴 B, B : ∃𝜗1𝜗2𝛼1𝛼2 . (D ,D)⇝ lift

♦ ⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴.𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩
(E-Typ-Seq)

Since identity signatures are actually record types of the form {id : 𝜏,Val : R }, structures are
elaborated to a two-field record containing a type field for the identity ⟨⟨𝜏⟩⟩ and a value of type R .
The identity field is there solely for typing purposes and could be erased at runtime. To introduce a
fresh identity encoded as a unit type7, we use a constant 𝑒♦

id
defined as:

𝑒▽
id
≜ pack ⟨⟨()⟩⟩ as ∃▽() (𝛼0) . ⟨⟨𝛼0⟩⟩ 𝑒▼

id
≜ pack ⟨𝛼0, ⟨⟨()⟩⟩⟩ as ∃▼𝛼0 . ⟨⟨𝛼0⟩⟩

Using this constant, we have a unified rule for typing structures in both modes:

Γ
elab⊢𝐴 B : ∃𝜗𝛼.D ⇝ 𝑒 𝐴 ∉ Γ ♦ = mode(𝜗)

Γ
elab⊢ struct𝐴 B end : ∃𝜗0𝜗𝛼0𝛼. (𝛼0, sig D end)⇝ lift

♦ {
id = 𝑒♦

id
,Val = 𝑒

} (E-Typ-Mod-Struct)

Modes and sealing. By default, typing is done in applicative mode, hence inferring transparent
existentials, but it can be turned into generative mode when required, using Rule E-Typ-Mode. Since
it is defined on paths, signature ascription is applicative by default (rule E-Typ-Sig-App).

E-Typ-Mode
Γ

elab⊢ M : ∃▽𝜏 (𝛼).C ⇝ 𝑒

Γ
elab⊢ M : ∃▼𝛼.C ⇝ seal 𝑒

E-Typ-Sig-App
Γ

elab⊢ S : 𝜆𝛼.C Γ
elab⊢ 𝑃 : C ′⇝ 𝑒 Γ

elab⊢ C ′ ≺ C [𝛼 ↦→ 𝜏]⇝ 𝑓

Γ
elab⊢ (𝑃 : S) : ∃▽𝜏 (𝛼) .C ⇝ pack 𝑓 𝑒 as ∃▽𝜏 (𝛼).C

Elaboration of functors. At first, the elaboration of functors seems to differ more significantly in
the applicative and generative cases:

Γ
elab⊢ S : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎

elab⊢ M : ∃▽𝜏 (𝛽).C ⇝ 𝑒

Γ
elab⊢ (𝑌 : S) → M : ∃▽(),𝜆𝛼.𝜏 (𝛼0, 𝛽

′).
(
𝛼0,∀𝛼.C𝑎 → C

[
𝛽 ↦→ 𝛽′ (𝛼)

])
⇝ lift

▽ {
id = 𝑒▽

id
,Val = lift

∗ (Λ𝛼.𝜆(𝑌 : C𝑎).𝑒)
} (E-TypApp-AppFct)

Γ
elab⊢ M : ∃▼𝛼.C ⇝ 𝑒

Γ
elab⊢ () → M : ∃▽() (𝛼0) . (𝛼, () → C)⇝ lift

▽ {
id = 𝑒▽

id
,Val = 𝜆(_ : ()).𝑒

} (E-TypApp-Mod-GenFct)

The body of an applicative functor is elaborated to transparent existentials which are lifted through
𝜆’s, while in the generative case, the existentials are opaque and must not (and cannot) be lifted.
However, this difference is largely artificial as a result of using a special argument of type () to
enforce generativity. Otherwise, the main difference lies in enforcing the body of the functor to be
typed in generative mode, hence to be an opaque existential type. Indeed, since lift∗ is neutral on
7We could introduce a special kind for identities, as they are never used in place of normal types.

, Vol. 1, No. 1, Article . Publication date: March 2023.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

terms that do not have transparent existential types, the elaboration of the generative case could
also be written lift

▽
{
id = 𝑒▽

id
,Val = lift

∗ 𝜆(_ : ()) .𝑒
}
: the two cases are only differing by the modes

of elaboration of their bodies (since the lifting modes just adapts to the type of the argument).

Summary. The introduction of transparent existential types makes the treatment of applicative
and generative functors much closer to one another: existentials types are introduced transparently
when assembling components of modules and only turned into opaque ones by need when hitting
a generative component. Then, neither functors not applications of functors need to be aware of
the mode. Functors move transparent existential types in front of the functors, leaving opaque
ones in the body. Functor applications need not even be aware of existential types and are just a
standard application in F

𝜔 . This considerably simplifies the treatment of applicative functors.

6 RELATEDWORKS
The literature regarding ML-modules is both rich and varied. The link between abstract types in
ML-module systems and existential types in F

𝜔 was initially explored by Mitchell and Plotkin
[10]. This vision was opposed by MacQueen [8] who considered existential types to be too weak
and proposed using a restriction of dependent types (strong sums) to describe module systems.
Further work on phase separation by Harper et al. [4] supported the idea that dependent types
may actually be too powerful (thus, unnecessarily complex) for module systems. SML modules
were first described by Harper et al. [4]. Two approaches for the formalization and improvement
of abstract types in SML were later concomitantly described by Leroy [5] using manifest types
and Harper and Lillibridge [3] via an adapted F𝜔 with translucent sums. The genesis of the OCaml
module system was specified by Leroy [5, 7] with, later, an extension to applicative functors [6].
The key idea for a simplified link between modules and F

𝜔 , developed by Russo [16], was to
use existential types to interpret signatures. Following this link, Dreyer [2] proposed to model
generativity using stamps instead of existential types, while Montagu and Rémy [12] proposed a
similar, but logically-based approach, through the concept of open existential types.
Pushing Russo’s idea further, an important step forward was achieved by Rossberg et al. [15]

with the elaboration of a large subset of the SML into F𝜔 , dubbed the F-ing approach. F-ing gives a
syntactic translation from SML syntax directly into F

𝜔 , thus providing a semantic by elaboration.
F-ing is safe by construction8, inheriting the property from F

𝜔 , but requires the programmer to
think in terms of the elaboration, which is quite involved in some cases, and only sees the elaborated
types instead of the usual signatures. This makes direct reasoning on the source program difficult,
if at all feasible for the programmer. By contrast, our canonical system gives a specification directly
on the source terms, without having to think in terms of encoding, but leveraging the insights
provided by the elaboration to F

𝜔 . We also give a direct specification using path-based source
signatures, as expected by OCaml programmers, and thus provide the currently most complete
source-level specification of OCaml modules.

Moving one step further, Rossberg [14] achieved a unification of the core and module languages
(thus, unstratified), called 1ML, using F

𝜔 as the underlying programming language and seeing
module constructs as syntactic sugar. This is appealing, even though the prototype implementation
only covered the generative case: the applicative case might have been unusable in practice, due to
a priori extrusion of quantifiers over the whole context. Hopefully, this could be fixed by applying
our a posteriori lifting of transparent existentials types technique to 1ML.

More recently, Crary [1] used involved focusing techniques to solve signature avoidance in the
singleton-type approach (for SML modules) in a manner that turns out to have many similarities
8Besides, their work has also been mechanized in Coq for the generative case. A Coq formalization of our approach,
including the applicative case, would be welcomed. It is left for future work.

, Vol. 1, No. 1, Article . Publication date: March 2023.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Fulfilling OCaml modules with transparent existentials 25

with F-ing. Our work provides complementary information on the understanding of signature
avoidance, not on its origin nor how to avoid it, which was already well-understood in F-ing, but
on the difficulties and the principled way to solve it in the path-based approach of OCaml.

