On the Power of Coercion Abstraction

Julien Cretin Didier Rémy

INRIA

January 26, 2012

Why study coercions?

People have often used similar mechanisms, called coercions or type conversions, to explain non-trivial type system features.

Why study coercions?

People have often used similar mechanisms, called coercions or type conversions, to explain non-trivial type system features.

These techniques have a lot in common, but also differ in some details.
Can we understand them as several instances of the same framework and use it to more easily design new type system features?

Why study coercions?

People have often used similar mechanisms, called coercions or type conversions, to explain non-trivial type system features.

These techniques have a lot in common, but also differ in some details.
Can we understand them as several instances of the same framework and use it to more easily design new type system features?

In this work, we restrict to erasable coercions (i.e. coercions without computational content).

Intuition: Goal

Let's design a type system to type the following untyped lambda term:

$$
(\lambda x \cdot x x)(\lambda x \cdot x)
$$

We can graphically represent it bottom-up like that:

Intuition: Typing rules

The type system necessarily gives typing rules for the untyped constructs:

- variable: x
- abstraction: $\lambda x . \mathcal{M}$
- application: $\mathcal{M} \mathcal{N}$

We choose simple types for illustration.

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain their graphical typing rule:

$$
\frac{\Gamma \vdash M: \tau \rightarrow \sigma \quad \Gamma \vdash N: \tau}{\Gamma \vdash M N: \sigma}
$$

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain their graphical typing rule:

$$
\frac{\Gamma,(x: \tau) \vdash M: \sigma}{\Gamma \vdash \lambda(x: \tau) M: \tau \rightarrow \sigma}
$$

$$
\begin{aligned}
& \Gamma,(x: \tau) \mathcal{I}^{M} \sigma \\
& x: \tau \downarrow \tau \rightarrow \sigma
\end{aligned}
$$

Intuition: Graphical typing rules

We can annotate the graphical untyped constructs to obtain their graphical typing rule:

$$
\Gamma_{1},(x: \tau), \Gamma_{2} \vdash x: \tau
$$

$$
\Gamma_{1},(x: \tau), \Gamma_{2} \downarrow \tau
$$

Intuition: Simply-typed lambda calculus

Intuition: Type system features

Terms should be allowed to have several types.

Intuition: Type system features

Terms should be allowed to have several types.
Several type system features can represent multiple types:

- intersection types,
- polymorphism,
- subtyping, or
- dependent types.

We choose polymorphism for illustration.

Intuition: \forall-elim

Polymorphism elimination can be
 seen as a coercion (which is an erasable type conversion):

$$
\frac{\Gamma^{\prime} \vdash x: \forall \alpha . \alpha \rightarrow \alpha}{\Gamma^{\prime} \vdash x \tau: \tau \rightarrow \tau}
$$

With $\tau \triangleq \forall \alpha . \alpha \rightarrow \alpha$ and $\Gamma^{\prime} \triangleq \Gamma,(x: \tau)$.

Intuition: \forall-intro

Polymorphism introduction may extend the environment: so coercions may in fact change the whole typing, not just types!

Type system features are typing conversions.

Untyped term:

$$
\lambda x \cdot x
$$

Intuition: \forall-intro

Polymorphism introduction may extend the environment: so coercions may in fact change the whole typing, not just types!

Type system features are typing conversions.

Typing derivation:

$$
\frac{\frac{\Gamma, \alpha,(x: \alpha) \vdash x: \alpha}{\Gamma, \alpha \vdash \lambda(x: \alpha) x: \alpha \rightarrow \alpha}}{\Gamma \vdash \Lambda \alpha \lambda(x: \alpha) x: \forall \alpha . \alpha \rightarrow \alpha}
$$

We can now pass this term to $(\lambda x \cdot x x)$ as wanted.

Coercions

A one-node coercion P, drawn in red, is a one-node erasable retyping context.

- retyping: $\frac{\Gamma, \Delta \vdash M: \tau}{\Gamma \vdash P[M]: \sigma}$ where M
and $P[M]$ are explicitly-typed version of the same implicit term.

Coercions

A one-node coercion P, drawn in red, is a one-node erasable retyping context.

- retyping: $\frac{\Gamma, \Delta \vdash M: \tau}{\Gamma \vdash P[M]: \sigma}$ where M and $P[M]$ are explicitly-typed version of the same implicit term.
- erasable: P doesn't modify or block the reduction. It is purely static.

Coercions

A coercion G is a sequence of one-node coercions.

We fill the hole with a diamond:

$$
G=\Lambda \alpha \wedge \beta \diamond(\alpha \rightarrow \beta)
$$

Erasability

The erasing function $\lfloor\cdot\rfloor$ keeps the blue parts and removes both the annotations and the red nodes.

Erasability

The erasing function $\lfloor\cdot\rfloor$ keeps the blue parts and removes both the annotations and the red nodes.

Erasability

The erasing function $\lfloor\cdot\rfloor$ keeps the blue parts and removes both the annotations and the red nodes.

