
10 The Essence of ML Type Inference

François Pottier and Didier Rémy

10.1 What Is ML?

The name ML appeared during the late seventies. It then referred to a general-

purpose programming language that was used as a meta-language (whence its

name) within the theorem prover LCF (Gordon, Milner, and Wadsworth, 1979).

Since then, several new programming languages, each of which offers several

different implementations, have drawn inspiration from it. So, what does ML

stand for today?

For a semanticist, ML might stand for a programming language featuring

first-class functions, data structures built out of products and sums, muta-

ble memory cells called references, exception handling, automatic memory

management, and a call-by-value semantics. This view encompasses the Stan-

dard ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) families of

programming languages. We refer to it as ML-the-programming-language.

For a type theorist, ML might stand for a particular breed of type systems,

based on the simply-typed λ-calculus, but extended with a simple form of

polymorphism introduced by let declarations. These type systems have de-

cidable type inference; their type inference algorithms strongly rely on first-

order unification and can be made efficient in practice. Besides Standard ML

and Caml, this view encompasses programming languages such as Haskell

(Peyton Jones, 2003) and Clean (Brus, van Eekelen, van Leer, and Plasmeijer,

1987), whose semantics is rather different—indeed, it is nonstrict and pure

(Sabry, 1998)—but whose type system fits this description. We refer to it as

ML-the-type-system. It is also referred to as the Hindley-Milner type discipline

in the literature.

Code for this chapter may be found on the book’s web site.

390 10 The Essence of ML Type Inference

For us, ML might also stand for the particular programming language whose

formal definition is given and studied in this chapter. It is a core calculus fea-

turing first-class functions, local definitions, and constants. It is equipped

with a call-by-value semantics. By customizing constants and their seman-

tics, one may recover data structures, references, and more. We refer to this

particular calculus as ML-the-calculus.

Why study ML-the-type-system today, such a long time after its initial dis-

covery? One may think of at least two reasons.

First, its treatment in the literature is often cursory, because it is consid-

ered either as a simple extension of the simply-typed λ-calculus (TAPL, Chap-

ter 9) or as a subset of Girard and Reynolds’ System F (TAPL, Chapter 23).

The former view is supported by the claim that local (let) definitions, which

distinguish ML-the-type-system from the simply-typed λ-calculus, may be un-

derstood as a simple textual expansion facility. However, this view tells only

part of the story, because it fails to give an account of the principal types

property enjoyed by ML-the-type-system, leads to a naive type inference al-

gorithm whose time complexity is exponential not only in the worst case

but in the common case, and breaks down when the language is extended

with side effects, such as state or exceptions. The latter view is supported by

the fact that every type derivation within ML-the-type-system is also a valid

type derivation within an implicitly-typed variant of System F. Such a view is

correct but again fails to give an account of type inference for ML-the-type-

system, since type inference for System F is undecidable (Wells, 1999).

Second, existing accounts of type inference for ML-the-type-system (Milner,

1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;

Jones, 1999) often involve heavy manipulations of type substitutions. Such

a ubiquitous use of type substitutions is often quite obscure. Furthermore,

actual implementations of the type inference algorithm do not explicitly ma-

nipulate substitutions; instead, they extend a standard first-order unification

algorithm, where terms are updated in place as new equations are discovered

(Huet, 1976; Martelli and Montanari, 1982). Thus, it is hard to tell, from these

accounts, how to write an efficient type inference algorithm for ML-the-type-

system. Yet, in spite of the increasing speed of computers, efficiency remains

crucial when ML-the-type-system is extended with expensive features, such

as Objective Caml’s object types (Rémy and Vouillon, 1998), variant types

(Garrigue, 1998), or polymorphic methods (Garrigue and Rémy, 1999).

Our emphasis on efficiency might come as a surprise, since type inference

for ML-the-type-system is known to be dexptime-complete (Kfoury, Tiuryn,

and Urzyczyn, 1990; Mairson, Kanellakis, and Mitchell, 1991). In practice,

however, most implementations of it behave well. This apparent contradic-

tion may be explained by observing that types usually remain small and

10.1 What Is ML? 391

that let constructs are never deeply nested towards the left. Indeed, un-

der the assumption that types have bounded size and that programs have

bounded “scheme depth,” type inference may be performed in quasi-linear

time (McAllester, 2003). In ML-the-programming-language, algebraic data type

definitions allow complex data structures to be described by concise expres-

sions, such as “listX,” which helps achieve the bounded-type-size property.

In fact, in such favorable circumstances, even an inefficient algorithm may

behave well. For instance, some deployed implementations of type inference

for ML-the-type-system contain sources of inefficiency (see remark 10.1.21

on page 404) and do not operate in quasi-linear time under the bounded-

type-size assumption. However, such implementations are put under greater

stress when types become larger, a situation that occurs in some programs

(Saha, Heintze, and Oliva, 1998) and also arises when large, transparent type

expressions are used instead of algebraic data types, as in Objective Caml’s

object-oriented fragment (Rémy and Vouillon, 1998).

For these reasons, we believe it is worth giving an account of ML-the-type-

system that focuses on type inference and strives to be at once elegant and

faithful to an efficient implementation, such as Rémy’s (1992a). In this presen-

tation, we forego type substitutions and instead put emphasis on constraints,

which offer a number of advantages.

First, constraints allow a modular presentation of type inference as the

combination of a constraint generator and a constraint solver, allowing sep-

arate reasoning about when a program is correct and how to check whether

it is correct. This perspective has long been standard in the setting of the

simply-typed λ-calculus: see, for example, Wand (1987b) and TAPL, Chap-

ter 22. In the setting of ML-the-type-system, such a decomposition is pro-

vided by the reduction of typability problems to acyclic semi-unification prob-

lems (Henglein, 1993; Kfoury, Tiuryn, and Urzyczyn, 1994). This approach,

however, was apparently never used in production implementations of ML-

the-programming-language. An experimental extension of SML/NJ with poly-

morphic recursion (Emms and LeiSS, 1996) did reduce type inference to a

semi-unification problem. Semi-unification found applications in the closely

related area of program analysis; see, for example, Fähndrich, Rehof, and Das

(2000) and Birkedal and Tofte (2001). In this chapter, we give a constraint-

based description of a “classic” implementation of ML-the-type-system, which

is based on first-order unification and a mechanism for creating and instan-

tiating principal type schemes.

Second, it is often natural to define and implement the solver as a con-

straint rewriting system. The constraint language allows reasoning not only

about correctness—is every rewriting step meaning-preserving?—but also

about low-level implementation details, since constraints are the data struc-

392 10 The Essence of ML Type Inference

x,y ::= Identifiers:

z Variable

m Memory location

c Constant

t ::= Expressions:

x Identifier

λz.t Function

t t Application

let z = t in t Local definition

v,w ::= Values:

z Variable

m Memory location

λz.t Function

c v1 . . . vk Data

c ∈ Q+ ∧ k ≤ a(c)

c v1 . . . vk Partial application

c ∈ Q− ∧ k < a(c)

E ::= Evaluation Contexts:

[] Empty context

E t Left side of an application

v E Right side of an application

let z = E in t Local definition

Figure 10-1: Syntax of ML-the-calculus

tures manipulated throughout the type inference process. For instance, de-

scribing unification in terms of multi-equations allows reasoning about the

sharing of nodes in memory, which a substitution-based approach cannot

account for. Last, constraints are more general than type substitutions, and

allow smooth extensions of ML-the-type-system with recursive types, rows,

subtyping, and more. These arguments are developed, for example, in Jouan-

naud and Kirchner (1991).

Before delving into the details of this new presentation of ML-the-type-

system, it is worth recalling its standard definition. Thus, in what follows,

we first define the syntax and operational semantics of ML-the-calculus, and

equip it with a type system, known as Damas and Milner’s type system.

ML-the-Calculus

The syntax of ML-the-calculus is defined in Figure 10-1. It is made up of sev-

eral syntactic categories.

Identifiers group several kinds of names that may be referenced in a pro-

gram: variables, memory locations, and constants. We let x and y range over

identifiers. Variables—also called program variables, to avoid ambiguity—are

names that may be bound to values using λ or let binding forms; in other

words, they are names for function parameters or local definitions. We let

z and f range over program variables. We sometimes write for a program

variable that does not occur free within its scope: for instance, λ .t stands for

λz.t, provided z is fresh for t. (We say that z is fresh for t when z does not oc-

10.1 What Is ML? 393

cur free in t.) Memory locations are names that represent memory addresses.

They are used to model references (see Example 10.1.9 below). Memory loca-

tions never appear in source programs, that is, programs that are submitted

to a compiler. They only appear during execution, when new memory blocks

are allocated. Constants are fixed names for primitive values and operations,

such as integer literals and integer arithmetic operations. Constants are el-

ements of a finite or infinite set Q. They are never subject to α-conversion,

in contrast to variables and memory locations. Program variables, memory

locations, and constants belong to distinct syntactic classes and may never

be confused.

The set of constants Q is kept abstract, so most of our development is

independent of its concrete definition. We assume that every constant c has

a nonnegative integer arity a(c). We further assume thatQ is partitioned into

subsets of constructors Q+ and destructors Q−. Constructors and destructors

differ in that the former are used to form values, while the latter are used to

operate on values.

10.1.1 Example [Integers]: For every integer n, one may introduce a nullary con-

structor n̂. In addition, one may introduce a binary destructor +̂, whose ap-

plications are written infix, so t1 +̂ t2 stands for the double application +̂ t1

t2 of the destructor +̂ to the expressions t1 and t2. 2

Expressions—also known as terms or programs—are the main syntactic cat-

egory. Indeed, unlike procedural languages such as C and Java, functional

languages, including ML-the-programming-language, suppress the distinction

between expressions and statements. Expressions consist of identifiers, λ-

abstractions, applications, and local definitions. The λ-abstraction λz.t repre-

sents the function of one parameter named z whose result is the expression t,

or, in other words, the function that maps z to t. Note that the variable z is

bound within the term t, so (for instance) the notations λz1.z1 and λz2.z2

denote the same entity. The application t1 t2 represents the result of calling

the function t1 with actual parameter t2, or, in other words, the result of

applying t1 to t2. Application is left-associative, that is, t1 t2 t3 stands for

(t1 t2) t3. The construct let z = t1 in t2 represents the result of evaluating

t2 after binding the variable z to t1. Note that the variable z is bound within

t2, but not within t1, so for instance let z1 = z1 in z1 and let z2 = z1 in z2

are the same object. The construct let z = t1 in t2 has the same meaning as

(λz.t2) t1, but is dealt with in a more flexible way by ML-the-type-system. To

sum up, the syntax of ML-the-calculus is that of the pure λ-calculus, extended

with memory locations, constants, and the let construct.

Values form a subset of expressions. They are expressions whose evalua-

tion is completed. Values include identifiers, λ-abstractions, and applications

394 10 The Essence of ML Type Inference

of constants, of the form c v1 . . . vk, where k does not exceed c’s arity if c

is a constructor, and k is smaller than c’s arity if c is a destructor. In what

follows, we are often interested in closed values—ones that do not contain

any free program variables. We use the meta-variables v and w for values.

10.1.2 Example: The integer literals . . . , −̂1, 0̂, 1̂, . . . are nullary constructors, so they

are values. Integer addition +̂ is a binary destructor, so it is a value, and

so is every partial application +̂ v. Thus, both +̂ 1̂ and +̂ +̂ are values. An

application of +̂ to two values, such as 2̂+̂2̂, is not a value. 2

10.1.3 Example [Pairs]: Let (·, ·) be a binary constructor. If t1 are t2 are expres-

sions, then the double application (·, ·) t1 t2 may be called the pair of t1

and t2, and may be written (t1,t2). By the definition above, (t1,t2) is a value

if and only if t1 and t2 are both values. 2

Stores are finite mappings from memory locations to closed values. A store

µ represents what is usually called a heap, that is, a collection of values,

each of which is allocated at a particular address in memory and may contain

pointers to other elements of the heap. ML-the-programming-language allows

overwriting the contents of an existing memory block—an operation some-

times referred to as a side effect. In the operational semantics, this effect is

achieved by mapping an existing memory location to a new value. We write �

for the empty store. We write µ[m , v] for the store that maps m to v and

otherwise coincides with µ. When µ and µ′ have disjoint domains, we write

µµ′ for their union. We write dom(µ) for the domain of µ and range(µ) for

the set of memory locations that appear in its codomain.

The operational semantics of a pure language like the λ-calculus may be

defined as a rewriting system on expressions. Because ML-the-calculus has

side effects, however, we define its operational semantics as a rewriting sys-

tem on configurations. A configuration t/µ is a pair of an expression t and a

store µ. The memory locations in the domain of µ are not considered bound

within t/µ, so, for instance, m1/(m1 , 0̂) and m2/(m2 , 0̂) denote distinct

entities. (In the literature, memory locations are often considered bound in-

side configurations. This offers the advantage of making memory allocation a

deterministic operation. However, there is still a need for non-α-convertible

configurations: rules R-Extend and R-Context in Figure 10-2 cannot other-

wise be correctly stated! Quite a few papers run into this pitfall.)

A configuration t/µ is closed if and only if t has no free program variables

and every memory location that appears within t or within the range of µ is in

the domain of µ. If t is a closed source program, its evaluation begins within

an empty store—that is, with the configuration t/�. Because source programs

do not contain memory locations, this configuration is closed. Furthermore,

we shall see that closed configurations are preserved by reduction.

10.1 What Is ML? 395

(λz.t) v -→ [z, v]t (R-Beta)

let z = v in t -→ [z, v]t (R-Let)

t/µ
δ
-→ t′/µ′

t/µ -→ t′/µ′
(R-Delta)

t/µ -→ t′/µ′

dom(µ′′) # dom(µ′)

range(µ′′) # dom(µ′ \ µ)

t/µµ′′ -→ t′/µ′µ′′
(R-Extend)

t/µ -→ t′/µ′

E[t]/µ −−ñ E[t′]/µ′
(R-Context)

Figure 10-2: Semantics of ML-the-calculus

Note that, instead of separating expressions and stores, it is possible to

make store fragments part of the syntax of expressions; this idea, proposed in

Crank and Felleisen (1991), has also been used for the encoding of reference

cells in process calculi.

A context is an expression where a single subexpression has been replaced

with a hole, written []. Evaluation contexts form a strict subset of contexts. In

an evaluation context, the hole is meant to highlight a point in the program

where it is valid to apply a reduction rule. Thus, the definition of evaluation

contexts determines a reduction strategy: it tells where and in what order

reduction steps may occur. For instance, the fact that λz.[] is not an evalu-

ation context means that the body of a function is never evaluated—that is,

not until the function is applied. The fact that t E is an evaluation context

only if t is a value means that, to evaluate an application t1 t2, one should

fully evaluate t1 before attempting to evaluate t2. More generally, in the case

of a multiple application, it means that arguments should be evaluated from

left to right. Of course, other choices could be made: for instance, defining

E ::= . . . | t E | E v | . . . would enforce a right-to-left evaluation order, while

defining E ::= . . . | t E | E t | . . . would leave the evaluation order unspeci-

fied, effectively allowing reduction to alternate between both subexpressions,

and making evaluation nondeterministic (because side effects could occur in

different order). The fact that let z = v in E is not an evaluation context

means that the body of a local definition is never evaluated—that is, not until

the definition itself is reduced. We write E[t] for the expression obtained by

replacing the hole in E with the expression t.

Figure 10-2 defines first a relation -→ between arbitrary configurations,

then a relation −−ñ between closed configurations. If t/µ -→ t′/µ holds for

every store µ, then we write t -→ t′ and say that the reduction is pure.

The semantics need not be deterministic. That is, a configuration may re-

duce to two different configurations. In fact, our semantics is deterministic

396 10 The Essence of ML Type Inference

only if the relation
δ
-→, which is a parameter to our semantics, is itself de-

terministic. In practice,
δ
-→ is usually deterministic, up to α-conversion of

memory locations. As explained above, the semantics could also be made

nondeterministic by a different choice in the definition of evaluation contexts.

The key reduction rule is R-Beta, which states that a function application

(λz.t) v reduces to the function body, namely t, where every occurrence of

the formal argument z has been replaced with the actual argument v. The λ

construct, which prevented the function body t from being evaluated, disap-

pears, so the new term may (in general) be further reduced. Because ML-the-

calculus adopts a call-by-value strategy, rule R-Beta is applicable only if the

actual argument is a value v. In other words, a function cannot be invoked un-

til its actual argument has been fully evaluated. Rule R-Let is very similar to

R-Beta. Indeed, it specifies that let z = v in t has the same behavior, with re-

spect to reduction, as (λz.t) v. Substitution of a value for a program variable

throughout a term is expensive, so R-Beta and R-Let are never implemented

literally: they are only a simple specification. Actual implementations usually

employ runtime environments, which may be understood as a form of explicit

substitutions (Abadi, Cardelli, Curien, and Lévy, 1991; Hardin, Maranget, and

Pagano, 1998). Note that our choice of a call-by-value reduction strategy has

essentially no impact on the type system; the programming language Haskell,

whose reduction strategy is known as lazy or call-by-need, also relies on the

Hindley-Milner type discipline.

Rule R-Delta describes the semantics of constants. It states that a certain

relation
δ
-→ is a subset of -→. Of course, since the set of constants is un-

specified, the relation
δ
-→ must be kept abstract as well. We require that, if

t/µ
δ
-→ t′/µ′ holds, then

(i) t is of the form c v1 . . . vn, where c is a destructor of arity n; and

(ii) dom(µ) is a subset of dom(µ′).

Condition (i) ensures that δ-reduction concerns full applications of destruc-

tors only, and that these are evaluated in accordance with the call-by-value

strategy. Condition (ii) ensures that δ-reduction may allocate new memory

locations, but not deallocate existing locations. In particular, a “garbage col-

lection” operator, which destroys unreachable memory cells, cannot be made

available as a constant. Doing so would not make much sense anyway in the

presence of R-Extend. Condition (ii) allows proving that, if t/µ reduces (by

-→) to t′/µ′, then dom(µ) is also a subset of dom(µ′); checking this is left as

an exercise to the reader.

Rule R-Extend states that any valid reduction is also valid in a larger store.

The initial and final stores µ and µ′ in the original reduction are both ex-

10.1 What Is ML? 397

tended with a new store fragment µ′′. The rule’s second premise requires that

the domain of µ′′ be disjoint with that of µ′ (and consequently, also with that

of µ), so that the new memory locations are indeed undefined in the original

reduction. (They may, however, appear in the image of µ.) The last premise

ensures that the new memory locations in µ′′ do not accidentally carry the

same names as the locations allocated during the original reduction step, that

is, the locations in dom(µ′ \ µ). The notation A # B stands for A∩ B = �.

Rule R-Context completes the definition of the operational semantics by

defining −−ñ, a relation between closed configurations, in terms of -→. The

rule states that reduction may take place not only at the term’s root, but also

deep inside it, provided the path from the root to the point where reduction

occurs forms an evaluation context. This is how evaluation contexts deter-

mine an evaluation strategy. As a purely technical point, because −−ñ relates

closed configurations only, we do not need to require that the memory lo-

cations in dom(µ′ \ µ) be fresh for E; indeed, every memory location that

appears within E must be a member of dom(µ).

10.1.4 Example [Integers, continued]: The operational semantics of integer addi-

tion may be defined as follows:

k̂1 +̂ k̂2
δ
-→ k̂1 + k2 (R-Add)

The left-hand term is the double application +̂ k̂1 k̂2, while the right-hand

term is the integer literal k̂, where k is the sum of k1 and k2. The distinction

between object level and meta level (that is, between k̂ and k) is needed here

to avoid ambiguity. 2

10.1.5 Example [Pairs, continued]: In addition to the pair constructor defined in

Example 10.1.3, we may introduce two destructors π1 and π2 of arity 1. We

may define their operational semantics as follows, for i ∈ {1,2}:

πi (v1,v2)
δ
-→ vi (R-Proj)

Thus, our treatment of constants is general enough to account for pair con-

struction and destruction; we need not build these features explicitly into the

language. 2

10.1.6 Exercise [Booleans, Recommended, ««, 3]: Let true and false be nullary

constructors. Let if be a ternary destructor. Extend the semantics with

if true v1 v2
δ
-→ v1 (R-True)

if false v1 v2
δ
-→ v2 (R-False)

Let us use the syntactic sugar if t0 then t1 else t2 for the triple applica-

tion of if t0 t1 t2. Explain why these definitions do not quite provide the

expected behavior. Without modifying the semantics of if, suggest a new

398 10 The Essence of ML Type Inference

definition of the syntactic sugar if t0 then t1 else t2 that corrects the

problem. 2

10.1.7 Example [Sums]: Booleans may in fact be viewed as a special case of the more

general concept of sum. Let inj1 and inj2 be unary constructors, called re-

spectively left and right injections. Let case be a ternary destructor, whose

semantics is defined as follows, for i ∈ {1,2}:

case (inji v) v1 v2
δ
-→ vi v (R-Case)

Here, the value inji v is being scrutinized, while the values v1 and v2, which

are typically functions, represent the two arms of a standard case construct.

The rule selects an appropriate arm (here, vi) based on whether the value un-

der scrutiny was formed using a left or right injection. The arm vi is executed

and given access to the data carried by the injection (here, v). 2

10.1.8 Exercise [«, 3]: Explain how to encode true, false, and the if construct

in terms of sums. Check that the behavior of R-True and R-False is properly

emulated. 2

10.1.9 Example [References]: Let ref and ! be unary destructors. Let := be a binary

destructor. We write t1 := t2 for the double application := t1 t2. Define the

operational semantics of these three destructors as follows:

ref v/�
δ
-→m/(m , v) if m is fresh for v (R-Ref)

!m/(m , v)
δ
-→ v/(m , v) (R-Deref)

m := v/(m , v0)
δ
-→ v/(m , v) (R-Assign)

According to R-Ref, evaluating ref v allocates a fresh memory locationm and

binds v to it. The name m must be chosen fresh for v to prevent inadvertent

capture of the memory locations that appear free within v. By R-Deref, evalu-

ating !m returns the value bound to the memory locationm within the current

store. By R-Assign, evaluatingm := v discards the value v0 currently bound to

m and produces a new store where m is bound to v. Here, the value returned

by the assignment m := v is v itself; in ML-the-programming-language, it is

usually a nullary constructor (), pronounced unit. 2

10.1.10 Example [Recursion]: Let fix be a binary destructor, whose operational se-

mantics is:

fix v1 v2
δ
-→ v1 (fix v1) v2 (R-Fix)

fix is a fixpoint combinator: it effectively allows recursive definitions of

functions. Indeed, the construct letrec f = λz.t1 in t2 provided by ML-

the-programming-language may be viewed as syntactic sugar for let f =

fix (λf.λz.t1) in t2. 2

10.1 What Is ML? 399

10.1.11 Exercise [Recommended, ««, 3]: Assuming the availability of Booleans and

conditionals, integer literals, subtraction, multiplication, integer comparison,

and a fixpoint combinator, most of which were defined in previous exam-

ples, define a function that computes the factorial of its integer argument,

and apply it to 3̂. Determine, step by step, how this expression reduces to a

value. 2

It is straightforward to check that, if t/µ reduces to t′/µ′, then t is not a

value. In other words, values are irreducible: they represent completed com-

putations. The proof is left as an exercise to the reader. The converse, how-

ever, does not hold: if the closed configuration t/µ is irreducible with respect

to −−ñ, then t is not necessarily a value. In that case, the configuration t/µ is

said to be stuck. It represents a runtime error, that is, a situation that does not

allow computation to proceed, yet is not considered a valid outcome. A closed

source program t is said to go wrong if and only if the initial configuration

t/� reduces to a stuck configuration.

10.1.12 Example: Runtime errors typically arise when destructors are applied to ar-

guments of an unexpected nature. For instance, the expressions +̂ 1̂ m and

π1 2̂ and !3̂ are stuck, regardless of the current store. The program let z =

+̂ +̂ in z 1 is not stuck, because +̂ +̂ is a value. However, its reduct through

R-Let is +̂ +̂ 1, which is stuck, so this program goes wrong. The primary

purpose of type systems is to prevent such situations from arising. 2

10.1.13 Remark: The configuration !m/µ is stuck if m is not in the domain of µ. In

that case, however, !m/µ is not closed. Because we consider −−ñ as a rela-

tion between closed configurations only, this situation cannot arise. In other

words, the semantics of ML-the-calculus never allows the creation of dan-

gling pointers. As a result, no particular precautions need be taken to guard

against them. Several strongly typed programming languages do neverthe-

less allow dangling pointers in a controlled fashion (Tofte and Talpin, 1997;

Walker, Crary, and Morrisett, 2000; DeLine and Fähndrich, 2001; Grossman,

Morrisett, Jim, Hicks, Wang, and Cheney, 2002). 2

Damas and Milner’s Type System

ML-the-type-system was originally defined by Milner (1978). Here, we repro-

duce the definition given a few years later by Damas and Milner (1982), which

is written in a more standard style: typing judgments are defined inductively

by a collection of typing rules. We refer to this type system as DM.

We must first define types. In DM, types are terms built out of type con-

structors and type variables. Furthermore, they are first-order terms: that is,

400 10 The Essence of ML Type Inference

in the grammar of types, none of the productions binds a type variable. This

situation is identical to that of the simply-typed λ-calculus.

We begin with several considerations concerning the specification of type

constructors.

First, we do not wish to fix the set of type constructors. Certainly, since

ML-the-calculus has functions, we need to be able to form an arrow type

T → T′ out of arbitrary types T and T′; that is, we need a binary type con-

structor →. However, because ML-the-calculus includes an unspecified set of

constants, we cannot say much else in general. If constants include integer

literals and integer operations, as in Example 10.1.1, then a nullary type con-

structor int is needed; if they include pair construction and destruction, as in

Examples 10.1.3 and 10.1.5, then a binary type constructor × is needed; etc.

Second, it is common to refer to the parameters of a type constructor by

position, that is, by numeric index. For instance, when one writes T → T′, it

is understood that the type constructor → has arity 2, that T is its first pa-

rameter, known as its domain, and that T′ is its second parameter, known as

its codomain. Here, however, we refer to parameters by names, known as di-

rections. For instance, we define two directions domain and codomain and let

the type constructor → have arity {domain, codomain}. The extra generality

afforded by directions is exploited in the definition of nonstructural subtyp-

ing (Example 10.2.9) and in the definition of rows (§10.8).

Last, we allow types to be classified using kinds. As a result, every type

constructor must come not only with an arity, but with a richer signature,

which describes the kinds of the types to which it is applicable and the

kind of the type that it produces. A distinguished kind ? is associated with

“normal” types, that is, types that are directly ascribed to expressions and

values. For instance, the signature of the type constructor → is {domain ,

?, codomain , ?} ⇒ ?, because it is applicable to two normal types and

produces a normal type. Introducing kinds other than ? allows viewing some

types as ill-formed: this is illustrated, for instance, in §10.8. In the simplest

case, however, ? is really the only kind, so the signature of a type constructor

is nothing but its arity (a set of directions), and every term is a well-formed

type, provided every application of a type constructor respects its arity.

10.1.14 Definition: Let d range over a finite or denumerable set of directions and κ

over a finite or denumerable set of kinds. Let ? be a distinguished kind. Let K

range over partial mappings from directions to kinds. Let F range over a finite

or denumerable set of type constructors, each of which has a signature of the

form K ⇒ κ. The domain of K is called the arity of F , while κ is referred to

as its image kind. We write κ instead of K ⇒ κ when K is empty. Let → be a

type constructor of signature {domain , ?, codomain , ?} ⇒ ?. 2

10.1 What Is ML? 401

The type constructors and their signatures collectively form a signature S.

In the following, we assume that a fixed signature S is given and that every

type constructor in it has finite arity, so as to ensure that types are machine

representable. However, in §10.8, we shall explicitly work with several distinct

signatures, one of which involves type constructors of denumerable arity.

A type variable is a name that is used to stand for a type. For simplicity,

we assume that every type variable is branded with a kind, or in other words,

that type variables of distinct kinds are drawn from disjoint sets. Each of

these sets of type variables is individually subject to α-conversion: that is,

renamings must preserve kinds. Attaching kinds to type variables is only a

technical convenience; in practice, every operation performed during type

inference preserves the property that every type is well-kinded, so it is not

necessary to keep track of the kind of every type variable. It is only necessary

to check that all types supplied by the programmer, within type declarations,

type annotations, or module interfaces, are well-kinded.

10.1.15 Definition: For every kind κ, let Vκ be a disjoint, denumerable set of type

variables. Let X, Y, and Z range over the set V of all type variables. Let X̄ and

Ȳ range over finite sets of type variables. We write X̄Ȳ for the set X̄ ∪ Ȳ and

often write X for the singleton set {X}. We write ftv(o) for the set of free type

variables of an object o. 2

The set of types, ranged over by T, is the free many-kinded term algebra

that arises out of the type constructors and type variables. Types are given

by the following inductive definition:

10.1.16 Definition: A type of kind κ is either a member of Vκ , or a term of the form

F {d1 , T1, . . . , dn , Tn}, where F has signature {d1 , κ1, . . . , dn , κn} ⇒ κ

and T1, . . . ,Tn are types of kind κ1, . . . , κn, respectively. 2

As a notational convention, we assume that, for every type constructor F ,

the directions that form the arity of F are implicitly ordered, so that we may

say that F has signature κ1 ⊗ . . . ⊗ κn ⇒ κ and employ the syntax F T1 . . . Tn
for applications of F . Applications of the type constructor → are written infix

and associate to the right, so T→ T′ → T′′ stands for T→ (T′ → T′′).

In order to give meaning to the free type variables of a type, or more gen-

erally, of a typing judgment, traditional presentations of ML-the-type-system,

including Damas and Milner’s, employ type substitutions. Most of our pre-

sentation avoids substitutions and uses constraints instead. However, we do

need substitutions on a few occasions, especially when relating our presenta-

tion to Damas and Milner’s.