7 CONCLUSION AND FUTUREWORKS
In this article, we have introduced and formalized the canonical system, a middle point between the
source path-based module system used in OCaml and F

𝜔 . Using this system, we first shone a new
light on the ad-hoc techniques of a source-only presentation and provided a detailed description of
the solvable and unsolvable cases of signature avoidance. Second, we gave an improved elaboration
of modules into F𝜔 , using the new notion of transparent existentials to treat applicative functors in
almost the same simple way as generative functors. There remains questions to further explore.
One immediate application of our work is to use canonical signatures as intermediate typing

representation for OCaml. For this purpose, we first need to maintain module type names from
the source. We have avoided this difficulty by inlining all module types, but a real implementation
will need strategies to keep them, which should preferably also be taken into account in the
formalization. We also need to support more features of the OCaml module system. First-class
modules, with-constraints, private types, etc. should not raise any difficulty. However, recursive
modules and especially abstract signatures are more challenging and may not quite fit in F

𝜔 .
Canonical signatures are understood as F𝜔 -types, and are thus considered up to F𝜔 notion of type-

equivalence, which does not take into account type isomorphisms that would hold in F
𝜔 , or even

some additional type-isomorphisms that would hold in a restricted subset of F𝜔 -types that would
suffice to encode signatures. Hence, signatures keep irrelevant information distinguishing some
signatures that could otherwise be identified, which in turn prevents some signature transformations
during anchoring. For instance, ∃▼𝜑, 𝛼 .C [𝜑 𝛼] (where 𝛼 and 𝜑 are free in the one-hole signature
context C) is isomorphic, but not equivalent, to ∃▼𝛽.C [𝛽]. When 𝜑 appears in C , this is no more an
isomorphism, but we could still wish to see them as isomorphic as we will never be able to observe
the difference in the sublanguage of expressions encoding identities. Characterizing all (or a just a
subject of) those transformations and how to exploit them is left for future work.
Currently, we have a dilemma: we can present inferred signature to users in the source syntax

at the cost of dealing with the signature avoidance problem and confusing explanations on how
to rewrite their own code accordingly. Alternatively, canonical signatures eliminate this artificial
problem altogether but depart from the path-based source notation that has proved user-friendly
in many cases. Giving the user access to canonical signatures would resolve the mismatch between
the reachable and expressible spaces of Figure 2. However, without restrictions on the signatures
that the user can write, we believe that subtyping becomes undecidable. Finding a set of good sense
restrictions to maintain decidability, as well as mixing the path-based and canonical signatures
constitutes an interesting research and engineering topic.
The introduction of transparent existential types makes the treatment of applicative and gen-

erative functors much simpler: transparent existentials are always used by default (applicative
mode) when assembling components and only turned into opaque existentials when necessary
(generative mode). Functors are then independent of the mode, just leaving opaque existential
in their body and moving transparent ones in front of the functors. Applications of functors are
also independent of the mode. This considerably simplifies the treatment of applicative functors
which should also benefit to the appealing approach of 1ML. While the goal of 1ML is to remove
the stratification between core and module layers, and directly program modules in F

𝜔 , we may
explore another path, extending F𝜔 with minimalist constructs, typically for dealing with primitive
lifting of existentials, so that we may program with modules in this light extension of F𝜔 .

, Vol. 1, No. 1, Article . Publication date: March 2023.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

REFERENCES
[1] K. Crary. A focused solution to the avoidance problem. Journal of Functional Programming, 30:e24, 2020. ISSN

0956-7968, 1469-7653. doi: 10.1017/S0956796820000222. URL https://www.cambridge.org/core/product/identifier/
S0956796820000222/type/journal_article.

[2] D. Dreyer. Recursive type generativity. Journal of Functional Programming, 17(4-5):433–471, 2007. doi: 10.1017/
S0956796807006429.

[3] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with sharing. In Proceedings of
the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’94, page 123–137, New
York, NY, USA, 1994. Association for Computing Machinery. ISBN 0897916360. doi: 10.1145/174675.176927. URL
https://doi.org/10.1145/174675.176927.

[4] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase distinction. In Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90, page 341–354, New
York, NY, USA, 1989. Association for Computing Machinery. ISBN 0897913434. doi: 10.1145/96709.96744. URL
https://doi.org/10.1145/96709.96744.

[5] X. Leroy. Manifest types, modules, and separate compilation. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, page 109–122, New York, NY, USA, 1994. Association
for Computing Machinery. ISBN 0897916360. doi: 10.1145/174675.176926. URL https://doi.org/10.1145/174675.176926.

[6] X. Leroy. Applicative functors and fully transparent higher-order modules. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages - POPL ’95, pages 142–153, San Francisco, California,
United States, 1995. ACM Press. ISBN 978-0-89791-692-9. doi: 10.1145/199448.199476. URL http://portal.acm.org/
citation.cfm?doid=199448.199476.

[7] X. Leroy. A modular module system. J. Funct. Program., 10(3):269–303, 2000. URL http://journals.cambridge.org/
action/displayAbstract?aid=54525.

[8] D. B. MacQueen. Using Dependent Types to Express Modular Structure, page 277–286. Association for Computing
Machinery, New York, NY, USA, 1986. ISBN 9781450373470. URL https://doi.org/10.1145/512644.512670.

[9] A. Madhavapeddy, R. Mortier, C. Rotsos, D. J. Scott, B. Singh, T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft.
Unikernels: library operating systems for the cloud. In V. Sarkar and R. Bodík, editors, Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, pages 461–472.
ACM, 2013. doi: 10.1145/2451116.2451167. URL https://doi.org/10.1145/2451116.2451167.

[10] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’85, page 37–51, New York, NY, USA, 1985. Association for
Computing Machinery. ISBN 0897911474. doi: 10.1145/318593.318606. URL https://doi.org/10.1145/318593.318606.

[11] B. Montagu. Programming with first-class modules in a core language with subtyping, singleton kinds and open existential
types. (Programmer avec des modules de première classe dans un langage noyau pourvu de sous-typage, sortes singletons
et types existentiels ouverts). PhD Thesis, École Polytechnique, Palaiseau, France, 2010. URL https://tel.archives-
ouvertes.fr/tel-00550331.

[12] B. Montagu and D. Rémy. Modeling Abstract Types in Modules with Open Existential Types. In Proceedings of the
36th ACM Symposium on Principles of Programming Languages (POPL’09), pages 354–365, Savannah, GA, USA, Jan.
2009. ISBN 978-1-60558-379-2. doi: http://doi.acm.org/10.1145/1480881.1480926.

[13] G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Perston, and D. Scott. Programming
unikernels in the large via functor driven development, 2019.

[14] A. Rossberg. 1ML - Core and modules united. J. Funct. Program., 28:e22, 2018. doi: 10.1017/S0956796818000205. URL
https://doi.org/10.1017/S0956796818000205.

[15] A. Rossberg, C. Russo, and D. Dreyer. F-ing modules. Journal of Functional Programming, 24(5):529–607, Sept. 2014.
ISSN 0956-7968, 1469-7653. doi: 10.1017/S0956796814000264. URL https://www.cambridge.org/core/product/identifier/
S0956796814000264/type/journal_article.

[16] C. V. Russo. Types for modules. Electronic Notes in Theoretical Computer Science, 60:3–421, 2004. ISSN 1571-
0661. doi: https://doi.org/10.1016/S1571-0661(05)82621-0. URL https://www.sciencedirect.com/science/article/pii/
S1571066105826210.

[17] C.-C. Shan. Higher-order modules in system 𝑓 𝜔 and haskell. 01 2004.
[18] TyXML. TyXML. http://ocsigen.org/tyxml/, 2017.
[19] L. White, F. Bour, and J. Yallop. Modular implicits. In Proceedings ML Family/OCaml Users and Developers workshops,

ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014., pages 22–63, 2014. doi: 10.4204/EPTCS.198.2. URL
https://doi.org/10.4204/EPTCS.198.2.

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://www.cambridge.org/core/product/identifier/S0956796820000222/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796820000222/type/journal_article
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/174675.176926
http://portal.acm.org/citation.cfm?doid=199448.199476
http://portal.acm.org/citation.cfm?doid=199448.199476
http://journals.cambridge.org/action/displayAbstract?aid=54525
http://journals.cambridge.org/action/displayAbstract?aid=54525
https://doi.org/10.1145/512644.512670
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/318593.318606
https://tel.archives-ouvertes.fr/tel-00550331
https://tel.archives-ouvertes.fr/tel-00550331
https://doi.org/10.1017/S0956796818000205
https://www.cambridge.org/core/product/identifier/S0956796814000264/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796814000264/type/journal_article
https://www.sciencedirect.com/science/article/pii/S1571066105826210
https://www.sciencedirect.com/science/article/pii/S1571066105826210
http://ocsigen.org/tyxml/
https://doi.org/10.4204/EPTCS.198.2

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Fulfilling OCaml modules with transparent existentials 27

APPENDIX
A CANONICAL SYSTEM
A.1 Subtyping

A.1.1 Signature subtyping Γ
can⊢ C < C ′

C-Sub-Sig-Id
Γ

can⊢ R < R ′

Γ
can⊢ (𝜏,R) <

(
𝜏,R ′)

C-Sub-Sig-Struct
D0 ⊆ D Γ

can⊢ D0 < D ′

Γ
can⊢ sig D end < sig D ′

end

C-Sub-Sig-GenFct
Γ, 𝛼

can⊢ C < C ′ [𝛼 ′ ↦→ 𝜏
]

Γ
can⊢ () → ∃▼𝛼.C < () → ∃▼𝛼.C ′

C-Sub-Sig-AppFct
Γ, 𝛼 ′

can⊢ C ′
𝑎 < C𝑎 [𝛼 ↦→ 𝜏] Γ, 𝛼 ′

can⊢ C [𝛼 ↦→ 𝜏] < C ′

Γ
can⊢ ∀𝛼.C𝑎 → C < ∀𝛼 ′ .C ′

𝑎 → C ′

A.1.2 Declaration subtyping Γ
can⊢ D ≺ D ′

C-Sub-Decl-Val
Γ

can⊢ (val 𝑥 : 𝜏) < (val 𝑥 : 𝜏)
C-Sub-Decl-Type
Γ

can⊢ (type 𝑡 = 𝜏) < (type 𝑡 = 𝜏)

C-Sub-Decl-Mod
Γ

can⊢ C < C ′

Γ
can⊢ (module 𝑋 : C) < (module 𝑋 : C ′)

C-Sub-Decl-ModType
Γ, 𝛼

can⊢ C < C ′ Γ, 𝛼
can⊢ C ′ < C

Γ
can⊢ (module type 𝑇 = 𝜆𝛼.C) < (module type 𝑇 = 𝜆𝛼.C ′)

A.2 Typing

A.2.1 Signature typing Γ
can⊢ S : 𝜆𝛼.C .