Bisimulation

The reduction is labelled:

- β-reduction involves only blue nodes
- ι-reduction involves at least one red node

Bisimulation

The reduction is labelled:

- β-reduction involves only blue nodes
- ι-reduction involves at least one red node

We want a bisimulation up to ι-steps:

The forward simulation tells that coercions do not contribute to computation.

Bisimulation

The reduction is labelled:

- β-reduction involves only blue nodes
- ι-reduction involves at least one red node

We want a bisimulation up to ι-steps:

Backward simulation

The forward simulation tells that coercions do not contribute to computation.
The backward simulation tells that coercions cannot block the computation. (Thus, values remain values after erasure.)

Coercion judgments

We give the following judgment for coercions:

$$
\Gamma \vdash G: \tau \triangleright \sigma
$$

System F

$$
\begin{aligned}
& \tau, \sigma::=\tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \\
& M, N:=x|\lambda(x: \tau) M| M N \\
& \mid\lfloor\alpha M \mid M \tau \\
& G:=\Lambda \alpha G \mid G \tau
\end{aligned}
$$

Polymorphism: $(\Lambda \alpha M) \tau \rightsquigarrow_{\iota} M[\alpha \leftarrow \tau]$

System F_{η}

$$
\begin{aligned}
\tau, \sigma: & :=\tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle
\end{aligned}
$$

Coercion application: (we want $G\langle M\rangle \rightsquigarrow_{\iota}^{\star} G[\diamond \leftarrow M]$)

System F_{η}

$$
\begin{aligned}
\tau, \sigma::= & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \\
M, N: & =x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G::= & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \mid \diamond^{\tau}
\end{aligned}
$$

Reflexivity: $\nabla^{\tau}\langle M\rangle \rightsquigarrow_{\iota} M$

System F_{η}

$$
\begin{aligned}
\tau, \sigma: & =\tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \\
M, N: & =x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow{\tau} G_{2}
\end{aligned}
$$

Arrow congruence (subtyping):

$$
\left(G_{1} \xrightarrow{\tau_{1}^{\prime}} G_{2}\right)\left\langle\lambda\left(x: \tau_{1}\right) M\right\rangle \rightsquigarrow_{\iota} \lambda\left(x: \tau_{1}^{\prime}\right) G_{2}\left\langle M\left[x \leftarrow G_{1}\langle x\rangle\right]\right\rangle
$$

System F_{η}

$$
\begin{aligned}
\tau, \sigma: & =\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\tau} G_{2} \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}
\end{aligned}
$$

It permutes $\Lambda \alpha$ and $\lambda(x: \tau)$

$$
\operatorname{Dist}_{\tau^{\prime} \rightarrow \sigma^{\prime}}^{\forall \alpha .}\langle\Lambda \alpha \lambda(x: \tau) M\rangle \rightsquigarrow_{\iota} \lambda(x: \tau) \Lambda \alpha M
$$

System F_{η}

$$
\begin{aligned}
\tau, \sigma: & =\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \\
M, N: & =x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow{\tau} G_{2} \mid \text { Dist }_{\tau \rightarrow \sigma}^{\forall \alpha .}
\end{aligned}
$$

We now have described F_{η} (using an explicit variant of Mitchell's presentation).
F_{η} models subtyping which is at the essence of $F_{<\text {: }}$, but it is not sufficient to model $F_{<\text {: }}$ itself.

We add coercion abstraction for that purpose.

System F_{1}

$$
\begin{aligned}
& \tau, \sigma::=\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau \\
& M, N: x|\lambda(x: \tau) M| M N \\
&|\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
& G: \wedge \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
&\left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\tau} G_{2} \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}
\end{aligned}
$$

System F_{ι}

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| & G\left\{G^{\prime}\right\}
\end{array}
$$

System F_{ι}

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N & : & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\}
\end{array}
$$

Coercion abstraction: $(\Lambda(c: \varphi) M)\{G\} \rightsquigarrow_{\iota} M[c \leftarrow G]$

with $\Gamma \vdash G: \varphi$

System F_{ι}

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N & : & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\} \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\tau} G_{2}\left|\operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}\right| c &
\end{array}
$$

Coercion variable:

$$
\Gamma_{1},(c: \tau \triangleright \sigma), \Gamma_{2} \downarrow \sigma
$$

System F_{ι}

$$
\begin{array}{rlrl}
\tau, \sigma: & := & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N & : & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\} \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\tau} G_{2}\left|\operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}\right| c \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\varphi \Rightarrow}
\end{array}
$$

It permutes $\Lambda(c: \varphi)$ and $\lambda(x: \tau)$

$$
\operatorname{Dist}_{\tau^{\prime} \rightarrow \sigma^{\prime}}^{\varphi^{\prime} \Rightarrow}\langle\Lambda(c: \varphi) \lambda(x: \tau) M\rangle \rightsquigarrow_{\iota} \lambda(x: \tau) \Lambda(c: \varphi) M
$$

$$
\begin{aligned}
& \hat{\varphi} \varphi(\tau \rightarrow \sigma) \\
& \text { Dist }_{\tau \rightarrow \sigma}^{\varphi \Rightarrow} \\
& \Gamma \downarrow \tau \rightarrow(\varphi \Rightarrow \sigma)
\end{aligned}
$$

Properties of F_{l}

F_{ι} is well-behaved: it satisfies preservation, progress, confluence, and normalization.