10.1.17 Definition: A type substitution θ is a total, kind-preserving mapping of type

variables to types that is the identity everywhere but on a finite subset of V ,

402 10 The Essence of ML Type Inference

which we call the domain of θ and write dom(θ). The range of θ, which we

write range(θ), is the set ftv(θ(dom(θ))). A type substitution may naturally

be viewed as a total, kind-preserving mapping of types to types. 2

If ~X and ~T are respectively a vector of distinct type variables and a vector

of types of the same (finite) length such that, for every index i, Xi and Ti

have the same kind, then [~X , ~T] denotes the substitution that maps Xi to

Ti for every index i and is the identity elsewhere. The domain of [~X , ~T] is

a subset of X̄, the set underlying the vector ~X. Its range is a subset of ftv(T̄),

where T̄ is the set underlying the vector ~T. (These may be strict subsets; for

instance, the domain of [X, X] is the empty set, since this substitution is the

identity.) Every substitution θ may be written under the form [~X , ~T], where

X̄ = dom(θ). Then, θ is idempotent if and only if X̄ # ftv(T̄) holds.

As pointed out earlier, types are first-order terms. As a result, every type

variable that appears within a type T appears free within T. Things become

more interesting when we introduce type schemes. As its name implies, a

type scheme may describe an entire family of types; this effect is achieved via

universal quantification over a set of type variables.

10.1.18 Definition: A type scheme S is an object of the form ∀X̄.T, where T is a type

of kind ? and the type variables X̄ are considered bound within T. Any type

of the form [~X, ~T]T is called an instance of the type scheme ∀X̄.T. 2

One may view the type T as the trivial type scheme∀�.T, where no type vari-

ables are universally quantified, so types of kind ?may be viewed as a subset

of type schemes. The type scheme ∀X̄.T may be viewed as a finite way of

describing the possibly infinite family of its instances. Note that, throughout

most of this chapter, we work with constrained type schemes, a generalization

of DM type schemes (Definition 10.2.2).

Typing environments, or environments for short, are used to collect as-

sumptions about an expression’s free identifiers.

10.1.19 Definition: An environment Γ is a finite ordered sequence of pairs of a pro-

gram identifier and a type scheme. We write � for the empty environment and

“;” for the concatenation of environments. An environment may be viewed as

a finite mapping from program identifiers to type schemes by letting Γ(x) = S

if and only if Γ is of the form Γ1;x : S; Γ2, where Γ2 contains no assumption

about x. The set of defined program identifiers of an environment Γ , written

dpi(Γ), is defined by dpi(�) = � and dpi(Γ ;x : S) = dpi(Γ)∪ {x}. 2

To complete the definition of Damas and Milner’s type system, there re-

mains to define typing judgments. A typing judgment takes the form Γ ` t : S,

where t is an expression of interest, Γ is an environment, which typically con-

tains assumptions about t’s free program identifiers, and S is a type scheme.

10.1 What Is ML? 403

Γ(x) = S

Γ ` x : S
(dm-Var)

Γ ;z : T ` t : T′

Γ ` λz.t : T→ T′
(dm-Abs)

Γ ` t1 : T→ T′ Γ ` t2 : T

Γ ` t1 t2 : T′
(dm-App)

Γ ` t1 : S Γ ;z : S ` t2 : T

Γ ` let z = t1 in t2 : T
(dm-Let)

Γ ` t : T X̄ # ftv(Γ)

Γ ` t : ∀X̄.T
(dm-Gen)

Γ ` t : ∀X̄.T

Γ ` t : [~X, ~T]T
(dm-Inst)

Figure 10-3: Typing rules for DM

Such a judgment may be read: under assumptions Γ , the expression t has the

type scheme S. By abuse of language, it is sometimes said that t has type S.

A typing judgment is valid (or holds) if and only if it may be derived using

the rules that appear in Figure 10-3. An expression t is well-typed within the

environment Γ if and only if there exists some type scheme S such that the

judgment Γ ` t : S holds; it is ill-typed within Γ otherwise.

Rule dm-Var allows fetching a type scheme for an identifier x from the

environment. It is equally applicable to program variables, memory locations,

and constants. If no assumption concerning x appears in the environment

Γ , then the rule isn’t applicable. In that case, the expression x is ill-typed

within Γ . Assumptions about constants are usually collected in a so-called ini-

tial environment Γ0. It is the environment under which closed programs are

typechecked, so every subexpression is typechecked under some extension Γ

of Γ0. Of course, the type schemes assigned by Γ0 to constants must be con-

sistent with their operational semantics; we say more about this later (§10.5).

Rule dm-Abs specifies how to typecheck a λ-abstraction λz.t. Its premise re-

quires the body of the function, t, to be well-typed under an extra assumption

that causes all free occurrences of z within t to receive a common type T. Its

conclusion forms the arrow type T → T′ out of the types of the function’s

formal parameter, T, and result, T′. It is worth noting that this rule always

augments the environment with a type T—recall that, by convention, types

form a subset of type schemes—but never with a nontrivial type scheme.

Rule dm-App states that the type of a function application is the codomain

of the function’s type, provided that the domain of the function’s type is a

valid type for the actual argument. Rule dm-Let closely mirrors the opera-

tional semantics: whereas the semantics of the local definition let z = t1

in t2 is to augment the runtime environment by binding z to the value of

t1 prior to evaluating t2, the effect of dm-Let is to augment the typing envi-

404 10 The Essence of ML Type Inference

ronment by binding z to a type scheme for t1 prior to typechecking t2. Rule

dm-Gen turns a type into a type scheme by universally quantifying over a set

of type variables that do not appear free in the environment; this restriction

is discussed in Example 10.1.20 below. Rule dm-Inst, on the contrary, turns a

type scheme into one of its instances, which may be chosen arbitrarily. These

two operations are referred to as generalization and instantiation. The no-

tion of type scheme and the rules dm-Gen and dm-Inst are characteristic of

ML-the-type-system: they distinguish it from the simply-typed λ-calculus.

10.1.20 Example: It is unsound to allow generalizing type variables that appear free

in the environment. For instance, consider the typing judgment z : X ` z :

X (1), which, according to dm-Var, is valid. Applying an unrestricted version

of dm-Gen to it, we obtain z : X ` z : ∀X.X (2), whence, by dm-Inst, z : X `

z : Y (3). By dm-Abs and dm-Gen, we then have � ` λz.z : ∀XY.X → Y. In

other words, the identity function has unrelated argument and result types!

Then, the expression (λz.z) 0̂ 0̂, which reduces to the stuck expression 0̂ 0̂,

has type scheme ∀Z.Z. So, well-typed programs may cause runtime errors:

the type system is unsound.

What happened? It is clear that the judgment (1) is correct only because

the type assigned to z is the same in its assumption and in its right-hand

side. For the same reason, the judgments (2) and (3)—the former of which

may be written z : X ` z : ∀Y.Y—are incorrect. Indeed, such judgments defeat

the very purpose of environments, since they disregard their assumption.

By universally quantifying over X in the right-hand side only, we break the

connection between occurrences of X in the assumption, which remain free,

and occurrences in the right-hand side, which become bound. This is correct

only if there are in fact no free occurrences of X in the assumption. 2

10.1.21 Remark: A naive implementation of dm-Gen would traverse the environment

Γ in order to compute the set of its free type variables. However, the num-

ber of entries in Γ may be linear in the program size, so, even if types have

bounded size, the time required by this computation may be linear in the

program size. Since it is performed at every let node, this naive approach

gives type inference quadratic time complexity. To avoid this pitfall, our con-

straint solver annotates every type variable with an integer rank, which allows

telling, in constant time, whether it appears free in Γ (page 444). 2

It is a key feature of ML-the-type-system that dm-Abs may only introduce a

type T, rather than a type scheme, into the environment. Indeed, this allows

the rule’s conclusion to form the arrow type T → T′. If instead the rule were

to introduce the assumption z : S into the environment, then its conclusion

would have to form S → T′, which is not a well-formed type. In other words,

10.1 What Is ML? 405

this restriction is necessary to preserve the stratification between types and

type schemes. If we were to remove this stratification, thus allowing univer-

sal quantifiers to appear deep inside types, we would obtain an implicitly-

typed version of System F (TAPL, Chapter 23). Type inference for System F

is undecidable (Wells, 1999), while type inference for ML-the-type-system is

decidable, as we show later, so this design choice has a rather drastic impact.

10.1.22 Exercise [Recommended, «]: Build a type derivation for the expression λz1.

let z2 = z1 in z2. 2

10.1.23 Exercise [Recommended, «]: Let int be a nullary type constructor of signa-

ture ?. Let Γ0 consist of the bindings +̂ : int → int → int and k̂ : int, for every

integer k. Can you find derivations of the following valid typing judgments?

Which of these judgments are valid in the simply-typed λ-calculus, where

let z = t1 in t2 is syntactic sugar for (λz.t2) t1?

Γ0 ` λz.z : int→ int

Γ0 ` λz.z : ∀X.X→ X

Γ0 ` let f = λz.z+̂1̂ in f 2̂ : int

Γ0 ` let f = λz.z in f f 2̂ : int

Show that the expressions 1̂ 2̂ and λf.(f f) are ill-typed within Γ0. Could these

expressions be well-typed in a more powerful type system? 2

DM enjoys a number of nice theoretical properties, which have practical

implications.

First, it is sound: that is, well-typed programs do not go wrong. This essen-

tial property ensures that programs that are accepted by the typechecker may

be compiled without runtime checks. Establishing this property requires (i)

suitable hypotheses about the semantics of constants and the type schemes

assigned to constants in the initial environment, and (ii) in the presence of

side effects, a slight restriction of the syntax of let constructs, known as the

value restriction.

Furthermore, there exists an algorithm that, given a (closed) environment Γ

and a program t, tells whether t is well-typed with respect to Γ , and if so, pro-

duces a principal type scheme S. A principal type scheme is such that (i) it is

valid, that is, Γ ` t : S holds, and (ii) it is most general, that is, every judgment

of the form Γ ` t : S′ follows from Γ ` t : S by dm-Inst and dm-Gen. (For the

sake of simplicity, we have stated the properties of the type inference algo-

rithm only in the case of a closed environment Γ ; the specification is slightly

heavier in the general case.) This implies that type inference is decidable: the

compiler need not require expressions to be annotated with types. The fact

that, under a fixed environment Γ , all of the type information associated with

406 10 The Essence of ML Type Inference

an expression t may be summarized in the form of a single, principal type

scheme is also key to modular programming. Indeed, exporting a value out

of a module requires explicitly assigning a type scheme to it as part of the

module’s signature. If the chosen type scheme is not principal, then part of

the value’s (hence, of the module’s) potential for reuse is lost.

Road Map

Before proving the above claims, we first generalize our presentation by mov-

ing to a constraint-based setting. The necessary tools—the constraint lan-

guage, its interpretation, and a number of constraint equivalence laws—are

introduced in §10.2. In §10.3, we describe the standard constraint-based type

system HM(X) (Odersky, Sulzmann, and Wehr, 1999). We prove that, when

constraints are made up of equations between free, finite terms, HM(X) is

a reformulation of DM. In the presence of a more powerful constraint lan-

guage, HM(X) is an extension of DM. In §10.4, we show that type inference

may be viewed as a combination of constraint generation and constraint solv-

ing, as promised earlier. Then, in §10.5, we give a type soundness theorem. It

is stated purely in terms of constraints, but—thanks to the results developed

in the previous sections—applies equally to HM(X) and DM.

Throughout this core material, the syntax and interpretation of constraints

are left partly unspecified. Thus, the development is parameterized with re-

spect to them—hence the unknown X in the name HM(X). We really describe

a family of constraint-based type systems, all of which share a common con-

straint generator and a common type soundness proof. Constraint solving,

however, cannot be independent of X: on the contrary, the design of an ef-

ficient solver is heavily dependent on the syntax and interpretation of con-

straints. In §10.6, we consider constraint solving in the particular case where

constraints are made up of equations interpreted in a free tree model, and

define a constraint solver on top of a standard first-order unification algo-

rithm.

The remainder of this chapter deals with extensions of the framework. In

§10.7, we explain how to extend ML-the-calculus with a number of features,

including products, sums, references, recursion, algebraic data types, and re-

cursive types. Last, in §10.8, we extend the type language with rows and use

them to assign polymorphic type schemes to operations on records and vari-

ants.

10.2 Constraints 407

σ ::= type scheme:

∀X̄[C].T

C,D ::= constraint:

true truth

false falsity

P T1 . . .Tn predicate application

C ∧ C conjunction

∃X̄.C existential quantification

def x : σ in C type scheme introduction

x � T type scheme instantiation

C,D ::= Syntactic sugar for constraints:

. . . As before

σ � T Definition 10.2.3

let x : σ in C Definition 10.2.3

∃σ Definition 10.2.3

def Γ in C Definition 10.2.4

let Γ in C Definition 10.2.4

∃Γ Definition 10.2.4

Figure 10-4: Syntax of type schemes and constraints

10.2 Constraints

In this section, we define the syntax and logical meaning of constraints. Both

are partly unspecified. Indeed, the set of type constructors (Definition 10.1.14)

must contain at least the binary type constructor →, but might contain more.

Similarly, the syntax of constraints involves a set of so-called predicates on

types, which we require to contain at least a binary subtyping predicate ≤, but

might contain more. (The introduction of subtyping, which is absent in DM,

has little impact on the complexity of our proofs, yet increases the frame-

work’s expressive power. When subtyping is not desired, we interpret the

predicate ≤ as equality.) The logical interpretation of type constructors and

of predicates is left almost entirely unspecified. This freedom allows reason-

ing not only about Damas and Milner’s type system, but also about a family

of constraint-based extensions of it.

Syntax of Constraints

We now define the syntax of constrained type schemes and of constraints and

introduce some extra constraint forms as syntactic sugar.

10.2.1 Definition: Let P range over a finite or denumerable set of predicates, each

of which has a signature of the form κ1 ⊗ . . .⊗ κn ⇒ ·, where n ≥ 0. For every

kind κ, let =κ and ≤κ be distinguished predicates of signature κ ⊗ κ ⇒ ·. 2

10.2.2 Definition: The syntax of type schemes and constraints is given in Figure 10-4.

It is further restricted by the following requirements. In the type scheme

∀X̄[C].T and in the constraint x � T, the type T must have kind ?. In the con-

408 10 The Essence of ML Type Inference

straint P T1 . . .Tn, the types T1, . . . ,Tn must have kind κ1, . . . , κn, respectively,

if P has signature κ1⊗. . .⊗κn ⇒ ·. We write∀X̄.T for ∀X̄[true].T, which allows

viewing DM type schemes as a subset of constrained type schemes. 2

We write T1 =κ T2 and T1 ≤κ T2 for the binary predicate applications =κ T1 T2

and ≤κ T1 T2, and refer to them as equality and subtyping constraints, respec-

tively. We often omit the subscript κ, so T1 = T2 and T1 ≤ T2 are well-formed

constraints whenever T1 and T2 have the same kind. By convention, ∃ and def

bind tighter than ∧; that is, ∃X̄.C ∧ D is (∃X̄.C) ∧ D and def x : σ in C ∧ D

is (def x : σ in C) ∧ D. In ∀X̄[C].T, the type variables X̄ are bound within

C and T. In ∃X̄.C, the type variables X̄ are bound within C. The sets of free

type variables of a type scheme σ and of a constraint C, written ftv(σ) and

ftv(C), respectively, are defined accordingly. In def x : σ in C, the identifier

x is bound within C. The sets of free program identifiers of a type scheme

σ and of a constraint C, written fpi(σ) and fpi(C), respectively, are defined

accordingly. Note that x occurs free in the constraint x � T.

The constraint true, which is always satisfied, mainly serves to indicate

the absence of a nontrivial constraint, while false, which has no solution,

may be understood as the indication of a type error. Composite constraints

include conjunction and existential quantification, which have their standard

meaning, as well as type scheme introduction and type scheme instantiation

constraints, which are similar to Gustavsson and Svenningsson’s constraint

abstractions (2001). In order to be able to explain these last two forms, we

must first introduce a number of derived constraint forms:

10.2.3 Definition: Let σ be∀X̄[D].T. If X̄ # ftv(T′) holds, then σ � T′ (read: T′ is an

instance of σ) stands for the constraint ∃X̄.(D∧T ≤ T′). We write ∃σ (read: σ

has an instance) for ∃X̄.D and let x : σ in C for ∃σ ∧ def x : σ in C. 2

Constrained type schemes generalize Damas and Milner’s type schemes, while

this definition of instantiation constraints generalizes Damas and Milner’s no-

tion of instance (Definition 10.1.18). Let us draw a comparison. First, Damas

and Milner’s instance relation is binary (given a type scheme S and a type T,

either T is an instance of S, or it isn’t), and is purely syntactic. For instance,

the type Y → Z is not an instance of ∀X.X → X in Damas and Milner’s sense,

because Y and Z are distinct type variables. In our presentation, on the other

hand, ∀X.X → X � Y → Z is not an assertion; rather, it is a constraint, which

by definition is ∃X.(true∧ X→ X ≤ Y→ Z). We later prove that it is equivalent

to ∃X.(Y ≤ X∧X ≤ Z) and to Y ≤ Z, and, if subtyping is interpreted as equality,

to Y = Z. That is, σ � T′ represents a condition on (the ground types denoted

by) the type variables in ftv(σ ,T′) for T′ to be an instance of σ , in a logical,

rather than purely syntactic, sense. Second, the definition of instantiation

10.2 Constraints 409

constraints involves subtyping, to ensure that any supertype of an instance

of σ is again an instance of σ (see rule C-ExTrans on page 418). This is con-

sistent with the purpose of subtyping: to allow a subtype where a supertype

is expected (TAPL, Chapter 15). Third and last, every type scheme σ is now

of the form ∀X̄[C].T. The constraint C, whose free type variables may or may

not be members of X̄, is meant to restrict the set of instances of the type

scheme ∀X̄[C].T. This is evident in the instantiation constraint ∀X̄[C].T � T′,

which by Definition 10.2.3 stands for ∃X̄.(C ∧ T ≤ T′): the values that X̄ may

assume are restricted by the demand that C be satisfied. This requirement

vanishes in the case of DM type schemes, where C is true. Our notions of con-

strained type scheme and of instantiation constraint are standard, coinciding

with those of HM(X) (Odersky, Sulzmann, and Wehr, 1999).

Let us now come back to an explanation of type scheme introduction and

instantiation constraints. In brief, the construct def x : σ in C binds the name

x to the type scheme σ within the constraint C. If C contains a subconstraint

of the form x � T, where this occurrence of x is free in C, then this subcon-

straint acquires the meaning σ � T. Thus, the constraint x � T is indeed an

instantiation constraint, where the type scheme that is being instantiated is

referred to by name. The constraint def x : σ in C may be viewed as an ex-

plicit substitution of the type scheme σ for the name x within C. Later (§10.4),

we use such explicit substitutions to supplant typing environments. That is,

where Damas and Milner’s type system augments the current typing envi-

ronment (dm-Abs, dm-Let), we introduce a new def binding in the current

constraint; where it looks up the current typing environment (dm-Var), we

employ an instantiation constraint. (The reader may wish to look ahead at Fig-

ure 10-9 on page 431.) The point is that it is then up to a constraint solver to

choose a strategy for reducing explicit substitutions—for instance, one might

wish to simplify σ before substituting it for x within C—whereas the use of

environments in standard type systems such as DM and HM(X) imposes an

eager substitution strategy, which is inefficient and thus never literally imple-

mented. The use of type scheme introduction and instantiation constraints

allows separating constraint generation and constraint solving without com-

promising efficiency, or, in other words, without introducing a gap between

the description of the type inference algorithm and its actual implementation.

Although the algorithm that we plan to describe is not new (Rémy, 1992a), its

description in terms of constraints is: to the best of our knowledge, the only

close relative of our def constraints is to be found in Gustavsson and Sven-

ningsson (2001). An earlier work that contains similar ideas is Müller (1994).

Approaches based on semi-unification (Henglein, 1989, 1993) achieve a simi-

lar separation between constraint generation and constraint solving, but are

based on a rather different constraint language.

410 10 The Essence of ML Type Inference

In the type system of Damas and Milner, every type scheme S has a fixed,

nonempty set of instances. In a constraint-based setting, things are more

complex: given a type scheme σ and a type T, whether T is an instance

of σ (that is, whether the constraint σ � T is satisfied) depends on the

meaning assigned to the type variables in ftv(σ ,T). Similarly, given a type

scheme, whether some type is an instance of σ (that is, whether the con-

straint ∃Z.σ � Z, where Z is fresh for σ , is satisfied) depends on the meaning

assigned to the type variables in ftv(σ). Because we do not wish to allow

forming type schemes that have no instances, we often use the constraint

∃Z.σ � Z. In fact, we later prove that it is equivalent to ∃σ , as defined above.

We also use the constraint form let x : σ in C, which requires σ to have an

instance and at the same time associates it with the name x. Because the def

form is more primitive, it is easier to work with at a low level, but it is no

longer explicitly used after §10.2; we always use let instead.

10.2.4 Definition: Environments Γ remain as in Definition 10.1.19, except DM type

schemes S are replaced with constrained type schemes σ . The set of free

program identifiers of an environment Γ , written fpi(Γ), is defined by fpi(�) =

� and fpi(Γ ;x : σ) = fpi(Γ) ∪ fpi(σ). We write dfpi(Γ) for dpi(Γ)∪ fpi(Γ). We

define def � in C as C and def Γ ;x : σ in C as def Γ in def x : σ in C. Similarly,

we define let � in C as C and let Γ ;x : σ in C as let Γ in let x : σ in C. We define

∃� as true and ∃(Γ ;x : σ) as ∃Γ ∧ def Γ in ∃σ . 2

In order to establish or express certain laws of equivalence between con-

straints, we need constraint contexts. A constraint context is a constraint with

zero, one, or several holes, written []. The syntax of contexts is as follows:

C ::= [] | C | C∧ C | ∃X̄.C | def x : σ in C | def x : ∀X̄[C].T in C

The application of a constraint context C to a constraint C, written C[C], is

defined in the usual way. Because a constraint context may have any number

of holes, C may disappear or be duplicated in the process. Because a hole

may appear in the scope of a binder, some of C’s free type variables and free

program identifiers may become bound in C[C]. We write dtv(C) and dpi(C)

for the sets of type variables and program identifiers, respectively, that Cmay

thus capture. We write let x : ∀X̄[C].T in C for ∃X̄.C ∧ def x : ∀X̄[C].T in C.

(Being able to state such a definition is why we require multi-hole contexts.)

We let X range over existential constraint contexts, defined by X ::= ∃X̄.[].

Meaning of Constraints

We have defined the syntax of constraints and given an informal description

of their meaning. We now give a formal definition of the interpretation of

constraints. We begin with the definition of a model:

10.2 Constraints 411

10.2.5 Definition: For every kind κ, let Mκ be a nonempty set, whose elements

are called the ground types of kind κ. In the following, t ranges overMκ , for

some κ that may be determined from the context. For every type constructor

F of signature K ⇒ κ, let F denote a total function from MK into Mκ , where

the indexed productMK is the set of all mappings T of domain dom(K) that

map every d ∈ dom(K) to an element of MK(d). For every predicate symbol

P of signature κ1 ⊗ . . .⊗ κn ⇒ ·, let P denote a predicate on Mκ1 × . . .×Mκn .

For every kind κ, we require the predicate =κ to be equality on Mκ and the

predicate ≤κ to be a partial order onMκ . 2

For the sake of convenience, we abuse notation and write F for both the

type constructor and its interpretation, and similarly for predicates.

By varying the set of type constructors, the set of predicates, the set of

ground types, and the interpretation of type constructors and predicates, one

may define an entire family of related type systems. We refer to the collection

of these choices as X. Thus, the type system HM(X), described in §10.3, is

parameterized by X.

The following examples give standard ways of defining the set of ground

types and the interpretation of type constructors.

10.2.6 Example [Syntactic models]: For every kind κ, letMκ consist of the closed

types of kind κ. Then, ground types are types that do not have any free type

variables, and form the so-called Herbrand universe. Let every type construc-

tor F be interpreted as itself. Models that define ground types and interpret

type constructors in this manner are referred to as syntactic. 2

10.2.7 Example [Tree models]: Let a path π be a finite sequence of directions. The

empty path is written ε and the concatenation of the pathsπ and π ′ is written

π · π ′. Let a tree be a partial function t from paths to type constructors

whose domain is nonempty and prefix-closed and such that, for every path

π in the domain of t , if the type constructor t(π) has signature K ⇒ κ, then

π · d ∈ dom(t) is equivalent to d ∈ dom(K) and, furthermore, for every

d ∈ dom(K), the type constructor t(π · d) has image kind K(d). If π is in

the domain of t , then the subtree of t rooted at π , written t/π , is the partial

function π ′ , t(π · π ′). A tree is finite if and only if it has finite domain. A

tree is regular if and only if it has a finite number of distinct subtrees. Every

finite tree is thus regular. Let Mκ consist of the finite (respectively regular)

trees t such that t(ε) has image kind κ: then, we have a finite (respectively

regular) tree model.

If F has signature K ⇒ κ, one may interpret F as the function that maps

T ∈ MK to the ground type t ∈ Mκ defined by t(ε) = F and t/d = T(d) for

d ∈ dom(T), that is, the unique ground type whose head symbol is F and

412 10 The Essence of ML Type Inference

whose subtree rooted at d is T(d). Then, we have a free tree model. Note

that free finite tree models coincide with syntactic models, as defined in the

previous example. 2

Rows (§10.8) are interpreted in a tree model, albeit not a free one. The fol-

lowing examples suggest different ways of interpreting the subtyping predi-

cate.

10.2.8 Example [Equality models]: The simplest way of interpreting the subtyp-

ing predicate is to let ≤ denote equality on every Mκ . Models that do so

are referred to as equality models. When no predicate other than equality is

available, we say that the model is equality-only. 2

10.2.9 Example [Structural, nonstructural subtyping]: Let a variance ν be a

nonempty subset of {−,+}, written − (contravariant), + (covariant), or ± (in-

variant) for short. Define the composition of two variances as an associative,

commutative operation with + as neutral element, ± as absorbing element

(that is, ±− = ±+ = ±± = ±), and such that −− = +. Now, consider a free

(finite or regular) tree model, where every direction d comes with a fixed vari-

ance ν(d). Define the variance ν(π) of a path π as the composition of the

variances of its elements. Let à be a partial order on type constructors such

that (i) if F1 à F2 holds and F1 and F2 have signature K1 ⇒ κ1 and K2 ⇒ κ2, re-

spectively, then K1 and K2 agree on the intersection of their domains and κ1

and κ2 coincide; and (ii) F0 à F1 à F2 implies dom(F0)∩ dom(F2) ⊆ dom(F1).

Let à+, à−, and à± stand for à, á, and =, respectively. Then, define the inter-

pretation of subtyping as follows: if t1, t2 ∈Mκ , let t1 ≤ t2 hold if and only if,

for every path π ∈ dom(t1)∩ dom(t2), t1(π) àν(π) t2(π) holds. It is not diffi-

cult to check that ≤ is a partial order on every Mκ . The reader is referred to

Amadio and Cardelli (1993), Kozen, Palsberg, and Schwartzbach (1995), and

Brandt and Henglein (1997) for more details about this construction. Models

that define subtyping in this manner are referred to as nonstructural subtyp-

ing models.

A simple nonstructural subtyping model is obtained by: letting the direc-

tions domain and codomain be contra- and covariant, respectively; introduc-

ing, in addition to the type constructor →, two type constructors ⊥ and > of

signature ?; and letting ⊥ à → à >. This gives rise to a model where ⊥ is the

least ground type, > is the greatest ground type, and the arrow type construc-

tor is, as usual, contravariant in its domain and covariant in its codomain.

This form of subtyping is called nonstructural because comparable ground

types may have different shapes: consider, for instance, ⊥ and ⊥ → >.

A typical use of nonstructural subtyping is in type systems for records. One

may, for instance, introduce a covariant direction content of kind ?, a kind

10.2 Constraints 413

◦, a type constructor abs of signature ◦, a type constructor pre of signature

{content , ?} ⇒ ◦, and let pre à abs. This gives rise to a model where

pre t ≤ abs holds for every t ∈ M?. Again, comparable ground types may

have different shapes: consider, for instance, pre > and abs. §10.8 says more

about typechecking operations on records.

Nonstructural subtyping has been studied, for example, in Kozen, Palsberg,

and Schwartzbach (1995), Palsberg, Wand, and O’Keefe (1997), Jim and Pals-

berg (1999), Pottier (2001b), Su et al. (2002), and Niehren and Priesnitz (2003).

An important particular case arises when any two type constructors related

by à have the same arity (and thus also the same signatures). In that case, it

is not difficult to show that any two ground types related by subtyping must

have the same shape, that is, if t1 ≤ t2 holds, then dom(t1) and dom(t2) must

coincide. For this reason, such an interpretation of subtyping is usually re-

ferred to as atomic or structural subtyping. It has been studied in the finite

(Mitchell, 1984, 1991b; Tiuryn, 1992; Pratt and Tiuryn, 1996; Frey, 1997; Re-

hof, 1997; Kuncak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn and

Wand, 1993) cases. Structural subtyping is often used in automated program

analyses that enrich standard types with atomic annotations without altering

their shape. 2

Many other kinds of constraints exist, which we lack space to list; see

Comon (1994) for a short survey.

Throughout this chapter, we assume (unless otherwise stated) that the set

of type constructors, the set of predicates, and the model—which, together,

form the parameter X—are arbitrary, but fixed.

As usual, the meaning of a constraint is a function of the meaning of its

free type variables and of its free program identifiers, which are respectively

given by a ground assignment and a ground environment.

10.2.10 Definition: A ground assignment φ is a total, kind-preserving mapping from

V into M. Ground assignments are extended to types by φ(F T1 . . . Tn) =

F(φ(T1), . . . ,φ(Tn)). Then, for every type T of kind κ, φ(T) is a ground type

of kind κ.

A ground type scheme s is a set of ground types, which we require to be

upward-closed with respect to subtyping: that is, t ∈ s and t ≤ t′ must im-

ply t′ ∈ s. A ground environment ψ is a partial mapping from identifiers to

ground type schemes.