C-Typ-Sig-ModType
Γ

can⊢ 𝑃 : (_ , sig D end) module type 𝑇 = 𝜆𝛼.C ∈ D

Γ
can⊢ 𝑃 .𝑇 : 𝜆𝛼.C

C-Typ-Sig-LocalModType
(𝐴.𝑇 : module type 𝜆𝛼.C) ∈ Γ

Γ
can⊢ 𝐴.𝑇 : 𝜆𝛼.C

C-Typ-Sig-GenFct
Γ

can⊢ S : 𝜆𝛼.C

Γ
can⊢ () → S : 𝜆𝛼0 .

(
𝛼0, () → ∃▼𝛼.C

)
C-Typ-Sig-AppFct

Γ
can⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎

can⊢ S : 𝜆𝛽.C

Γ
can⊢ (𝑌 : S𝑎) → S : 𝜆𝛼0, 𝛽

′ .
(
𝛼0,∀𝛼.C → C

[
𝛽 ↦→ 𝛽′ (𝛼)

])
C-Typ-Sig-Str

Γ
can⊢𝐴 D : 𝜆𝛼.D 𝐴 ∉ Γ

Γ
can⊢ sig𝐴 D end : 𝜆𝛼0, 𝛼 . (𝛼0, sig D end)

C-Typ-Sig-TrAscr
Γ

can⊢ 𝑃 : C Γ
can⊢ S : 𝜆𝛼.C ′ Γ

can⊢ C < C ′ [𝛼 ↦→ 𝜏]
Γ

can⊢ (= 𝑃 < S) : C ′ [𝛼 ↦→ 𝜏]

, Vol. 1, No. 1, Article . Publication date: March 2023.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

A.2.2 Declaration typing Γ
can⊢𝐴 D : 𝜆𝛼.D .

C-Typ-Decl-Val
Γ

can⊢ u : 𝜏

Γ
can⊢𝐴 (val 𝑥 : u) : (val 𝑥 : 𝜏)

C-Typ-Decl-Type
Γ

can⊢ u : 𝜏

Γ
can⊢𝐴 (type 𝑡 = u) : (type 𝑡 = 𝜏)

C-Typ-Decl-TypeAbs
Γ

can⊢𝐴 (type 𝑡 = 𝐴.𝑡) : 𝜆𝛼. (type 𝑡 = 𝛼)

C-Typ-Decl-Mod
Γ

can⊢ S : 𝜆𝛼.C

Γ
can⊢𝐴 (module 𝑋 : S) : 𝜆𝛼. (module 𝑋 : C)

C-Typ-Decl-ModType
Γ

can⊢ S : 𝜆𝛼.C

Γ
can⊢𝐴 (module type 𝑇 = S) : (module type 𝑇 = 𝜆𝛼.C)

C-Typ-Decl-Empty
Γ

can⊢𝐴 ∅ : ∅

C-Typ-Decl-Seq
Γ

can⊢𝐴 D : 𝜆𝛼1 .D Γ, 𝛼1, 𝐴.𝐼 : D
can⊢𝐴 D : 𝜆𝛼.D

Γ
can⊢𝐴 D, D : 𝜆𝛼1 𝛼.D ,D

A.2.3 Core type checking extension Γ
can⊢ u : 𝜏 .

C-Typ-Type-Path
Γ

can⊢ 𝑃 : sig D end type 𝑡 = 𝜏 ∈ D

Γ
can⊢ 𝑃 .𝑡 : 𝜏

C-Typ-Type-Local
(𝐴.𝑡 : type 𝜏) ∈ Γ

Γ
can⊢ 𝐴.𝑡 : 𝜏

A.2.4 Module typing Γ
can⊢ M : ∃♦𝛼.C .

C-Typ-Mod-Var
(𝑌 : C) ∈ Γ

Γ
can⊢ 𝑌 : C

C-Typ-Mod-Local
(𝐴.𝑋 : module C) ∈ Γ

Γ
can⊢ 𝐴.𝑋 : C

C-Typ-Mod-Struct
Γ

can⊢𝐴 B : ∃♦𝛼.D 𝐴 ∉ Γ

Γ
can⊢ struct𝐴 B end : ∃♦𝛼0, 𝛼 . (𝛼0, sig D end)

C-Typ-Mod-Proj
Γ

can⊢ M : ∃♦𝛼. (_ , sig D end) module 𝑋 : C ∈ D

Γ
can⊢ M.𝑋 : ∃♦𝛼.C

C-Typ-Mod-GenFct
Γ

can⊢ M : ∃♦𝛼.C
Γ

can⊢ () → M : ∃▽𝛼0 .
(
𝛼0, () → ∃▼𝛼.C

)
C-Typ-Mod-AppFct

Γ
can⊢ S𝑎 : 𝜆𝛼.C𝑎 Γ, 𝛼, (𝑌 : C𝑎)

can⊢ M : ∃▽𝛽.C
Γ

can⊢ (𝑌 : S𝑎) → M : ∃▽𝛼0, 𝛽
′ .
(
𝛼0, (∀𝛼.C𝑎 → C)

[
𝛽 ↦→ 𝛽′ (𝛼)

])
C-Typ-Mod-AppGen
Γ

can⊢ 𝑃 :
(
_ , () → ∃▼𝛼.C

)
Γ

can⊢ 𝑃 () : ∃▼𝛼.C

C-Typ-Mod-AppApp
Γ

can⊢ 𝑃 : (_ ,∀𝛼.C𝑎 → C) Γ
can⊢ 𝑃 ′ : C ′ Γ

can⊢ C ′ < C𝑎 [𝛼 ↦→ 𝜏]
Γ

can⊢ 𝑃 (𝑃 ′) : C [𝛼 ↦→ 𝜏]

C-Typ-Mod-Ascr
Γ

can⊢ 𝑃 : C Γ
can⊢ S : 𝜆𝛼.C ′ Γ

can⊢ C < C ′ [𝛼 ↦→ 𝜏]
Γ

can⊢ (𝑃 : S) : ∃▽𝛼.C ′

C-Typ-Mod-Mode
Γ

can⊢ M : ∃▽𝛼.C
Γ

can⊢ M : ∃▼𝛼.C

, Vol. 1, No. 1, Article . Publication date: March 2023.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Fulfilling OCaml modules with transparent existentials 29

A.2.5 Binding typing Γ
can⊢ B : ∃♦𝛼.D .

C-Typ-Bind-Let
Γ

can⊢ ♦ e : 𝜏

Γ
can⊢𝐴 (let 𝑥 = e) : ∃♦ . (val 𝑥 : 𝜏)

C-Typ-Bind-Type
Γ

can⊢ u : 𝜏

Γ
can⊢𝐴 (type 𝑡 = u) : (type 𝑡 = 𝜏)

C-Typ-Bind-Mod
Γ

can⊢ M : ∃♦𝛼.C
Γ

can⊢𝐴 (module 𝑋 = M) : (∃♦𝛼.module 𝑋 : C)

C-Typ-Bind-ModType
Γ

can⊢ S : 𝜆𝛼.C

Γ
can⊢𝐴 (module type 𝑇 = S) : (module type 𝑇 = 𝜆𝛼.C)

C-Typ-Bind-Empty
Γ

can⊢𝐴 ∅ : ∅

C-Typ-Bind-Seq
Γ

can⊢𝐴 B : ∃♦𝛼1 .D Γ, 𝛼1, 𝐴.𝐼 : D
can⊢𝐴 B : ∃♦𝛼.D

Γ
can⊢𝐴 B, B : ∃♦𝛼1, 𝛼 .D ,D

A.2.6 Core expression typing extension Γ
can⊢ ♦ e : 𝜏 .

