
A generalization of F� with abstraction

over retyping functions

Julien Cretin
supervised by Didier R�emy

(Gallium, INRIA)

December 3, 2010

1 / 23

Motivation

Coercions allow to change types a posteriori with no run-time
cost. We can use them:

I to describe subtyping (F<: [Breazu-Tannen, Coquand,
Gunter, and Scedrov '91])

I to model GADTs or type families (FC [Sulzmann,
Chakravarty, Peyton Jones, and Donnelly '07]),

I to do deep instantiations (F� [Mitchell '88]),

I to extend ML with �rst-class polymorphism (MLF [Le
Botlan and R�emy '03]), or more simply

I to talk about instantiation and generalization in any
Church-style langage (for instance F).

2 / 23

Handling coercions

There are several ways of handling coercions.

I As erasable contexts: coercions appear around terms.

I As functions: coercions apply on terms.

I As functions and as erasable contexts.

W

M

@

C M

@

�

M

W

x

Erasable context only

Functions only Both

3 / 23

Handling coercions

There are several ways of handling coercions.

I As erasable contexts: coercions appear around terms.

I As functions: coercions apply on terms.

I As functions and as erasable contexts.

W

M

@

C M

@

�

M

W

x

Erasable context only Functions only

Both

4 / 23

Handling coercions

There are several ways of handling coercions.

I As erasable contexts: coercions appear around terms.

I As functions: coercions apply on terms.

I As functions and as erasable contexts.

W

M

@

C M

@

�

M

W

x

Erasable context only Functions only Both

5 / 23

Description of F�

In F�, there are three ways to change a type:

[�]

M

8�:�

� [� �]

��

M

�

8�:�

�

@

M

x

x

� ! �

�

�0

� 0 ! �0

� 0

�

� 0

instantiation

generalization �-expansion

6 / 23

Description of F�

In F�, there are three ways to change a type:

[�]

M

8�:�

� [� �]

��

M

�

8�:�

�

@

M

x

x

� ! �

�

�0

� 0 ! �0

� 0

�

� 0

instantiation generalization

�-expansion

7 / 23

Description of F�

In F�, there are three ways to change a type:

[�]

M

8�:�

� [� �]

��

M

�

8�:�

�

@

M

x

x

� ! �

�

�0

� 0 ! �0

� 0

�

� 0

instantiation generalization �-expansion

8 / 23

Intuition of the Eta rule

�-expansions do not change the semantics of a term. But they
allow to retype a posteriori on both side of the arrow, as we
saw.

@

�
X

@

F

x @

F X

So Mitchell came with the idea of retyping functions, which
are functions �-equivalent to the identity function. These
functions allow to deeply instantiate a type in a contra-variant
way.

9 / 23

F�'s proof term variant

Instead of having coercions be lambda terms, we can use proof
terms of a type containment with the following rules as
Mitchell showed:

Dist
�!
8�:(� ! �) � (

�!
8�:�)!

�!
8�:�

Arrow

�0 � � � � � 0

� ! � � �0 ! � 0

Sub
�!
� =2 ftv(

�!
8�:�)

�!
8�:� �

�!
8�:�

�����!
[� �]

Trans

� � � � � �

� � �

Congruence

� � �

8�:� � 8�:�

However this version is not practical to program with.

10 / 23

Description of xMLF

xMLF allows to abstract over coercions:

�

M

c

For example, a term typed with 8(� � �id)�! � can be
instantiated with a coercion from �id to �. This allows to do
deep covariant instantiation.
There is a lambda-term version of xMLF (Fc [Manzonetto and
Tranquilli '10]).

11 / 23

Bisimulation

We saw that coercions allow to change the type of a term in
several ways, but we also want coercions to be erasable
without loosing the semantics. This means that we have two
reduction steps in the source language:

I the computation step � and

I the coercion related step �.

Having a bisimulation up to � between the source language
and its erasure means to have the following properties:

M N

bMc bNc

�

b�c b�c

M N

bMc

�

b�c b�c

M N

bMc bNc

�
?

�

b�c b�c

12 / 23

Bisimulation

We saw that coercions allow to change the type of a term in
several ways, but we also want coercions to be erasable
without loosing the semantics. This means that we have two
reduction steps in the source language:

I the computation step � and

I the coercion related step �.

Having a bisimulation up to � between the source language
and its erasure means to have the following properties:

M N

bMc bNc

�

b�c b�c

M N

bMc

�

b�c b�c

M N

bMc bNc

�
?

�

b�c b�c

13 / 23

Goals

Is it possible to unify these di�erent possibilities of changing a
type a posteriori? Said otherwise, is it possible to add coercion
abstraction to F�, and still preserve the coercion-erasure
semantics?
This is challenging for several (and sometimes unexpected)
reasons:

I The drop function is surprisingly not obvious.