Because the syntax of type schemes and constraints is mutually recursive,

so is their interpretation. The interpretation of a type scheme σ under a

ground assignment φ and a ground environment ψ is a ground type scheme,

written (φ,ψ)σ . It is defined in Figure 10-5. The ↑ is the upward closure

414 10 The Essence of ML Type Inference

Interpretation of type schemes:

(φ,ψ)(∀X̄[C].T) =

↑{φ[~X, ~t](T) ; φ[~X, ~t],ψ |= C}

Interpretation of constraints:

φ,ψ |= true (CM-True)

P(φ(T1), . . . ,φ(Tn))

φ,ψ |= P T1 . . . Tn
(CM-Predicate)

φ,ψ |= C1

φ,ψ |= C2

φ,ψ |= C1 ∧ C2

(CM-And)

φ[~X, ~t],ψ |= C

φ,ψ |= ∃X̄.C
(CM-Exists)

φ,ψ[x, (φ,ψ)σ] |= C

φ,ψ |= def x : σ in C
(CM-Def)

φ(T) ∈ ψ(x)

φ,ψ |= x � T
(CM-Instance)

Figure 10-5: Meaning of constraints

operator and |= is the constraint satisfaction predicate, defined next. The in-

terpretation of a constraint C under a ground assignment φ and a ground

environment ψ is a truth value, written φ,ψ |= C (read: φ and ψ satisfy C).

The three-place predicate |= is defined by the rules in Figure 10-5. A con-

straint C is satisfiable if and only if φ,ψ |= C holds for some φ and ψ. It is

false (or unsatisfiable) otherwise. 2

Let us now explain these definitions. The interpretation of the type scheme

∀X̄[C].T is a set of ground types, which we may refer to as the type scheme’s

ground instances. It contains the images of T under extensions of φ with

new values for the universally quantified variables X̄; these values may be

arbitrary, but must be such that the constraint C is satisfied. We implicitly

require ~X and ~t to have matching kinds, so that φ[~X , ~t] remains a kind-

preserving ground assignment. This set is upward closed, so any ground type

that lies above a ground instance of σ is also a ground instance of σ . This

interpretation is standard; see, for example, Pottier (2001a).

The rules that define |= (Figure 10-5) are syntax-directed. CM-True states

that the constraint true is a tautology, that is, holds in every context. No rule

matches the constraint false, which means that it holds in no context. CM-

Predicate states that the meaning of a predicate application is given by the

predicate’s interpretation within the model. More specifically, if P ’s signature

is κ1 ⊗ . . .⊗ κn ⇒ ·, then, by well-formedness of the constraint, every Ti is of

kind κi , so φ(Ti) is a ground type in Mκi . By Definition 10.2.5, P denotes a

predicate on Mκ1 × . . . ×Mκn , so the rule’s premise is mathematically well-

formed. It is independent of ψ, which is natural, since a predicate application

has no free program identifiers. CM-And requires each of the conjuncts to be

10.2 Constraints 415

valid in isolation. CM-Exists allows the type variables ~X to denote arbitrary

ground types ~t within C, independently of their image through φ. CM-Def

deals with type scheme introduction constraints, of the form def x : σ in C.

It binds x, within C, to the ground type scheme currently denoted by σ . Last,

CM-Instance concerns type scheme instantiation constraints of the form x �

T. Such a constraint is valid if and only if the ground type denoted by T is a

member of the ground type scheme denoted by x.

It is possible to prove that the constraints def x : σ in C and [x, σ]C have

the same meaning, where the latter denotes the capture-avoiding substitution

of σ for x throughout C. As a matter of fact, it would have been possible to

use this equivalence as a definition of the meaning of def constraints, but the

present style is pleasant as well. This confirms our claim that the def form is

an explicit substitution form.

Because constraints lie at the heart of our treatment of ML-the-type-system,

most of our proofs involve establishing logical properties of constraints.

These properties are usually not stated in terms of the satisfaction predi-

cate |=, which is too low-level. Instead, we reason in terms of entailment or

equivalence assertions. Let us first define these notions.

10.2.11 Definition: We write C1 ð C2, and say that C1 entails C2, if and only if,

for every ground assignment φ and for every ground environment ψ, the

assertion φ,ψ |= C1 implies φ,ψ |= C2. We write C1 ≡ C2, and say that C1

and C2 are equivalent, if and only if C1 ð C2 and C2 ð C1 hold. 2

In other words, C1 entails C2 when C1 imposes stricter requirements on

its free type variables and program identifiers than C2 does. Note that C is

unsatisfiable if and only if C ≡ false holds. It is straightforward to check

that entailment is reflexive and transitive and that ≡ is indeed an equivalence

relation.

We immediately exploit the notion of constraint equivalence to define what

it means for a type constructor to be covariant, contravariant, or invariant

with respect to one of its parameters. Let F be a type constructor of signature

κ1 ⊗ . . .⊗ κn ⇒ κ. Let i ∈ {1, . . . , n}. F is covariant (respectively contravariant,

invariant) with respect to its ith parameter if and only if, for all types T1, . . . ,Tn
and T′i of appropriate kinds, the constraint F T1 . . .Ti . . . Tn ≤ F T1 . . .T

′
i . . . Tn

is equivalent to Ti ≤ T′i (respectively T′i ≤ Ti , Ti = T′i).

10.2.12 Exercise [«, 3]: Check the following facts: (i) in an equality model, covari-

ance, contravariance, and invariance coincide; (ii) in an equality free tree

model, every type constructor is invariant with respect to each of its parame-

ters; and (iii) in a nonstructural subtyping model, if the direction d has been

declared covariant (respectively contravariant, invariant), then every type con-

416 10 The Essence of ML Type Inference

structor whose arity includes d is covariant (respectively contravariant, in-

variant) with respect to d. 2

In the following, we require the type constructor → to be contravariant

with respect to its domain and covariant with respect to its codomain—a

standard requirement in type systems with subtyping (TAPL, Chapter 15).

This requirement is summed up by the following equivalence law:

T1 → T2 ≤ T′1 → T′2 ≡ T′1 ≤ T1 ∧ T2 ≤ T′2 (C-Arrow)

Note that this requirement bears on the interpretation of types and of the

subtyping predicate. In an equality free tree model, by (i) and (ii) in the exer-

cise above, it is always satisfied. In a nonstructural subtyping model, it boils

down to requiring that the directions domain and codomain be declared con-

travariant and covariant, respectively. In the general case, we do not have any

knowledge of the model and cannot formulate a more precise requirement.

Thus, it is up to the designer of the model to ensure that C-Arrow holds.

We also exploit the notion of constraint equivalence to define what it means

for two type constructors to be incompatible. Two type constructors F1 and

F2 with the same image kind are incompatible if and only if all constraints

of the form F1 ~T1 ≤ F2 ~T2 and F2 ~T2 ≤ F1 ~T1 are false. Note that in an equality

free tree model, any two distinct type constructors are incompatible. In the

following, we often indicate that a newly introduced type constructor must

be isolated. We implicitly require that, whenever both F1 and F2 are isolated,

F1 and F2 be incompatible. Thus, the notion of isolation provides a concise

and modular way of stating a collection of incompatibility requirements. We

require the type constructor → to be isolated.

Reasoning with Constraints

In this section, we give a number of equivalence laws that are often useful and

help understand the meaning of constraints. To begin, we note that entail-

ment is preserved by arbitrary constraint contexts, as stated by the theorem

below. As a result, constraint equivalence is a congruence. Throughout this

chapter, these facts are often used implicitly.

10.2.13 Theorem [Congruence]: C1 ð C2 implies C[C1] ð C[C2]. 2

Next, we define what it means for a constraint to determine a set of type

variables. In brief, C determines Ȳ if and only if, given a ground assignment

for ftv(C) \ Ȳ and given that C holds, it is possible to reconstruct, in a unique

way, a ground assignment for Ȳ. Determinacy appears in the equivalence law

C-LetAll on page 418 and is exploited by the constraint solver in §10.6.

10.2 Constraints 417

10.2.14 Definition: C determines Ȳ if and only if, for every environment Γ , two

ground assignments that satisfy def Γ in C and that coincide outside Ȳ must

coincide on Ȳ as well. 2

We now give a toolbox of constraint equivalence laws. It is worth noting

that they do not form a complete axiomatization of constraint equivalence;

in fact, they cannot, since the syntax and meaning of constraints is partly

unspecified.

10.2.15 Theorem: All equivalence laws in Figure 10-6 hold. 2

Let us explain. C-And and C-AndAnd state that conjunction is commuta-

tive and associative. C-Dup states that redundant conjuncts may be freely

added or removed, where a conjunct is redundant if and only if it is entailed

by another conjunct. Throughout this chapter, these three laws are often used

implicitly. C-ExEx and C-Ex* allow grouping consecutive existential quanti-

fiers and suppressing redundant ones, where a quantifier is redundant if and

only if the variables bound by it do not occur free within its scope. C-ExAnd

allows conjunction and existential quantification to commute, provided no

capture occurs; it is known as a scope extrusion law. When the rule is ori-

ented from left to right, its side-condition may always be satisfied by suitable

α-conversion. C-ExTrans states that it is equivalent for a type T to be an

instance of σ or to be a supertype of some instance of σ . We note that the in-

stances of a monotype are its supertypes, that is, by Definition 10.2.3, T′ � T

and T′ ≤ T are equivalent. As a result, specializing C-ExTrans to the case

where σ is a monotype, we find that T′ ≤ T is equivalent to ∃Z.(T′ ≤ Z∧Z ≤ T),

for fresh Z, a standard equivalence law. When oriented from left to right, it

becomes an interesting simplification law: in a chain of subtyping constraints,

an intermediate variable such as Z may be suppressed, provided it is local, as

witnessed by the existential quantifier ∃Z. C-InId states that, within the scope

of the binding x : σ , every free occurrence of x may be safely replaced with σ .

The restriction to free occurrences stems from the side-condition x 6∈ dpi(C).

When the rule is oriented from left to right, its other side-conditions, which

require the context let x : σ in C not to capture σ ’s free type variables or

free program identifiers, may always be satisfied by suitable α-conversion.

C-In* complements the previous rule by allowing redundant let bindings to

be simplified. We note that C-InId and C-In* provide a simple procedure for

eliminating let forms. C-InAnd states that the let form commutes with con-

junction; C-InAnd* spells out a common particular case. C-InEx states that it

commutes with existential quantification. When the rule is oriented from left

to right, its side-condition may always be satisfied by suitable α-conversion.

C-LetLet states that let forms may commute, provided they bind distinct

418 10 The Essence of ML Type Inference

C1 ∧ C2 ≡ C2 ∧ C1 (C-And)

(C1 ∧ C2)∧ C3 ≡ C1 ∧ (C2 ∧ C3) (C-AndAnd)

C1 ∧ C2 ≡ C1 if C1 ð C2 (C-Dup)

∃X̄.∃Ȳ.C ≡ ∃X̄Ȳ.C (C-ExEx)

∃X̄.C ≡ C if X̄ # ftv(C) (C-Ex*)

(∃X̄.C1)∧ C2 ≡ ∃X̄.(C1 ∧ C2) if X̄ # ftv(C2) (C-ExAnd)

∃Z.(σ � Z∧ Z ≤ T) ≡ σ � T if Z 6∈ ftv(σ ,T) (C-ExTrans)

let x : σ in C[x � T] ≡ let x : σ in C[σ � T] (C-InId)

if x 6∈ dpi(C) and dtv(C) # ftv(σ) and {x} ∪ dpi(C) # fpi(σ)

let Γ in C ≡ ∃Γ ∧ C if dpi(Γ) # fpi(C) (C-In*)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1)∧ (let Γ in C2) (C-InAnd)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1)∧ C2 if dpi(Γ) # fpi(C2) (C-InAnd*)

let Γ in ∃X̄.C ≡ ∃X̄.let Γ in C if X̄ # ftv(Γ) (C-InEx)

let Γ1; Γ2 in C ≡ let Γ2; Γ1 in C (C-LetLet)

if dpi(Γ1) # dpi(Γ2) and dpi(Γ2) # fpi(Γ1) and dpi(Γ1) # fpi(Γ2)

let x : ∀X̄[C1 ∧ C2].T in C3 ≡ C1 ∧ let x : ∀X̄[C2].T in C3 if X̄ # ftv(C1) (C-LetAnd)

let Γ ;x : ∀X̄[C1].T in C2 ≡ let Γ ;x : ∀X̄[let Γ in C1].T in C2 (C-LetDup)

if X̄ # ftv(Γ) and dpi(Γ) # fpi(Γ)

let x : ∀X̄[∃Ȳ.C1].T in C2 ≡ let x : ∀X̄Ȳ[C1].T in C2 if Ȳ # ftv(T) (C-LetEx)

let x : ∀X̄Ȳ[C1].T in C2 ≡ ∃Ȳ.let x : ∀X̄[C1].T in C2 (C-LetAll)

if Ȳ # ftv(C2) and ∃X̄.C1 determines Ȳ

∃X.(T ≤ X∧ let x : X in C) ≡ let x : T in C if X 6∈ ftv(T, C) (C-LetSub)

~X = ~T∧ [~X, ~T]C ≡ ~X = ~T∧ C (C-Eq)

true ≡ ∃X̄.(~X = ~T) if X̄ # ftv(T̄) (C-Name)

[~X, ~T]C ≡ ∃X̄.(~X = ~T∧ C) if X̄ # ftv(T̄) (C-NameEq)

Figure 10-6: Constraint equivalence laws

10.2 Constraints 419

program identifiers and provided no free program identifiers are captured

in the process. C-LetAnd allows the conjunct C1 to be moved outside of the

constrained type scheme ∀X̄[C1 ∧ C2].T, provided it does not involve any of

the universally quantified type variables X̄. When oriented from left to right,

the rule yields an important simplification law: indeed, taking an instance of

∀X̄[C2].T is less expensive than taking an instance of∀X̄[C1∧C2].T, since the

latter involves creating a copy of C1, while the former does not. C-LetDup al-

lows pushing a series of let bindings into a constrained type scheme, provided

no capture occurs in the process. It is not used as a simplification law but as a

tool in some proofs. C-LetEx states that it does not make any difference for a

set of type variables Ȳ to be existentially quantified inside a constrained type

scheme or part of the type scheme’s universal quantifiers. Indeed, in either

case, taking an instance of the type scheme means producing a constraint

where Ȳ is existentially quantified. C-LetAll states that it is equivalent for

a set of type variables Ȳ to be part of a type scheme’s universal quantifiers

or existentially bound outside the let form, provided these type variables are

determined. In other words, when a type variable is sufficiently constrained,

it does not matter whether it is polymorphic or monomorphic. Together, C-

LetEx and C-LetAll allow, in some situations, hoisting existential quantifiers

out of the left-hand side of a let form.

10.2.16 Example: C-LetAll would be invalid without the condition that ∃X̄.C1 de-

termines Ȳ. Consider, for instance, the constraint let x : ∀Y.Y → Y in (x �

int → int ∧ x � bool → bool) (1), where int and bool are incompatible nullary

type constructors. By C-InId and C-In*, it is equivalent to ∀Y.Y → Y ≤ int →

int ∧ ∀Y.Y → Y ≤ bool → bool which, by Definition 10.2.3, means ∃Y.(Y →

Y ≤ int → int) ∧ ∃Y.(Y → Y ≤ bool → bool), that is, true. Now, if C-LetAll

was valid without its side-condition, then (1) would also be equivalent to

∃Y.let x : Y→ Y in (x � int→ int∧x � bool → bool), which by C-InId and C-In*

is ∃Y.(Y→ Y ≤ int→ int∧ Y→ Y ≤ bool→ bool). By C-Arrow and C-ExTrans,

this is int = bool, that is, false. Thus, the law is invalid in this case. It is easy to

see why: when the type scheme σ contains a ∀Y quantifier, every instance of

σ receives its own ∃Y quantifier, making Y a distinct (local) type variable; but

when Y is not universally quantified, all instances of σ share references to a

single (global) type variable Y. This corresponds to the intuition that, in the

former case, σ is polymorphic in Y, while in the latter case, it is monomorphic

in Y. It is possible to prove that, when deprived of its side-condition, C-LetAll

is only an entailment law, that is, its right-hand side entails its left-hand side.

Similarly, it is in general invalid to hoist an existential quantifier out of the

left-hand side of a let form. To see this, one may study the (equivalent) con-

straint let x : ∀X[∃Y.X = Y → Y].X in (x � int → int ∧ x � bool → bool).

Naturally, in the above examples, the side-condition “true determines Y” does

420 10 The Essence of ML Type Inference

not hold: by Definition 10.2.14, it is equivalent to “two ground assignments

that coincide outside Y must coincide on Y as well,” which is false when M?

contains two distinct elements, such as int and bool here.

There are cases, however, where the side-condition does hold. For instance,

we later prove that ∃X.Y = int determines Y; see Lemma 10.6.7. As a result,

C-LetAll states that let x : ∀XY[Y = int].Y → X in C (1) is equivalent to

∃Y.let x : ∀X[Y = int].Y → X in C (2), provided Y 6∈ ftv(C). The intuition is

simple: because Y is forced to assume the value int by the equation Y = int, it

makes no difference whether Y is or isn’t universally quantified. By C-LetAnd,

(2) is equivalent to ∃Y.(Y = int ∧ let x : ∀X.Y → X in C) (3). In an efficient

constraint solver, simplifying (1) into (3) before using C-InId to eliminate the

let form is worthwhile, since doing so obviates the need for copying the type

variable Y and the equation Y = int at every free occurrence of x inside C. 2

C-LetSub is the analog of an environment strengthening lemma: roughly

speaking, it states that, if a constraint holds under the assumption that x has

type X, where X is some supertype of T, then it also holds under the assump-

tion that x has type T. The last three rules deal with the equality predicate.

C-Eq states that it is valid to replace equals with equals; note the absence of a

side-condition. When oriented from left to right, C-Name allows introducing

fresh names ~X for the types ~T. As always, ~X stands for a vector of distinct

type variables; ~T stands for a vector of the same length of types of appropri-

ate kind. Of course, this makes sense only if the definition is not circular, that

is, if the type variables X̄ do not occur free within the terms T̄. When oriented

from right to left, C-Name may be viewed as a simplification law: it allows

eliminating type variables whose value has been determined. C-NameEq is

a combination of C-Eq and C-Name. It shows that applying an idempotent

substitution to a constraint C amounts to placing C within a certain context.

So far, we have considered def a primitive constraint form and defined

the let form in terms of def, conjunction, and existential quantification. The

motivation for this approach was to simplify the (omitted) proofs of several

constraint equivalence laws. However, in the remainder of this chapter, we

work with let forms exclusively and never employ the def construct. This of-

fers us an extra property: every constraint that contains a false subconstraint

must be false.

10.2.17 Lemma: C[false] ≡ false. 2

Reasoning with Constraints in an Equality-Only Syntactic Model

We have given a number of equivalence laws that are valid with respect to

any interpretation of constraints, that is, within any model. However, an im-

10.2 Constraints 421

portant special case is that of equality-only syntactic models. Indeed, in that

specific setting, our constraint-based type systems are in close correspon-

dence with DM. In brief, we aim to prove that every satisfiable constraint C

such that fpi(C) = � admits a canonical solved form and to show that this

notion corresponds to the standard concept of a most general unifier. These

results are exploited when we relate HM(X) with Damas and Milner’s system

(p. 428).

Thus, let us now assume that constraints are interpreted in an equality-

only syntactic model. Let us further assume that, for every kind κ, (i) there

are at least two type constructors of image kind κ and (ii) for every type con-

structor F of image kind κ, there exists t ∈Mκ such that t(ε) = F . We refer to

models that violate (i) or (ii) as degenerate; one may argue that such models

are of little interest. The assumption that the model is nondegenerate is used

in the proof of Theorem 10.3.7. Last, throughout the present subsection we

manipulate only constraints that have no free program identifiers.

A solved form is a conjunction of equations, where the left-hand sides are

distinct type variables that do not appear in the right-hand sides, possibly

surrounded by a number of existential quantifiers. Our definition is identi-

cal to Lassez, Maher, and Marriott’s solved forms (1988) and to Jouannaud

and Kirchner’s tree solved forms (1991), except we allow for prenex existen-

tial quantifiers, which are made necessary by our richer constraint language.

Jouannaud and Kirchner also define dag solved forms, which may be expo-

nentially smaller. Because we define solved forms only for proof purposes,

we need not take performance into account at this point. The efficient con-

straint solver presented in §10.6 does manipulate graphs, rather than trees.

Type scheme introduction and instantiation constructs cannot appear within

solved forms; indeed, provided the constraint at hand has no free program

identifiers, they can be expanded away. For this reason, their presence in the

constraint language has no impact on the results contained in this section.

10.2.18 Definition: A solved form is of the form ∃Ȳ.(~X = ~T), where X̄ # ftv(T̄). 2

Solved forms offer a convenient way of reasoning about constraints be-

cause every satisfiable constraint is equivalent to one. This property is estab-

lished by the following lemma.

10.2.19 Lemma: Every constraint is equivalent to either a solved form or false. 2

It is possible to impose further restrictions on solved forms. A solved form

∃Ȳ.(~X = ~T) is canonical if and only if its free type variables are exactly X̄. This

is stated, in an equivalent way, by the following definition.

10.2.20 Definition: A canonical solved form is a constraint of the form ∃Ȳ.(~X = ~T),

where ftv(T̄) ⊆ Ȳ and X̄ # Ȳ. 2

422 10 The Essence of ML Type Inference

10.2.21 Lemma: Every solved form is equivalent to a canonical solved form. 2

It is easy to describe the solutions of a canonical solved form: they are the

ground refinements of the substitution [~X , ~T]. Hence, every canonical

solved form is satisfiable.

The following definition allows entertaining a dual view of canonical solved

forms, either as constraints or as idempotent type substitutions. The latter

view is commonly found in standard treatments of unification (Lassez, Maher,

and Marriott, 1988; Jouannaud and Kirchner, 1991) and in classic presenta-

tions of ML-the-type-system.

10.2.22 Definition: If [~X , ~T] is an idempotent substitution of domain X̄, let ∃[~X ,
~T] denote the canonical solved form ∃Ȳ.(~X = ~T), where Ȳ = ftv(T̄). An idem-

potent substitution θ is a most general unifier of the constraint C if and only

if ∃θ and C are equivalent. 2

By definition, equivalent constraints admit the same most general unifiers.

Many properties of canonical solved forms may be reformulated in terms

of most general unifiers. By Lemmas 10.2.19 and 10.2.21, every satisfiable

constraint admits a most general unifier.

10.3 HM(X)

Constraint-based type systems appeared during the 1980s (Mitchell, 1984;

Fuh and Mishra, 1988) and were widely studied during the following decade

(Curtis, 1990; Aiken and Wimmers, 1993; Jones, 1994; Smith, 1994; Palsberg,

1995; Trifonov and Smith, 1996; Fähndrich, 1999; Pottier, 2001b). We now

present one such system, baptized HM(X) because it is a parameterized ex-

tension of Hindley and Milner’s type discipline; the meaning of the parameter

X was explained on page 411. Its original description is due to Odersky, Sulz-

mann, and Wehr (1999). Since then, it has been completed in a number of

works including Müller (1998), Sulzmann, Müller, and Zenger (1999), Sulz-

mann (2000), Pottier (2001a), and Skalka and Pottier (2002). Each of these

presentations introduces minor variations. Here, we follow Pottier (2001a),

which is itself inspired by Sulzmann, Müller, and Zenger (1999).

Definition

Our presentation of HM(X) relies on the constraint language introduced in

§10.2. Technically, our approach to constraints is less abstract than that

of Odersky, Sulzmann, and Wehr (1999). We interpret constraints within a

model, give conjunction and existential quantification their standard mean-

10.3 HM(X) 423

Γ(x) = σ C ð ∃σ

C, Γ ` x : σ
(hmx-Var)

C, (Γ ;z : T) ` t : T′

C, Γ ` λz.t : T→ T′
(hmx-Abs)

C, Γ ` t1 : T→ T′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T′
(hmx-App)

C, Γ ` t1 : σ C, (Γ ;z : σ) ` t2 : T

C, Γ ` let z = t1 in t2 : T
(hmx-Let)

C ∧D, Γ ` t : T X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, Γ ` t : ∀X̄[D].T
(hmx-Gen)

C, Γ ` t : ∀X̄[D].T

C ∧D, Γ ` t : T
(hmx-Inst)

C, Γ ` t : T C ð T ≤ T′

C, Γ ` t : T′
(hmx-Sub)

C, Γ ` t : σ X̄ # ftv(Γ , σ)

∃X̄.C, Γ ` t : σ
(hmx-Exists)

Figure 10-7: Typing rules for HM(X)

ing, and derive a number of equivalence laws (§10.2). Odersky et al., on the

other hand, do not explicitly rely on a logical interpretation; instead, they

axiomatize constraint equivalence, that is, they consider a number of equiva-

lence laws as axioms. Thus, they ensure that their high-level proofs, such as

type soundness and correctness and completeness of type inference, are in-

dependent of the low-level details of the logical interpretation of constraints.

Their approach is also more general, since it allows dealing with other logi-

cal interpretations, such as “open-world” interpretations, where constraints

are interpreted not within a fixed model, but within a family of extensions

of a “current” model. In this chapter, we have avoided this extra layer of ab-

straction and given fixed meaning to constraints, making things somewhat

simpler. However, the changes required to adopt Odersky et al.’s approach

would not be extensive, since the forthcoming proofs do indeed rely mostly

on constraint equivalence laws, rather than on low-level details of the logical

interpretation of constraints.

Another slight departure from Odersky et al.’s work lies in the fact that

we have enriched the constraint language with type scheme introduction and

instantiation forms, which were absent in the original presentation of HM(X).

To prevent this addition from affecting HM(X), we require the constraints

that appear in HM(X) typing judgments to have no free program identifiers.

Note that this does not prevent them from containing let forms.

The type system HM(X) consists of a four-place judgment whose parame-

ters are a constraint C, an environment Γ , an expression t, and a type scheme

σ . A judgment is written C, Γ ` t : σ and is read: under the assumptions C

and Γ , the expression t has type σ . One may view C as an assumption about

424 10 The Essence of ML Type Inference

the judgment’s free type variables and Γ as an assumption about t’s free pro-

gram identifiers. Recall that Γ now contains constrained type schemes, and

that σ is a constrained type scheme.

We would like the validity of a typing judgment to depend not on the syn-

tax, but only on the meaning of its constraint assumption. We enforce this

point of view by considering judgments equal modulo equivalence of their

constraint assumptions. In other words, the typing judgments C, Γ ` t : σ

and D, Γ ` t : σ are considered identical when C ≡ D holds. A judgment is

valid, or holds, if and only if it is derivable via the rules given in Figure 10-7.

Note that a valid judgment may involve an arbitrary constraint. A (closed)

program t is well-typed within the (closed) environment Γ if and only if a

judgment of the form C, Γ ` t : σ holds for some satisfiable constraint C. One

might wonder why we do not make the apparently stronger requirement that

C ∧ ∃σ be satisfiable; however, by inspection of the typing rules, the reader

may check that, if the above judgment is derivable, then C ð ∃σ holds, hence

the two requirements are equivalent.

Let us now explain the rules. Like dm-Var, hmx-Var looks up the environ-

ment to determine the type scheme associated with the program identifier x.

Its second premise plays a minor technical role: as noted in the previous para-

graph, its presence helps simplify the definition of well-typedness. hmx-Abs,

hmx-App, and hmx-Let are identical to dm-Abs, dm-App, and dm-Let, respec-

tively, except that the assumption C is made available to every subderivation.

We recall that the type T may be viewed as the type scheme ∀�[true].T (Defi-

nitions 10.1.18 and 10.2.2). As a result, types form a subset of type schemes,

which implies that Γ ;z : T is a well-formed environment and C, Γ ` t : T a

well-formed typing judgment. To understand hmx-Gen, it is best to first con-

sider the particular case where C is true. This yields the following, simpler

rule:

D, Γ ` t : T X̄ # ftv(Γ)

∃X̄.D, Γ ` t : ∀X̄[D].T
(hmx-Gen’)

The second premise is identical to that of dm-Gen: the type variables that

are generalized must not occur free within the environment. The conclusion

forms the type scheme∀X̄[D].T, where the type variables X̄ have become uni-

versally quantified, but are still subject to the constraint D. Note that the

type variables that occur free in D may include not only X̄, but also other

type variables, typically free in Γ . hmx-Gen may be viewed as a more liberal

version of hmx-Gen’, whereby part of the current constraint, namely C, need

not be copied if it does not concern the type variables that are being gener-

alized, namely X̄. This optimization is important in practice, because C may

be very large. An intuitive explanation for its correctness is given by the con-

10.3 HM(X) 425

straint equivalence law C-LetAnd, which expresses the same optimization in

terms of let constraints. Because HM(X) does not use let constraints, the op-

timization is hard-wired into the typing rule. As a last technical remark, let

us point out that replacing C ∧ ∃X̄.D with C ∧ D in hmx-Gen’s conclusion

would not affect the set of derivable judgments; this fact may be established

using hmx-Exists and Lemma 10.3.1. hmx-Inst allows taking an instance of

a type scheme. The reader may be surprised to find that, contrary to dm-

Inst, it does not involve a type substitution. Instead, the rule merely drops

the universal quantifier, which amounts to applying the identity substitu-

tion ~X , ~X. One should recall, however, that type schemes are considered

equal modulo α-conversion, so it is possible to rename the type scheme’s

universal quantifiers prior to using hmx-Inst. The reason why this provides

sufficient expressive power appears in Exercise 10.3.2 below. The constraint

D carried by the type scheme is recorded as part of the current constraint

in hmx-Inst’s conclusion. The subsumption rule hmx-Sub allows a type T to

be replaced at any time with an arbitrary supertype T′. Because both T and

T′ may have free type variables, whether T ≤ T′ holds depends on the cur-

rent assumption C, which is why the rule’s second premise is an entailment

assertion. An operational explanation of hmx-Sub is that it requires all uses

of subsumption to be explicitly recorded in the current constraint. Note that

hmx-Sub remains a useful and necessary rule even when subtyping is inter-

preted as equality: then, it allows exploiting the type equations found in C.