C-Typ-Type-Path
Γ

can⊢ 𝑃 : sig D end val 𝑥 : 𝜏 ∈ D

Γ
can⊢ ♦ 𝑃 .𝑥 : 𝜏

C-Typ-Type-Local
(𝐴.𝑥 : val 𝜏) ∈ Γ

Γ
can⊢ ♦ 𝐴.𝑥 : 𝜏

B ANCHORING
B.1 Anchoring of environments Γ ↩→ Γsrc : 𝜃Γ

A-Env-Empty
∅ ↩→ ∅ : ∅

A-Env-FctArg

Γ, 𝛼
anch⊢ C ↩

𝑌−→ Γsrc;𝜃Γ
src⊢ S : 𝜃 𝛼 = dom(𝜃)

Γ, 𝛼, (𝑌 : C) ↩→ Γsrc, (𝑌 : S) : 𝜃Γ ⊎ 𝜃

A-Env-Decl

Γ
anch⊢ D ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ D : 𝜃 𝐴.𝐼 ∉ Γ

Γ, (𝐴.𝐼 : D) ↩→ Γsrc, (𝐴.𝐼 : D) : 𝜃Γ ⊎ 𝜃

A-Env-Abs
Γ ↩→ Γsrc : 𝜃Γ
Γ, 𝛼 ↩→ Γsrc : 𝜃Γ

B.2 Signature anchoring Γ
anch⊢ C ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ S : 𝜃

Identity signatures.

A-Sig-Id-Ignore
Γ

anch⊢ R ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 𝜑 ∉ dom(𝜃Γ) Γ = Γ0, 𝜑, Γ1 args(Γ1) = 𝛼

Γ
anch⊢ (𝜑 (𝛼),R) ↩∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 ⊎ (𝜑 ↦→ (×,∅))

A-Sig-Id-Anchor

Γ
anch⊢ R ↩

𝑃−→ Γsrc;𝜃Γ
src⊢ S : 𝜃 𝜑 ∉ dom(𝜃Γ) Γ = Γ0, 𝜑, Γ1 args(Γ1) = 𝛼

Γ
anch⊢ (𝜑 (𝛼),R) ↩𝑃−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 ⊎ (𝜑 ↦→ ((𝑃,R), 𝛼))

A-Sig-Id-TrAsrc

Γ
anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ (𝑃,R ′) Γ

anch⊢ R ↩
𝑃?−−→ Γsrc;𝜃Γ

src⊢ S : ∅ Γ
can⊢ R ′ < R

Γ
anch⊢ (𝜏,R) ↩𝑃?−−→ Γsrc;𝜃Γ

src⊢ (= 𝑃 < S) : ∅

, Vol. 1, No. 1, Article . Publication date: March 2023.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Structural signatures.

A-Sig-FctApp

Γ, 𝛼
anch⊢ C𝑎 ↩

𝑌−→ Γsrc;𝜃Γ
src⊢ S𝑎 : 𝜃𝑎

dom(𝜃𝑎) = 𝛼 Γ, 𝛼, (𝑌 : C𝑎)
anch⊢ C ↩

𝑃 (𝑌)?
−−−−−→ (Γsrc, 𝑌 : S𝑎) ;𝜃Γ ⊎ 𝑌 .𝜃𝑎

src⊢ S : 𝜃

Γ
anch⊢ ∀𝛼.C𝑎 → C ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ (𝑌 : S𝑎) → S : 𝜆𝛼.𝜆(𝑌 : C𝑎) .𝜃

A-Sig-FctGen
Γ, 𝛼

anch⊢ C ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 dom(𝜃) ⊆ 𝛼

Γ
anch⊢ () → ∃▼𝛼.C ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ () → S : ∅

A-Sig-Str

Γ
anch⊢ D ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ D : 𝜃 𝐴 ∉ Γsrc

Γ
anch⊢ sig D end ↩

𝑃?−−→ Γsrc;𝜃Γ
src⊢ sig𝐴 D end : 𝜃 [𝐴 ↦→ 𝑃?]

B.3 Declaration anchoring Γ
anch⊢ D ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ D : 𝜃

A-Decl-Val
Γ

anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ u

Γ
anch⊢ val 𝑥 : 𝜏 ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ (val 𝑥 : u) : ∅

A-Decl-Type
Γ

anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ u

Γ
anch⊢ type 𝑡 = 𝜏 ↩

𝐴−→ Γsrc;𝜃Γ
src⊢type 𝑡 = u : ∅

A-Decl-Anchor
Γ ↩→ Γsrc : 𝜃Γ 𝜑 ∉ dom(𝜃Γ) Γ = Γ0, 𝜑, Γ1 args(Γ1) = 𝛼

Γ
anch⊢ type 𝑡 = 𝜑 (𝛼) ↩𝐴−→ Γsrc;𝜃Γ

src⊢type 𝑡 = 𝐴.𝑡 : (𝜑 ↦→ (𝐴.𝑡, 𝛼))

A-Decl-Mod

Γ
anch⊢ C ↩

𝑋−→ Γsrc;𝜃Γ
src⊢ S : 𝜃

Γ
anch⊢ module 𝑋 : C ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ (module 𝑋 : S) : 𝐴.𝜃

A-Decl-ModType
Γ, 𝛼

anch⊢ C ↩
∅−→ Γsrc;𝜃Γ

src⊢ S : 𝜃 dom(𝜃) = 𝛼

Γ
anch⊢ (module type 𝑇 = 𝜆𝛼.C) ↩𝐴−→ Γsrc;𝜃Γ

src⊢ module type 𝑇 = S : ∅

A-Decl-Empty
Γ ↩→ Γsrc : 𝜃Γ

Γ
anch⊢ ∅ ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ ∅ : ∅

A-Decl-Seq

Γ
anch⊢ D ↩

𝐴−→ Γsrc;𝜃Γ
src⊢ D : 𝜃1 Γ,D

anch⊢ D ↩
𝐴−→ Γsrc, D;𝜃 ⊎ 𝜃1

src⊢ D : 𝜃2

Γ
anch⊢ D ,D ↩→ Γsrc;𝜃Γ ⊢ D, D : 𝜃1 ⊎ 𝜃2

B.4 Anchoring of abstract types Γ
anch⊢ 𝜏 ↩→ Γsrc;𝜃Γ ⊢ u

A-Type-Star
𝜃Γ (𝛼) = (𝑧,∅)

Γ
anch⊢ 𝛼 ↩→ Γsrc;𝜃Γ ⊢ 𝑧

A-Type-TypeApplication
𝜏 = _ :: 𝜌𝑖 , 𝜏𝑖 Γ

anch⊢ 𝜌𝑖 ↩→ Γsrc;𝜃Γ ⊢ (𝑃𝑖 ,R 𝑖) Γ
anch⊢ 𝜃Γ (𝜏) (𝜌𝑖 , 𝜏𝑖) (𝑃𝑖 , (𝜌𝑖 ,R 𝑖)) = (𝑧, 𝜏)

Γ
anch⊢ 𝜑 (𝜏) ↩→ Γsrc;𝜃Γ ⊢ 𝑧

A-Map-apply
Γ

can⊢ C < C𝑎 [𝛼 ↦→ 𝜏] Γ
anch⊢

(
𝜆𝛼 ′ .𝜆(𝑌 ′ : C ′

𝑎).(𝑧0, 𝜏0)
) (
(𝜏 ′, (𝑃 ′,C ′))

)
[𝑌 ↦→ 𝑃] [𝛼 ↦→ 𝜏] = (𝑧, 𝜏1)

Γ
anch⊢

(
𝜆𝛼.𝜆(𝑌 : C𝑎).𝜆𝛼 ′ .𝜆(𝑌 ′ : C ′

𝑎) .(𝑧0, 𝜏0)
) (
(𝜏, (𝑃,C)) (𝜏 ′, (𝑃 ′,C ′))

)
= (𝑧, 𝜏1)

, Vol. 1, No. 1, Article . Publication date: March 2023.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Fulfilling OCaml modules with transparent existentials 31

C SOURCE SYSTEM
C.1 Strengthening

C.1.1 Signature strengthening S/𝑃 ≫ C .

S-Str-Sig-Alias(
= 𝑃 ′ < C

)
/𝑃 ≫

(
= 𝑃 ′ < C

) S-Str-Sig-GenFct
(() → S) /𝑃 ≫ (= 𝑃 < () → S)

S-Str-Sig-AppFct
S/𝑃 (𝑌) ≫ C

((𝑌 : S𝑎) → S) /𝑃 ≫ (= 𝑃 < (𝑌 : S𝑎) → C)

S-Str-Sig-Struct
D[𝐴 ↦→ 𝑃] /𝑃 ≫ D

sig𝐴 D end/𝑃 ≫ (= 𝑃 < sig D end)

C.1.2 Declaration strengthening – D/𝑃 ≫ D′.