Properties of F_{l}

F_{ι} is well-behaved: it satisfies preservation, progress, confluence, and normalization.

However, it is not a coercion language: it obeys the forward simulation but not the backward simulation.

The backward simulation is necessary for values to correspond before and after erasure: types should not block the computation.

Losing backward simulation

$$
\begin{gathered}
\left.\Gamma^{\prime}, \alpha,(x: \alpha)\right)^{x} \alpha \\
x: \alpha-\lambda \\
\Gamma^{\prime}, \alpha \mid \alpha \rightarrow \alpha \\
\Gamma^{\prime} \downarrow \forall \alpha \cdot \alpha \rightarrow \alpha
\end{gathered}
$$

Losing backward simulation

Losing backward simulation

Losing backward simulation

Losing backward simulation

A default solution

One solution is to use weak reduction and value restriction on coercion abstraction.

However, it delays error detection. We could type any pure lambda term by abstracting over an incoherent set of coercions like $U \triangleright(U \rightarrow U)$ and $(U \rightarrow U) \triangleright U$.

System F_{i}^{p}

MLF and $F_{<\text {: }}$ have some coercion abstraction because of bounded polymorphism.

System F_{i}^{p}

MLF and $\mathrm{F}_{<\text {: }}$ have some coercion abstraction because of bounded polymorphism.

$\mathrm{F}_{<:}$	MLF
$\Lambda(\alpha \leq \tau) M$	$\Lambda(\alpha \geq \tau) M$

System F_{i}^{p}

MLF and $\mathrm{F}_{<\text {: }}$ have some coercion abstraction because of bounded polymorphism.

$\mathrm{F}_{<:}$	MLF
$\Lambda(\alpha \leq \tau) M$	$\Lambda(\alpha \geq \tau) M$
$\Lambda \alpha \Lambda(c: \alpha \triangleright \tau) M$	$\Lambda \alpha \Lambda(c: \tau \triangleright \alpha) M$

System F_{i}^{p}

MLF and $\mathrm{F}_{<\text {: }}$ have some coercion abstraction because of bounded polymorphism.

$\mathrm{F}_{<:}$	MLF
$\Lambda(\alpha \leq \tau) M$	$\Lambda(\alpha \geq \tau) M$
$\Lambda \alpha \Lambda(c: \alpha \triangleright \tau) M$	$\Lambda \alpha \Lambda(c: \tau \triangleright \alpha) M$
$\Lambda(\alpha \triangleright c: \tau) M$	$\Lambda(\alpha \triangleleft c: \tau) M$

From F_{ι}, we replace unrestricted coercion abstraction with these two features and call the result F_{i}^{p}. We gain backward simulation and the previous example is ill-formed.
F_{t}^{p} is a coercion language (soundness, normalization, confluence, bisimulation with its erasure).

Result: F_{ι}^{p} subsumes $F_{<:}, F_{\eta}$, and MLF

- $\forall^{=}$is simple polymorphism

Result: F_{ι}^{p} subsumes $\mathrm{F}_{<:}, \mathrm{F}_{\eta}$, and MLF

- $\forall^{=}$is simple polymorphism
$\xrightarrow{\eta}$ is subtyping i.e. the η-expansion for arrow

Result: F_{ι}^{p} subsumes $F_{<:,} F_{\eta}$, and MLF

	Languages				
	F	F_{η}	MLF		
$\because{ }^{\circ}=$	\checkmark	\checkmark	\checkmark		
$\stackrel{\square}{\square} \xrightarrow{\square}$		\checkmark			
$\stackrel{\text { ® }}{ }$			\checkmark		

- $\forall^{=}$is simple polymorphism
- $\xrightarrow{\eta}$ is subtyping i.e. the η-expansion for arrow
- $\forall \geq$ is lower bounded polymorphism (includes $\forall^{=}$)

Result: F_{ι}^{p} subsumes $\mathrm{F}_{<:}, \mathrm{F}_{\eta}$, and MLF

	Languages			
	F	F_{η}	MLF	$\mathrm{F}_{<}$
\% $\forall^{=}$	\checkmark	\checkmark	\checkmark	\checkmark
$\stackrel{\eta}{\square}$		\checkmark		\checkmark
${ }_{\sim}^{\sim} \forall^{\geq}$			\checkmark	
V				\checkmark

- $\forall^{=}$is simple polymorphism
- $\xrightarrow{\eta}$ is subtyping i.e. the η-expansion for arrow
- $\forall \geq$ is lower bounded polymorphism (includes $\forall^{=}$)
- $\forall \leq$ is upper bounded polymorphism (includes $\forall^{=}$)