Last, hmx-Exists allows the type variables that occur only within the current

constraint to become existentially quantified. As a result, these type variables

no longer occur free in the rule’s conclusion; in other words, they have be-

come local to the subderivation rooted at the premise. One may prove that

the presence of hmx-Exists in the type system does not augment the set of

well-typed programs, but does augment the set of valid typing judgments; it

is a pleasant technical convenience. Indeed, because judgments are consid-

ered equal modulo constraint equivalence, constraints may be transparently

simplified at any time. (By simplifying a constraint, we mean replacing it with

an equivalent constraint whose syntactic representation is considered sim-

pler.) Bearing this fact in mind, one finds that an effect of rule hmx-Exists

is to enable more simplifications: because constraint equivalence is a con-

gruence, C ≡ D implies ∃X̄.C ≡ ∃X̄.D, but the converse does not hold in

general. For instance, there is in general no way of simplifying the judgment

X ≤ Y ≤ Z, Γ ` t : σ , but if it is known that Y does not appear free in Γ or

σ , then hmx-Exists allows deriving ∃Y.(X ≤ Y ≤ Z), Γ ` t : σ , which is the

same judgment as X ≤ Z, Γ ` t : σ . Thus, an interesting simplification has

been enabled. Note that X ≤ Y ≤ Z ≡ X ≤ Z does not hold, while, according to

C-ExTrans, ∃Y.(X ≤ Y ≤ Z) ≡ X ≤ Z does.

426 10 The Essence of ML Type Inference

A pleasant property of HM(X) is that strengthening a judgment’s con-

straint assumption (that is, weakening the judgment itself) preserves its va-

lidity. It is worth noting that in traditional presentations, which rely more

heavily on type substitutions, the analog of this result is a type substitu-

tion lemma; see for instance Tofte (1988), Lemma 2.7; Rémy (1992a), Lemma

1; Leroy (1992), Proposition 1.2; and Skalka and Pottier (2002), Lemma 3.4.

Here, the lemma further states that weakening a judgment does not alter the

shape of its derivation, a useful property when reasoning by induction on

type derivations.

10.3.1 Lemma [Weakening]: If C′ ð C, then every derivation of C, Γ ` t : σ may be

turned into a derivation of C′, Γ ` t : σ with the same shape. 2

10.3.2 Exercise [Recommended, ««]: In some presentations of HM(X), hmx-Inst

is replaced with the following variant:

C, Γ ` t : ∀X̄[D].T C ð [~X, ~T]D

C, Γ ` t : [~X, ~T]T
(hmx-Inst’)

Show that hmx-Inst’ is admissible in our presentation of HM(X)—that is, if its

premise is derivable according to the rules of Figure 10-7, then so is its con-

clusion. Thus, the choice between hmx-Inst and hmx-Inst’ is only stylistic: it

makes no difference in the system’s expressive power. Because hmx-Inst is

more elementary, choosing it simplifies some proofs. 2

10.3.3 Exercise [«]: Give a derivation of true, � ` λz.z : int → int. Give a derivation

of true, � ` λz.z : ∀X.X → X. Check that the former judgment also follows

from the latter via hmx-Inst’ (Exercise 10.3.2), and determine which deriva-

tion of true, � ` λz.z : int→ int this path gives rise to. 2

We do not give a direct type soundness proof for HM(X). Instead, in the

forthcoming sections, we prove that well-typedness in HM(X) is equivalent

to the satisfiability of a certain constraint and use that characterization as

a basis for our type soundness proof. A direct type soundness result, based

on a denotational semantics, may be found in Odersky, Sulzmann, and Wehr

(1999). Another type soundness proof, which follows Wright and Felleisen’s

syntactic approach (1994), appears in Skalka and Pottier (2002). Last, a hybrid

approach, which combines some of the advantages of the previous two, is

given in Pottier (2001a).

An Alternate Presentation of HM(X)

The presentation of HM(X) given in Figure 10-7 has only four syntax-directed

rules out of eight. It is a good specification of the type system, but it is far

10.3 HM(X) 427

Γ(x) = ∀X̄[D].T

C ∧D, Γ ` x : T
(hmd-VarInst)

C, (Γ ;z : T) ` t : T′

C, Γ ` λz.t : T→ T′
(hmd-Abs)

C, Γ ` t1 : T→ T′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T′
(hmd-App)

C ∧D, Γ ` t1 : T1 X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, (Γ ;z : ∀X̄[D].T1) ` t2 : T2

C ∧ ∃X̄.D, Γ ` let z = t1 in t2 : T2

(hmd-LetGen)

C, Γ ` t : T C ð T ≤ T′

C, Γ ` t : T′
(hmd-Sub)

C, Γ ` t : T X̄ # ftv(Γ ,T)

∃X̄.C, Γ ` t : T
(hmd-Exists)

Figure 10-8: An alternate presentation of HM(X)

from an algorithmic description. As a first step towards such a description,

we provide an alternate presentation of HM(X), where generalization is per-

formed only at let expressions and instantiation takes place only at refer-

ences to program identifiers (Figure 10-8). This presentation only has two

non-syntax-directed rules, making it sometimes easier to reason about. It has

the property that all judgments are of the form C, Γ ` t : T, rather than

C, Γ ` t : σ . The following theorem states that the two presentations are

indeed equivalent.

10.3.4 Theorem: C, Γ ` t : T is derivable via the rules of Figure 10-8 if and only if it

is a valid HM(X) judgment. 2

This theorem shows that the rule sets of Figures 10-7 and 10-8 derive

the same monomorphic judgments, that is, the same judgments of the form

C, Γ ` t : T. The fact that judgments of the form C, Γ ` t : σ , where σ is

a not a monotype, cannot be derived using the new rule set is a technical

simplification, without deep significance.

10.3.5 Exercise [«««, 3]: Show that it is possible to simplify the presentation of

Damas and Milner’s type system in an analogous manner. That is, define an

alternate set of typing rules for DM, which allows deriving judgments of the

form Γ ` t : T; then, show that this new rule set is equivalent to the previous

one, in the same sense as above. Which auxiliary properties of DM does your

proof require? A solution is given by Clement, Despeyroux, Despeyroux, and

Kahn (1986). 2

428 10 The Essence of ML Type Inference

Relating HM(X) with Damas and Milner’s Type System

In order to explain our interest in HM(X), we wish to show that it is more gen-

eral than Damas and Milner’s type system. Since HM(X) really is a family of

type systems, we must make this statement more precise. First, every mem-

ber of the HM(X) family contains DM. Conversely, DM contains HM(=), the

constraint-based type system obtained by specializing HM(X) to the setting

of an equality-only syntactic model.

The first of these assertions is easy to prove because the mapping from

DM judgments to HM(X) judgments is essentially the identity: every valid

DM judgment may be viewed as a valid HM(X) judgment under the trivial

assumption true. This statement relies on the fact that the DM type scheme

∀X̄.T is identified with the constrained type scheme ∀X̄[true].T, so DM type

schemes (respectively environments) form a subset of HM(X) type schemes

(respectively environments). Its proof is easy and relies on Exercise 10.3.2.

10.3.6 Theorem: If Γ ` t : S holds in DM, then true, Γ ` t : S holds in HM(X). 2

We are now interested in proving that HM(=), as defined above, is con-

tained within DM. To this end, we must translate every HM(=) judgment to

a DM judgment. It turns out that this is possible if the original judgment’s

constraint assumption is satisfiable. The translation relies on the fact that

the definition of HM(=) assumes an equality-only syntactic model. Indeed, in

that setting, every satisfiable constraint admits a most general unifier (Defi-

nition 10.2.22), whose properties we make essential use of.

Unfortunately, due to lack of space, we cannot give the details of this trans-

lation, which are fairly involved. Let us merely say that, given a type scheme

σ and an idempotent type substitution θ such that ftv(σ) ⊆ dom(θ) and

∃θ ð ∃σ hold, the translation of σ under θ is a DM type scheme, written

Jσ Kθ . Its meaning is intended to be the same as that of the HM(X) type

scheme θ(σ). For instance, under the identity substitution, the translation of

the HM(X) type scheme ∀XY[X = Y → Y].X is the DM type scheme ∀Z.Z → Z.

The translation is extended to environments in such a way that JΓ Kθ is defined

when ftv(Γ) ⊆ dom(θ) holds. We are now ready to state the main theorem.

10.3.7 Theorem: Let C, Γ ` t : σ hold in HM(=). Let θ be a most general unifier of

C such that ftv(Γ , σ) ⊆ dom(θ). Then, JΓ Kθ ` t : Jσ Kθ holds in DM. 2

Note that, by requiring θ to be a most general unifier of C, we also require C

to be satisfiable. Judgments that carry an unsatisfiable constraint cannot be

translated.

Together, Theorems 10.3.6 and 10.3.7 yield a precise correspondence be-

tween DM and HM(=): there exists a compositional translation from each to

10.4 Constraint Generation 429

the other. In other words, they may be viewed as two equivalent formulations

of a single type system. One might also say that HM(=) is a constraint-based

formulation of DM. Furthermore, Theorem 10.3.6 states that every member of

the HM(X) family is an extension of DM. This explains our double interest in

HM(X), as an alternate formulation of DM, which we believe is more pleasant

for reasons already discussed, and as a more expressive framework.

10.4 Constraint Generation

We now explain how to reduce type inference problems for HM(X) to con-

straint solving problems. A type inference problem consists of a type environ-

ment Γ , an expression t, and a type T of kind ?. The problem is to determine

whether there exists a satisfiable constraint C such that C, Γ ` t : T holds. A

constraint solving problem consists of a constraint C. The problem is to de-

termine whether C is satisfiable. To reduce a type inference problem (Γ ,t,T)

to a constraint solving problem, we must produce a constraint C that is both

sufficient and necessary for C, Γ ` t : T to hold. Below, we explain how to

compute such a constraint, which we write JΓ ` t : TK. We check that it is

indeed sufficient by proving JΓ ` t : TK, Γ ` t : T. That is, the constraint

JΓ ` t : TK is specific enough to guarantee that t has type T under environ-

ment Γ . We say that constraint generation is sound. We check that it is indeed

necessary by proving that, for every constraint C, the validity of C, Γ ` t : T

implies C ð JΓ ` t : TK. That is, every constraint that guarantees that t has

type T under environment Γ is at least as specific as JΓ ` t : TK. We say

that constraint generation is complete. Together, these properties mean that

JΓ ` t : TK is the least specific constraint that guarantees that t has type T

under environment Γ .

We now see how to reduce a type inference problem to a constraint solving

problem. Indeed, if there exists a satisfiable constraint C such that C, Γ `

t : T holds, then, by the completeness property, C ð JΓ ` t : TK holds, so

JΓ ` t : TK is satisfiable. Conversely, by the soundness property, if JΓ ` t : TK

is satisfiable, then we have a satisfiable constraint C such that C, Γ ` t : T

holds. In other words, t is well-typed with type T under environment Γ if and

only if JΓ ` t : TK is satisfiable.

The reader may be somewhat puzzled by the fact that our formulation

of the type inference problem requires an appropriate type T to be known

in advance, whereas the very purpose of type inference seems to consist in

discovering the type of t! In other words, we have made T an input of the con-

straint generation algorithm, instead of an output. Fortunately, this causes

no loss of generality, because it is possible to let T be a type variable X, cho-

430 10 The Essence of ML Type Inference

sen fresh for Γ . Then, the constraint produced by the algorithm will contain

information about X. This is the point of the following exercise.

10.4.1 Exercise [Recommended, «]: Let X 6∈ ftv(Γ). Show that, if there exist a sat-

isfiable constraint C and a type T such that C, Γ ` t : T holds, then there

exists a satisfiable constraint C′ such that C′, Γ ` t : X holds. Conclude that,

given a closed environment Γ and an arbitrary type variable X, the term t is

well-typed within Γ if and only if JΓ ` t : XK is satisfiable. 2

This shows that providing T as an input to the constraint generation proce-

dure is not essential. We adopt this style because it is convenient. A somewhat

naive alternative would be to provide Γ and t only, and to have the procedure

return both a constraint C and a type T (Sulzmann, Müller, and Zenger, 1999).

It turns out that this does not quite work, because C and T may mention

“fresh” variables, which we must be able to quantify over, if we are to avoid

an informal treatment of “freshness.” Thus, the true alternative is to provide

Γ and t only and to have the procedure return a type scheme σ (Bourdoncle

and Merz, 1997; Bonniot, 2002).

The existence of a sound and complete constraint generation procedure

is the analog of the existence of principal type schemes in classic presenta-

tions of ML-the-type-system (Damas and Milner, 1982). Indeed, a principal

type scheme is least specific in the sense that all valid types are substitution

instances of it. Here, the constraint JΓ ` t : TK is least specific in the sense

that all valid constraints entail it. More about principal types and principal

typings may be found in Jim (1996) and Wells (2002).

How do we perform constraint generation? A standard approach (Sulz-

mann, Müller, and Zenger, 1999; Bonniot, 2002) is to define JΓ ` t : TK by

induction on the structure of t. At every let node, following hmd-LetGen,

part of the current constraint, namelyD, is turned into a type scheme, namely

∀X̄[D].T, which is used to extend the environment. Then, at every occurrence

of the program variable that was bound at this let node, following hmd-

VarInst, this type scheme is retrieved from the environment, and a copy of

D is added back to the current constraint. If such an approach is adopted, it is

important to simplify the type scheme ∀X̄[D].T before it is stored in the en-

vironment, because it would be inefficient to copy an unsimplified constraint.

In other words, in an efficient implementation of this standard approach,

constraint generation and constraint simplification cannot be separated.

Type scheme introduction and elimination constraints, which we intro-

duced in §10.2 but did not use in the specification of HM(X), are intended

as a means of solving this problem. By extending our vocabulary, we are able

to achieve the desired separation between constraint generation, on the one

hand, and constraint solving and simplification, on the other hand, without

10.4 Constraint Generation 431

Jx : TK = x � T

Jλz.t : TK = ∃X1X2.(let z : X1 in Jt : X2K∧ X1 → X2 ≤ T)

Jt1 t2 : TK = ∃X2.(Jt1 : X2 → TK∧ Jt2 : X2K)

Jlet z = t1 in t2 : TK = let z : ∀X[Jt1 : XK].X in Jt2 : TK

Figure 10-9: Constraint generation

compromising efficiency. Indeed, by exploiting these new constraint forms,

we may define a constraint generation procedure whose time and space com-

plexity is linear, because it no longer involves copying subconstraints back

and forth between the environment and the constraint that is being gener-

ated. (It is then up to the constraint solver to perform simplification and

copying, if and when necessary.) In fact, the environment is suppressed al-

together: we define Jt : TK by induction on the structure of t—notice the

absence of the parameter Γ . Then, the constraint JΓ ` t : TK discussed above

becomes syntactic sugar for let Γ in Jt : TK. We now employ the full constraint

language: the program identifiers that appear free in t may also appear free in

Jt : TK, as part of instantiation constraints. They become bound when Jt : TK

is placed within the context let Γ in []. A similar approach to constraint gen-

eration appears in Müller (1994).

The defining equations for Jt : TK appear in Figure 10-9. We refer to them

as the constraint generation rules. The definition is quite terse and certainly

simpler than the declarative specification of HM(X) given in Figure 10-7; yet,

we prove below that the two are equivalent.

Before explaining the definition, we state the requirements that bear on

the type variables X1, X2, and X, which appear bound in the right-hand sides

of the second, third, and fourth equations. These type variables must have

kind ?. They must be chosen distinct (that is, X1 6= X2 in the second equa-

tion) and fresh for the objects that appear on the left-hand side—that is, the

type variables that appear bound in an equation’s right-hand side must not

occur free in the term and type that appear in the equation’s left-hand side.

Provided this restriction is obeyed, different choices of X1, X2, and X lead

to α-equivalent constraints—that is, to the same constraint, since we iden-

tify objects up to α-conversion—which guarantees that the above equations

make sense. Since expressions do not have free type variables, the freshness

requirement may be simplified to: type variables that appear bound in an

equation’s right-hand side must not appear free in T. However, this simplifica-

tion would be rendered invalid by the introduction of open type annotations

432 10 The Essence of ML Type Inference

within expressions. Note that we are able to state a precise (as opposed to in-

formal) freshness requirement. This is made possible by the fact that Jt : TK

has no free type variables other than those of T, which in turn depends on

our explicit use of existential quantification to limit the scope of auxiliary

variables.

Let us now review the four equations. The first equation may be read: x

has type T if and only if T is an instance of the type scheme associated with

x. Note that we no longer consult the type scheme associated with x in the

environment—indeed, there is no environment. Instead, we merely generate

an instantiation constraint, where x appears free. (For this reason, every pro-

gram identifier that occurs free within t typically also occurs free within

Jt : TK.) This constraint acquires its full meaning when it is later placed within

a context of the form let x : σ in []. This equation roughly corresponds to

hmd-VarInst. The second equation may be read: λz.t has type T if and only

if, for some X1 and X2, (i) under the assumption that z has type X1, t has type

X2, and (ii) T is a supertype of X1 → X2. Here, the types associated with z

and t must be fresh type variables, namely X1 and X2, because we cannot in

general guess them. These type variables are bound so as to guarantee that

the generated constraint is unique up to α-conversion. They are existentially

bound because we intend the constraint solver to discover their value. Con-

dition (i) is expressed by the subconstraint let z : X1 in Jt : X2K. This makes

sense as follows. The constraint Jt : X2K typically contains a number of in-

stantiation constraints bearing on z, of the form z � Ti . By wrapping it within

the context let z : X1 in [], we effectively require every Ti to be a supertype

of X1. Note that z does not occur free in the constraint let z : X1 in Jt : X2K,

which is necessary for well-formedness of the definition, since it does not

occur free in λz.t. This equation roughly corresponds to hmd-Exists, hmd-

Abs, and hmd-Sub. The third equation may be read: t1 t2 has type T if and

only if, for some X2, t1 has type X2 → T and t2 has type X2. Here, the fresh

type variable X2 stands for the unknown type of t2. This equation roughly

corresponds to hmd-App. The last equation, which roughly corresponds to

hmd-LetGen, may be read: let z = t1 in t2 has type T if and only if, under

the assumption that z has every type X such that Jt1 : XK holds, t2 has type

T. As in the case of λ-abstractions, the instantiation constraints bearing on z

that appear within Jt2 : TK are given a meaning via a let prefix. The difference

is that z may now be assigned a type scheme, as opposed to a monotype.

An appropriate type scheme is built as follows. The constraint Jt1 : XK is the

least specific constraint that must be imposed on the fresh type variable X

so as to make it a valid type for t1. In other words, t1 has every type X such

that Jt1 : XK holds, and none other. That is, the type scheme ∀X[Jt1 : XK].X,

abbreviated σ in the following, is a principal type scheme for t1. It is inter-

10.4 Constraint Generation 433

esting to note that there is no question of which type variables to generalize.

Indeed, by construction, no type variables other than X may appear free in

Jt1 : XK, so we cannot generalize more variables. On the other hand, it is valid

to generalize X, since it does not appear free anywhere else. This interesting

simplification is inspired by Sulzmann, Müller, and Zenger (1999), where a

similar technique is used. Now, what happens when Jt2 : TK is placed inside

the context let z : σ in []? When placed inside this context, an instantiation

constraint of the form z � T′ acquires the meaning σ � T′, which by defini-

tion of σ and by Lemma 10.4.6 (see below) is equivalent to Jt1 : T′K. Thus, the

constraint produced by the fourth equation simulates a textual expansion of

the let construct, where every occurrence of z would be replaced with t1.

Thanks to type scheme introduction and instantiation constraints, however,

this effect is achieved without duplication of source code or constraints. In

other words, constraint generation has linear time and space complexity.

10.4.2 Exercise [«, 3]: Define the size of an expression, of a type, and of a con-

straint, viewed as abstract syntax trees. Check that the size of Jt : TK is linear

in the sum of the sizes of t and T. 2

10.4.3 Exercise [Recommended, «, 3]: Compute and simplify, as best as you can,

the constraint Jlet f = λz.z in f f : TK. 2

We now state several properties of constraint generation. We begin with

soundness, whose statement was explained above.

10.4.4 Theorem [Soundness]: let Γ in Jt : TK, Γ ` t : T. 2

The following lemmas are used in the proof of the completeness property

and in a number of other occasions. The first two state that Jt : TK is covari-

ant with respect to T. Roughly speaking, this means that enough subtyping

constraints are generated to achieve completeness with respect to hmd-Sub.

10.4.5 Lemma: Jt : TK∧ T ≤ T′ ð Jt : T′K. 2

10.4.6 Lemma: X 6∈ ftv(T) implies ∃X.(Jt : XK∧ X ≤ T) ≡ Jt : TK. 2

The next lemma gives a simplified version of the second constraint genera-

tion rule, in the specific case where the expected type is an arrow type. Thus,

fresh type variables need not be generated; one may directly use the arrow’s

domain and codomain instead.

10.4.7 Lemma: Jλz.t : T1 → T2K is equivalent to let z : T1 in Jt : T2K. 2

We conclude with the completeness property. The theorem states that if,

within HM(X), t has type T under assumptions C and Γ , then C must be at

434 10 The Essence of ML Type Inference

least as specific as let Γ in Jt : TK. The statement requires C and Γ to have

no free program identifiers, which is natural, since they are part of an HM(X)

judgment. The hypothesis C ð ∃Γ excludes the somewhat pathological situa-

tion where Γ contains constraints not apparent in C. This hypothesis vanishes

when Γ is the initial environment; see Definition 10.5.2.

10.4.8 Theorem [Completeness]: Let C ð ∃Γ . Assume fpi(C, Γ) = �. If C, Γ ` t : T

holds in HM(X), then C entails let Γ in Jt : TK. 2

10.5 Type Soundness

We are now ready to establish type soundness for our type system. The

statement that we wish to prove is sometimes known as Milner’s slogan:

“Well-typed programs do not go wrong” (Milner, 1978). Below, we define well-

typedness in terms of our constraint generation rules, for the sake of con-

venience, and establish type soundness with respect to that particular def-

inition. Theorems 10.3.6 and 10.4.8 imply that type soundness also holds

when well-typedness is defined with respect to the typing judgments of DM

or HM(X). We establish type soundness by following Wright and Felleisen’s

so-called syntactic approach (1994). The approach consists of isolating two in-

dependent properties. Subject reduction, whose exact statement will be given

below, implies that well-typedness is preserved by reduction. Progress states

that no stuck configuration is well-typed. It is immediate to check that, if both

properties hold, then no well-typed program can reduce to a stuck configu-

ration. Subject reduction itself depends on a key lemma, usually known as a

(term) substitution lemma. Here is a version of this lemma, stated in terms of

the constraint generation rules.

10.5.1 Lemma: let z : ∀X̄[Jt2 : T2K].T2 in Jt1 : T1K entails J[z , t2]t1 : T1K. 2

Before going on, let us give a few definitions and formulate several re-

quirements. First, we must define an initial environment Γ0, which assigns a

type scheme to every constant. A couple of requirements must be established

to ensure that Γ0 is consistent with the semantics of constants, as specified

by
δ
-→. Second, we must extend constraint generation and well-typedness to

configurations, as opposed to programs, since reduction operates on configu-

rations. Last, we must formulate a restriction to tame the interaction between

side effects and let-polymorphism, which is unsound if unrestricted.

10.5.2 Definition: Let Γ0 be an environment whose domain is the set of constants

Q. We require ftv(Γ0) = �, fpi(Γ0) = �, and ∃Γ0 ≡ true. We refer to Γ0 as the

initial typing environment. 2

10.5 Type Soundness 435

10.5.3 Definition: Let ref be an isolated, invariant type constructor of signature

?⇒ ?. A store typeM is a finite mapping from memory locations to types. We

write ref M for the environment that maps every m ∈ dom(M) to ref M(m).

Assuming dom(µ) and dom(M) coincide, the constraint Jµ : MK is defined

as the conjunction of the constraints Jµ(m) : M(m)K, where m ranges over

dom(µ). Under the same assumption, the constraint Jt/µ : T/MK is defined

as Jt : TK ∧ Jµ : MK. A closed configuration t/µ is well-typed if and only if

there exist a type T and a store type M such that dom(µ) = dom(M) and the

constraint let Γ0; refM in Jt/µ : T/MK is satisfiable. 2

The type ref T is the type of references (that is, memory locations) that

store data of type T (TAPL, Chapter 13). It must be invariant in its parameter,

reflecting the fact that references may be both read and written.

A store is a complex object: it may contain values that indirectly refer to

each other via memory locations. In fact, it is a representation of the graph

formed by objects and pointers in memory, which may contain cycles. We rely

on store types to deal with such cycles. In the definition of well-typedness,

the store typeM imposes a constraint on the contents of the store—the value

µ(m)must have type M(m)—but also plays the role of a hypothesis: by plac-

ing the constraint Jt/µ : T/MK within the context let ref M in [], we give

meaning to free occurrences of memory locations within Jt/µ : T/MK, and

stipulate that it is valid to assume that m has type M(m). In other words, we

essentially view the store as a large, mutually recursive binding of locations

to values. The context let Γ0 in [] gives meaning to occurrences of constants

within Jt/µ : T/MK.

We now define a relation between configurations that plays a key role in the

statement of the subject reduction property. The point of subject reduction is

to guarantee that well-typedness is preserved by reduction. However, such a

simple statement is too weak to be amenable to inductive proof. Thus, for the

purposes of the proof, we must be more specific. To begin, let us consider the

simpler case of a pure semantics, that is, a semantics without stores. Then,

we must state that if an expression t has type T under a certain constraint,

then its reduct t′ has type T under the same constraint. In terms of generated

constraints, this statement becomes: let Γ0 in Jt : TK entails let Γ0 in Jt′ : TK.

Let us now return to the general case, where a store is present. The state-

ment of well-typedness for a configuration t/µ now involves a store type

M whose domain is that of µ. So, the statement of well-typedness for its

reduct t′/µ′ must involve a store type M′ whose domain is that of µ′, which

is larger if allocation occurred. The types of existing memory locations must

not change: we must request that M and M′ agree on dom(M), that is, M′

must extend M . Furthermore, the types assigned to new memory locations in

436 10 The Essence of ML Type Inference

dom(M′)\dom(M)might involve new type variables, that is, variables that do

not appear free in M or T. We must allow these variables to be hidden—that

is, existentially quantified—otherwise the entailment assertion cannot hold.

These considerations lead us to the following definition:

10.5.4 Definition: t/µ v t′/µ′ holds if and only if, for every type T and for every

store type M such that dom(µ) = dom(M), there exist a set of type variables

Ȳ and a store type M′ such that Ȳ # ftv(T,M) and ftv(M′) ⊆ Ȳ ∪ ftv(M) and

dom(M′) = dom(µ′) and M′ extends M and

let Γ0; refM in Jt /µ : T/M K

ð ∃Ȳ.let Γ0; refM′ in Jt′/µ′ : T/M′K.

The relation v is intended to express a connection between a configuration

and its reduct. Thus, subject reduction may be stated as: (−−ñ) ⊆ (v), that

is, v is indeed a conservative description of reduction. 2

We have introduced an initial environment Γ0 and used it in the definition

of well-typedness, but we haven’t yet ensured that the type schemes assigned

to constants are an adequate description of their semantics. We now for-

mulate two requirements that relate Γ0 with
δ
-→. They are specializations of

the subject reduction and progress properties to configurations that involve

an application of a constant. They represent proof obligations that must be

discharged when concrete definitions of Q,
δ
-→, and Γ0 are given.

10.5.5 Definition: We require (i) (
δ
-→) ⊆ (v); and (ii) if the configuration c v1 . . .

vk/µ (where k ≥ 0) is well-typed, then either it is reducible, or c v1 . . . vk is a

value. 2

The last point that remains to be settled before proving type soundness

is the interaction between side effects and let-polymorphism. The following

example illustrates the problem:

let r = ref λz.z in let = (r := λz.(z +̂ 1̂)) in !r true

This expression reduces to true +̂ 1̂, so it must not be well-typed. Yet, if

natural type schemes are assigned to ref, !, and := (see Example 10.7.5), then

it is well-typed with respect to the rules given so far, because r receives the

polymorphic type scheme ∀X.ref (X → X), which allows writing a function of

type int → int into r and reading it back with type bool → bool. The problem

is that let-polymorphism simulates a textual duplication of the let-bound

expression ref λz.z, while the semantics first reduces it to a valuem, causing

a new bindingm , λz.z to appear in the store, then duplicates the addressm.

10.5 Type Soundness 437

The new store binding is not duplicated: both copies of m refer to the same

memory cell. For this reason, generalization is unsound in this case, and must

be restricted. Many authors have attempted to come up with a sound type

system that accepts all pure programs and remains flexible enough in the

presence of side effects (Tofte, 1988; Leroy, 1992). These proposals are often

complex, which is why they have been abandoned in favor of an extremely

simple syntactic restriction, known as the value restriction (Wright, 1995).

10.5.6 Definition: A program satisfies the value restriction if and only if all subex-

pressions of the form let z = t1 in t2 are in fact of the form let z = v1 in

t2. In the following, we assume that either all constants have pure semantics,

or all programs satisfy the value restriction. 2

Put slightly differently, the value restriction states that only values may be

generalized. This eliminates the problem altogether, since duplicating values

does not affect a program’s semantics. Note that any program that does not

satisfy the value restriction can be turned into one that does and has the

same semantics: it suffices to change let z = t1 in t2 into (λz.t2) t1 when

t1 is not a value. Of course, such a transformation may cause the program to

become ill-typed. In other words, the value restriction causes some perfectly

safe programs to be rejected. In particular, in its above form, it prevents gen-

eralizing applications of the form c v1 . . . vk, where c is a destructor of arity

k. This is excessive, because many destructors have pure semantics; only a

few, such as ref, allocate new mutable storage. Furthermore, we use pure

destructors to encode numerous language features (§10.7). Fortunately, it is

easy to relax the restriction to allow generalizing not only values, but also

a more general class of nonexpansive expressions, whose syntax guarantees

that such expressions cannot allocate new mutable storage (that is, expand

the domain of the store). The term nonexpansive was coined by Tofte (1988).

Nonexpansive expressions may include applications of the form c t1 . . . tk,

where c is a pure destructor of arity k and t1, . . . ,tk are nonexpansive. Ex-

perience shows that this slightly relaxed restriction is acceptable in practice.