I Labeling transitions with � or � is also problematic.

I And bisimulation needs some restrictions.

14 / 23

Ideas

We add on top of retyping functions the idea of erasable
context.
During F��'s design, we keep in mind the following points:

I Bisimulation (because this is the hard part which is
guiding every choice):

I �-reduction drops on �-reduction,
I �-reduction drops on equality, and
I �-reduction comes from �-reductions followed by a

�-reduction.

I Strong normalization: stay as close to F as possible.

I Soundness: subject reduction and progress.

In the following, the erasure of a term can be directly read
from its blue parts.

15 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x �c �x h �z

textual syntax ��x :M ��c :M �hx :M ��z :M

erasure �x :bMc bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

16 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x

�c �x h �z

textual syntax ��x :M ��c :M �hx :M ��z :M

erasure �x :bMc bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

17 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x

�c �x h �z

textual syntax ��x :M

��c :M �hx :M ��z :M

erasure �x :bMc bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

18 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x

�c �x h �z

textual syntax ��x :M

��c :M �hx :M ��z :M

erasure �x :bMc

bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

19 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x �c

�x h �z

textual syntax ��x :M ��c :M

�hx :M ��z :M

erasure �x :bMc bMc

bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

20 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x �c �x h

�z

textual syntax ��x :M ��c :M �hx :M

��z :M

erasure �x :bMc bMc bMc

undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

21 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x �c �x h �z

textual syntax ��x :M ��c :M �hx :M ��z :M

erasure �x :bMc bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

22 / 23

Syntax and notations

We only need colors on the edges. But we add colors on the
nodes for readability. The node colors can be deduced locally
from the edge colors.

graphical syntax
�x �c �x h �z

textual syntax ��x :M ��c :M �hx :M ��z :M

erasure �x :bMc bMc bMc undef

graphical syntax
@ @ @ @

textual syntax M@�N M@�N M@hN M@�N

erasure bMc bNc bMc bMc bNc

23 / 23

Understanding erasable contexts

We de�ne valid erasable contexts by induction with
following grammar rule. W

::=

�

W

c
@

W M

@

WM

�

W

@

W W

h
x

identity

coercion contexts already in Fc �-expansion

24 / 23

Understanding erasable contexts

We de�ne valid erasable contexts by induction with
following grammar rule. W

::=

�

W

c
@

W M

@

WM

�

W

@

W W

h
x

identity coercion contexts already in Fc

�-expansion

25 / 23

Understanding erasable contexts

We de�ne valid erasable contexts by induction with
following grammar rule. W

::=

�

W

c
@

W M

@

WM

�

W

@

W W

h
x

identity coercion contexts already in Fc �-expansion

26 / 23

Sketching the type system

We want an erasable context judgment �; : � `
W

: � .

But because we don't want the following deep typing rule

�; � : � ` W3

�
�
�
: �3

�; � : �1 ` W2

�
�
�
: �3 ! �2 �; � : �2 ` W1

�
�
�
: �

�; � : �1 ` �hx :W1

h
W2

�
�
�
@hW3

�
x
�i

: � ! �

we need a way to type W1 [�] remembering we are after a �h

so that the context is �lled with a @h. So we introduce an
environment describing the stack of �h we went through and
didn't see their @h yet.

27 / 23

Sketching the type system

�; �;Z; � ` M : �

� contains the free type variables. � contains the free term
variables.

28 / 23

Sketching the type system

�; �;Z; � ` M : �

The Z�� combination reads like this:

W

(z : �)�?: We type a valid erasable context
(i.e. W [�]) where the hole is occupied by z .

29 / 23

Sketching the type system

�; �;Z; � ` M : �

The Z�� combination reads like this:

�

W

@

W W

h
x

(z : �) � (�; (h : x : �)): We type a valid
erasable context where the hole is occupied
by W�

�
z
�
@hW

�
x
�

30 / 23

Sketching the type system

�; �;Z; � ` M : �

The Z�� combination reads like this:

W

M

?�?: We type a normal term that we can
see as a valid erasable context of a normal
term.

31 / 23

Sketching the type system

�; �;Z; � ` M : �

The Z�� combination reads like this:

�

W

@

W W

M

h
x

?�(�; (h : x : �)): We type a valid erasable

context of M@hW
�
x
�
where M is a �-valid

erasable context of a normal term.

32 / 23

Sketching the reduction rules

@

@
X

� �

F
�

@

C2

@

@

C1

x

h

z

y

z

y

drops to

@

X
�

F

x

We want to coerce F using C1 on its argument (left side of
the arrow) and C2 on its result (right side of the arrow).