Result: F_{ι}^{p} subsumes $F_{<i}, F_{\eta}$, and MLF

	Languages				
	F	F_{η}	MLF	$\mathrm{F}_{<\text {: }}^{+}$	
\% $\forall^{\prime}=$	\checkmark	\checkmark	\checkmark	\checkmark	
$\stackrel{\square}{\square}$		\checkmark		\checkmark	
\% ${ }_{\sim}^{\text {U }}{ }^{\geq}$			\checkmark		
$\forall \leq$				\checkmark	

- $\forall^{=}$is simple polymorphism
- $\xrightarrow{\eta}$ is subtyping i.e. the η-expansion for arrow
- $\forall \geq$ is lower bounded polymorphism (includes $\forall^{=}$)
- $\forall \leq$ is upper bounded polymorphism (includes $\forall^{=}$)
$\mathrm{F}_{<: \text {, }}^{+}$, the combination of $\forall \leq$ and $\xrightarrow{\eta}$, also contains deep instantiation and distributivity which are absent from $\mathrm{F}_{<\text {: }}$

Result: F_{ι}^{p} subsumes $\mathrm{F}_{<:}, \mathrm{F}_{\eta}$, and MLF

	Languages				
	F	F_{η}	MLF	$\mathrm{F}_{<}^{+}$	F_{i}^{p}
® $\forall^{=}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\stackrel{\square}{\square}$		\checkmark		\checkmark	\checkmark
$\stackrel{\text { ® }}{\text { L }} \vec{V}^{\geq}$			\checkmark		\checkmark
$\forall \leq$				\checkmark	\checkmark

- $\forall^{=}$is simple polymorphism
- $\xrightarrow{\eta}$ is subtyping i.e. the η-expansion for arrow
- $\forall \geq$ is lower bounded polymorphism (includes $\forall^{=}$)
- $\forall \leq$ is upper bounded polymorphism (includes $\forall^{=}$)
$\mathrm{F}_{<: \text {, }}^{+}$, the combination of $\forall \leq$ and $\xrightarrow{\eta}$, also contains deep instantiation and distributivity which are absent from $\mathrm{F}_{<\text {: }}$

Future work

- See if other type system features can be expressed as coercions:
- recursive types
- intersection types
- existential types
- linear types
- type operators
- dependent types, etc.

Future work

- See if other type system features can be expressed as coercions:
- recursive types
- intersection types
- existential types
- linear types
- type operators
- dependent types, etc.
- A coercion abstraction less restricted than bounded polymorphism.

Future work

- See if other type system features can be expressed as coercions:
- recursive types
- intersection types
- existential types
- linear types
- type operators
- dependent types, etc.
- A coercion abstraction less restricted than bounded polymorphism.
- Looking at non erasable coercions.

Future work

- See if other type system features can be expressed as coercions:
- recursive types
- intersection types
- existential types
- linear types
- type operators
- dependent types, etc.
- A coercion abstraction less restricted than bounded polymorphism.
- Looking at non erasable coercions.

> Thank you!

Extra slides

Extra slides

Push

Push

RedPushArrow

$$
\begin{gathered}
G\langle\lambda(x: \tau) M\rangle N \rightsquigarrow_{\iota} \\
\left(\lambda\left(x: \tau^{\prime}\right)(\operatorname{Right} G)\langle M[x \leftarrow(\operatorname{Left} G)\langle x\rangle]\rangle\right) N
\end{gathered}
$$

```
RedLeftArrow
Left (G1 }\mp@subsup{}{~}{\tau}\mp@subsup{G}{2}{})\mp@subsup{\rightsquigarrow}{\iota}{}\mp@subsup{G}{1}{}\quad\operatorname{Right}(\mp@subsup{G}{1}{}\xrightarrow{}{\tau}\mp@subsup{G}{2}{})\mp@subsup{\rightsquigarrow}{\iota}{}\mp@subsup{G}{2}{
```

$\Lambda\left(c_{a p p}: U \triangleright(U \rightarrow U)\right) \Lambda\left(c_{\text {lam }}:(U \rightarrow U) \triangleright U\right) M$

System $\mathrm{F}_{<\text {: }}$

Orthogonal features should easily and fully compose. When combining upper bounded polymorphism and subtyping we naturally get an intermediate language more expressive than the most expressive version of $\mathrm{F}_{<\text {: }}$.

Depending on the variant, the first premise may be:

System $\mathrm{F}_{<\text {: }}$

Orthogonal features should easily and fully compose. When combining upper bounded polymorphism and subtyping we naturally get an intermediate language more expressive than the most expressive version of $\mathrm{F}_{<\text {: }}$.

Depending on the variant, the first premise may be:


```
Full-Fsub
\Gamma \vdash \tau ^ { \prime } < : \tau
```


System $\mathrm{F}_{<\text {: }}$

Orthogonal features should easily and fully compose. When combining upper bounded polymorphism and subtyping we naturally get an intermediate language more expressive than the most expressive version of $\mathrm{F}_{<\text {: }}$.