S-Str-Decl-Val
(val 𝑥 : u) /𝑃 ≫ val 𝑥 : u

S-Str-Decl-Type
(type 𝑡 = u) /𝑃 ≫ type 𝑡 = u

S-Str-Decl-Mod
S/𝑃 .𝑋 ≫ C

(module 𝑋 : S) /𝑃 ≫ module 𝑋 : C

S-Str-Decl-ModType
(module type 𝑇 = S) /𝑃 ≫ module type 𝑇 = S

C.2 Path typing Γ
src⊢ 𝑃 : C

S-Typ-Path-LocalMod
(𝐴.𝑋 : module C) ∈ Γ

Γ
src⊢ 𝐴.𝑋 : C

S-Typ-Path-Proj
Γ

src⊢ 𝑃 :
(
= 𝑃 ′ < sig D end

)
(module 𝑋 : C) ∈ D

Γ
src⊢ 𝑃 .𝑋 : C

S-Typ-Path-FctArg
(𝑌 : C) ∈ Γ

Γ
src⊢ 𝑌 : C

S-Typ-Path-AppFct
Γ

src⊢ 𝑃𝑓 :
(
= 𝑃 ′

𝑓
< (𝑌 : S) → C

)
Γ

src⊢ 𝑃 :
(
= 𝑃 ′ < R

)
Γ

src⊢ R < S

Γ
src⊢ 𝑃𝑓 (𝑃) :

(
= 𝑃 ′

𝑓
(𝑃 ′) < C

[
𝑌 ↦→ 𝑃 ′

])
C.3 Subtyping
Rules shared between subtyping and abstraction subtyping are written with the symbol ≺.

C.3.1 Signature subtyping Γ
src⊢ S ≺ S′ .

Common rules

S-Sub-Sig-TrAscrAbs
Γ

src⊢ (= 𝑃 < R) ≺ R

S-Sub-Sig-TrAscr
Γ

src⊢ 𝑃 ≺ 𝑃 ′ Γ
src⊢ R ≺ R′

Γ
src⊢ (= 𝑃 < R) ≺

(
= 𝑃 ′ < R′

)
S-Sub-Sig-GenFct

Γ
src⊢ S ≺ S′

Γ
src⊢ () → S ≺ () → S′

S-Sub-Sig-AppFct
Γ

src⊢ S𝑎 ≺ S′𝑎 S′𝑎/𝑌 ≫ C′𝑎 Γ, 𝑌 : C′𝑎
src⊢ S ≺ S′

Γ
src⊢ (𝑌 : S𝑎) → S ≺ (𝑌 : S′𝑎) → S′

General subtyping rule

S-SubGen-Sig-Struct
D0 ⊆ D Γ, 𝐴.D

src⊢𝐴 D0 < D′

Γ
src⊢ sig𝐴 D end < sig𝐴 D′ end

, Vol. 1, No. 1, Article . Publication date: March 2023.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

Abstraction subtyping rule

S-SubAbs-Sig-Struct
Γ, 𝐴.D

src⊢𝐴 D ⊏ D′

Γ
src⊢ sig𝐴 D end ⊏ sig𝐴 D′ end

C.3.2 Declaration subtyping Γ
src⊢𝐴 D ≺ D′ .

S-Sub-Decl-Val
Γ

src⊢ u ≺ u′

Γ
src⊢𝐴 (val 𝑥 : u) ≺ (val 𝑥 : u′)

S-Sub-Decl-Type
Γ

src⊢ u ≺ u′

Γ
src⊢𝐴 (type 𝑡 = u) ≺ (type 𝑡 = u′)

S-Sub-Decl-Mod
Γ

src⊢ S ≺ S′

Γ
src⊢𝐴 (module 𝑋 : S) ≺ (module 𝑋 : S′)

S-Sub-Decl-ModType
Γ

src⊢ S ≺ S′ Γ
src⊢ S′ ≺ S

Γ
src⊢𝐴 (module type 𝑇 = S) ≺ (module type 𝑇 = S′)

C.3.3 Type subtyping Γ
src⊢ u ≺ u′ .

S-Sub-Typ-Eqiv
Γ

src⊢ u : u0 Γ
src⊢ u′ : u0

Γ
src⊢ u ≺ u′

C.3.4 Path subtyping Γ
src⊢ 𝑃 ≺ 𝑃 ′ .

S-Sub-Path
Γ

src⊢ 𝑃 : (= 𝑃0 < R) Γ
src⊢ 𝑃 ′ :

(
= 𝑃0 < R′

)
Γ

src⊢ R ≺ R′

Γ
src⊢ 𝑃 ≺ 𝑃 ′

C.4 Typing

C.4.1 Signature typing Γ
src⊢ S : S′ .

S-Typ-Sig-ModType
Γ

src⊢ 𝑃 : (= _ < sig D end) module type 𝑇 = S ∈ D

Γ
src⊢ 𝑃 .𝑇 : S

S-Typ-Sig-LocalModType
𝐴.𝑇 : module type S ∈ Γ

Γ
src⊢ 𝐴.𝑇 : S

S-Typ-Sig-GenFct
Γ

src⊢ S : S′

Γ
src⊢ () → S : () → S′

S-Typ-Sig-AppFct
Γ

src⊢ S𝑎 : S′𝑎 S′𝑎/𝑌 ≫ C𝑎 Γ, (𝑌 : C𝑎)
src⊢ S : S′

Γ
src⊢ (𝑌 : S𝑎) → S : (𝑌 : S′𝑎) → S′

S-Typ-Sig-Str
Γ

src⊢𝐴 D : D′ 𝐴 ∉ Γ

Γ
src⊢ sig𝐴 D end : sig𝐴 D′ end

S-Typ-Sig-TrAscr
Γ

src⊢ 𝑃 : C Γ
src⊢ S : S′ S′/𝑃 ≫ C′ Γ

src⊢ C ≺ C′

Γ
src⊢ (= 𝑃 < S) : C′

, Vol. 1, No. 1, Article . Publication date: March 2023.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Fulfilling OCaml modules with transparent existentials 33

C.4.2 Declaration typing Γ
src⊢𝐴 D : D′ .

S-Typ-Decl-Val
Γ

src⊢ u : u′

Γ
src⊢𝐴 (val 𝑥 : u) :

(
val 𝑥 : u′

)
S-Typ-Decl-Type

Γ
src⊢ u : u′

Γ
src⊢𝐴 (type 𝑡 = u) :

(
type 𝑡 = u′

)
S-Typ-Decl-TypeAbs
Γ

src⊢𝐴 (type 𝑡 = 𝐴.𝑡) : (type 𝑡 = 𝐴.𝑡)

S-Typ-Decl-Mod
Γ

src⊢ S : S′

Γ
src⊢𝐴 (module 𝑋 : S) :

(
module 𝑋 : S′

) S-Typ-Decl-Empty
Γ

src⊢𝐴 ∅ : ∅

S-Typ-Decl-ModType
Γ

src⊢ S : S′

Γ
src⊢𝐴 (module type 𝑇 = S) :

(
module type 𝑇 = S′

)
S-Typ-Decl-Seq
Γ

src⊢𝐴 D1 : D′1 Γ, 𝐴.𝐼1 : D′1
src⊢𝐴 D : D′

Γ
src⊢𝐴 (D1, D) :

(
D′1, D

′)
C.4.3 Core type checking extension Γ

src⊢ u : u′ .

S-Typ-Type-LocalType
𝐴.𝑡 : type u ∈ Γ

Γ
src⊢ 𝐴.𝑡 : u

S-Typ-Type-QualifiedPathType
Γ

src⊢ 𝑃 :
(
= 𝑃 ′ < sig D end

)
type 𝑡 = u ∈ D

Γ
src⊢ 𝑃 .𝑡 : u

C.4.4 Module typing Γ
src⊢ ♦ M : S .