Some limitations remain: for instance, constructor functions (that is, func-

tions that do not allocate mutable storage and build a value) are regarded

as ordinary functions, so their applications are considered potentially expan-

sive, even though a naked constructor application would be a value and thus

considered nonexpansive. For instance, in the expression let f = c v in

let z = f w in t, where c is a constructor of arity 2, the partial application

c v, to which the name f is bound, is a constructor function (of arity 1). The

program variable z cannot receive a polymorphic type scheme, because f w

is not a value, even though it has the same semantic meaning as c v w, which

is a value. A recent improvement to the value restriction (Garrigue, 2004)

438 10 The Essence of ML Type Inference

provides a partial remedy. Technically, the effect of the value restriction (as

stated in Definition 10.5.6) is summarized by the following result.

10.5.7 Lemma: Under the value restriction, the production E ::= let z = E in t

may be suppressed from the grammar of evaluation contexts (Figure 10-1)

without altering the operational semantics. 2

We are finished with definitions and requirements. Let us now turn to the

type soundness results.

10.5.8 Theorem [Subject reduction]: (−−ñ) ⊆ (v). 2

Subject reduction ensures that well-typedness is preserved by reduction.

10.5.9 Corollary: Let t/µ −−ñ t′/µ′. If t/µ is well-typed, then so is t′/µ′. 2

Let us now state the progress property.

10.5.10 Theorem [Progress]: If t/µ is well-typed, then either it is reducible, or t is

a value. 2

We may now conclude:

10.5.11 Theorem [Type Soundness]: Well-typed source programs do not go wrong. 2

Recall that this result holds only if the requirements of Definition 10.5.5 are

met. In other words, some proof obligations remain to be discharged when

concrete definitions of Q,
δ
-→, and Γ0 are given. This is illustrated by several

examples in §10.7 and §10.8.

10.6 Constraint Solving

We have introduced a parameterized constraint language, given equivalence

laws describing the interaction between its logical connectives, and exploited

them to prove theorems about type inference and type soundness, which

are valid independently of the nature of primitive constraints—the so-called

predicate applications. However, there would be little point in proposing a

parameterized constraint solver, because much of the difficulty of design-

ing an efficient constraint solver lies precisely in the treatment of primitive

constraints and in its interaction with let-polymorphism. In this section, we

focus on constraint solving in the setting of an equality-only free tree model.

Thus, the constraint solver developed here allows performing type inference

for HM(=) (that is, for Damas and Milner’s type system) and for its extension

with recursive types. Of course, some of its mechanisms may be useful in

other settings. The program analysis and type inference literature abounds

10.6 Constraint Solving 439

with constraint-based systems of all kinds; a short list of papers that put par-

ticular emphasis on constraint solving is Aiken and Wimmers (1992), Hen-

glein (1993), Niehren, Müller, and Podelski (1997), Fähndrich (1999), Melski

and Reps (2000), Müller, Niehren, and Treinen (2001), Pottier (2001b), Niel-

son, Nielson, and Seidl (2002), McAllester (2002; 2003), and Simonet (2003).

We begin with a rule-based presentation of a standard, efficient first-order

unification algorithm. This yields a constraint solver for a subset of the con-

straint language, except for the type scheme introduction and instantiation

forms. On top of it, we build a full constraint solver, which corresponds to

the code that accompanies this chapter.

Unification

Unification is the process of solving equations between terms. It was first

introduced by Robinson (1971), but his original algorithm could be very in-

efficient. Efficient algorithms, which perform unification in quasi-linear time,

were independently proposed by Martelli and Montanari (1976; 1982) and by

Huet (1976, Chapter 5). Both algorithms rely on a data structure that effi-

ciently solves the union-find problem (Tarjan, 1975). Martelli and Montanari’s

algorithm performs unification in topological (top-down) order, and is thus

restricted to the acyclic case, that is, to the case where equations are inter-

preted in a syntactic model. In this specific case, unification may actually be

performed in truly linear time (Paterson and Wegman, 1978). On the other

hand, Huet’s algorithm is able to deal with cyclic structures. The acyclicity

check is postponed until the very end of the solving process if equations are

interpreted within a syntactic model, or omitted altogether if working within

a regular tree model. Except for the final acyclicity check, Huet’s algorithm is

incremental. Furthermore, it is simple; we present a version of it here. Knight

(1989) and Baader and Siekmann (1994) also describe Huet’s algorithm, and

provide further historical background and references.

Following Jouannaud and Kirchner (1991), we specify the algorithm as a

(nondeterministic) system of constraint rewriting rules. As suggested above,

it is almost the same for finite and regular tree models; only one rule, which

implements the occurs check, must be removed in the latter case. In other

words, the algorithm works with possibly cyclic data structures and does

not rely in an essential way on the occurs check. In order to more closely

reflect the behavior of the actual algorithm, and in particular the union-find

data structure, we modify the syntax of constraints by replacing equations

with multi-equations—equations involving an arbitrary number of types, as

opposed to exactly two.

440 10 The Essence of ML Type Inference

10.6.1 Definition: Let there be, for every kind κ and for every n ≥ 1, a predicate

=nκ , of signature κn ⇒ ·, whose interpretation is (n-ary) equality. The predicate

constraint =nκ T1 . . . Tn is written T1 = . . . = Tn, and called a multi-equation.

We consider the constraint true as a multi-equation of length 0 and let ε

range over all multi-equations. In the following, we identify multi-equations

up to permutations of their members, so a multi-equation ε of kind κ may

be viewed as a finite multiset of types of kind κ. We write ε = ε′ for the

multi-equation obtained by concatenating ε and ε′. 2

Thus, we are interested in the following subset of the constraint language:

U ::= true | false | ε | U ∧U | ∃X̄.U

Equations are replaced with multi-equations; no other predicates are avail-

able. Type scheme introduction and instantiation forms are absent.

10.6.2 Definition: A multi-equation is standard if and only if its variable mem-

bers are distinct and it has at most one nonvariable member. A constraint

U is standard if and only if every multi-equation inside U is standard and

every variable that occurs (free or bound) in U is a member of at most one

multi-equation inside U . (Note that to be a member of ε implies, but is not

equivalent to, to occur free in ε.) 2

A union-find algorithm maintains equivalence classes (that is, disjoint sets)

of variables, and associates with each class a descriptor, which in our case is

either absent or a nonvariable term. Thus, a standard constraint represents

a state of the union-find algorithm. A constraint that is not standard may be

viewed as a superposition of a state of the union-find algorithm, on the one

hand, and of control information, on the other hand. For instance, a multi-

equation of the form ε = T1 = T2, where ε is made up of distinct variables

and T1 and T2 are nonvariable terms, may be viewed, roughly speaking, as the

equivalence class ε = T1, together with a pending request to solve T1 = T2 and

to update the class’s descriptor accordingly. Because multi-equations encode

both state and control, our specification of the unification algorithm remains

rather abstract. It would be possible to give a lower-level description, where

state (standard conjunctions of multi-equations) and control (pending binary

equations) are distinguished.

10.6.3 Definition: Let U be a conjunction of multi-equations. Y is dominated by X

with respect to U (written: Y ≺U X) if and only if U contains a conjunct of the

form X = F ~T = ε, where Y ∈ ftv(T̄). U is cyclic if and only if the graph of ≺U
exhibits a cycle. 2

10.6 Constraint Solving 441

(∃X̄.U1)∧U2 → ∃X̄.(U1 ∧U2) (S-ExAnd)

if X̄ # ftv(U2)

X = ε∧ X = ε′ → X = ε = ε′ (S-Fuse)

X = X = ε → X = ε (S-Stutter)

F ~X = F ~T = ε → ~X = ~T∧ F ~X = ε (S-Decompose)

F T1 . . . Ti . . . Tn = ε → ∃X.(X = Ti ∧ F T1 . . . X . . . Tn = ε) (S-Name-1)

if Ti 6∈ V ∧ X 6∈ ftv(T1, . . . ,Tn, ε)

F ~T = F ′ ~T′ = ε → false (S-Clash)

if F 6= F′

T → true (S-Single)

U ∧ true → U (S-True)

U → false (S-Cycle)

if the model is syntactic and U is cyclic

U[false] → false (S-Fail)

if U 6= []

Figure 10-10: Unification

The specification of the unification algorithm consists of a set of constraint

rewriting rules, given in Figure 10-10. Rewriting is performed modulo α-

conversion, modulo permutations of the members of a multi-equation, mod-

ulo commutativity and associativity of conjunction, and under an arbitrary

context. The specification is nondeterministic: several rule instances may be

simultaneously applicable.

S-ExAnd is a directed version of C-ExAnd, whose effect is to float up all

existential quantifiers. In the process, all multi-equations become part of a

single conjunction, possibly causing rules whose left-hand side is a conjunc-

tion of multi-equations, namely S-Fuse and S-Cycle, to become applicable.

S-Fuse identifies two multi-equations that share a common variable X, and

fuses them. The new multi-equation is not necessarily standard, even if the

two original multi-equations were. Indeed, it may have repeated variables or

contain two nonvariable terms. The purpose of the next few rules, whose

left-hand side consists of a single multi-equation, is to deal with these sit-

uations. S-Stutter eliminates redundant variables. It only deals with vari-

442 10 The Essence of ML Type Inference

ables, as opposed to terms of arbitrary size, so as to have constant time cost.

The comparison of nonvariable terms is implemented by S-Decompose and

S-Clash. S-Decompose decomposes an equation between two terms whose

head symbols match. It produces a conjunction of equations between their

subterms, namely ~X = ~T. Only one of the two terms remains in the original

multi-equation, which may thus become standard. The terms ~X are copied:

there are two occurrences of ~X on the right-hand side. For this reason, we

require them to be type variables, as opposed to terms of arbitrary size. (We

slightly abuse notation by using ~X to denote a vector of type variables whose

elements are not necessarily distinct.) By doing so, we allow explicit reasoning

about sharing: since a variable represents a pointer to an equivalence class,

we explicitly specify that only pointers, not whole terms, are copied. As a

result of this decision, S-Decompose is not applicable when both terms at

hand have a nonvariable subterm. S-Name-1 remedies this problem by intro-

ducing a fresh variable that stands for one such subterm. When repeatedly

applied, S-Name-1 yields a unification problem composed of so-called small

terms only—that is, where sharing has been made fully explicit. S-Clash com-

plements S-Decompose by dealing with the case where two terms with differ-

ent head symbols are equated; in a free tree model, such an equation is false,

so failure is signaled. S-Single and S-True suppress multi-equations of size

1 and 0, respectively, which are tautologies. S-Cycle is the occurs check: it

signals failure if the constraint is cyclic. It is applicable only in the case of

syntactic unification, that is, when ground types are finite trees. It is a global

check: its left-hand side is an entire conjunction of multi-equations. S-Fail

propagates failure; U ranges over unification constraint contexts.

The constraint rewriting system in Figure 10-10 enjoys the following prop-

erties. First, rewriting is strongly normalizing, so the rules define a (nonde-

terministic) algorithm. Second, rewriting is meaning-preserving. Third, every

normal form is either false or of the form ∃X̄.U , where U is satisfiable. The

latter two properties indicate that the algorithm is indeed a constraint solver.

10.6.4 Lemma: The rewriting system → is strongly normalizing. 2

10.6.5 Lemma: U1 → U2 implies U1 ≡ U2. 2

10.6.6 Lemma: Every normal form is either false or of the form X[U], where X is an

existential constraint context, U is a standard conjunction of multi-equations

and, if the model is syntactic, U is acyclic. These conditions imply that U is

satisfiable. 2

10.6 Constraint Solving 443

A Constraint Solver

On top of the unification algorithm, we now define a constraint solver. Its

specification is independent of the rules and strategy employed by the uni-

fication algorithm. However, the structure of the unification algorithm’s nor-

mal forms as well as the logical properties of multi-equations are exploited

when performing generalization, that is, when creating and simplifying type

schemes. Like the unification algorithm, the constraint solver is specified in

terms of a reduction system. However, the objects that are subject to rewrit-

ing are not just constraints: they have more complex structure. Working

with such richer states allows distinguishing the solver’s external language—

namely, the full constraint language, which is used to express the problem

that one wishes to solve—and an internal language, introduced below, which

is used to describe the solver’s private data structures. In the following, C

and D range over external constraints, that is, constraints that were part of

the solver’s input. External constraints are to be viewed as abstract syntax

trees, subject to no implicit laws other than α-conversion. As a simplifying

assumption, we require external constraints not to contain any occurrence of

false—otherwise the problem at hand is clearly false. Internal data structures

include unification constraints U , as previously studied, and stacks, whose

syntax is as follows:

S ::= [] | S[[]∧ C] | S[∃X̄.[]] | S[let x : ∀X̄[[]].T in C] | S[let x : σ in []]

In the second and fourth productions, C is an external constraint. In the last

production, we require σ to be of the form ∀X̄[U].X, and we demand ∃σ ≡

true. Every stack may be viewed as a one-hole constraint context (page 410);

indeed, one may interpret [] as the empty context and ·[·] as context com-

position, which replaces the hole of its first context argument with its second

context argument. A stack may also be viewed, literally, as a list of frames.

Frames may be added and deleted at the inner end of a stack, that is, near the

hole of the constraint context that it represents. We refer to the four kinds of

frames as conjunction, existential, let, and environment frames, respectively.

A state of the constraint solver is a triple S;U ;C where S is a stack, U is a

unification constraint, and C is an external constraint. The state S;U ;C is to

be understood as a representation of the constraint S[U ∧ C], that is, the

constraint obtained by placing both U and C within the hole of the constraint

context S. The notion of α-equivalence between states is defined accordingly.

In particular, one may rename type variables in dtv(S), provided U and C are

renamed as well. In brief, the three components of a state play the following

roles. C is an external constraint that the solver intends to examine next. U

444 10 The Essence of ML Type Inference

is the internal state of the underlying unification algorithm; one might think

of it as the knowledge that has been obtained so far. S tells where the type

variables that occur free in U and C are bound, associates type schemes with

the program variables that occur free in C, and records what should be done

after C is solved. The solver’s initial state is usually of the form []; true;C,

where C is the external constraint that one wishes to solve, that is, whose

satisfiability one wishes to determine. If the constraint to be solved is of the

form let Γ0 in C, and if the type schemes that appear within Γ0 meet the

requirements that bear on environment frames, as defined above, then it is

possible to pick let Γ0 in []; true;C as an initial state. For simplicity, we make

the (unessential) assumption that states have no free type variables.

The solver consists of a (nondeterministic) state rewriting system, given in

Figure 10-11. Rewriting is performed modulo α-conversion. S-Unify makes

the unification algorithm a component of the constraint solver, and allows the

current unification problem U to be solved at any time. Rules S-Ex-1 to S-Ex-4

float existential quantifiers out of the unification problem into the stack and

through the stack up to the nearest enclosing let frame, if there is any, or to

the outermost level, otherwise. Their side-conditions prevent capture of type

variables, and can always be satisfied by suitable α-conversion of the left-

hand state. If S;U ;C is a normal form with respect to these five rules, then U

must be either false or a conjunction of standard multi-equations, and every

type variable in dtv(S) must be either universally quantified at a let frame or

existentially bound at the outermost level. (Recall that, by assumption, states

have no free type variables.) In other words, provided these rules are applied

in an eager fashion, there is no need for existential frames to appear in the

machine representation of stacks. Instead, it suffices to maintain, at every let

frame and at the outermost level, a list of the type variables that are bound

at this point and, conversely, to annotate every type variable in dtv(S) with

an integer rank, which allows telling, in constant time, where the variable is

bound: type variables of rank 0 are bound at the outermost level, and type

variables of rank k ≥ 1 are bound at the kth let frame down in the stack S.

The code that accompanies this chapter adopts this convention. Ranks were

initially described in Rémy (1992a) and have also been studied by McAllester

(2003).

Rules S-Solve-Eq to S-Solve-Let encode an analysis of the structure of the

third component of the current state. There is one rule for each possible case,

except false, which by assumption cannot arise, and true, which is dealt with

further on. S-Solve-Eq discovers an equation and makes it available to the

unification algorithm. S-Solve-Id discovers an instantiation constraint x � T

and replaces it with σ � T, where the type scheme σ = S(x) is the type

10.6 Constraint Solving 445

S;U ;C → S;U ′;C (S-Unify)

if U → U ′

S;∃X̄.U ;C → S[∃X̄.[]];U ;C (S-Ex-1)

if X̄ # ftv(C)

S[(∃X̄.S′)∧D];U ;C → S[∃X̄.(S′ ∧D)];U ;C (S-Ex-2)

if X̄ # ftv(D)

S[let x : ∀X̄[∃Ȳ.S′].T in D];U ;C → S[let x : ∀X̄Ȳ[S].′T in D];U ;C (S-Ex-3)

if Ȳ # ftv(T)

S[let x : σ in ∃X̄.S′];U ;C → S[∃X̄.let x : σ in S′];U ;C (S-Ex-4)

if X̄ # ftv(σ)

S;U ;T1 = T2 → S;U ∧ T1 = T2; true (S-Solve-Eq)

S;U ;x � T → S;U ;S(x) � T (S-Solve-Id)

S;U ;C1 ∧ C2 → S[[]∧ C2];U ;C1 (S-Solve-And)

S;U ;∃X̄.C → S[∃X̄.[]];U ;C (S-Solve-Ex)

if X̄ # ftv(U)

S;U ; let x : ∀X̄[D].T in C → S[let x : ∀X̄[[]].T in C];U ;D (S-Solve-Let)

if X̄ # ftv(U)

S[[]∧ C];U ; true → S;U ;C (S-Pop-And)

S[let x : ∀X̄[[]].T in C];U ; true → S[let x : ∀X̄X[[]].X in C];

U ∧ X = T; true (S-Name-2)

if X 6∈ ftv(U,T)∧ T 6∈ V

S[let x : ∀X̄Y[[]].X in C];Y = Z = ε∧U ; true → S[let x : ∀X̄Y[[]].θ(X) in C];

Y∧ Z = θ(ε)∧ θ(U); true (S-Compress)

if Y 6= Z∧ θ = [Y, Z]

S[let x : ∀X̄Y[[]].X in C];Y = ε∧U ; true → S[let x : ∀X̄[[]].X in C]; ε∧U ; true (S-UnName)

if Y 6∈ X∪ ftv(ε,U)

S[let x : ∀X̄Ȳ[[]].X in C];U ; true → S[∃Ȳ.let x : ∀X̄[[]].X in C];U ; true (S-LetAll)

if Ȳ # ftv(C)∧ ∃X̄.U determines Ȳ

S[let x : ∀X̄[[]].X in C];U1 ∧U2; true → S[let x : ∀X̄[U2].X in []];U1;C (S-Pop-Let)

if X̄ # ftv(U1)∧ ∃X̄.U2 ≡ true

S[let x : σ in []];U ; true → S;U ; true (S-Pop-Env)

Figure 10-11: A constraint solver

446 10 The Essence of ML Type Inference

scheme carried by the nearest environment frame that defines x in the stack

S. It is defined as follows:

S[[]∧ C](x) = S(x)

S[∃X̄.[]](x) = S(x) if X̄ # ftv(S(x))

S[let y : ∀X̄[[]].T in C](x) = S(x) if X̄ # ftv(S(x))

S[let y : σ in []](x) = S(x) if x 6= y

S[let x : σ in []](x) = σ

If x ∈ dpi(S) does not hold, then S(x) is undefined and the rule is not appli-

cable. If it does hold, then the rule may always be made applicable by suitable

α-conversion of the left-hand state. Recall that, if σ is of the form ∀X̄[U].X,

where X̄ # ftv(T), then σ � T stands for ∃X̄.(U ∧ X = T). The process of

constructing this constraint is informally referred to as “taking an instance

of σ .” In the worst case, it is just as inefficient as textually expanding the

corresponding let construct in the program’s source code, and leads to ex-

ponential time complexity. In practice, however, the unification constraint

U is often compact because it was simplified before the environment frame

let x : σ in [] was created, which explains why the solver usually performs

well. (The creation of environment frames, performed by S-Pop-Let, is dis-

cussed below.) S-Solve-And discovers a conjunction. It arbitrarily chooses to

explore the left branch first, and pushes a conjunction frame onto the stack,

so as to record that the right branch should be explored afterwards. S-Solve-

Ex discovers an existential quantifier and enters it, creating a new existential

frame to record its existence. Similarly, S-Solve-Let discovers a let form and

enters its left-hand side, creating a new let frame to record its existence. The

choice of examining the left-hand side first is not arbitrary. Indeed, examin-

ing the right-hand side first would require creating an environment frame—

but environment frames must contain simplified type schemes of the form

∀X̄[U].X, whereas the type scheme ∀X̄[D].T is arbitrary. In other words, our

strategy is to simplify type schemes prior to allowing them to be copied by

S-Solve-Id, so as to avoid any duplication of effort. The side-conditions of S-

Solve-Ex and S-Solve-Let may always be satisfied by suitable α-conversion

of the left-hand state.

Rules S-Solve-Eq to S-Solve-Let may be referred to as forward rules, be-

cause they “move down into” the external constraint, causing the stack to

grow. This process stops when the external constraint at hand becomes true.

Then part of the work has been finished, and the solver must examine the

stack in order to determine what to do next. This task is performed by the

last series of rules, which may be referred to as backward rules, because they

“move back out,” causing the stack to shrink and possibly scheduling new

external constraints for examination. These rules encode an analysis of the

10.6 Constraint Solving 447

structure of the innermost stack frame. There are three cases, correspond-

ing to conjunction, let, and environment frames. The case of existential stack

frames need not be considered, because rules S-Ex-2 to S-Ex-4 allow either

fusing them with let frames or floating them up to the outermost level, where

they shall remain inert. S-Pop-And deals with conjunction frames. The frame

is popped, and the external constraint that it carries is scheduled for exam-

ination. S-Pop-Env deals with environment frames. Because the right-hand

side of the let construct at hand has been solved—that is, turned into a uni-

fication constraint U—it cannot contain an occurrence of x. Furthermore, by

assumption, ∃σ is true. Thus, this environment frame is no longer useful: it

is destroyed. The remaining rules deal with let frames. Roughly speaking,

their purpose is to change the state S[let x : ∀X̄[[]].T in C];U ; true into

S[let x : ∀X̄[U].T in []]; true;C, that is, to turn the current unification con-

straint U into a type scheme, turn the let frame into an environment frame,

and schedule the right-hand side of the let construct (that is, the external

constraint C) for examination. In fact, the process is more complex, because

the type scheme ∀X̄[U].T must be simplified before becoming part of an en-

vironment frame. The simplification process is described by rules S-Name-2

to S-Pop-Let. In the following, we refer to type variables in X̄ as young and

to type variables in dtv(S) \ X̄ as old. The former are the universal quanti-

fiers of the type scheme that is being created; the latter contain its free type

variables.

S-Name-2 ensures that the body T of the type scheme that is being created

is a type variable, as opposed to an arbitrary term. If it isn’t, then it is re-

placed with a fresh variable X, and the equation X = T is added so as to recall

that X stands for T. Thus, the rule moves the term T into the current unifica-

tion problem, where it potentially becomes subject to S-Name-1. This ensures

that sharing is made explicit everywhere. S-Compress determines that the

(young) type variable Y is an alias for the type variable Z. Then, every free

occurrence of Y other than its defining occurrence is replaced with Z. In an

actual implementation, this occurs transparently when the union-find algo-

rithm performs path compression (Tarjan, 1975, 1979). We note that the rule

does not allow substituting a younger type variable for an older one; indeed,

that would make no sense, since the younger variable could then possibly

escape its scope. In other words, in implementation terms, the union-find al-

gorithm must be slightly modified so that, in each equivalence class, the rep-

resentative element is always a type variable with minimum rank. S-UnName

determines that the (young) type variable Y has no occurrences other than its

defining occurrence in the current type scheme. (This occurs, in particular,

when S-Compress has just been applied.) Then, Y is suppressed altogether.

In the particular case where the remaining multi-equation ε has cardinal 1,

448 10 The Essence of ML Type Inference

it may then be suppressed by S-Single. In other words, the combination of

S-UnName and S-Single is able to suppress young unused type variables as

well as the term that they stand for. This may, in turn, cause new type vari-

ables to become eligible for elimination by S-UnName. In fact, assuming the

current unification constraint is acyclic, an inductive argument shows that

every young type variable may be suppressed unless it is dominated either

by X or by an old type variable. (In the setting of a regular tree model, it is

possible to extend the rule so that young cycles that are not dominated either

by X or by an old type variable are suppressed as well.) S-LetAll is a directed

version of C-LetAll. It turns the young type variables Ȳ into old variables.

How to tell whether ∃X̄.U determines Ȳ is discussed later (see Lemma 10.6.7).

Why S-LetAll is an interesting and important rule will be explained shortly.

S-Pop-Let is meant to be applied when the current state has become a nor-

mal form with respect to S-Unify, S-Name-2, S-Compress, S-UnName, and

S-LetAll, that is, when the type scheme that is about to be created is fully

simplified. It splits the current unification constraint into two components

U1 and U2, where U1 is made up entirely of old variables, as expressed by

the side-condition X̄ # ftv(U1), and U2 constrains young variables only, as

expressed by the side-condition ∃X̄.U2 ≡ true. Note that U2 may still con-

tain free occurrences of old type variables, so the type scheme ∀X̄[U2].X that

appears on the right-hand side is not necessarily closed. It is not obvious

why such a decomposition must exist; Lemma 10.6.10 proves that it does.

Let us say for now that S-LetAll plays a role in guaranteeing its existence,

whence comes part of its importance. Once the decomposition U1 ∧ U2 is

obtained, the behavior of S-Pop-Let is simple. The unification constraint U1

concerns old variables only, that is, variables that are not quantified in the

current let frame; thus, it need not become part of the new type scheme and

may instead remain part of the current unification constraint. This is justi-

fied by C-LetAnd and C-InAnd* and corresponds to the difference between

hmx-Gen’ and hmx-Gen discussed in §10.3. The unification constraint U2, on

the other hand, becomes part of the newly built type scheme ∀X̄[U2].X. The

property ∃X̄.U2 ≡ true guarantees that the newly created environment frame

meets the requirements imposed on such frames. Note that the more type

variables are considered old, the larger U1 may become, and the smaller U2.

This is another reason why S-LetAll is interesting: by allowing more vari-

ables to be considered old, it decreases the size of the type scheme∀X̄[U2].X,

making it cheaper to instantiate.

To complete our description of the constraint solver, there remains to ex-

plain how to decide when ∃X̄.U determines Ȳ, since this predicate occurs in

the side-condition of S-LetAll. The following lemma describes two important

situations where, by examining the structure of an equation, it is possible to

10.6 Constraint Solving 449

discover that a constraint C determines some of its free type variables Ȳ (Def-

inition 10.2.14). In the first situation, the type variables Ȳ are equated with or

dominated by a distinct type variable X that occurs free in C. In that case,

because the model is a free tree model, the values of the type variables Ȳ

are determined by the value of X: they are subtrees of it at specific positions.

For instance, X = Y1 → Y2 determines Y1Y2, while ∃Y1.(X = Y1 → Y2) deter-

mines Y2. In the second situation, the type variables Ȳ are equated with a

term T, all of whose type variables are free in C. Again, the value of the type

variables Ȳ is then determined by the values of the type variables ftv(T). For

instance, X = Y1 → Y2 determines X, while ∃Y1.(X = Y1 → Y2) does not. In the

second situation, no assumption is in fact made about the model. (Note that

X = Y1 → Y2 determines Y1Y2 and determines X, but does not simultaneously

determine XY1Y2.)

10.6.7 Lemma: Let X̄ # Ȳ. Assume either ε is X = ε′, where X 6∈ X̄Ȳ and Ȳ ⊆ ftv(ε′), or

ε is Ȳ = T = ε′, where ftv(T) # X̄Ȳ. Then, ∃X̄.(C ∧ ε) determines Ȳ. 2

Thanks to Lemma 10.6.7, an efficient implementation of S-LetAll comes

to mind. The problem is, given a constraint ∃X̄.U , where U is a standard con-

junction of multi-equations, to determine the greatest subset Ȳ of X̄ such that

∃(X̄ \ Ȳ).U determines Ȳ. By the first part of the lemma, it is safe for Ȳ to in-

clude all members of X̄ that are directly or indirectly dominated (with respect

to U) by some free variable of ∃X̄.U . Those can be found, in time linear in

the size of U , by a top-down traversal of the graph of ≺U . By the second part

of the lemma, it is safe to close Ȳ under the closure law X ∈ X̄ ∧ (∀Y Y ≺U
X ⇒ Y ∈ Ȳ) ⇒ X ∈ Ȳ. That is, it is safe to also include all members of X̄

whose descendants (with respect to U) have already been found to be mem-

bers of Ȳ. This closure computation may be performed, again in linear time,

by a bottom-up traversal of the graph of ≺U . When U is acyclic, it is possible

to show that this procedure is complete, that is, does compute the greatest

subset Ȳ that meets our requirement.

The above discussion has shown that when Y and Z are equated, if Y is

young and Z is old, then S-LetAll allows making Y old as well. If binding

information is encoded in terms of integer ranks, as suggested earlier, then

this remark may be formulated as follows: when Y and Z are equated, if the

rank of Y exceeds that of Z, then it may be decreased so that both ranks

match. As a result, it is possible to attach ranks with multi-equations, rather

than with variables. When two multi-equations are fused, the smaller rank is

kept. This treatment of ranks is inspired by Rémy (1992a); see the resolution

rule Fuse, as well as the simplification rules Propagate and Realize, in that

paper.

450 10 The Essence of ML Type Inference

Let us now state the properties of the constraint solver. First, the reduction

system is terminating, so it defines an algorithm.

10.6.8 Lemma: The reduction system → is strongly normalizing. 2

Second, every rewriting step preserves the meaning of the constraint that

the current state represents. We recall that the state S;U ;C is meant to rep-

resent the constraint S[U ∧ C].

10.6.9 Lemma: S;U ;C → S′;U ′;C′ implies S[U ∧ C] ≡ S′[U ′ ∧ C′]. 2

Last, we classify the normal forms of the reduction system:

10.6.10 Lemma: A normal form for the reduction system → is one of (i) S;U ;x � T,

where x 6∈ dpi(S); (ii) S; false; true; or (iii) X ;U ; true, where X is an existential

constraint context and U a satisfiable conjunction of multi-equations. 2

In case (i), the constraint S[U ∧C] has a free program identifier x. In other

words, the source program contains an unbound program identifier. Such an

error could of course be detected prior to constraint solving, if desired. In

case (ii), the unification algorithm failed. By Lemma 10.2.17, the constraint

S[U ∧ C] is then false. In case (iii), the constraint S[U ∧ C] is equivalent to

X[U], where U is satisfiable, so it is satisfiable as well. If the initial constraint

is closed, case (i) cannot arise, while cases (ii) and (iii) respectively denote

failure and success. Thus, Lemmas 10.6.9 and 10.6.10 indeed prove that the

algorithm is a constraint solver.