Depending on the variant, the first premise may be:

System $\mathrm{F}_{<\text {: }}$

Orthogonal features should easily and fully compose. When combining upper bounded polymorphism and subtyping we naturally get an intermediate language more expressive than the most expressive version of $\mathrm{F}_{<\text {: }}$.

The typing rule of $\mathrm{F}_{\mu<\text { : }}$ is derivable in F_{ι}^{p} using the following typing rules (absent from $\mathrm{F}_{\mu<\text { : }}$):

$$
\frac{\Gamma,(\alpha \triangleright c: \tau) \vdash G: \rho \triangleright \sigma \quad \Gamma \vdash \rho}{\Gamma \vdash \lambda(\alpha \triangleright c: \tau) G: \rho \triangleright \forall(\alpha \triangleright \tau) \Rightarrow \sigma}
$$

$$
\frac{\Gamma \vdash G: \rho \triangleright \forall(\alpha \triangleright \tau) \Rightarrow \tau^{\prime} \quad \Gamma \vdash G^{\prime}: \sigma \triangleright \tau[\alpha \leftarrow \sigma]}{\Gamma \vdash G\left\{\sigma \triangleright G^{\prime}\right\}: \rho \triangleright \tau^{\prime}[\alpha \leftarrow \sigma]}
$$

Full distrib

$\alpha \vdash \diamond \alpha: \forall \alpha . \tau \triangleright \tau$
$\frac{\alpha \vdash(\diamond \alpha) \rightarrow \diamond: \tau \rightarrow \sigma \triangleright(\forall \alpha . \tau) \rightarrow \sigma}{\frac{\alpha \vdash((\diamond \alpha) \rightarrow \diamond)\langle\diamond \alpha\rangle: \forall \alpha . \tau \rightarrow \sigma \triangleright(\forall \alpha . \tau) \rightarrow \sigma}{\vdash \Lambda \alpha((\diamond \alpha) \rightarrow \diamond)\langle\diamond \alpha\rangle: \forall \alpha . \tau \rightarrow \sigma \triangleright \forall \alpha .(\forall \alpha . \tau) \rightarrow \sigma}}$
$\vdash \operatorname{Dist}\langle\Lambda \alpha((\diamond \alpha) \rightarrow \diamond)\langle\diamond \alpha\rangle\rangle: \forall \alpha . \tau \rightarrow \sigma \triangleright(\forall \alpha . \tau) \rightarrow \forall \alpha . \sigma$

System F_{η} examples

generalization	instantiation	η-expansion
$\Lambda \alpha M$	$M \sigma$	$\lambda\left(x: \tau^{\prime}\right) G_{2}\left[M\left(G_{1}[x]\right)\right]$

Pure Lambda Calculus

$$
x, y
$$

Variables
Terms
Reduction contexts

RedContext
$\frac{\mathcal{M} \rightsquigarrow \mathcal{M}^{\prime}}{\mathcal{C}[\mathcal{M}] \rightsquigarrow \mathcal{C}\left[\mathcal{M}^{\prime}\right]}$

RedBeta
$(\lambda x . \mathcal{M}) \mathcal{M}^{\prime} \rightsquigarrow \mathcal{M}\left[x \leftarrow \mathcal{M}^{\prime}\right]$

Simply-typed lambda calculus

$$
\begin{aligned}
x, y & \\
\tau, \sigma & ::=\tau \rightarrow \sigma \\
M, N & ::=x|\lambda(x: \tau) M| M N \\
C & ::=\lambda(x: \tau)[]|[] M| M[]
\end{aligned}
$$

Term variables
Types
Terms
Reduction contexts

TermVar
$x: \tau \in \Gamma$
$\Gamma \vdash x: \tau$

TermTermLam

$$
\Gamma, x: \tau \vdash M: \sigma
$$

$$
\overline{\Gamma \vdash \lambda(x: \tau) M: \tau \rightarrow \sigma}
$$

TermTermApp

$$
\begin{gathered}
\Gamma \vdash M: \tau \rightarrow \sigma \\
\frac{\Gamma \vdash N: \tau}{\Gamma \vdash M N: \sigma}
\end{gathered}
$$

RedContextBeta

$$
\frac{M \rightsquigarrow_{\beta} N}{C[M] \rightsquigarrow_{\beta} C[N]}
$$

RedTerm

$$
(\lambda(x: \tau) M) N \rightsquigarrow_{\beta} M[x \leftarrow N]
$$

System F: Polymorphism as coercions

The necessary simply-typed lambda calculus is in grey.

$$
\begin{aligned}
& \tau, \sigma::=\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \quad \text { Types } \\
& M, N::=x|\lambda(x: \tau) M| M N \mid P[M] \\
& P::=\Lambda \alpha[] \mid[] \tau \\
& \text { One-node coercions } \\
& \text { TermTypeApp } \\
& \frac{\Gamma \vdash M: \forall \alpha . \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash M \sigma: \tau[\alpha \leftarrow \sigma]} \\
& \text { RedType } \\
& (\Lambda \alpha M) \tau \rightsquigarrow, M[\alpha \leftarrow \tau]
\end{aligned}
$$