33 / 23

Sketching the reduction rules

@

@
X

� �

F
�

@

C2

@

@

C1

x

h

z

y

z

y

�-reduces to

@

�
X

@

C2

@

� @

F C1

x

h
y

y

We reduce the only redex. It's not a �-reduction, so we have
the same erasure.

34 / 23

Sketching the reduction rules

We have two redexes involving the same ash.

@

�
X

@

C2

@

� @

F C1

x

h
y

y

@

C2

@

� @

F C1
X

x

@

�
X

@

C2
F

@

C1

y

y

@

C2
F

@

C1
X

�
@

�

�

@
�

�

�

35 / 23

Sketching the reduction rules

We have two redexes involving the same ash.

@

�
X

@

C2

@

� @

F C1

x

h
y

y

@

C2

@

� @

F C1
X

x

@

�
X

@

C2
F

@

C1

y

y

@

C2
F

@

C1
X

�
@

�

�

@
�

�

�

36 / 23

Sketching the reduction rules

We have two redexes involving the same ash.

@

�
X

@

C2

@

� @

F C1

x

h
y

y

@

C2

@

� @

F C1
X

x

@

�
X

@

C2
F

@

C1

y

y

@

C2
F

@

C1
X

�
@

�

�

@
�

�

�

37 / 23

Sketching the reduction rules

We have two redexes involving the same ash.

@

�
X

@

C2

@

� @

F C1

x

h
y

y

@

C2

@

� @

F C1
X

x

@

�
X

@

C2
F

@

C1

y

y

@

C2
F

@

C1
X

�
@

�

�

@
�

�

�

38 / 23

Restriction

The bisimulation doesn't work so easily because we can have
the following situation where a coercion variable blocks a
�-redex:

@

@
Xc

�

F

x

To avoid this, we use a trick similar to the one in Fc, which
mimics xMLF and only allow abstraction over coercions that
are parametric on their return type. This example would then
be ill-typed.

39 / 23

Restriction

We have the following typing rule:

CAbs

�; �; �; (x : � ! �);Z; � ` M : �

�; �;Z; � ` ��x :M : 8�:(� ! �)! �

which does two things:

I it abstracts over the coercion x and

I it generalizes the return type of the coercion.

This last part was absent in Fc which breaks subject reduction.

FcCAbs

�; (x : � (�); L `t` a : �

�; L `t` �x : a : (� (�)! �

40 / 23

Restriction

We have the following typing rule:

CAbs

�; �; �; (x : � ! �);Z; � ` M : �

�; �;Z; � ` ��x :M : 8�:(� ! �)! �

which does two things:

I it abstracts over the coercion x and

I it generalizes the return type of the coercion.

This last part was absent in Fc which breaks subject reduction.

FcCAbs

�; (x : � (�); L `t` a : �

�; L `t` �x : a : (� (�)! �

41 / 23

Restriction

� = (b : 8�: �! �! �); (f : � ! �)

a = (�c1: �c2: b (c1 . f) (c2 . f)) / (�z : z)

a0 = �c2: b ((�z : z) . f) (c2 . f)

b = �c2: b f (c2 . f)

� = ((� ! �)((� ! �))! (� ! �)

We have �;`t a : � and a!c a
0 !c b, but we don't have

�;`t b : � because the return type of the coercion is an arrow
instead of a variable.

Enforcing �'s generalization just after the abstraction like it is
done in CAbs (and xMLF) rejects such counter-examples.

42 / 23

Restriction

� = (b : 8�: �! �! �); (f : � ! �)

a = (�c1: �c2: b (c1 . f) (c2 . f)) / (�z : z)

a0 = �c2: b ((�z : z) . f) (c2 . f)

b = �c2: b f (c2 . f)

� = ((� ! �)((� ! �))! (� ! �)

We have �;`t a : � and a!c a
0 !c b, but we don't have

�;`t b : � because the return type of the coercion is an arrow
instead of a variable.
Enforcing �'s generalization just after the abstraction like it is
done in CAbs (and xMLF) rejects such counter-examples.

43 / 23

Conclusion

I We have shown how to extend F� with coercion
abstraction.

I The meta-theory is not so deep, as it essentially works
like System F.

I However, the technical details are still involved, due to
the well-formedness conditions.

I The source of the di�culties were quite unexpected.

44 / 23

Extensions

I Hopefully, the presentation (syntax) could be simpli�ed
breadthwise.

I The restriction on coercion abstraction might be
weakened or removed.

I We could also add more constructors like functions
between coercions ��c :M , functions returning coercions

��x :M , or coercions between coercions ��z :M . For

example ��c1:�
�c2:�

�f :�hx :c2 @
�(f @h(c1 @

�x)). Such
terms were considered in our �rst approach.

I We could extend retyping functions by adding
�-equivalence. This way we could program in coercions,
and for example use the polymorphic List.map function
to build a coercion � list! � list from a coercion
�! �.

45 / 23