10.6.11 Remark: Type inference for ML-the-calculus is dexptime-complete (Kfoury,

Tiuryn, and Urzyczyn, 1990; Mairson, Kanellakis, and Mitchell, 1991). Thus,

our constraint solver cannot run any faster, asymptotically. This cost is es-

sentially due to let-polymorphism, which requires a constraint to be du-

plicated at every occurrence of a let-bound variable (S-Solve-Id). In order

to limit the amount of duplication to a bare minimum, it is important that

rule S-LetAll be applied before S-Pop-Let, allowing variables and constraints

that need not be duplicated to be shared. We have observed that algorithms

based on this strategy behave remarkably well in practice (Rémy, 1992a). In

fact, McAllester (2003) has proved that they have linear time complexity, pro-

vided the size of type schemes and the (left-) nesting depth of let constructs

are bounded. Unfortunately, many implementations of type inference for ML-

the-programming-language do not behave as efficiently as the algorithm pre-

sented here. Some spend an excessive amount of time in computing the set

of nongeneralizable type variables; some do not treat types as dags, thus los-

ing precious sharing information; others perform the expensive occurs check

after every unification step, rather than only once at every let construct, as

suggested here (S-Pop-Let). 2

10.7 From ML-the-Calculus to ML-the-Language 451

10.7 From ML-the-Calculus to ML-the-Language

In this section, we explain how to extend the framework developed so far

to accommodate operations on values of base type (such as integers), pairs,

sums, references, and recursive function definitions. Then, we describe alge-

braic data type definitions. Last, the issues associated with recursive types

are briefly discussed. For space reasons, exceptions are not discussed; the

reader is referred to (TAPL, Chapter 14).

Simple Extensions

Introducing new constants and extending
δ
-→ and Γ0 appropriately allows

adding many features of ML-the-programming-language to ML-the-calculus. In

each case, it is necessary to check that the requirements of Definition 10.5.5

are met, that is, to ensure that the new initial environment faithfully reflects

the nature of the new constants as well as the behavior of the new reduc-

tion rules. Below, we describe several such extensions in isolation. The first

exercise establishes a technical result that is useful in the next exercises.

10.7.1 Exercise [Recommended, «]: Let Γ0 contain the binding c : ∀X̄.T1 → . . . →

Tn → T. Prove let Γ0 in Jc t1 . . . tn : T′K equivalent to let Γ0 in ∃X̄.(
∧n
i=1Jti :

TiK∧ T ≤ T′). 2

10.7.2 Exercise [Integers, Recommended, ««]: Integer literals and integer addition

have been introduced and given an operational semantics in Examples 10.1.1,

10.1.2, and 10.1.4. Let us now introduce an isolated type constructor int of

signature ? and extend the initial environment Γ0 with the bindings n̂ : int,

for every integer n, and +̂ : int → int → int. Check that these definitions meet

the requirements of Definition 10.5.5. 2

10.7.3 Exercise [Pairs, ««, 3]: Pairs and pair projections have been introduced and

given an operational semantics in Examples 10.1.3 and 10.1.5. Let us now in-

troduce an isolated type constructor × of signature ? ⊗ ? ⇒ ?, covariant in

both of its parameters, and extend the initial environment Γ0 with the follow-

ing bindings:

(·, ·) : ∀XY.X→ Y→ X× Y

π1 : ∀XY.X× Y→ X

π2 : ∀XY.X× Y→ Y

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.4 Exercise [Sums, ««, 3]: Sums have been introduced and given an operational

semantics in Example 10.1.7. Let us now introduce an isolated type construc-

tor + of signature ?⊗? ⇒ ?, covariant in both of its parameters, and extend

452 10 The Essence of ML Type Inference

the initial environment Γ0 with the following bindings:

inj1 : ∀XY.X→ X+ Y

inj2 : ∀XY.Y→ X+ Y

case : ∀XYZ.(X+ Y)→ (X→ Z)→ (Y→ Z)→ Z

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.5 Exercise [References, «««]: References have been introduced and given an

operational semantics in Example 10.1.9. The type constructor ref has been

introduced in Definition 10.5.3. Let us now extend the initial environment Γ0

with the following bindings:

ref : ∀X.X→ ref X

! : ∀X.ref X→ X

:= : ∀X.ref X→ X→ X

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.6 Exercise [Recursion, Recommended, «««, 3]: The fixpoint combinator fix

has been introduced and given an operational semantics in Example 10.1.10.

Let us now extend the initial environment Γ0 with the following binding:

fix : ∀XY.((X→ Y)→ (X→ Y)) → X→ Y

Check that these definitions meet the requirements of Definition 10.5.5. Re-

call how the letrec syntactic sugar was defined in Example 10.1.10, and

check that this gives rise to the following constraint generation rule:

let Γ0 in Jletrec f = λz.t1 in t2 : TK

≡ let Γ0 in let f : ∀XY[let f : X→ Y;z : X in Jt1 : YK].X→ Y in Jt2 : TK

Note the somewhat peculiar structure of this constraint: the program variable

f is bound twice in it, with different type schemes. The constraint requires

all occurrences of f within t1 to be assigned the monomorphic type X→ Y.

This type is generalized and turned into a type scheme before inspecting t2,

however, so every occurrence of f within t2 may receive a different type, as

usual with let-polymorphism. A more powerful way of typechecking recur-

sive function definitions, proposed by (Mycroft, 1984) and known as polymor-

phic recursion, allows the types of occurrences of f within t1 to be possibly

distinct instances of a single type scheme. However, type inference for this

extension is equivalent to semi-unification (Henglein, 1993), which has been

proved undecidable (Kfoury, Tiuryn, and Urzyczyn, 1993). Hence, type infer-

ence must either require type annotations or rely on a semi-algorithm. 2

10.7 From ML-the-Calculus to ML-the-Language 453

In the exercises above, we have considered a number of extensions (inte-

gers, booleans, pairs, etc.) in isolation. We have checked that each of them

preserves type soundness. Unfortunately, this does not in general imply that

their combination preserves type soundness. In fact, it is possible to prove

that these extensions are independent in a suitable sense and that indepen-

dent extensions may be safely combined. Unfortunately, we lack space to

further explain these notions.

Algebraic Data Types

Exercises 10.7.3 and 10.7.4 have shown how to extend the language with bi-

nary, anonymous products and sums. These constructs are quite general but

still have several shortcomings. First, they are only binary, while we would

like to have k-ary products and sums, for arbitrary k ≥ 0. Such a general-

ization is of course straightforward. Second, more interestingly, their compo-

nents must be referred to by numeric index (as in “extract the second com-

ponent of the pair”), rather than by name (“extract the component named y”).

In practice, it is crucial to use names, because they make programs more

readable and more robust in the face of changes. One could introduce a

mechanism that allows defining names as syntactic sugar for numeric in-

dices. That would help a little, but not much, because these names would

not appear in types, which would still be made of anonymous products and

sums. Third, in the absence of recursive types, products and sums do not

have sufficient expressiveness to allow defining unbounded data structures,

such as lists. Indeed, it is easy to see that every value whose type T is com-

posed of base types (int, bool, etc.), products, and sums must have bounded

size, where the bound |T | is a function of T. More precisely, up to a con-

stant factor, we have | int | = |bool | = 1, |T1 × T2 | = 1 + |T1 | + |T2 |, and

|T1 + T2 | = 1 + max(|T1 |, |T2 |). The following example describes another

facet of the same problem.

10.7.7 Example: A list is either empty, or a pair of an element and another list. So,

it seems natural to try and encode the type of lists as a sum of some arbitrary

type (say, unit) on the one hand, and of a product of some element type and of

the type of lists itself on the other hand. With this encoding in mind, we can

go ahead and write code—for instance, a function that computes the length

of a list:

letrec length = λl.case l (λ .0̂) (λz.1̂ +̂ length (π2 z))

We have used integers, pairs, sums, and the letrec construct introduced in

the previous section. The code analyzes the list l using a case construct.

454 10 The Essence of ML Type Inference

If the left branch is taken, the list is empty, so 0 is returned. If the right

branch is taken, then z becomes bound to a pair of some element and the

tail of the list. The latter is obtained using the projection operator π2. Its

length is computed using a recursive call to length and incremented by 1.

This code makes perfect sense. However, applying the constraint generation

and constraint solving algorithms eventually leads to an equation of the form

X = Y+ (Z× X), where X stands for the type of l. This equation accurately re-

flects our encoding of the type of lists. However, in a syntactic model, it has

no solution, so our definition of length is ill-typed. It is possible to adopt

a free regular tree model, thus introducing equirecursive types into the sys-

tem (TAPL, Chapter 20); however, there are good reasons not to do so (see

the section on Recursive Types on p. 459). 2

To work around this problem, ML-the-programming-language offers alge-

braic data type definitions, whose elegance lies in the fact that, while repre-

senting only a modest theoretical extension, they do solve the three problems

mentioned above. An algebraic data type may be viewed as an abstract type

that is declared to be isomorphic to a (k-ary) product or sum type with named

components. The type of each component is declared, as well, and may refer

to the algebraic data type that is being defined: thus, algebraic data types are

isorecursive (TAPL, Chapter 20). In order to allow sufficient flexibility when

declaring the type of each component, algebraic data type definitions may be

parameterized by a number of type variables. Last, in order to allow the de-

scription of complex data structures, it is necessary to allow several algebraic

data types to be defined at once; the definitions may then be mutually recur-

sive. In fact, in order to simplify this formal presentation, we assume that

all algebraic data types are defined at once at the beginning of the program.

This decision is, of course, at odds with modular programming but will not

otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data

types form a subset of type constructors. We require each of them to be iso-

lated and to have image kind ?. Furthermore, ` ranges over a set L of labels,

which we use both as data constructors and as record labels. An algebraic

data type definition is either a variant type definition or a record type defini-

tion, whose respective forms are

D~X ≈
k∑

i=1

`i : Ti and D~X ≈
k∏

i=1

`i : Ti .

In either case, k must be nonnegative. If D has signature ~κ ⇒ ?, then the type

variables ~X must have kind ~κ. Every Ti must have kind ?. We refer to X̄ as

the parameters and to ~T (the vector formed by T1, . . . ,Tk) as the components

10.7 From ML-the-Calculus to ML-the-Language 455

of the definition. The parameters are bound within the components, and the

definition must be closed, that is, ftv(~T) ⊆ X̄ must hold. Last, for an algebraic

data type definition to be valid, the behavior of the type constructor D with

respect to subtyping must match its definition. This requirement is clarified

below.

10.7.8 Definition: Consider an algebraic data type definition whose parameters

and components are respectively ~X and ~T. Let ~X′ and ~T′ be their images under

an arbitrary renaming. Then, D~X ≤ D~X′ ð ~T ≤ ~T′ must hold. 2

Because it is stated in terms of an entailment assertion, the above require-

ment bears on the interpretation of subtyping. The idea is, since D~X is de-

clared to be isomorphic to (a sum or a product of) ~T, whenever two types

built with D are comparable, their unfoldings should be comparable as well.

The reverse entailment assertion is not required for type soundness, and it

is sometimes useful to declare algebraic data types that do not validate it—

so-called phantom types (Fluet and Pucella, 2002). Note that the requirement

may always be satisfied by making the type constructor D invariant in all of

its parameters. Indeed, in that case, D~X ≤ D~X′ entails ~X = ~X′, which must en-

tail ~T = ~T′ since ~T′ is precisely [~X, ~X′]~T. In an equality free tree model, every

type constructor is naturally invariant, so the requirement is trivially satis-

fied. In other settings, however, it is often possible to satisfy the requirement

of Definition 10.7.8 while assigning D a less restrictive variance. The following

example illustrates such a case.

10.7.9 Example: Let list be a data type of signature ?⇒ ?. Let Nil and Cons be data

constructors. Then, the following is a definition of list as a variant type:

listX ≈ Σ (Nil : unit;Cons : X× listX)

Because data types form a subset of type constructors, it is valid to form the

type listX in the right-hand side of the definition, even though we are still in

the process of defining the meaning of list. In other words, data type defini-

tions may be recursive. However, because ≈ is not interpreted as equality, the

type listX is not a recursive type: it is nothing but an application of the unary

type constructor list to the type variable X. To check that the definition of list

satisfies the requirement of Definition 10.7.8, we must ensure that

listX ≤ listX′ ð unit ≤ unit∧ X× listX ≤ X′ × listX′

holds. This assertion is equivalent to listX ≤ listX′ ð X ≤ X′. To satisfy the

requirement, it is sufficient to make list a covariant type constructor, that is,

to define subtyping in the model so that listX ≤ listX′ ≡ X ≤ X′ holds.

456 10 The Essence of ML Type Inference

Let tree be a data type of signature ? ⇒ ?. Let root and sons be record

labels. Then, the following is a definition of tree as a record type:

treeX ≈ Π (root : X;sons : list (treeX))

This definition is again recursive, and relies on the previous definition. Be-

cause list is covariant, it is straightforward to check that the definition of tree

is valid if tree is made a covariant type constructor as well. 2

A prologue is a set of algebraic data type definitions, where each data type

is defined at most once and where each data constructor or record label ap-

pears at most once. A program is a pair of a prologue and an expression.

The effect of a prologue is to enrich the programming language with new

constants. That is, a variant type definition extends the operational seman-

tics with several injections and a case construct, as in Example 10.1.7. A

record type definition extends it with a record formation construct and sev-

eral projections, as in Examples 10.1.3 and 10.1.5. In either case, the initial

typing environment Γ0 is extended with information about these new con-

stants. Thus, algebraic data type definitions might be viewed as a simple

configuration language that allows specifying in which instance of ML-the-

calculus the expression that follows the prologue should be typechecked and

interpreted. Let us now give a precise account of this phenomenon.

To begin, suppose the prologue contains the definition D~X ≈
∑k
i=1 `i : Ti .

Then, for each i ∈ {1, . . . , k}, a constructor of arity 1, named `i , is introduced.

Furthermore, a destructor of arity k + 1, named caseD, is introduced. When

k > 0, it is common to write case t [`i : ti]
k
i=1 for the application caseD t t1

. . . tn. The operational semantics is extended with the following reduction

rules, for i ∈ {1, . . . , k}:

case (`i v) [`j : vj]
k
j=1

δ
-→ vi v (R-Alg-Case)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding

`i : ∀X̄.Ti → D~X. It is further extended with the binding caseD : ∀X̄Z.D~X →

(T1 → Z)→ . . . (Tk → Z)→ Z.

Now, suppose the prologue contains the definition D~X ≈
∏k
i=1 `i : Ti . Then,

for each i ∈ {1, . . . , k}, a destructor of arity 1, named `i , is introduced. Fur-

thermore, a constructor of arity k, named makeD, is introduced. It is common

to write t.` for the application ` t and, when k > 0, to write {`i = ti}
k
i=1 for

the application makeD t1 . . . tk. The operational semantics is extended with

the following reduction rules, for i ∈ {1, . . . , k}:

({`j = vj}
k
j=1).`i

δ
-→ vi (R-Alg-Proj)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding

`i : ∀X̄.D~X→ Ti . It is further extended with the binding makeD : ∀X̄.T1 → . . . →

Tk → D~X.

10.7 From ML-the-Calculus to ML-the-Language 457

10.7.10 Example: The effect of defining list (Example 10.7.9) is to make Nil and Cons

data constructors of arity 1 and to introduce a binary destructor caselist. The

definition also extends the initial environment as follows:

Nil : ∀X.unit→ listX

Cons : ∀X.X× listX→ listX

caselist : ∀XZ.listX→ (unit→ Z)→ (X× listX→ Z)→ Z

Thus, the value Cons(0̂,Nil()), an integer list of length 1, has type list int. A

function that computes the length of a list may now be written as follows:

letrec length = λl.case l [Nil : λ .0̂ | Cons : λz.1̂ +̂ length (π2 z)]

Recall that this notation is syntactic sugar for

letrec length = λl.caselist l (λ .0̂) (λz.1̂ +̂ length (π2 z))

The difference with the code in Example 10.7.7 appears minimal: the case

construct is now annotated with the data type list. As a result, the type infer-

ence algorithm employs the type scheme assigned to caselist, which is derived

from the definition of list, instead of the type scheme assigned to the anony-

mous case construct, given in Exercise 10.7.4. This is good for a couple of

reasons. First, the former is more informative than the latter, because it con-

tains the type Ti associated with the data constructor `i . Here, for instance,

the generated constraint requires the type of z to be X× listX for some X, so

a good error message would be given if a mistake was made in the second

branch, such as omitting the use of π2. Second, and more fundamentally,

the code is now well-typed, even in the absence of recursive types. In Exam-

ple 10.7.7, a cyclic equation was produced because case required the type of

l to be a sum type and because a sum type carries the types of its left and

right branches as subterms. Here, caselist requires l to have type listX for

some X. This is an abstract type: it does not explicitly contain the types of

the branches. As a result, the generated constraint no longer involves a cyclic

equation. It is, in fact, satisfiable; the reader may check that length has type

∀X.listX→ int, as expected. 2

Example 10.7.10 stresses the importance of using declared, abstract types,

as opposed to anonymous, concrete sum or product types, in order to obviate

the need for recursive types. The essence of the trick lies in the fact that the

type schemes associated with operations on algebraic data types implicitly

fold and unfold the data type’s definition. More precisely, let us recall the type

scheme assigned to the ith injection in the setting of (k-ary) anonymous sums:

it is ∀X1 . . .Xk.Xi → X1 + . . . + Xk, or, more concisely, ∀X1 . . .Xk.Xi →
∑k
i=1 Xi .

458 10 The Essence of ML Type Inference

By instantiating each Xi with Ti and generalizing again, we find that a more

specific type scheme is ∀X̄.Ti →
∑k
i=1 Ti . Perhaps this could have been the

type scheme assigned to `i? Instead, however, it is ∀X̄.Ti → D~X. We now re-

alize that the latter type scheme not only reflects the operational behavior

of the ith injection but also folds the definition of the algebraic data type D

by turning the anonymous sum
∑k
i=1 Ti—which forms the definition’s right-

hand side—into the parameterized abstract type D~X—which is the definition’s

left-hand side. Conversely, the type scheme assigned to caseD unfolds the

definition. The situation is identical in the case of record types: in either case,

constructors fold, destructors unfold. In other words, occurrences of data

constructors and record labels in the code may be viewed as explicit instruc-

tions for the typechecker to fold or unfold an algebraic data type definition.

This mechanism is characteristic of isorecursive types.

10.7.11 Exercise [«, 3]: For a fixed k, check that all of the machinery associated

with k-ary anonymous products—that is, constructors, destructors, reduction

rules, and extensions to the initial typing environment—may be viewed as the

result of a single algebraic data type definition. Conduct a similar check in the

case of k-ary anonymous sums. 2

10.7.12 Exercise [«««, 3]: Check that the above definitions meet the requirements

of Definition 10.5.5. 2

10.7.13 Exercise [«««, 3]: For the sake of simplicity, we have assumed that all data

constructors have arity one. If desired, it is possible to accept variant data

type definitions of the form D~X ≈
∑k
i=1 `i : ~Ti , where the arity of the data con-

structor `i is the length of the vector ~Ti , and may be an arbitrary nonnegative

integer. This allows, for instance, altering the definition of list so that the

data constructors Nil and Cons are respectively nullary and binary. Make the

necessary changes in the above definitions and check that the requirements

of Definition 10.5.5 are still met. 2

One significant drawback of algebraic data type definitions resides in the

fact that a label ` cannot be shared by two distinct variant or record type

definitions. Indeed, every algebraic data type definition extends the calculus

with new constants. Strictly speaking, our presentation does not allow a sin-

gle constant c to be associated with two distinct definitions. Even if we did

allow such a collision, the initial environment would contain two bindings

for c, one of which would then hide the other. This phenomenon arises in

actual implementations of ML-the-programming-language, where a new alge-

braic data type definition may hide some of the data constructors or record

labels introduced by a previous definition. An elegant solution to this lack of

expressiveness is discussed in §10.8.

10.7 From ML-the-Calculus to ML-the-Language 459

Recursive Types

We have shown that specializing HM(X)with an equality-only syntactic model

yields HM(=), a constraint-based formulation of Damas and Milner’s type

system. Similarly, it is possible to specialize HM(X) with an equality-only

free regular tree model, yielding a constraint-based type system that may be

viewed as an extension of Damas and Milner’s type discipline with recursive

types. This flavor of recursive types is sometimes known as equirecursive,

since cyclic equations, such as X = X → X, are then satisfiable. Our theo-

rems about type inference and type soundness, which are independent of the

model, remain valid. The constraint solver described in §10.6 may be used

in the setting of an equality-only free regular tree model; the only difference

with the syntactic case is that the occurs check is no longer performed.

Note that, although ground types are regular, types remain finite objects:

their syntax is unchanged. The µ notation commonly employed to describe

recursive types may be emulated using type equations: for instance, the no-

tation µX.X → X corresponds, in our constraint-based approach, to the type

scheme ∀X[X = X→ X].X.

Although recursive types come for free, as explained above, they have not

been adopted in mainstream programming languages based on ML-the-type-

system. The reason is pragmatic: experience shows that many nonsensical

expressions are well-typed in the presence of recursive types, whereas they

are not in their absence. Thus, the gain in expressiveness is offset by the fact

that many programming mistakes are detected later than otherwise possible.

Consider, for instance, the following OCaml session:

ocaml -rectypes

let rec map f = function

| [] → []

| x :: l → (map f x) :: (map f l);;

val map : ’a → (’b list as ’b) → (’c list as ’c) = <fun>

This nonsensical version of map is essentially useless, yet well-typed. Its prin-

cipal type scheme, in our notation, is ∀XYZ[Y = listY ∧ Z = listZ].X → Y → Z.

In the absence of recursive types, it is ill-typed, since the constraint Y =

listY∧ Z = listZ is then false.

The need for equirecursive types is usually suppressed by the presence of

algebraic data types, which offer isorecursive types, in the language. Yet, they

are still necessary in some situations, such as in Objective Caml’s extensions

with objects (Rémy and Vouillon, 1998) or polymorphic variants (Garrigue,

1998, 2000, 2002), where recursive object or variant types are commonly in-

ferred. In order to allow recursive object or variant types while still rejecting

the above version of map, Objective Caml’s constraint solver implements a

460 10 The Essence of ML Type Inference

selective occurs check, which forbids cycles unless they involve the type con-

structors 〈·〉 or [·] respectively associated with objects and variants. The

corresponding model is a tree model where every infinite path down a tree

must encounter the type constructor 〈·〉 or [·] infinitely often.

10.8 Rows

In §10.7, we have shown how to extend ML-the-programming-language with

algebraic data types, that is, variant and record type definitions, which we

now refer to as simple. This mechanism has a severe limitation: two distinct

definitions must define incompatible types. As a result, one cannot hope

to write code that uniformly operates over variants or records of different

shapes, because the type of such code is not even expressible.

For instance, it is impossible to express the type of the polymorphic record

access operation, which retrieves the value stored at a particular field ` inside

a record, regardless of which other fields are present. Indeed, if the label

` appears with type T in the definition of the simple record type D~X, then

the associated record access operation has type ∀X̄.D~X → T. If ` appears

with type T′ in the definition of another simple record type, say D′ ~X′, then

the associated record access operation has type ∀X̄
′
.D′ ~X′ → T′; and so on.

The most precise type scheme that subsumes all of these incomparable type

schemes is ∀XY.X→ Y. It is, however, not a sound type scheme for the record

access operation. Another powerful operation whose type is currently not

expressible is polymorphic record extension, which copies a record and stores

a value at field ` in the copy, possibly creating the field if it did not previously

exist, again regardless of which other fields are present. (If ` was known to

previously exist, the operation is known as polymorphic record update.)

In order to assign types to polymorphic record operations, we must do

away with record type definitions: we must replace named record types, such

as D~X, with structural record types that provide a direct description of the

record’s domain and contents. (Following the analogy between a record and

a partial function from labels to values, we use the word domain to refer to

the set of fields that are defined in a record.) For instance, a product type is

structural: the type T1 × T2 is the (undeclared) type of pairs whose first com-

ponent has type T1 and whose second component has type T2. Thus, we wish

to design record types that behave very much like product types. In doing so,

we face two orthogonal difficulties. First, as opposed to pairs, records may

have different domains. Because the type system must statically ensure that

no undefined field is accessed, information about a record’s domain must be

made part of its type. Second, because we suppress record type definitions,

10.8 Rows 461

labels must now be predefined. However, for efficiency and modularity rea-

sons, it is impossible to explicitly list every label in existence in every record

type.

In what follows, we explain how to address the first difficulty in the simple

setting of a finite set of labels. Then we introduce rows, which allow dealing

with an infinite set of labels, and address the second difficulty. We define the

syntax and logical interpretation of rows, study the new constraint equiva-

lence laws that arise in their presence, and extend the first-order unification

algorithm with support for rows. Then we review several applications of rows,

including polymorphic operations on records, variants, and objects, and dis-

cuss alternatives to rows.

Because our interest is in typechecking and type inference issues, we do

not address the compilation issue: how does one efficiently compile poly-

morphic records or polymorphic variants? A few relevant papers are Pugh

and Weddell (1990), Ohori (1995), and Garrigue (1998). The problem of op-

timizing message dispatch in object-oriented languages, which has received

considerable attention in the literature, is related.

Records with Finite Carrier

Let us temporarily assume that L is finite. In fact, for the sake of definiteness,

let us assume that L is the three-element set {`a, `b, `c}.

To begin, let us consider only full records, whose domain is exactly L—in

other words, tuples indexed by L. To describe them, it is natural to introduce

a type constructor Π of signature ? ⊗ ? ⊗ ? ⇒ ?. The type Π Ta Tb Tc rep-

resents all records where the field `a (respectively `b, `c) contains a value

of type Ta (respectively Tb, Tc). Note that Π is nothing but a product type

constructor of arity 3. The basic operations on records, namely creation of

a record out of a default value, which is stored into every field, update of

a particular field (say, `b), and access to a particular field (say, `b), may be

assigned the following type schemes:

{·} : ∀X.X→ Π X X X

{· with `b = ·} : ∀XaXbX
′
bXc .Π Xa Xb Xc → X′b → Π Xa X

′
b Xc

·.{`b} : ∀XaXbXc .Π Xa Xb Xc → Xb

Here, polymorphism allows updating or accessing a field without knowledge

of the types of the other fields. This flexibility stems from the key property

that all record types are formed using a single Π type constructor.

This is fine, but in general, the domain of a record is not necessarily L: it

may be a subset of L. How may we deal with this fact while maintaining the

above key property? A naive approach consists of encoding arbitrary records

462 10 The Essence of ML Type Inference

in terms of full records, using the standard algebraic data type option, whose

definition is optionX ≈ pre X+abs.We use pre for present and abs for absent:

indeed, a field that is defined with value v is encoded as a field with value pre

v, while an undefined field is encoded as a field with value abs. Thus, an arbi-

trary record whose fields, if present, have types Ta, Tb, and Tc , respectively,

may be encoded as a full record of type Π (option Ta) (option Tb) (option

Tc). This naive approach suffers from a serious drawback: record types still

contain no domain information. As a result, field access must involve a dy-

namic check, so as to determine whether the desired field is present; in our

encoding, this corresponds to the use of caseoption.

To avoid this overhead and increase programming safety, we must move

this check from runtime to compile time. In other words, we must make the

type system aware of the difference between pre and abs. To do so, we re-

place the definition of option by two separate algebraic data type definitions,

namely preX ≈ pre X and abs ≈ abs. In other words, we introduce a unary

type constructor pre, whose only associated data constructor is pre, and a

nullary type constructor abs, whose only associated data constructor is abs.

Record types now contain domain information; for instance, a record of type

Π abs (pre Tb) (pre Tc) must have domain {`b, `c}. Thus, the type of a field

tells whether it is defined. Since the type pre has no data constructors other

than pre, the accessor pre−1, whose type is ∀X.pre X → X, and which allows

retrieving the value stored in a field, cannot fail. Thus, the dynamic check has

been eliminated.

To complete the definition of our encoding, we now define operations on

arbitrary records in terms of operations on full records. To distinguish be-

tween the two, we write the former with angle braces, instead of curly braces.

The empty record 〈〉, where all fields are undefined, may be defined as {abs}.

Extension at a particular field (say, `b) 〈· with `b = ·〉 is defined as λr.λz.

{r with `b = pre z}. Access at a particular field (say, `b) ·.〈`b〉 is defined as

λz.pre−1z.{`b}. It is straightforward to check that these operations have the

following principal type schemes:

〈〉 : Π abs abs abs

〈· with `b = ·〉 : ∀XaXbX
′
bXc .Π Xa Xb Xc → X′b → Π Xa (pre X′b) Xc

·.〈`b〉 : ∀XaXbXc .Π Xa (pre Xb) Xc → Xb

It is important to notice that the type schemes associated with extension

and access at `b are polymorphic in Xa and Xc , which now means that these

operations are insensitive, not only to the type, but also to the presence or

absence of the fields `a and `c . Furthermore, extension is polymorphic in Xb,

which means that it is insensitive to the presence or absence of the field `b
in its argument. The subterm pre X′b in its result type reflects the fact that

10.8 Rows 463

`b is defined in the extended record. Conversely, the subterm pre Xb in the

type of the access operation reflects the requirement that `b be defined in its

argument.

Our encoding of arbitrary records in terms of full records was carried out

for pedagogical purposes. In practice, no such encoding is necessary: the data

constructors pre and abs have no machine representation, and the compiler

is free to lay out records in memory in an efficient manner. The encoding

is interesting, however, because it provides a natural way of introducing the

type constructors pre and abs, which play an important role in our treatment

of polymorphic record operations.