System F: Polymorphism as coercions

$$
\begin{aligned}
\alpha, \beta & \\
\tau, \sigma & ::=\ldots|\alpha| \forall \alpha . \tau \\
M, N & ::=\ldots \mid P[M] \\
P & ::=\Lambda \alpha[] \mid[] \tau \\
C & ::=\ldots \mid P
\end{aligned}
$$

Type variables
Types
Terms
Coercion contexts
Reduction contexts

TermTypeLam

$$
\frac{\Gamma, \alpha \vdash M: \tau}{\Gamma \vdash \Lambda \alpha M: \forall \alpha . \tau}
$$

$$
\begin{aligned}
& \text { TermTypeApp } \\
& \frac{\Gamma \vdash M: \forall \alpha . \tau}{\Gamma \vdash M \sigma: \tau[\alpha \leftarrow \sigma]}
\end{aligned}
$$

RedContextlota

$$
\frac{M \rightsquigarrow_{l} N}{C[M] \rightsquigarrow_{l} C[N]}
$$

RedType
$(\Lambda \alpha M) \tau \rightsquigarrow{ }_{\iota} M[\alpha \leftarrow \tau]$

System F_{η} : Subtyping as coercions

System F_{η} is the closure of System F by η-reduction.

$$
\frac{\Gamma \vdash \mathcal{M}: \tau \quad \mathcal{M} \rightsquigarrow_{\eta} \mathcal{M}^{\prime}}{\Gamma \vdash \mathcal{M}^{\prime}: \tau}
$$

System F_{η} : Subtyping as coercions

System F_{η} is the closure of System F by η-reduction.

$$
\frac{\Gamma \vdash \mathcal{M}: \tau \quad \mathcal{M} \rightsquigarrow_{\eta} \mathcal{M}^{\prime}}{\Gamma \vdash \mathcal{M}^{\prime}: \tau}
$$

There are two presentations of F_{η} with coercions:

- A lambda-term version: the one we have seen so far, where judgments are $\Gamma \vdash G:(\Delta \cdot \tau) \triangleright \sigma$.
The syntax is simple but typing is involved because coercions may bind.
- A proof-term version where judgments take the form $\Gamma \vdash G: \tau \triangleright \sigma$.
Typing is simpler but the coercion constructs are less atomic and numerous.
We chose a mix presentation to get the best of both.

System F_{i}^{p}

$$
\begin{aligned}
& \text { c } \\
& \text { Coercion variables } \\
& \triangleleft::=\triangleleft \mid \triangleright \\
& \tau, \sigma::=\ldots \mid \forall(\alpha \triangleleft \tau) \Rightarrow \sigma \\
& P::=\ldots|\lambda(\alpha \triangleleft c: \tau) M| M\{\tau \triangleleft G\} \text { One-node coercions } \\
& G::=\ldots \mid \text { Dist }_{\tau \rightarrow \sigma}^{\forall \alpha \bowtie \rho \Rightarrow} \\
& \text { Bounds } \\
& \text { Types } \\
& \text { Coercions } \\
& \text { TermTCoerLam } \\
& \frac{\Gamma, \alpha \triangleleft c: \tau \vdash M: \sigma}{\Gamma \vdash \lambda(\alpha \triangleleft c: \tau) M: \forall(\alpha \triangleleft \tau) \Rightarrow \sigma}
\end{aligned}
$$

TermTCoerApp

$$
\frac{\Gamma \vdash M: \forall(\alpha \triangleleft \tau) \Rightarrow \tau^{\prime} \quad \Gamma \vdash G: \sigma \triangleleft \tau[\alpha \leftarrow \sigma]}{\Gamma \vdash M\{\sigma \triangleleft G\}: \tau^{\prime}[\alpha \leftarrow \sigma]}
$$

RedCoer

$$
(\lambda(\alpha \triangleleft c: \tau) M)\{\sigma \triangleleft G\} \rightsquigarrow_{\iota} M[\alpha \leftarrow \sigma][c \leftarrow G]
$$

System F_{i}^{p}

$$
\begin{array}{rrr}
c & \text { Coercion variables } \\
\triangleleft & :=\triangleleft \mid \triangleright & \text { Bounds } \\
\tau, \sigma & ::=\ldots \mid \forall(\alpha \triangleleft \tau) \Rightarrow \sigma & \text { Types } \\
P & ::=\ldots|\lambda(\alpha \triangleleft c: \tau) M| M\{\tau \bowtie G\} & \text { One-node coercions } \\
G & ::=\ldots \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha \leftrightarrow \rho \Rightarrow} & \text { Coercions }
\end{array}
$$

CoerDistTCoerArrow

$$
\Gamma \vdash \tau \quad\ulcorner, \alpha \vdash \rho \quad\ulcorner, \alpha \vdash \sigma
$$

$\Gamma \vdash$ Dist $_{\tau \rightarrow \sigma}^{\forall \alpha \triangleleft \rho \Rightarrow}:(\forall(\alpha \triangleleft \rho) \Rightarrow \tau \rightarrow \sigma) \triangleright(\tau \rightarrow \forall(\alpha \triangleleft \rho) \Rightarrow \sigma)$