S-Typ-Mod-Path
Γsrc

src⊢ 𝑃 : C

Γsrc
src⊢ ♦ 𝑃 : C

S-Typ-Mod-Mode
Γsrc

src⊢ ▽ M : S

Γsrc
src⊢ ▼ M : S

S-Typ-Mod-AppFct
Γsrc

src⊢ S𝑎 : S′𝑎 S′𝑎/𝑌 ≫ C𝑎 Γsrc; (𝑌 : C𝑎)
src⊢ ♦ M : S

Γsrc
src⊢ ♦ (𝑌 : S𝑎) → M : (𝑌 : S′𝑎) → S

S-Typ-Mod-GenFct
Γsrc

src⊢ ♦ M : S

Γsrc
src⊢ ♦ () → M : () → S

S-Typ-Mod-AppGen
Γsrc

src⊢ 𝑃 : () → S

gen

src⊢ ♦ Γsrc : 𝑃 ()S

S-Typ-Mod-Struct
Γsrc

src⊢𝐴♦ B : D 𝐴 ∉ Γsrc

Γsrc
src⊢ ♦ struct𝐴 B end : sig𝐴 D end

S-Typ-Mod-Proj
Γsrc

src⊢ ♦ M : S Γsrc
src⊢ S ⊏ sig𝐴 D end module 𝑋 : S′ ∈ D Γsrc

src⊢ S′ : S′

Γsrc
src⊢ ♦ M.𝑋 : S′

S-Typ-Mod-Ascription
Γsrc

src⊢ 𝑃 : C Γsrc
src⊢ S : S′ Γsrc

src⊢ C < S′

Γsrc
src⊢ ♦ (𝑃 : S) : S′

, Vol. 1, No. 1, Article . Publication date: March 2023.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

C.4.5 Binding typing – Γ
src⊢𝐴♦ B : D .

S-Typ-Bind-Let
Γsrc

src⊢ ♦ e : u

Γsrc
src⊢𝐴♦ (let 𝑥 = e) : (val 𝑥 : u)

S-Typ-Bind-Typ-Binde
Γsrc

src⊢ u : u′

Γsrc
src⊢𝐴♦ (type 𝑡 = u) : (type 𝑡 = u′)

S-Typ-Bind-AbsType
Γsrc

src⊢𝐴♦ (type 𝑡 = 𝐴.𝑡) : (type 𝑡 = 𝐴.𝑡)

S-Typ-Bind-Mod
Γsrc

src⊢ ♦ M : S

Γsrc
src⊢𝐴♦ (module 𝑋 = M) : (module 𝑋 : S)

S-Typ-Bind-ModType
Γsrc

src⊢ S : S′

Γsrc
src⊢𝐴♦ (module type 𝑇 = S) : (module type 𝑇 = S′)

S-Typ-Bind-Empty
Γsrc

src⊢𝐴♦ ∅ : ∅

S-Typ-Bind-Seq
Γsrc

src⊢𝐴♦ B : D Γsrc, 𝐴.𝐼 : D src⊢𝐴♦ B : D

Γsrc
src⊢𝐴♦ B, B : D, D

C.4.6 Core expression typing extension Γ
src⊢ ♦ e : u .

S-Typ-Type-LocalType
𝐴.𝑥 : val u ∈ Γ

Γ
src⊢ ♦ 𝐴.𝑥 : u

S-Typ-Type-QualifiedPathType
Γ

src⊢ 𝑃 : (= _ < sig D end) val 𝑥 : u ∈ D

Γ
src⊢ ♦ 𝑃 .𝑥 : u

D F𝜔

D.1 Implementation of transparent existentials

𝜏E ≜

∃▼(E :∀𝜘. 𝜘 � (𝜘 �★) �★).

Pack : ∀𝜘.∀(𝛼 : 𝜘).∀(𝜑 : 𝜘 �★). 𝜑 𝛼 → E 𝜘 𝛼 𝜑

Seal : ∀𝜘.∀(𝛼 : 𝜘).∀(𝜑 : 𝜘 �★).E 𝜘 𝛼 𝜑 → ∃▼(𝛼 : 𝜘). 𝜑 𝛼

Repack : ∀𝜘.∀(𝛼 : 𝜘).∀(𝜑 : 𝜘 �★).E 𝜘 𝛼 𝜑 →
∀(𝜓 : 𝜘 �★). (∀(𝛼 : 𝜘). 𝜑 𝛼 → 𝜓 𝛼) → E 𝜘 𝛼 𝜓

Lift
→ : ∀𝜘.∀(𝛼 : 𝜘).∀(𝜑 : 𝜘 �★).∀(𝛽 :★). (𝛽 → E 𝜘 𝛼 𝜑) → E 𝜘 𝛼 (𝜆(𝛼 : 𝜘). 𝛽 → 𝜑 𝛼)

Lift
∀ : ∀𝜔.∀𝜘.∀(𝛼 :𝜔 � 𝜘).∀(𝜑 :𝜔 � 𝜘 �★).

(∀(𝛽 :𝜔).E 𝜘 (𝛼 𝛽) (𝜑 𝛽)) → E (𝜔 � 𝜘) 𝛼 (𝜆(𝛼 :𝜔 � 𝜘).∀(𝛽 :𝜔). 𝜑 𝛽 (𝛼 𝛽))


𝑒0 ≜

Pack = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).𝑥
Seal = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).pack ⟨𝛼, 𝑥⟩ as ∃▼(𝛼 : 𝜘) . 𝜑 𝛼

Repack = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★). 𝜆(𝑥 : 𝜑 𝛼).
Λ(𝜓 : 𝜘 �★). 𝜆(𝑓 : ∀(𝛼 : 𝜘). 𝜑 𝛼 → 𝜓 𝛼). (𝑓 𝛼 𝑥)

Lift
→ = Λ𝜘.Λ(𝛼 : 𝜘).Λ(𝜑 : 𝜘 �★).Λ(𝛽 :★). 𝜆(𝑓 : (𝛽 → 𝜑 𝛼)) . 𝑓

Lift
∀ = Λ𝜔.Λ𝜘.Λ(𝛼 :𝜔 � 𝜘) .Λ(𝜑 :𝜔 � 𝜘 �★). 𝜆(𝑥 : (∀(𝛽 :𝜔) .𝜑 𝛽 (𝛼 𝛽))).𝑥


𝜏0 ≜ Λ𝜘.𝜆(𝛼 : 𝜘). 𝜆(𝜑 : 𝜘 �★). 𝜑 𝛼

𝑒E ≜ pack ⟨𝜏0, 𝑒0⟩ as 𝜏E

, Vol. 1, No. 1, Article . Publication date: March 2023.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Fulfilling OCaml modules with transparent existentials 35