Once we forget about the encoding, the arguments of the type constructor

Π are expected to be either type variables or formed with pre or abs, while,

conversely, the type constructors pre and abs are not intended to appear

anywhere else. It is possible to enforce this invariant using kinds. In addition

to ?, let us introduce the kind ◦ of field types. Then, let us adopt the following

signatures: pre: ?⇒ ◦, abs : ◦, and Π : ◦ ⊗ ◦ ⊗ ◦ ⇒ ?.

10.8.1 Exercise [Recommended, «, 3]: Check that the three type schemes given

above are well-kinded. What is the kind of each type variable? 2

10.8.2 Exercise [Recommended, ««]: Our Π types contain information about every

field, regardless of whether it is defined: we encode definedness informa-

tion within the type of each field, using the type constructors pre and abs.

A perhaps more natural approach would be to introduce a family of record

type constructors, indexed by the subsets of L, so that the types of records

with different domains are formed with different constructors. For instance,

the empty record would have type {}; a record that defines the field `a only

would have a type of the form {`a : Ta}; a record that defines the fields

`b and `c only would have a type of the form {`b : Tb;`c : Tc}; and so on.

Assuming that the type discipline is Damas and Milner’s (that is, assuming

an equality-only syntactic model), would it be possible to assign satisfactory

type schemes to polymorphic record access and extension? Would it help to

equip record types with a nontrivial subtyping relation? 2

Records with Infinite Carrier

The treatment of records described above is not quite satisfactory, from prac-

tical and theoretical points of view. First, in practice, the set L of all record

labels that appear within a program could be very large. Because every record

type is just as large as L itself, even if the record that it describes only has a

few fields, this is unpleasant. Furthermore, in a modular setting, the set of all

record labels that appear within a program cannot be determined until link

464 10 The Essence of ML Type Inference

time, so it is still unknown at compile time, when each compilation unit is

separately typechecked. As a result, it may only be assumed to be a subset of

the infinite set of all syntactically valid record labels. Resolving these issues

requires coming up with a treatment of records that does not become more

costly as L grows and that, in fact, allows L to be infinite. Thus, from here

on, let us assume that L is infinite.

As in the previous section, we first concentrate on full records, whose do-

main is exactly L. The case of arbitrary records, whose domain is a subset of

L, will then follow in the same manner, by using the type constructors pre

and abs to encode domain information.

Of course, even though we have assumed that L is infinite, we must ensure

that every record has a finite representation. We choose to restrict our atten-

tion to records that are almost constant, that is, records where all fields but

a finite number contain the same value. Every such record may be defined in

terms of two primitive operations, namely (i) creation of a constant record

out of a value; for instance, {false} is the record where every field contains

the value false; and (ii) update of a record at a particular field; for instance,

{{false} with ` = 1} carries the value 1 at field ` and the value false at

every other field. As usual, an access operation allows retrieving the contents

of a field. Thus, the three primitive operations are the same as in the previous

subsection, only in the setting of an infinite number of fields.

If we were to continue as before, we would now introduce a type construc-

tor Π, equipped with an infinite family of type parameters. Because types

must remain finite objects, we cannot do so. Instead, we must find a finite

(and economical) representation of such an infinite family of types. This is

precisely the role played by rows.

A row is a type that denotes a function from labels to types or, equiva-

lently, a family of types indexed by labels. Its domain is L—the row is then

complete—or a cofinite subset of L—the row is then incomplete. (A subset of

L is cofinite if and only if its complement is finite. Incomplete rows are used

only as building blocks for complete rows.) Because rows must admit a finite

representation, we build them out of two syntactic constructions, namely (i)

construction of a constant row out of a type; for instance, the notation ∂bool

denotes a row that maps every label in its domain to bool; and (ii) strict ex-

tension of an incomplete row; for instance, (` : int ; ∂bool) denotes a row

that maps ` to int and every other field in its domain to bool. Formally, ∂ is

a unary type constructor, while, for every label `, (` : · ; ·) is a binary type

constructor. These two constructions are reminiscent of the two operations

used above to build records. There are, however, a couple of subtle but im-

portant differences. First, ∂T may be a complete or incomplete row. Second,

(` : T ; T′) is defined only if ` is not in the domain of the row T′, so this

10.8 Rows 465

construction is strict extension, not update. These aspects are made clear by

a kinding discipline, to be introduced later on.

It is possible for two syntactically distinct rows to denote the same func-

tion from labels to types. For instance, according to the intuitive interpreta-

tion of rows given above, the three complete rows (` : int ; ∂bool), (` : int ;

(`′ : bool ; ∂bool)), and (`′ :bool ; (` : int ; ∂bool)) denote the same total func-

tion from labels to types. In the following, we define the logical interpretation

of types in such a way that the interpretations of these three rows in the

model are indeed equal.

We may now make the record type constructor Π a unary type constructor,

whose parameter is a row. Then, (say) Π (` : int ; ∂bool) is a record type, and

we intend it to be a valid type for the record {{false} with ` = 1}. The basic

operations on records may be assigned the following type schemes:

{·} : ∀X.X→ Π (∂X)

{· with ` = ·} : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : X′ ; Y)

·.{`} : ∀XY.Π (` : X ; Y)→ X

These type schemes are reminiscent of those given above. However, in the

previous section, the size of the type schemes was linear in the cardinal of L,

whereas here it is constant, even though L is infinite. This is made possible

by the fact that record types no longer list all labels in existence; instead, they

use rows. In the type scheme assigned to record creation, the constant row

∂X is used to indicate that all fields have the same type in the newly created

record. In the next two type schemes, the row (` : X` ; X) is used to separate

the type X`, which describes the contents of the field `, and the row X, which

collectively describes the contents of all other fields. Here, the type variable X

stands for an arbitrary row; it is often referred to as a row variable. The ability

of quantifying over row and type variables alike confers great expressiveness

to the type system.

We have explained, in an informal manner, how rows allow typechecking

operations on full records, in the setting of an infinite set of labels. We return

to this issue in Example 10.8.25. To deal with the case of arbitrary records,

whose domain is finite, we rely on the field type constructors pre and abs, as

explained previously. We return to this point in Example 10.8.30. In the fol-

lowing, we give a formal exposition of rows. We begin with their syntax and

logical interpretation. Then we give some new constraint equivalence laws,

which characterize rows, and allow extending our first-order unification al-

gorithm with support for rows. We conclude with several illustrations of the

use of rows and some pointers to related work.

466 10 The Essence of ML Type Inference

Syntax of Rows

In the following, the set of labels L is considered denumerable. We let L range

over finite subsets of L. When ` ∉ L holds, we write `.L for {`}] L. Before

explaining how the syntax of types is enriched with rows, we introduce row

kinds, whose grammar is as follows:

s ::= Type | Row(L)

Row kinds help distinguish between three kinds of types, namely ordinary

types, complete rows, and incomplete rows. While ordinary types are used to

describe expressions, complete or incomplete rows are used only as building

blocks for ordinary types. For instance, the record type Π (` : int ; ∂bool),

which was informally introduced above, is intended to be an ordinary type,

that is, a type of row kind Type. Its subterm (` : int ; ∂bool) is a complete row,

that is, a type of row kind Row(�). Its subterm ∂bool is an incomplete row,

whose row kind is Row({`}). Intuitively, a row of kind Row(L) denotes a fam-

ily of types whose domain is L\L. In other words, L is the set of labels that the

row does not define. The purpose of row kinds is to outlaw meaningless types,

such as Π (int), which makes no sense because the argument to the record

type constructor Π should be a (complete) row, or (` :T1 ; ` : T2 ; ∂bool), which

makes no sense because no label may occur twice within a row.

Let us now define the syntax of types in the presence of rows. As usual, it

is given by a signature S (Definition 10.1.14), which lists all type constructors

together with their signatures. Here, for the sake of generality, we do not wish

to give a fixed signature S. Instead, we give a procedure that builds S out of

two simpler signatures, referred to as S0 and S1. The input signature S0 lists

the type constructors that have nothing to do with rows, such as →, ×, int,

etc. The input signature S1 lists the type constructors that allow a row to be a

subterm of an ordinary type, such as the record type constructor Π. In a type

system equipped with extensible variant types or with object types, there

might be several such type constructors; see the sections on Polymorphic

Variants (p. 483) and Other Applications of Rows (p. 486). Without loss of

generality, we assume that all type constructors in S1 are unary. The point of

parameterizing the definition of S over S0 and S1 is to make the construction

more general: instead of defining a fixed type grammar featuring rows, we

wish to explain how to enrich an arbitrary type grammar with rows.

In the following, we let G (respectively H) range over the type constructors

in S0 (respectively S1). We let κ range over the kinds involved in the defini-

tion of S0 and S1, and refer to them as basic kinds. We let F range over the

type constructors in S. The kinds involved in the definition of S are com-

posite kinds, that is, pairs of a basic kind κ and a row kind s, written κ.s.

10.8 Rows 467

This allows the kind discipline enforced by S to reflect that enforced by S0

and S1 and also to impose restrictions on the structure and use of rows,

as suggested above. For the sake of conciseness, we write K.s for the map-

ping (d , K(d).s)d∈dom(K) and (K ⇒ κ).s for the (composite) kind signature

K.s ⇒ κ.s. (In other words, we let .s distribute over basic signatures.) We use

symmetric notations to build a composite kind signature out of a basic kind

and a row kind signature.

10.8.3 Definition: The signature S is defined as follows:

F ∈ dom(S) Signature Conditions

Gs (K ⇒ κ).s (G : K ⇒ κ) ∈ S0

H K.Row(�) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

∂κ,L κ.(Type⇒ Row(L))

`κ,L κ.(Type⊗ Row(`.L)⇒ Row(L)) ` ∉ L

We sometimes refer to S as the row extension of S0 with S1. 2

Examples 10.8.7 and 10.8.8 suggest common choices of S0 and S1 and give a

perhaps more concrete-looking definition of the grammar of types that they

determine. First, however, let us explain the definition. The type constructors

that populate S come in four varieties: they may be (i) taken from S0, (ii)

taken from S1, (iii) a unary row constructor ∂, or (iv) a binary row constructor

(` : · ; ·). Let us review and explain each case.

Let us first consider case (i) and assume, for the time being, that s is Type.

Then, for every type constructor G in S0, there is a corresponding type con-

structor GType in S. For instance, S0 must contain an arrow type constructor

→, whose signature is {domain , ?, codomain , ?} ⇒ ?. Then, S contains

a type constructor →Type, whose signature is {domain , ?.Type, codomain ,

?.Type} ⇒ ?.Type. Thus, →Type is a binary type constructor whose parame-

ters and result must have basic kind ? and must have row kind Type; in other

words, they must be ordinary types, as opposed to complete or incomplete

rows. The family of all type constructors of the form GType, where G ranges

over S0, forms a copy of S0 at row kind Type: one might say, roughly speak-

ing, that S contains S0. This is not surprising, since our purpose is to enrich

the existing signature S0 with syntax for rows.

Perhaps more surprising is the existence of the type constructor Gs , for

every G in S0, and for every row kind s. For instance, for every L, S contains a

type constructor →Row(L), whose signature is {domain , ?.Row(L), codomain

, ?.Row(L)} ⇒ ?.Row(L). Thus, →Row(L) is a binary type constructor whose

parameters and result must have basic kind? and must have row kind Row(L).

In other words, this type constructor maps a pair of rows that have a common

domain to a row with the same domain. Recall that a row is to be interpreted

468 10 The Essence of ML Type Inference

as a family of types. Our intention is that →Row(L) maps two families of types

to a family of arrow types. This is made precise in the next subsection. One

should point out that the type constructors Gs , with s 6= Type, are required

only in some advanced applications of rows; Examples 10.8.28 and 10.8.39

provide illustrations. They are not used when assigning types to the usual

primitive operations on records, namely creation, update, and access (Exam-

ples 10.8.25 and 10.8.30).

Case (ii) is simple: it simply means that S contains S1. It is only worth

noting that every type constructor H maps a parameter of row kind Row(�)

to a result of row kind Type, that is, a complete row to an ordinary type.

Thanks to this design choice, the type Π (intType) is invalid: indeed, intType

has row kind Type, while Π expects a parameter of row kind Row(�).

Cases (iii) and (iv) introduce new type constructors that were not present

in S0 or S1 and allow forming rows. They were informally described in the

previous subsection. First, for every κ and L, there is a constant row construc-

tor ∂κ,L. Its parameter must have row kind Type, while its result has row kind

Row(L); in other words, this type constructor maps an ordinary type to a row.

It is worth noting that the row thus built may be complete or incomplete; for

instance, ∂?,� bool is a complete row, and may be used, for example, to build

the type Π (∂?,� bool), while ∂?,{`} bool is an incomplete row, and may be

used, for example, to build the type Π (` : int ; ∂?,{`} bool). Second, for every

κ, L, and ` ∉ L, there is a row extension constructor `κ,L. We usually write

`κ,L : T1 ; T2 for `κ,L T1 T2 and let this symbol be right associative so as to

recover the familiar list notation for rows. According to the definition of S,

if T2 has row kind Row(`.L), then `κ,L : T1 ; T2 has row kind Row(L). Thanks

to this design choice, the type (`?,L : T1 ; `?,L : T2 ; ∂?,`.L bool) is invalid; in-

deed, the outer ` expects a parameter of row kind Row(`.L), while the inner

` produces a type of row kind Row(L).

The superscripts carried by the type constructors G, `, and ∂ in the signa-

ture S make all kind information explicit, obviating the need for assigning

several kinds to a single type constructor. In practice, however, we often

drop the superscripts and use unannotated types. No ambiguity arises be-

cause, given a type expression T of known kind, it is possible to reconstruct

all superscripts in a unique manner. This is the topic of the next example and

exercises.

10.8.4 Example [Ill-kinded types]: Assume that S0 contains type constructors int

and →, whose signatures are respectively ? and ? ⊗ ? ⇒ ?, and that S1

contains a type constructor Π, whose signature is ? ⇒ ?.

The unannotated type X → Π(X) is invalid. Indeed, because Π’s image row

kind is Type, the arrow must be →Type. Thus, the leftmost occurrence of X

10.8 Rows 469

must have row kind Type. On the other hand, because Π expects a parameter

of row kind Row(�), its rightmost occurrence must have row kind Row(�)—a

contradiction. The unannotated type X → Π(∂X) is, however, valid, provided

X has kind ?.Type. In fact, it is the type of the primitive record creation oper-

ation.

The unannotated type (` : T ; ` : T ; T′′) is also invalid: there is no way

of reconstructing the missing superscripts so as to make it valid. Indeed,

the row (` : T′ ; T′′) must have row kind Row(L) for some L that does not

contain `. However, the context where it occurs requires it to also have row

kind Row(L) for some L that does contain `. This makes it impossible to

reconstruct consistent superscripts.

Any type of the form Π(Π(T)) is invalid, because the outer Π expects a pa-

rameter of row kind Row(�), while the inner Π constructs a type of row kind

Type. This is an intentional limitation: unlike those of S0, the type construc-

tors of S1 are not lifted to every row kind s. (If they were, we would be led to

work not only with rows of ordinary types, but also with rows of rows, rows

of rows of rows, and so on. Rémy (1990) explores this avenue.) 2

10.8.5 Exercise [Recommended, «]: Consider the unannotated type

X→ Π(` : int ; (Y→ ∂X)).

Can you guess the kind of the type variables X and Y, as well as the missing

superscripts, so as to ensure that this type has kind ?.Type? 2

10.8.6 Exercise [«««, 3]: Propose a kind checking algorithm that, given an unan-

notated type T, given the kind of T, and given the kind of all type variables that

appear within T, ensures that T is well-kinded, and reconstructs the missing

superscripts within T. Next, propose a kind inference algorithm that, given an

unannotated type T, discovers the kind of T and the kind of all type variables

that appear within T so as to ensure that T is well-kinded. 2

We have given a very general definition of the syntax of types. In this view,

types, ranged over by the meta-variable T, encompass both “ordinary” types

and rows: the distinction between the two is established only via the kind

system. In the literature, however, it is common to establish this distinction

by letting distinct meta-variables, say T and R, range over ordinary types and

rows, respectively, so as to give the syntax a more concrete aspect. The next

two examples illustrate this style and suggest common choices for S0 and S1.

10.8.7 Example: Assume that there is a single basic kind ?, that S0 consists of the

arrow type constructor →, whose signature is ?⊗? ⇒ ?, and that S1 consists

470 10 The Essence of ML Type Inference

of the record type constructor Π, whose signature is ? ⇒ ?. Then, the com-

posite kinds are ?.Type and ?.Row(L), where L ranges over the finite subsets

of L. Let us employ T (respectively R) to range over types of the former (re-

spectively latter) kind, and refer to them as ordinary types (respectively rows).

Then, the syntax of types, as defined by the signature S, may be presented

under the following form:

T ::= X | T→ T | Π R

R ::= X | R→ R | (` : T ; R) | ∂T

Ordinary types T include ordinary type variables (that is, type variables of

kind ?.Type), arrow types (where the type constructor → is really →Type), and

record types, which are formed by applying the record type constructor Π to

a row. Rows R include row variables (that is, type variables of kind ?.Row(L)

for some L), arrow rows (where the row constructor → is really →Row(L) for

some L), row extension (whereby a row R is extended with an ordinary type T

at a certain label `), and constant rows (formed out of an ordinary type T). It

would be possible to also introduce a syntactic distinction between ordinary

type variables and row variables, if desired.

Such a presentation is rather pleasant, because the syntactic segregation

between ordinary types and rows makes the syntax less ambiguous. It does

not allow getting rid of the kind system, however: (row) kinds are still neces-

sary to keep track of the domain of every row. 2

10.8.8 Example: Assume that there are two basic kinds ? and ◦, that S0 consists

of the type constructors →, abs, and pre, whose respective signatures are

?⊗?⇒ ?, ◦, and ?⇒ ◦, and that S1 consists of the record type constructor Π,

whose signature is ◦ ⇒ ?. Then, the composite kinds are ?.Type, ?.Row(L),

◦.Type, and ◦.Row(L), where L ranges over the finite subsets of L. Let us em-

ploy T?, R?, T◦, and R◦, respectively, to range over types of these four kinds.

Then, the syntax of types, as defined by the signature S, may be presented

under the following form:

T? ::= X | T? → T? | Π R◦

R? ::= X | R? → R? | (` : T? ; R?) | ∂T?

T◦ ::= X | abs | pre T?

R◦ ::= X | abs | pre R? | (` : T◦ ; R◦) | ∂T◦

Ordinary types T? are as in the previous example, except the record type

constructor Π must now be applied to a row of field types R◦. Rows R? are

unchanged. Field types T◦ include field type variables (that is, type variables

of kind ◦.Type) and applications of the type constructors abs and pre (which

are really absType and preType). Field rows R◦ include field row variables (that

10.8 Rows 471

is, type variables of kind ◦.Row(L) for some L), applications of the row con-

structors abs and pre (which are really absRow(L) and preRow(L) for some L),

row extension, and constant rows, where row components are field types T◦.

In many basic applications of rows, absRow(L) and preRow(L) are never re-

quired: that is, they do not appear in the type schemes that populate the

initial environment. (Applications where they are required appear in Pot-

tier [2000].) In that case, they may be removed from the syntax. Then, the

nonterminal R? becomes unreachable from the nonterminal T?, which is the

grammar’s natural entry point, so it may be removed as well. In that simpli-

fied setting, the syntax of types and rows becomes:

T? ::= X | T? → T? | Π R◦

T◦ ::= X | abs | pre T?

R◦ ::= X | (` : T◦ ; R◦) | ∂T◦

This is the syntax found in some introductory accounts of rows (Rémy, 1989;

Pottier, 2000). 2

Meaning of Rows

We now give meaning to the type grammar defined in the previous section

by interpreting it within a model. We choose to define a regular tree model,

but alternatives exist; see Remark 10.8.12 below. In this model, every type

constructor whose image row kind is Type (that is, every type constructor of

the form GType or H) is interpreted as itself, as in a free tree model. However,

every application of a type constructor whose image row kind is Row(L) for

some L receives special treatment: it is interpreted as a family of types in-

dexed by L \ L, which we encode as an infinitely branching tree. To serve as

the root label of this tree, we introduce, for every κ and for every L, a symbol

Lκ , whose arity is L \ L. More precisely,

10.8.9 Definition: The model, which consists of a setMκ.s for every κ and s, is the

regular tree algebra that arises out the following signature:

Symbol Signature Conditions

G (K ⇒ κ).Type (G : K ⇒ κ) ∈ S0

H K.Row(�) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

Lκ κ.(TypeL\L ⇒ Row(L))

The first two lines in this signature coincide with the definitions of GType

and H in the signature S. Indeed, as stated above, we intend to interpret

472 10 The Essence of ML Type Inference

these type constructors in a syntactic manner, so each of them must have a

counterpart in the model. The third line introduces the symbols Lκ hinted at

above.

According to this signature, if t is a ground type of kind κ.Type (that is, an

element of Mκ.Type), then its head symbol t(ε) must be of the form G or H.

If t is a ground type of kind κ.Row(L), then its head symbol must be Lκ , and

its immediate subtrees, which are indexed by L \ L, are ground types of kind

κ.Type; in other words, the ground row t is effectively a family of ordinary

ground types indexed by L \ L. Thus, our intuition that rows denote infinite

families of types is made literally true.

We have defined the model; there remains to explain how types are mapped

to elements of the model.

10.8.10 Definition: The interpretation of the type constructors that populate S is

defined as follows.

1. Let (G : K ⇒ κ) ∈ S0. Then, GType is interpreted as the function that maps

T ∈ MK.Type to the ground type t ∈ Mκ.Type defined by t(ε) = G and

t/d = T(d) for every d ∈ dom(K). This is a syntactic interpretation.

2. Let (H : K ⇒ κ) ∈ S1. Then, H is interpreted as the function that maps

T ∈ MK.Row(�) to the ground type t ∈ Mκ.Type defined by t(ε) = H and

t/d = T(d) for every d ∈ dom(K). (Because H is unary, there is exactly

one such d.) This is also a syntactic interpretation.

3. Let (G : K ⇒ κ) ∈ S0. Then, GRow(L) is interpreted as the function that

maps T ∈ MK.Row(L) to the ground type t ∈ Mκ.Row(L) defined by t(ε) =

Lκ and t(`) = G and t/(` · d) = T(d)/` for every ` ∈ L \ L and d ∈

dom(K). Thus, when applied to a family of rows, the type constructor

GRow(L) produces a row where every component has head symbol G. This

definition may sound quite technical; its effect is summed up in a simpler

fashion by the equations C-Row-GD and C-Row-GL in the next section.

4. Interpret ∂κ,L as the function that maps t1 ∈ Mκ.Type to the ground type

t ∈ Mκ.Row(L) defined by t(ε) = Lκ and t/` = t1 for every ` ∈ L \ L. Note

that t/` does not depend on `: t is a constant ground row.

5. Let ` ∉ L. Then, `κ,L is interpreted as the function that maps (t1, t2) ∈

Mκ.Type×Mκ.Row(`.L) to the ground type t ∈Mκ.Row(L) defined by t(ε) = Lκ

and t/` = t1 and t/`′ = t2(`′) for every `′ ∈ L \ `.L. This definition

is precisely row extension; indeed, the ground row t maps ` to t1 and

coincides with the ground row t2 at every other label `′. 2

10.8 Rows 473

Defining a model and an interpretation allows our presentation of rows to fit

within the formalism proposed earlier in this chapter (§10.2). It also provides

a basis for the intuition that rows denote infinite families of types. From a

formal point of view, the model and its interpretation allow proving several

constraint equivalence laws concerning rows, which are given and discussed

in the next subsection. Of course, it is also possible to accept these equiv-

alence laws as axioms and give a purely syntactic account of rows without

relying on a model; this is how rows were historically dealt with (Rémy, 1993).

10.8.11 Remark: We have not defined the interpretation of the subtyping predicate,

because much of the material that follows is independent of it. One common

approach is to adopt a nonstructural definition of subtyping (Example 10.2.9),

where every Lκ is considered covariant in every direction, and where the vari-

ances and relative ordering of all other symbols (G and H) are chosen at will,

subject to the restrictions associated with nonstructural subtyping and to the

conditions necessary to ensure type soundness.

Recall that the arrow type constructor → is contravariant in its domain and

covariant in its codomain. The record type constructor Π is usually covariant.

These properties are exploited in proofs of the subject reduction theorem.

The type constructors → and Π are usually incompatible. This property is

exploited in proofs of the progress theorem. In the case of Example 10.8.7,

because no type constructors other than → and Π are present, these condi-

tions imply that there is no sensible way of interpreting subtyping other than

equality. In the case of Example 10.8.8, two sensible interpretations of sub-

typing exist: one is equality, while the other is the nonstructural subtyping

order obtained by letting pre à abs. In the former interpretation, abs means

“definitely absent,” while in the latter, it means “possibly absent.” 2

10.8.12 Remark: The model proposed above is a regular tree model. Of course, it

is possible to adopt a finite tree model instead. Furthermore, other interpre-

tations of rows are possible: for instance, Fähndrich (1999) extends the set

constraints formalism with rows. In his model, an ordinary type is interpreted

as a set of values, while a row is interpreted as a set of functions from labels

to values. While the definition of the model may vary, the key point is that

the characteristic laws of rows, which we discuss next, hold in the model. 2

Reasoning with Rows

The interpretation presented in the previous section was designed to support

the intuition that a row denotes an infinite family of types, indexed by labels,

that the row constructor ` : · ; · denotes row extension, and that the row

constructor ∂ denotes the creation of a constant row. From a formal point of

474 10 The Essence of ML Type Inference

(`1 : T1 ; `2 : T2 ; T3) = (`2 : T2 ; `1 : T1 ; T3) (C-Row-LL)

∂T = (` : T ; ∂T) (C-Row-DL)

G ∂T1 . . . ∂Tn = ∂(G T1 . . . Tn) (C-Row-GD)

G (` : T1 ; T′1) . . . (` : Tn ; T′n) = (` :G T1 . . . Tn ; G T′1 . . . T
′
n) (C-Row-GL)

Figure 10-12: Equational reasoning with rows

view, the definition of the model and interpretation may be exploited to es-

tablish some reasoning principles concerning rows. These principles take the

form of equations between types (Figure 10-12) and constraint equivalence

laws (Figure 10-13), which we now explain and prove.

10.8.13 Remark: As stated earlier, we omit the superscripts of row constructors. We

also omit the side conditions that concern the kind of the type variables (X)

and type meta-variables (T) involved. Thus, each equation in Figure 10-12

really stands for the (infinite) family of equations obtained by reconstructing

the missing kind information in a consistent way. For instance, the second

equation may be read ∂`.LT = (`κ,L : T ; ∂LT), where ` ∉ L and T has kind

κ.Type. 2

10.8.14 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor-

mation in the equations of Figure 10-12. 2

10.8.15 Remark: There is a slight catch with the unannotated version of the second

equation in Figure 10-12: its left-hand side admits strictly more kinds than its

right-hand side, because the former has row kind Row(L) for every L, while

the latter has row kind Row(L) for every L such that ` ∉ L holds. As a result,

while replacing the unannotated term (` : T ; ∂T) with ∂T is always valid, the

converse is not: replacing the unannotated term ∂T with (` : T ; ∂T) is valid

only if it does not result in an ill-kinded term. 2

The first equation in Figure 10-12 states that rows are equal up to commu-

tation of labels. For the equation to be well-kinded, the labels `1 and `2 must

be distinct. The equation holds under our interpretation because extension

of a ground row at `1 and extension of a ground row at `2 commute. The

second equation states that ∂T maps every label within its domain to T, that

is, ∂LT maps every label ` 6∈ L to T. This equation holds because ∂T is inter-

preted as a constant row. The last two equations deal with the relationship

between the row constructors G and the ordinary type constructor G. Indeed,

notice that their left-hand sides involve GRow(L) for some L, while their right-

hand sides involve GType. Both equations state that it is equivalent to apply

10.8 Rows 475

(`1 : T1 ; T′1) = (`2 : T2 ; T′2) ≡ ∃X.(T′1 = (`2 : T2 ; X)∧ T′2 = (`1 : T1 ; X)) (C-Mutate-LL)

if X # ftv(T1,T
′
1,T2,T

′
2)∧ `1 6= `2

∂T = (` : T′ ; T′′) ≡ T = T′ ∧ ∂T = T′′ (C-Mutate-DL)

G T1 . . . Tn = ∂T ≡ ∃X1 . . .Xn.(G X1 . . . Xn = T∧
∧n
i=1(Ti = ∂Xi)) (C-Mutate-GD)

if X1 . . .Xn # ftv(T1, . . . ,Tn ,T)

G T1 . . . Tn = (` : T ; T′) ≡ ∃X1 . . .Xn,X
′
1 . . .X

′
n.(G X1 . . . Xn = T ∧

G X′1 . . . X
′
n = T′ ∧∧n

i=1(Ti = (` : Xi ; X′i)))

if X1 . . .Xn ,X
′
1 . . .X

′
n # ftv(T1, . . . ,Tn,T,T

′) (C-Mutate-GL)

Figure 10-13: Constraint equivalence laws involving rows

GRow(L) at the level of rows or to apply GType at the level of types. Our inter-

pretation of GRow(L) was designed to give rise to these equations; indeed, the

application of GRow(L) to n ground rows (where n is the arity of G) is inter-

preted as a pointwise application of GType to the rows’ components (item 3 of

Definition 10.8.10). Their use is illustrated in Examples 10.8.28 and 10.8.39.

10.8.16 Lemma: Each of the equations in Figure 10-12 is equivalent to true. 2

The four equations in Figure 10-12 show that two types with distinct head

symbols may denote the same element of the model. In other words, in the

presence of rows, the interpretation of types is no longer free: an equation of

the form T1 = T2, where T1 and T2 have distinct head symbols, is not necessar-

ily equivalent to false. In Figure 10-13, we give several constraint equivalence

laws, known as mutation laws, that concern such “heterogeneous” equations,

and, when viewed as rewriting rules, allow solving them. To each equation

in Figure 10-12 corresponds a mutation law. The soundness of the mutation

law, that is, the fact that its right-hand side entails its left-hand side, follows

from the corresponding equation. The completeness of the mutation law, that

is, the fact that its left-hand side entails its right-hand side, holds by design

of the model.