RedCoerDistCoerArrow
Dist $\left._{\tau^{\prime} \rightarrow \sigma^{\prime}}^{\forall \alpha \triangleleft \rho^{\prime}} \Rightarrow \lambda(\alpha \triangleleft c: \rho) \lambda(x: \tau) M\right\rangle \rightsquigarrow_{\iota} \lambda(x: \tau) \lambda(\alpha \triangleleft c: \rho) M$

Erasing function

The erasing function removes type annotations, abstractions, and applications.

$$
\begin{aligned}
\lfloor x\rfloor & =x \\
\lfloor\lambda(x: \tau) M\rfloor & =\lambda x \cdot\lfloor M\rfloor \\
\lfloor M N\rfloor & =\lfloor M\rfloor\lfloor N\rfloor \\
\lfloor P[M]\rfloor & =\lfloor M\rfloor
\end{aligned}
$$

Erasing function

The erasing function removes type annotations, abstractions, and applications.

$$
\begin{aligned}
\lfloor x\rfloor & =x \\
\lfloor\lambda(x: \tau) M\rfloor & =\lambda x \cdot\lfloor M\rfloor \\
\lfloor M N\rfloor & =\lfloor M\rfloor\lfloor N\rfloor \\
\lfloor P[M]\rfloor & =\lfloor M\rfloor
\end{aligned}
$$

The unfolding of the last line is:

$$
\begin{aligned}
\lfloor\Lambda \alpha M\rfloor & =\lfloor M\rfloor \\
\lfloor M \sigma\rfloor & =\lfloor M\rfloor
\end{aligned}
$$

System F_{ι}

$$
\begin{aligned}
\tau, \sigma: & :=\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau \quad \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \\
G: & =\Lambda \alpha G \mid G \tau
\end{aligned}
$$

Polymorphism:

TermTypeLam

$$
\frac{\Gamma, \alpha \vdash M: \tau}{\Gamma \vdash \Lambda \alpha M: \forall \alpha . \tau}
$$

TermTypeApp

$$
\frac{\Gamma \vdash M: \forall \alpha . \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash M \sigma: \tau[\alpha \leftarrow \sigma]}
$$

RedType

$$
(\Lambda \alpha M) \tau \rightsquigarrow, M[\alpha \leftarrow \tau]
$$

System F_{ι}

$$
\begin{aligned}
\tau, \sigma: & : \tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau \\
M, N: & =x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle
\end{aligned}
$$

Coercion application:
TermCoer

$$
\frac{\Gamma \vdash G: \tau \triangleright \sigma \quad \Gamma \vdash M: \tau}{\Gamma \vdash G\langle M\rangle: \sigma}
$$

System F_{ι}

$$
\begin{array}{rlr}
\tau, \sigma::=\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \mid \diamond^{\tau}
\end{array}
$$

Reflexivity:
CoerDot

$$
\Gamma \vdash \tau
$$

$$
\overline{\Gamma \vdash \diamond^{\tau}: \tau \triangleright \tau}
$$

RedCoerDot

$$
\diamond^{\tau}\langle M\rangle \rightsquigarrow \iota M
$$

System F_{ι}

$$
\begin{array}{rlr}
\tau, \sigma::=\tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \mid \diamond^{\tau}
\end{array}
$$

One-node coercion injection:

$$
\begin{array}{lll}
\mathrm{P} \text { on } \mathrm{M} \\
\Gamma, \Delta \vdash M: \tau \\
\Gamma \vdash P[M]: \sigma & \frac{\mathrm{P} \text { on } \mathrm{G}}{} & \begin{array}{l}
\Gamma, \Delta \vdash G: \rho \triangleright \tau \\
\Gamma \vdash P[G]: \rho \triangleright \sigma
\end{array}
\end{array}
$$

RedCoerFill

$$
(P[G])\langle M\rangle \rightsquigarrow_{\iota} P[G\langle M\rangle]
$$

System F_{ι}

$$
\begin{aligned}
\tau, \sigma::= & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau \quad \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N \\
G: & |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
& \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow{\tau} G_{2}
\end{aligned}
$$

Arrow congruence (subtyping):

CoerArrow

$$
\frac{\Gamma \vdash G_{1}: \tau_{1} \triangleright \tau_{1}^{\prime} \quad \Gamma \vdash G_{2}: \tau_{2} \triangleright \tau_{2}^{\prime}}{\Gamma \vdash G_{1} \xrightarrow{\tau_{1}} G_{2}:\left(\tau_{1}^{\prime} \rightarrow \tau_{2}\right) \triangleright\left(\tau_{1} \rightarrow \tau_{2}^{\prime}\right)}
$$

RedCoerArrow

$$
\left(G_{1} \xrightarrow{\tau_{1}} G_{2}\right)\left\langle\lambda\left(x: \tau_{1}^{\prime}\right) M\right\rangle \rightsquigarrow_{\iota} \lambda\left(x: \tau_{1}\right) G_{2}\left\langle M\left[x \leftarrow G_{1}\langle x\rangle\right]\right\rangle
$$