D.2 𝐹𝜔⊢ Γ – Environment and kind checking

𝐹𝜔⊢ ·
𝐹𝜔⊢ Γ 𝜘 ∉ Γ

𝐹𝜔⊢ Γ, 𝜘

Γ
𝐹𝜔⊢ 𝜅 𝛼 ∉ Γ

𝐹𝜔⊢ Γ, 𝛼 : 𝜅

Γ
𝐹𝜔⊢ 𝜏 :★ 𝑥 ∉ Γ

𝐹𝜔⊢ Γ, 𝑥 : 𝜏

𝐹𝜔⊢ Γ

Γ
𝐹𝜔⊢ ★

𝐹𝜔⊢ Γ 𝜘 ∈ Γ

Γ
𝐹𝜔⊢ 𝜘

Γ
𝐹𝜔⊢ 𝜅 Γ

𝐹𝜔⊢ 𝜅′

Γ
𝐹𝜔⊢ 𝜅 �𝜅′

Γ, 𝜘
𝐹𝜔⊢ 𝜅

Γ
𝐹𝜔⊢ ∀𝜘.𝜅

D.3 Γ
𝐹𝜔⊢ u : 𝜅 – Type checking

Γ
𝐹𝜔⊢ 𝜏1 :★ Γ

𝐹𝜔⊢ 𝜏2 :★

Γ
𝐹𝜔⊢ 𝜏1 → 𝜏2 :★

Γ
𝐹𝜔⊢ 𝜏 :★ 𝐹𝜔⊢ Γ𝑧

Γ
𝐹𝜔⊢ {ℓ𝑙 : 𝜏} :★

𝐹𝜔⊢ Γ 𝛼 : 𝜅 ∈ Γ

Γ
𝐹𝜔⊢ 𝛼 : 𝜅

Γ, 𝛼 : 𝜅 𝐹𝜔⊢ 𝜏 :★

Γ
𝐹𝜔⊢ ∀(𝛼 :𝜅) .𝜏 :★

Γ, 𝜘
𝐹𝜔⊢ 𝜏 :★

Γ
𝐹𝜔⊢ ∀𝜘.𝜏 :★

Γ, 𝛼 : 𝜅 𝐹𝜔⊢ 𝜏 :★

Γ
𝐹𝜔⊢ ∃▼(𝛼 :𝜅) .𝜏 :★

Γ, 𝛼 : 𝜅 𝐹𝜔⊢ 𝜏 : 𝜅′

Γ
𝐹𝜔⊢ Λ(𝛼 :𝜅).𝜏 : 𝜅 → 𝜅′

Γ
𝐹𝜔⊢ 𝜏1 : 𝜅′ → 𝜅 Γ

𝐹𝜔⊢ 𝜏2 : 𝜅′

Γ
𝐹𝜔⊢ 𝜏1 𝜏2 : 𝜅

Γ, 𝜘
𝐹𝜔⊢ 𝜏 : 𝜅

Γ
𝐹𝜔⊢ Λ𝜘.𝜏 : ∀𝜘.𝜅

Γ
𝐹𝜔⊢ 𝜏 : ∀𝜘.𝜅 Γ

𝐹𝜔⊢ 𝜅′

Γ
𝐹𝜔⊢ 𝜏 𝜅′ : 𝜅

[
𝜘 ↦→ 𝜅′

]
D.4 Γ

𝐹𝜔⊢ 𝑒 : u – Term typing

F-Var
𝐹𝜔⊢ Γ 𝑥 : 𝜏 ∈ Γ

Γ
𝐹𝜔⊢ 𝑥 : 𝜏

F-Abs
Γ, 𝑥 : 𝜏 𝐹𝜔⊢ 𝑒 : 𝜏 ′

Γ
𝐹𝜔⊢ 𝜆(𝑥 : 𝜏).𝑒 : 𝜏 → 𝜏 ′

F-App
Γ

𝐹𝜔⊢ 𝑒1 : 𝜏 ′ → 𝜏 Γ
𝐹𝜔⊢ 𝑒2 : 𝜏 ′

Γ
𝐹𝜔⊢ 𝑒1 𝑒2 : 𝜏

F-Record

Γ
𝐹𝜔⊢ 𝑒 : 𝜏 #(ℓ)

Γ
𝐹𝜔⊢ {ℓ = 𝑒} : {ℓ : 𝜏}

F-Proj

Γ
𝐹𝜔⊢ 𝑒 :

{
ℓ : 𝜏, ℓ′ : 𝜏 ′

}
Γ

𝐹𝜔⊢ 𝑒.ℓ : 𝜏

F-Append
Γ

𝐹𝜔⊢ 𝑒1 : {ℓ1 : 𝜏1} Γ
𝐹𝜔⊢ 𝑒2 : {ℓ2 : 𝜏2} ℓ1 # ℓ2

Γ
𝐹𝜔⊢ 𝑒1 @ 𝑒2 : {ℓ1 : 𝜏1 .ℓ2 : 𝜏2}

F-Tapp
Γ

𝐹𝜔⊢ 𝑒 : ∀(𝛼 :𝜅) .𝜏 ′ Γ
𝐹𝜔⊢ 𝜏 : 𝜅

Γ
𝐹𝜔⊢ 𝑒 𝜏 : 𝜏 ′ [𝜏 ↦→ 𝛼]

F-Kapp
Γ

𝐹𝜔⊢ 𝑒 : ∀𝜘.𝜏 Γ
𝐹𝜔⊢ 𝜅

Γ
𝐹𝜔⊢ 𝑒 𝜅 : 𝜏 [𝜘 ↦→ 𝜅]

F-Tabs
Γ, 𝛼 : 𝜅 𝐹𝜔⊢ 𝑒 : 𝜏

Γ
𝐹𝜔⊢ 𝜆(𝛼 :𝜅) .𝑒 : ∀(𝛼 :𝜅) .𝜏

F-Kabs
Γ, 𝜘

𝐹𝜔⊢ 𝑒 : 𝜏

Γ
𝐹𝜔⊢ Λ𝜘.𝑒 : ∀𝜘.𝜏

F-Pack
Γ

𝐹𝜔⊢ 𝜏 : 𝜅
Γ

𝐹𝜔⊢ 𝑒 : 𝜏 ′ [𝜏 ↦→ 𝛼] Γ
𝐹𝜔⊢ ∃▼(𝛼 :𝜅) .𝜏 ′ :★

Γ
𝐹𝜔⊢ pack ⟨𝜏, 𝑒⟩ as ∃▼𝛼.𝜏 ′ : ∃▼(𝛼 :𝜅).𝜏 ′

F-Unpack
Γ

𝐹𝜔⊢ 𝑒1 : ∃▼(𝛼 :𝜅).𝜏 Γ, 𝛼 :𝜅, 𝑥 : 𝜏 𝐹𝜔⊢ 𝑒2 : 𝜎 Γ
𝐹𝜔⊢ 𝜎 :★

Γ
𝐹𝜔⊢ unpack ⟨𝛼, 𝑥⟩ = 𝑒1 in 𝑒2 : 𝜎

, Vol. 1, No. 1, Article . Publication date: March 2023.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

D.5 Transparent existentials

F-Hide
Γ

𝐹𝜔⊢ ∃▽𝜏 (𝛼 :𝜅) .𝜎 :★ Γ
𝐹𝜔⊢ 𝑒 : 𝜎 [𝛼 ↦→ 𝜏]

Γ
𝐹𝜔⊢ pack

𝜅 𝛼 as ∃▽𝜎 (𝜏).𝑒 : ∃▽𝜏 (𝛼 :𝜅) .𝜎

F-Seal
Γ

𝐹𝜔⊢ 𝑒 : ∃▽𝜏 (𝛼 :𝜅) .𝜎

Γ
𝐹𝜔⊢ seal 𝑒 : ∃▼(𝛼 :𝜅) .𝜏 ′

F-Hidden
Γ

𝐹𝜔⊢ 𝑒1 : ∃▽𝜏 (𝛼 :𝜅).𝜎 Γ, 𝛼 :𝜅, 𝑥 : 𝜏 𝐹𝜔⊢ 𝑒2 : 𝜎′

Γ
𝐹𝜔⊢ repack

▽ ⟨𝛼, 𝑥⟩ = 𝜏 in 𝑒1𝑒2 : ∃▼(𝛼 :𝜅) .𝜎′

F-LiftArr
Γ

𝐹𝜔⊢ 𝑒 : 𝜎1 → ∃▽𝜏 (𝛼 :𝜅) .𝜎2

Γ
𝐹𝜔⊢ lift

→ 𝑒 : ∃▽𝜏 (𝛼 :𝜅).𝜎1 → 𝜎2

F-LiftAll
Γ

𝐹𝜔⊢ 𝑒 : Λ(𝛽 :𝜅′) .∃▽𝜏 (𝛼 :𝜅) .𝜎

Γ
𝐹𝜔⊢ lift

∀ 𝑒 : ∃▽𝜆 (𝛽 :𝜅′) .𝜏 (𝛼 ′ :𝜅′ → 𝜅) .∀(𝛽 :𝜅′) .𝜎
[
𝛼 ↦→ 𝛼 ′ 𝛽

]
E ELABORATION RULES
E.1 Subtyping

E.1.1 Signature subtyping Γ
elab⊢ C ≺ C ′⇝ 𝑓

E-Sub-Sig-Id
Γ

elab⊢ R ≺ R ′⇝ 𝑓

Γ
elab⊢ (𝜏,R) ≺

(
𝜏,R ′)⇝ 𝜆𝑥 . {id = 𝑥 .id,Val = 𝑓 (𝑥 .Val)}

E-Sub-Sig-Struct
D0 ⊆ D Γ

elab⊢ D0 ≺ D ′⇝ 𝑓 𝐼 ′ = dom(D ′)

Γ
elab⊢ sig D end ≺ sig D ′

end⇝ 𝜆𝑥. {ℓ𝐼 ′ = 𝑓 𝑥 .ℓ𝐼 ′ }

E-Sub-Sig-GenFct
Γ, 𝛼

elab⊢ C ≺ C ′ [𝛼 ′ ↦→ 𝜏
]
⇝ 𝑓

Γ
elab⊢ () → ∃▼𝛼.C ≺ () → ∃▼𝛼 ′ .C ′⇝ 𝜆𝑥 .𝜆_ .unpack ⟨𝛼,𝑦⟩ = 𝑥 () in pack ⟨𝜏, 𝑓 𝑦⟩ as ∃▼𝛼 ′ .C ′

E-Sub-Sig-AppFct
Γ, 𝛼 ′

elab⊢ C ′
𝑎 ≺ C𝑎 [𝛼 ↦→ 𝜏]⇝ 𝑓 Γ, 𝛼 ′

elab⊢ R [𝛼 ↦→ 𝜏] ≺ R ′⇝ 𝑔

Γ
elab⊢ ∀𝛼.C𝑎 → R ≺ ∀𝛼 ′ .C ′

𝑎 → R ′⇝ 𝜆𝑥.Λ𝛼 ′ . 𝜆𝑦. 𝑔(𝑥 𝜏 (𝑓 𝑦))

E.1.2 Declaration subtyping Γ
elab⊢ D ≺ D ′⇝ 𝑓

E-Sub-Decl-Val
Γ

elab⊢ (val 𝑥 : 𝜏) ≺ (val 𝑥 : 𝜏)⇝ 𝜆𝑥.𝑥

E-Sub-Decl-Type
Γ

elab⊢ (type 𝑡 = 𝜏) ≺ (type 𝑡 = 𝜏)⇝ 𝜆𝑥 .𝑥

E-Sub-Decl-Mod
Γ

elab⊢ C ≺ C ′⇝ 𝑓

Γ
elab⊢ (module 𝑋 : C) ≺ (module 𝑋 : C ′)⇝ 𝑓

E-Sub-Decl-ModType
Γ, 𝛼

elab⊢ C ≺ C ′⇝ 𝑓 Γ, 𝛼
elab⊢ C ′ ≺ C ⇝ 𝑔

Γ
elab⊢ (module type 𝑇 = 𝜆𝛼.C) ≺ (module type 𝑇 = 𝜆𝛼.C ′)⇝ 𝜆𝑥 .𝑥

, Vol. 1, No. 1, Article . Publication date: March 2023.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Fulfilling OCaml modules with transparent existentials 37

E.2 Typing

E.2.1 Module typing Γ
elab⊢ M : ∃▼𝜗.C ⇝ 𝑒 .

E-Typ-Mod-Arg
(𝑌 : C) ∈ Γ

Γ
elab⊢ 𝑌 : C ⇝ 𝑌

E-Typ-Mod-Var
(𝐴.𝑋 : module C) ∈ Γ

Γ
elab⊢ 𝐴.𝑋 : C ⇝𝐴.𝑋

E-Typ-AppFct
Γ

elab⊢ S : 𝜆𝛼.C𝑎 Γ, 𝛼, 𝑌 : C𝑎
elab⊢ M : ∃▽𝜏 (𝛽).C ⇝ 𝑒

Γ
elab⊢ (𝑌 : S) → M : ∃▽(),𝜆𝛼.𝜏 (𝛼0, 𝛽

′).
(
𝛼0,∀𝛼.C𝑎 → C

[
𝛽 ↦→ 𝛽′ (𝛼)

])
⇝ lift

▽ {
id = 𝑒▽

id
,Val = lift

∗ (Λ𝛼.𝜆(𝑌 : C𝑎).𝑒)
}

E-Typ-Mod-AppApp
Γ

elab⊢ 𝑃 : (_ ,∀𝛼.C𝑎 → C)⇝ 𝑒 Γ
elab⊢ 𝑃 ′ : C ′⇝ 𝑒′ Γ

elab⊢ C ′ ≺ C𝑎 [𝛼 ↦→ 𝜏]⇝ 𝑓

Γ
elab⊢ 𝑃 (𝑃 ′) : C [𝛼 ↦→ 𝜏]⇝ (𝑒.Val) 𝜏 (𝑓 𝑒′)

E-Typ-Mod-GenFct
Γ

elab⊢ M : ∃▼𝛼.C ⇝ 𝑒

Γ
elab⊢ () → M : ∃▽() (𝛼0). (𝛼0, () → C)
⇝ lift

▽ {
id = 𝑒▽

id
,Val = 𝜆(_ : ()).𝑒

}
E-Typ-Mod-GenApp
Γ

elab⊢ 𝑃 :
(
_ , () → ∃▼𝛼.C

)
⇝ 𝑒

Γ
elab⊢ 𝑃 () : ∃▼𝛼.C ⇝ 𝑒.Val()

E-Typ-Mod-Ascr
Γ

elab⊢ S : 𝜆𝛼.C Γ
elab⊢ 𝑃 : C ′⇝ 𝑒 Γ

elab⊢ C ′ ≺ C [𝛼 ↦→ 𝜏]⇝ 𝑓

Γ
elab⊢ (𝑃 : S) : ∃▽𝜏 (𝛼) .C ⇝ pack 𝑓 𝑒 as ∃▽𝜏 (𝛼).C

E-Typ-Mod-Mode
Γ

elab⊢ M : ∃▽𝜏 (𝛼).C ⇝ 𝑒

Γ
elab⊢ M : ∃▼𝛼.C ⇝ pack ⟨𝜏, 𝑒⟩ as ∃▼𝛼.C

E-Typ-Mod-Struct
Γ

elab⊢𝐴 B : ∃𝜗𝛼.D ⇝ 𝑒 𝐴 ∉ Γ ♦ = mode(𝜗)

Γ
elab⊢ struct𝐴 B end : ∃𝜗0𝜗𝛼0𝛼. (𝛼0, sig D end)⇝ lift

♦ {
id = 𝑒♦

id
,Val = 𝑒

}
E-Typ-Mod-Proj

Γ
elab⊢ M : ∃𝜗𝛼. (_ , sig D end)⇝ 𝑒 module 𝑋 : C ∈ D

Γ
elab⊢ M.𝑋 : ∃𝜗𝛼.C ⇝ repack

♦ ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒.Val.ℓ𝑋

, Vol. 1, No. 1, Article . Publication date: March 2023.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Clément Blaudeau, Didier Rémy, and Gabriel Radanne

E.2.2 Binding typing Γ
elab⊢𝐴 B : D ⇝ 𝑒 .

E-Typ-Bind-Let
Γ

elab⊢ e : 𝜏⇝ 𝑒

Γ
elab⊢𝐴 (let 𝑥 = e) : (val 𝑥 : 𝜏)⇝ {ℓ𝑥 = 𝑒}

E-Typ-Bind-Type
Γ

can⊢ u : 𝜏

Γ
elab⊢𝐴 (type 𝑡 = u) : (type 𝑡 = 𝜏)⇝ {ℓ𝑡 = ⟨⟨𝜏⟩⟩}

E-Typ-Bind-ModType
Γ

can⊢ S : 𝜆𝛼.C

Γ
elab⊢𝐴 (module type 𝑇 = S) : (module type 𝑇 = 𝜆𝛼.C)⇝ {ℓ𝑇 = ⟨⟨𝜆𝛼.C ⟩⟩}

E-Typ-Bind-Empty
Γ

elab⊢𝐴 ∅ : ∅⇝ {}

E-Typ-Bind-Mod
Γ

elab⊢𝐴 M : ∃𝜗𝛼.C ⇝ 𝑒

Γ
elab⊢𝐴 (module 𝑋 = M) : (∃𝜗𝛼.module 𝑋 : C)⇝ repack

♦ ⟨𝛼, 𝑥⟩ = 𝑒 in {ℓ𝑋 = 𝑥}

E-Typ-Seq

Γ
elab⊢𝐴 B : ∃𝜗1𝛼1 .D ⇝ 𝑒1 Γ, 𝛼1, 𝐴.𝐼1 : D

elab⊢𝐴 B : ∃▼𝜗2 .D ⇝ 𝑒2

Γ
elab⊢𝐴 B, B : ∃𝜗1𝜗2𝛼1𝛼2 . (D ,D)⇝ lift

♦ ⟨𝛼1, 𝑥1 = 𝑒1 @ (let 𝐴.𝐼1 = 𝑥1 .ℓ𝐼1 in 𝑒2)⟩

, Vol. 1, No. 1, Article . Publication date: March 2023.

	Abstract
	1 Introduction
	2 A modern module system
	2.1 Applicative and generative functors
	2.2 A key strength: module identity
	2.3 A key weakness: the signature avoidance problem
	2.4 Grammar and technical choices

	3 A quantifier-based approach: the canonical system
	3.1 Canonical system overview
	3.2 Signature typing, the key concepts of the canonical system
	3.3 Subtyping and Typing: a parsimonious system

	4 A path-based approach: the source system
	4.1 Source system overview
	4.2 The issue of abstract type fields
	4.3 The treatment of module identities
	4.4 High-order abstract types and identities
	4.5 Linking the source and canonical systems

	5 The foundations: F elaboration
	5.1 F with kind polymorphism
	5.2 Encoding of signatures
	5.3 Sharing existential types by repacking
	5.4 Transparent existential types and their lifting through function types
	5.5 Implementation of transparent existential types in F
	5.6 Elaboration judgments
	5.7 Elaborated typing rules

	6 Related works
	7 Conclusion and future works
	References
	A Canonical System
	A.1 Subtyping
	A.2 Typing

	B Anchoring
	B.1 Environment anchoring
	B.2 Signature anchoring
	B.3 Declaration anchoring
	B.4 Type anchoring

	C Source system
	C.1 Strengthening
	C.2 Path typing
	C.3 Subtyping
	C.4 Typing

	D F
	D.1 Implementation of transparent existentials
	D.2 Environment Typing
	D.3 Type checking
	D.4 Typing
	D.5 Transparent existentials

	E Elaboration rules
	E.1 Subtyping
	E.2 Typing