System F_{ι}

$$
\begin{aligned}
\tau, \sigma: & :=\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau \quad \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N \\
& |\Lambda \alpha M| M \tau \mid G\langle M\rangle \\
G: & =\Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\rightarrow} G_{2} \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}
\end{aligned}
$$

It permutes $\Lambda \alpha$ and $\lambda(x: \tau)$
CoerDistTypeArrow

$$
\frac{\Gamma \vdash \tau \quad(\text { i.e. } \alpha \notin f t v(\tau)) \quad \Gamma, \alpha \vdash \sigma}{\Gamma \vdash \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}:(\forall \alpha . \tau \rightarrow \sigma) \triangleright(\tau \rightarrow \forall \alpha . \sigma)}
$$

RedCoerDistTypeArrow
Dist $\tau_{\tau^{\prime} \rightarrow \sigma^{\prime}}^{\forall \alpha,}\langle\Lambda \alpha \lambda(x: \tau) M\rangle \rightsquigarrow, \lambda(x: \tau) \Lambda \alpha M$

System F_{ι}

$$
\begin{array}{rlr}
\tau, \sigma: & =\tau \rightarrow \sigma|\alpha| \forall \alpha . \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\} \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\rightarrow} G_{2} \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}
\end{array}
$$

Coercion abstraction:

> TermCoerApp

TermCoerLam

$$
\begin{gathered}
\Gamma \vdash G: \varphi \\
\Gamma \vdash M: \varphi \Rightarrow \tau \\
\hline \Gamma \vdash M\{G\}: \tau
\end{gathered}
$$

RedCoer

$$
(\lambda(c: \varphi) M)\{G\} \rightsquigarrow_{\iota} M[c \leftarrow G]
$$

System F_{ι}

$$
\begin{array}{rlr}
\tau, \sigma: & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\} \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\rightarrow} G_{2}\left|\operatorname{Dist}_{\tau \rightarrow \sigma}^{\forall \alpha .}\right| c
\end{array}
$$

Coercion variable:

$$
\begin{aligned}
& \begin{array}{l}
\text { CoerVar } \\
\Gamma \vdash \text { ok } \quad c: \varphi \in \Gamma \\
\Gamma \vdash c: \varphi
\end{array}
\end{aligned}
$$

System F_{ι}

$$
\begin{array}{rlr}
\tau, \sigma::= & \tau \rightarrow \sigma|\alpha| \forall \alpha \cdot \tau \mid \varphi \Rightarrow \tau & \varphi::=\tau \triangleright \sigma \\
M, N: & x|\lambda(x: \tau) M| M N & \\
& |\Lambda \alpha M| M \tau|G\langle M\rangle| \Lambda(c: \varphi) M \mid M\{G\} \\
G: & \Lambda \alpha G|G \tau| G_{1}\left\langle G_{2}\right\rangle|\Lambda(c: \varphi) G| G\left\{G^{\prime}\right\} \\
& \left|\diamond^{\tau}\right| G_{1} \xrightarrow[\rightarrow]{\tau} G_{2}\left|\operatorname{Disit}_{\tau \rightarrow \sigma}^{\forall \alpha,}\right| c \mid \operatorname{Dist}_{\tau \rightarrow \sigma}^{\varphi=}
\end{array}
$$

It permutes $\Lambda(c: \varphi)$ and $\lambda(x: \tau)$

CoerDistCoerArrow

$$
\frac{\Gamma \vdash \tau}{\Gamma \vdash \operatorname{Dist}_{\tau \rightarrow \sigma}^{\varphi \Rightarrow}:(\varphi \Rightarrow(\tau \rightarrow \sigma)) \triangleright(\tau \rightarrow(\varphi \Rightarrow \sigma))}
$$

RedCoerDistCoerArrow
$\operatorname{Dist}_{\tau^{\prime} \rightarrow \sigma^{\prime}}^{\varphi^{\prime} \Rightarrow}\langle\Lambda(c: \varphi) \lambda(x: \tau) M\rangle \rightsquigarrow_{\iota} \lambda(x: \tau) \Lambda(c: \varphi) M$

Why study coercions?
Intuition

Goal

Typing rules
Graphical typing rules
Simply-typed lambda calculus
Type system features
Polymorphism
Coercions
Erasability
Bisimulation
Coercion judgments
Properties of F_{t}
Losing backward simulation
A default solution
System F_{i}^{P}
Result: F_{ι}^{P} subsumes $F_{<:}, F_{\eta}$, and MLF
Future work
Extra slides
Push
System $\mathrm{F}_{<}$:
Full distrib
System F_{η} examples
Pure Lambda Calculus
Simply-typed lambda calculus
System F: Polymorphism as coercions
System F: Polymorphism as coercions
System F_{η} : Subtyping as coercions
System F_{i}^{P}
Erasing function
System F_{ι}