10.8.17 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor-

mation in the laws of Figure 10-13. 2

Let us now review the four mutation laws. For the sake of brevity, in the

following informal explanation, we assume that a ground assignment φ that

476 10 The Essence of ML Type Inference

satisfies the left-hand equation is fixed, and write “the ground type T” for “the

ground type φ(T).” C-Mutate-LL concerns an equation between two rows,

which are both given by extension but exhibit distinct head labels `1 and `2.

When this equation is satisfied, both of its members must denote the same

ground row. Thus, the ground row T′1 must map `2 to the ground type T2,

while, symmetrically, the ground row T′2 must map `1 to the ground type

T1. This may be expressed by two equations of the form T′1 = (`2 : T2 ; . . .)

and T′2 = (`1 : T1 ; . . .). Furthermore, because the ground rows T′1 and T′2
must agree on their common labels, the ellipses in these two equations must

denote the same ground row. This is expressed by letting the two equations

share a fresh, existentially quantified row variable X. C-Mutate-DL concerns

an equation between two rows, one of which is given as a constant row, the

other of which is given by extension. Then, because the ground row ∂T maps

every label to the ground type T, the ground type T′ must coincide with the

ground type T, while the ground row T′′ must map every label in its domain

to the ground type T. This is expressed by the equations T = T′ and ∂T = T′′.

C-Mutate-GD and C-Mutate-GL concern an equation between two rows, one

of which is given as an application of a row constructor G, the other of which

is given either as a constant row or by extension. Again, the laws exploit

the fact that the ground row G T1 . . . Tn is obtained by applying the type

constructor G, pointwise, to the ground rows T1, . . . ,Tn. If, as in C-Mutate-

GD, it coincides with the constant ground row ∂T, then every Ti must itself be

a constant ground row, of the form ∂Xi , and T must coincide with G X1 . . . Xn.

C-Mutate-GL is obtained in a similar manner.

10.8.18 Lemma: Each of the equivalence laws in Figure 10-13 holds. 2

Solving Equality Constraints in the Presence of Rows

We now extend the unification algorithm given in §10.6 with support for rows.

The extended algorithm is intended to solve unification problems where the

syntax and interpretation of types are as defined in the discussions above of

the syntax (p. 466) and meaning (p. 471) of rows. Its specification consists

of the original rewriting rules of Figure 10-10, minus S-Clash, which is re-

moved and replaced with the rules given in Figure 10-14. Indeed, S-Clash is

no longer valid in the presence of rows: not all distinct type constructors are

incompatible.

The extended algorithm features four mutation rules, which are in direct

correspondence with the mutation laws of Figure 10-13, as well as a weak-

ened version of S-Clash, dubbed S-Clash’, which applies when neither S-

Decompose nor the mutation rules are applicable. (Let us point out that, in

10.8 Rows 477

(`1 : X1 ; X′1) = (`2 : T2 ; T′2) = ε → ∃X.(X′1 = (`2 : T2 ; X)∧ T′2 = (`1 : X1 ; X))

∧ (`1 : X1 ; X′1) = ε (S-Mutate-LL)

if `1 6= `2

∂X = (` : T ; T′) = ε → X = T∧ ∂X = T′ ∧ ∂X = ε (S-Mutate-DL)

G T1 . . . Tn = ∂X = ε → ∃X1 . . .Xn.(G X1 . . . Xn = X∧
∧n
i=1(Ti = ∂Xi))

∧ ∂X = ε (S-Mutate-GD)

G T1 . . . Tn = (` : X ; X′) = ε → ∃X1 . . .Xn,X
′
1 . . .X

′
n.(G X1 . . . Xn = X ∧

G X′1 . . . X
′
n = X′ ∧∧n

i=1(Ti = (` : Xi ; X′i)))

∧ (` : X ; X′) = ε (S-Mutate-GL)

F ~T = F ′ ~T′ = ε → false (S-Clash’)

if F 6= F′ and none of the four rules above applies

Figure 10-14: Row unification (changes to Figure 10-10)

S-Decompose, the meta-variable F ranges over all type constructors in the sig-

nature S, so that S-Decompose is applicable to multi-equations of the form

∂X = ∂T = ε or (` : X ; X′) = (` : T ; T′) = ε.) Three of the mutation rules

may allocate fresh type variables, which must be chosen fresh for the rule’s

left-hand side. The four mutation rules paraphrase the four mutation laws

very closely. Two minor differences are (i) the mutation rules deal with multi-

equations, as opposed to equations; and (ii) any subterm that appears more

than once on the right-hand side of a rule is required to be a type variable,

as opposed to an arbitrary type. Neither of these features is specific to rows:

both may be found in the definition of the standard unification algorithm

(Figure 10-10), where they help reason about sharing.

10.8.19 Exercise [«, 3]: Check that the rewriting rules in Figure 10-14 preserve well-

kindedness. Conclude that, provided its input constraint is well-kinded, the

unification algorithm needs not keep track of kinds. 2

The properties of the unification algorithm are preserved by this extension,

as witnessed by the next three lemmas. Note that the termination of reduction

is ensured only when the initial unification problem is well-kinded. The ill-

kinded unification problem X = (`1 : T ; Y)∧ X = (`2 : T ; Y), where `1 and `2

are distinct, illustrates this point.

10.8.20 Lemma: The rewriting system → is strongly normalizing. 2

478 10 The Essence of ML Type Inference

10.8.21 Lemma: U1 → U2 implies U1 ≡ U2. 2

10.8.22 Lemma: Every normal form is either false or of the form X[U], where X is an

existential constraint context, U is a standard conjunction of multi-equations

and, if the model is syntactic, U is acyclic. These conditions imply that U is

satisfiable. 2

The time complexity of standard first-order unification is quasi-linear. What

is, then, the time complexity of row unification? Only a partial answer is

known. In practice, the algorithm given in this chapter is extremely efficient

and appears to behave just as well as standard unification. In theory, the com-

plexity of row unification remains unexplored and forms an interesting open

issue.

10.8.23 Exercise [«««, 3]: The unification algorithm presented above, although very

efficient in practice, does not have linear or quasi-linear time complexity. Find

a family of unification problems Un such that the size of Un is linear with re-

spect to n and the number of steps required to reach its normal form is

quadratic with respect to n. 2

10.8.24 Remark: Mutation is a common technique for solving equations in a large

class of non-free algebras that are described by syntactic theories (Kirchner

and Klay, 1990). The equations of Figure 10-12 happen to form a syntactic

presentation of an equational theory. Thus, it is possible to derive a unifica-

tion algorithm out of these equations in a systematic way (Rémy, 1993). Here,

we have presented the same algorithm in a direct manner, without relying on

the apparatus of syntactic theories. 2

Operations on Records

We now illustrate the use of rows for typechecking operations on records. We

begin with full records; our treatment follows Rémy (1992b).

10.8.25 Example [Full records]: As before, let us begin with full records, whose do-

main is exactly L. The primitive operations are record creation {·}, update

{· with ` = ·}, and access ·.{`}.

Let < denote a fixed strict total order on row labels. For every set of labels

L of cardinal n, let us introduce a (n+ 1)-ary constructor {}L. We use the fol-

lowing syntactic sugar: we write {`1 = t1; . . . ;`n = tn;t} for the application

{}L ti1 . . . tin t, where L = {`1, . . . , `n} = {`i1 , . . . , `in} and `i1 < . . . < `in
holds. The use of the total order < makes the meaning of record expressions

independent of the order in which fields are defined; in particular, it allows

fixing the order in which t1, . . . ,tn are evaluated. We abbreviate the record

10.8 Rows 479

value {`1 = v1; . . . ;`n = vn;v} as {V;v}, where V is the finite function that

maps `i to vi for every i ∈ {1, . . . , n}.

The operational semantics of the above three operations may now be de-

fined in the following straightforward manner. First, record creation {·} is

precisely the unary constructor {}�. Second, for every ` ∈ L, let update

{· with ` = ·} and access ·.{`} be destructors of arity 1 and 2, respectively,

equipped with the following reduction rules:

{{V;v} with ` = v′}
δ
-→ {V[` , v′];v} (R-Update)

{V;v}.{`}
δ
-→ V(`) (` ∈ dom(V)) (R-Access-1)

{V;v}.{`}
δ
-→ v (` ∉ dom(V)) (R-Access-2)

In these rules, V[` , v] stands for the function that maps ` to v and coincides

with V at every other label, while V(`) stands for the image of ` through V.

Because these rules make use of the syntactic sugar defined above, they are,

strictly speaking, rule schemes: each of them really stands for the infinite

family of rules that would be obtained if the syntactic sugar was eliminated.

Let us now define the syntax of types as in Example 10.8.7. Let the initial

environment Γ0 contain the following bindings:

{}{`1,...,`n} : ∀X1 . . .XnX.X1 → . . . → Xn → X→ Π (`1 : X1; . . . ;`n : Xn; ∂X)

where `1 < . . . < `n
{· with ` = ·} : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : X′ ; Y)

·.{`} : ∀XY.Π (` : X ; Y)→ X

Note that, in particular, the type scheme assigned to record creation {·} is

∀X.X→ Π (∂X). As a result, these bindings are exactly as stated in the discus-

sion of records with infinite carrier (p. 463).

To illustrate how these definitions work together, let us consider the pro-

gram {{0} with `1 = true}.{`2}, which builds a record, extends it at `1, then

accesses it at `2. Can we build an HM(X) type derivation for it, under the

constraint true and the initial environment Γ0? To begin, by looking up Γ0

and using hmx-Inst, we find that {·} has type int → Π (∂int). Thus, assum-

ing that 0 has type int, the expression {0} has type Π (∂int). Indeed, this

expression denotes a record all of whose fields hold an integer value. Then,

by looking up Γ0 and using hmx-Inst, we find that {· with `1 = ·} has type

Π (`1 : int ; ∂int) → bool → Π (`1 : bool ; ∂int). May we immediately use hmx-

App to typecheck the application of {· with `1 = ·} to {0}? Unfortunately,

no, because there is an apparent mismatch between the expected type Π

(`1 :int ; ∂int) and the effective type Π (∂int). To work around this problem, let

us recall that, by C-Row-DL, the equation Π (∂int) = Π (`1 : int ; ∂int) is equiv-

alent to true. Thus, hmx-Sub allows proving that {0} has type Π (`1 :int ; ∂int).

480 10 The Essence of ML Type Inference

Assuming that true has type bool, we may now apply hmx-App and deduce

true, Γ0 ` {{0} with `1 = true} : Π (`1 : bool ; ∂int).

We let the reader check that, in a similar manner involving C-Row-DL, C-Row-

LL, and hmx-Sub, one may prove that {{0} with `1 = true}.{`2} has type int,

provided `1 and `2 are distinct. 2

10.8.26 Exercise [««, 3]: Unfold the definition of the constraint let Γ0 in J{{0} with

`1 = true}.{`2} : XK, which states that X is a valid type for the above program.

Assuming that subtyping is interpreted as equality, simulate a run of the

constraint solver (§10.6), extended with support for rows, so as to solve this

constraint. Check that the solved form is equivalent to X = int. 2

10.8.27 Exercise [«««]: Check that the definitions of Example 10.8.25 meet the re-

quirements of Definition 10.5.5. 2

10.8.28 Example [Record application]: Let us now introduce a more unusual prim-

itive operation on full records. This operation accepts two records, the first of

which is expected to hold a function in every field and produces a new record,

whose contents are obtained by applying, pointwise, the functions in the first

record to the values in the second record. In other words, this new primitive

operation lifts the standard application combinator (which may be defined as

λf.λz.f z), pointwise, to the level of records. For this reason, we refer to it as

rapply. Its operational semantics is defined by making it a binary destructor

and equipping it with the following reduction rules:

rapply {V;v} {V′;v′}
δ
-→ {V V′;v v′} (R-Apply-1)

rapply {V;v} {V′;v′}
δ
-→ rapply {V;v} {V′[` , v′];v′} (R-Apply-2)

if ` ∈ dom(V) \ dom(V′)

rapply {V;v} {V′;v′}
δ
-→ rapply {V[`′ , v];v} {V′;v′} (R-Apply-3)

if `′ ∈ dom(V′) \ dom(V)

In the first rule, V V′ is defined only if V and V′ have a common domain; it is

then defined as the function that maps ` to the expression V(`) V′(`). The

second and third rules, which are symmetric, deal with the case where some

field is explicitly defined in one input record but not in the other; in that case,

the field is made explicit by creating a copy of the record’s default value.

The syntax of types remains as in Example 10.8.25. We extend the initial

environment Γ0 with the following binding:

rapply : ∀XY.Π (X→ Y)→ Π X→ Π Y

10.8 Rows 481

To understand this type scheme, recall that the principal type scheme of

the standard application combinator (which may be defined as λf.λz.f z) is

∀XY.(X→ Y)→ X→ Y. The type scheme assigned to rapply is very similar; the

most visible difference is that both arguments, as well as the result, are now

wrapped within the record type constructor Π. A more subtle, yet essential

change is that X and Y are now row variables: their kind is ?.Row(�). As

a result, the leftmost occurrence of the arrow constructor is really →Row(�).

Thus, we are exploiting the presence of type constructors of the form Gs ,

with s 6= Type, in the signature S.

To illustrate how these definitions work together, let us consider the pro-

gram rapply {` = not;succ} {` = true; 0}, where the terms not and succ

are assumed to have types bool → bool and int → int, respectively. Can

we build an HM(X) type derivation for it, under the constraint true and

the initial environment Γ0? To begin, it is straightforward to derive that the

record {` = not;succ} has type Π (` : bool → bool ; ∂(int→ int)) (1). In or-

der to use rapply, however, we must prove that this record has a type of

the form Π (R1 → R2), where R1 and R2 are rows. This is where C-Row-GD

and C-Row-GL (Figure 10-12) come into play. Indeed, by C-Row-GD, the type

∂(int→ int) may be written ∂int → ∂int. So, (1) may be written Π (` : bool →

bool ; ∂int→ ∂int) (2), which by C-Row-GL may be written Π ((` : bool ;

∂int) → (` : bool ; ∂int)) (3). Thus, hmx-Sub allows deriving that the record

{` = not;succ} has type (3). We let the reader continue and conclude that the

program has type Π (` : bool ; ∂int) under the constraint true and the initial

environment Γ0.

This example illustrates a very important use of rows, namely to lift an

operation on ordinary values so as to turn it into a pointwise operation on

records. Here, we have chosen to lift the standard application combinator,

giving rise to rapply on records. The point is that, thanks to the expres-

sive power of rows, we were also able to lift the standard combinator’s type

scheme in the most straightforward manner, giving rise to a suitable type

scheme for rapply. 2

10.8.29 Exercise [«««, 3]: Check that the definitions of Example 10.8.28 meet the

requirements of Definition 10.5.5. 2

The previous examples have illustrated the use of rows to typecheck op-

erations on full records. Let us now move to records with finite domain. As

explained in the discussion above of records with finite carrier (p. 461), they

may be either encoded in terms of full records, or given a direct definition.

The latter approach is illustrated below.

10.8.30 Example [Finite records]: For every set of labels L of cardinal n, let us in-

troduce a n-ary constructor 〈〉L. We define the notations 〈`1 = t1; . . . ;`n = tn〉

482 10 The Essence of ML Type Inference

and 〈V〉, where V is a finite mapping of labels to values, in a manner similar

to that of Example 10.8.25.

The three primitive operations on finite records, namely the empty record

〈〉, extension 〈· with ` = ·〉, and access ·.〈`〉, may be defined as follows. First,

the empty record 〈〉 is precisely the nullary constructor 〈〉�. Second, for every

` ∈ L, let extension 〈· with ` = ·〉 and access ·.〈`〉 be destructors of arity 1

and 2, respectively, equipped with the following reduction rules:

〈〈V〉 with ` = v〉
δ
-→ 〈V[` , v]〉 (R-Extend)

〈V〉.〈`〉
δ
-→ V(`) (` ∈ dom(V)) (R-Access)

Let us now define the syntax of types as in Example 10.8.8. Let the initial

environment Γ0 contain the following bindings:

〈〉{`1 ,...,`n} : ∀X1 . . .Xn.X1 → . . .→ Xn → Π (`1 : pre X1; . . . ;`n : pre Xn; ∂abs)

where `1 < . . . < `n
〈· with ` = ·〉 : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : pre X′ ; Y)

·.〈`〉 : ∀XY.Π(` : pre X ; Y)→ X

Note that, in particular, the type scheme assigned to the empty record 〈〉 is

Π (∂abs). 2

10.8.31 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor-

mation in the type schemes given in Example 10.8.30. 2

10.8.32 Exercise [Recommended, ««, 3]: Give an encoding of finite records in terms

of full records, along the lines of the discussion of records with finite carrier

(p. 461). Check that the principal type schemes associated, via the encod-

ing, with the three operations on finite records are precisely those given in

Example 10.8.30. 2

10.8.33 Exercise [Recommended, «]: The extension operation, as defined above, may

either change the value of an existing field or create a new field, depending

on whether the field ` is or isn’t present in the input record. This flavor is

known as free extension. Can you define a strict flavor of extension that is

not applicable when the field ` already exists? Can you define (free and strict

flavors of) a restriction operation that removes a field from a record? 2

10.8.34 Exercise [Recommended, «]: Explain why, when pre à abs holds, subsump-

tion allows a record with more fields to be supplied in a context where a

record with fewer fields is expected. This phenomenon is often known as

width subtyping. Explain why such is not the case when subtyping is inter-

preted as equality. 2

10.8.35 Exercise [«««, 3]: Check that the definitions of Example 10.8.30 meet the

requirements of Definition 10.5.5. 2

10.8 Rows 483

Polymorphic Variants

So far, we have emphasized the use of rows for flexible typechecking of opera-

tions on records. The record type constructor Π expects one parameter, which

is a row; informally speaking, one might say that it is a product constructor of

infinite arity. It appears natural to also define sums of infinite arity. This may

be done by introducing a new unary type constructor Σ, whose parameter is

a row.

As in the case of records, we use a nullary type constructor abs and a

unary type constructor pre in order to associate information with every row

label. Thus, for instance, the type Σ (`1 :pre T1 ; `2 : pre T2 ; ∂abs) is intended

to contain values of the form `1 v1, where v1 has type T1, or of the form

`2 v2, where v2 has type T2. The type constructors abs and pre are not the

same type constructors as in the case of records. In particular, their subtyping

relationship, if there is one, is reversed. Indeed, the type Σ (`1 : pre T1 ;

`2 : abs ; ∂abs) is intended to contain only values of the form `1 v1, where

v1 has type T1, so it is safe to make it a subtype of the above type; in other

words, it is safe to allow abs ≤ pre T2. In spite of this, we keep the names abs

and pre by tradition.

The advantages of this approach over algebraic data types are the same as

in the case of records. The namespace of data constructors becomes global,

so it becomes possible for two distinct sum types to share data constructors.

Also, the expressiveness afforded by rows allows assigning types to new op-

erations, such as filtering (see below), which allows functions that perform

case analysis to be incrementally extended with new cases. One disadvantage

is that it becomes more difficult to understand what it means for a function

defined by pattern matching to be exhaustive; this issue is, however, out of

the scope of this chapter.

10.8.36 Example [Polymorphic variants]: For every label ` ∈ L, let us introduce a

unary constructor ` and a ternary destructor [` : · | ·] ·. We refer to the for-

mer as a data constructor, and to the latter as a filter. Let us also introduce a

unary destructor []. We equip these destructors with the following reduction

rules:

[` : v | v′] (` w)
δ
-→ v w (R-Filter-1)

[` : v | v′] (`′ w)
δ
-→ v′ (`′ w) if ` 6= `′ (R-Filter-2)

Let us define the syntax of types as follows. Let there be two basic kinds ?

and •. Let S0 consist of the type constructors →, abs, and pre, whose respec-

tive signatures are ?⊗?⇒ ?, •, and ?⇒ •. Let S1 consist of the record type

constructor Σ, whose signature is • ⇒ ?. Note the similarity with the case of

records (Example 10.8.8).

484 10 The Essence of ML Type Inference

Subtyping is typically interpreted in one of two ways. One is equality. The

other is the nonstructural subtyping order obtained by letting → be con-

travariant in its domain and covariant in its codomain, Σ be covariant, →

and Σ be incompatible, and letting abs à pre. Compare this definition with

the case of records (Remark 10.8.11).

To complete the setup, let the initial environment Γ0 contain the following

bindings:

` · : ∀XY.X→ Σ (` : pre X ; Y)

[` : · | ·] · : ∀XX′YY′.(X→ Y)→ (Σ (` : X′ ; Y′)→ Y)→ Σ (` : pre X ; Y′)→ Y

[] : ∀X.Σ (∂abs)→ X

The first binding means, in particular, that if v has type T, then a value of the

form ` v has type Σ (` : pre T ; ∂abs). This is a sum type with only one branch

labeled `, hence a very precise type for this value. However, it is possible to

instantiate the row variable Y with rows other than ∂abs. For instance, the

value ` v also has type Σ (` : pre T ; `′ : pre T′ ; ∂abs). This is a sum type with

two branches, hence a somewhat less precise type, but still a valid one for

this value. It is clear that, through this mechanism, the value ` v admits an

infinite number of types. The point is that, if v has type T and v′ has type T′,

then both ` v and `′ v′ have type Σ (` : pre T ; `′ : pre T′ ; ∂abs), so they may

be stored together in a homogeneous data structure, such as a list.

Filters are used to perform case analysis on variants, that is, on values of

a sum type. According to R-Filter-1 and R-Filter-2, a filter [` : v | v′] is a

function that expects an argument of the form `′ w and reduces to v w if `′ is

` and to v′ (`′ w) otherwise. Thus, a filter defines a two-way branch, where the

label of the data constructor at hand determines which branch is taken. The

expressive power of filters stems from the fact that they may be organized

in a sequence, so as to define a multi-way branch. The inert filter [], which

does not have a reduction rule, serves as a terminator for such sequences. For

instance, the composite filter [` : v | [`′ : v′ | []]], which may be abbreviated

as [` : v | `′ : v′], may be applied either to a value of the form ` w, yielding

v w, or to a value of the form `′ w′, yielding v′ w′. Applying it to a value w

whose head symbol is not ` or `′ would lead to the term [] w, which is stuck,

since [] does not have a reduction rule.

For the type system to be sound, we must ensure that every application

of the form [] w is ill-typed. This is achieved by the third binding above: the

domain type of [] is Σ (∂abs), a sum type with zero branches, which contains

no values. The return type of [] may be chosen at will, which is fine; since it

can never be invoked, it can never return. The second binding above means

that, if v accepts values of type T and v′ accepts values of type Σ (` : T′′ ; T′),

then the filter [` : v | v′] accepts values of type Σ (` : pre T ; T′). Note that

10.8 Rows 485

any choice of T′′ will do, including, in particular, abs. In other words, it is

okay if v′ does not accept values of the form ` w. Indeed, by definition of the

semantics of filters, it will never be passed such a value. 2

10.8.37 Exercise [«««, 3]: Check that the definitions of Example 10.8.36 meet the

requirements of Definition 10.5.5. 2

10.8.38 Remark: It is interesting to study the similarity between the type schemes

assigned to the primitive operations on polymorphic variants and those as-

signed to the primitive operations on records (Example 10.8.30). The type of

[] involves the complete row ∂abs, just like the empty record 〈〉. The type

of [` : · | ·] · is pretty much identical to the type of record extension

〈· with ` = ·〉, provided the three continuation arrows → Y are dropped.

Last, the type of the data constructor ` is strongly reminiscent of the type

of record access ·.〈`〉. With some thought, this is hardly a surprise. Indeed,

records and variants are dual: it is possible to encode the latter in terms of

the former and vice-versa. For instance, in the encoding of variants in terms

of records, a function defined by cases is encoded as a record of ordinary

functions, in continuation-passing style. Thus, the encoding of [] is λf.f 〈〉,

the encoding of [` : v | v′] is λf.f 〈v′ with ` = v〉, and the encoding of

` v is λr.r.〈`〉 v. The reader is encouraged to study the type schemes that

arise out of this encoding and how they relate to the type schemes given in

Example 10.8.36. 2

10.8.39 Example [First-class messages]: In a programming language equipped with

both records and variants, it is possible to make the duality between these

two forms of data explicit by extending the language with a primitive opera-

tion # that turns a record of ordinary functions into a single function, defined

by cases. More precisely, # may be introduced as a binary destructor, whose

reduction rule is

v (` w)
δ
-→ v.〈`〉 w (R-Send)

What type may we assign to such an operation? In order to simplify the an-

swer, let us assume that we are dealing with full records (Example 10.8.25)

and full variants; that is, we have a single basic kind ?, and do not employ

abs and pre. Then, a suitable type scheme would be

∀XY.Π (X→ ∂Y)→ Σ X→ Y

In other words, this operation accepts a record of functions, all of which have

the same return type Y, but may have arbitrary domain types, which are given

by the row X. It produces a function that accepts a parameter of sum type Σ X

486 10 The Essence of ML Type Inference

and returns a result of type Y. The fact that the row X appears both in the Σ

type and in the Π type reflects the operational semantics. Indeed, according

to R-Send, the label ` carried by the value ` w is used to extract, out of the

record v, a function, which is then applied to w. Thus, the domain type of

the function stored at ` within the record v should match the type of w. In

other words, at every label, the domain of the contents of the record and the

contents of the sum should be type compatible. This is encoded by letting

a single row variable X stand for both of these rows. Note that the arrow in

X → ∂Y is really →Row(�); once again, we are exploiting the presence of type

constructors of the form Gs , with s 6= Type, in the signature S.

If the record of functions v is viewed as an object , and if the variant ` w

is viewed as a message ` carrying a parameter w, then R-Send may be under-

stood as (first-class) message dispatch, a common feature of object-oriented

languages. (The first-class qualifier refers to the fact that the message name

` is not statically fixed, but is discovered at runtime.) The issue of type infer-

ence in the presence of such a feature has been studied by Nishimura (1998),

Müller and Nishimura (1998), and Pottier (2000). These papers address two is-

sues that are not dealt with in the above example, namely (i) accommodating

finite (as opposed to full) record and variants and (ii) allowing distinct meth-

ods to have distinct result types. This is achieved via the use of subtyping

and of some form of conditional constraints. 2

10.8.40 Exercise [«««, 3]: Check that the definitions of Example 10.8.39 meet the

requirements of Definition 10.5.5. 2

The name polymorphic variants stems from the highly polymorphic type

schemes assigned to the operations on variants (Example 10.8.36). A row-

based type system for polymorphic variants was first proposed by Rémy

(1989). A somewhat similar, constraint-based type system for polymorphic

variants was then studied by Garrigue (1998; 2000; 2002) and implemented

by him as part of the programming language Objective Caml.

Other Applications of Rows

Typechecking records and variants is the best-known application of rows.

Many variations of it are conceivable, some of which we have illustrated, such

as the choice between full and finite records and variants. However, rows may

also be put to other uses, of which we now list a few.

First, since objects may be viewed as records of functions, at least from a

typechecking point of view, rows may be used to typecheck object-oriented

languages in a structural style (Wand, 1994; Rémy, 1994). This is, in particu-

lar, the route followed in Objective Caml (Rémy and Vouillon, 1998). There,

10.8 Rows 487

an object type consists of a row of method types, and gives the object’s inter-

face. Such a style is considered structural, as opposed to the style adopted by

many popular object-oriented languages, such as C++, Java, and C#, where an

object type consists of the name of its class. Thanks to rows, method invo-

cation may be assigned a polymorphic type scheme, similar to that of record

access (Example 10.8.30), making it possible to invoke a specific method (say,

`) without knowing which class the receiver object belongs to.

Rows may also be used to encode sets of properties within types or to

encode type refinements, with applications in type-based program analysis.

Some instances worth mentioning are soft typing (Cartwright and Fagan,

1991; Wright and Cartwright, 1994), exception analysis (Leroy and Pessaux,

2000; Pottier and Simonet, 2003), and static enforcement of an access control

policy (Pottier, Skalka, and Smith, 2001). BANE (Fähndrich, 1999), a versatile

program analysis toolkit, also implements a form of rows.

Variations on Rows

A type system may be said to have rows, in a broad sense, if mappings from

labels to types may be (i) defined incrementally, via some syntax for extending

an existing mapping with information about a new label and (ii) abstracted by

a type variable. In this chapter, which follows Rémy’s ideas (1993; 1992a;

1992b), the former feature is provided by the row constructors (` : · ; ·),

while the latter is provided by the existence of row variables, that is, type

variables of row kind Row(L) for some L. There are, however, type systems

that provide (i) and (ii) while departing significantly from the one presented

here. These systems differ mainly in how they settle some important design

choices:

1. Does a row denote a finite or an infinite mapping from labels to types?

2. Is a row with duplicate labels considered well-formed? If not, by which

mechanism is it ruled out?

In Rémy’s approach, every row denotes an infinite (in fact, cofinite) mapping

from labels to types. The type constructors abs and pre are used to encode

domain information within field types. A row with duplicate labels, such as

(` : T1 ; ` : T2 ; T3), is ruled out by the kind system. Below, we mention a

number of type systems that make different design choices.

The first use of rows for typechecking operations on records, including

record extension, is due to Wand (1987a; 1988). In Wand’s approach, rows de-

note finite mappings. Furthermore, rows with duplicate labels are considered

legal; row extension is interpreted as function extension, so that, if a label oc-

curs twice, the later occurrence takes precedence. This leads to a difficulty in

488 10 The Essence of ML Type Inference

the constraint solving process: the constraint (` :T1 ; R1) = (` :T2 ; R2) entails

T1 = T2, but does not entail R1 = R2, because R1 and R2 may have different

domains—indeed, their domains may differ at `. Wand’s proposed solution

(1988) introduces a four-way disjunction, because each of R1 and R2 may or

may not define `. This gives type inference exponential time complexity.

Later work (Berthomieu, 1993; Berthomieu and le Moniès de Sagazan, 1995)

interprets rows as infinite mappings but sticks with Wand’s interpretation of

row extension as function extension, so that duplicate labels are allowed. The

constraint solving algorithm rewrites the problematic constraint (` :T1 ; R1) =

(` : T2 ; R2) to (T1 = T2) ∧ (R1 ={`} R2), where the new predicate =L is inter-

preted as row equality outside L. Of course, the entire constraint solver must

then be extended to deal with constraints of the form T1 =L T2. The advan-

tage of this approach over Wand’s lies in the fact that no disjunctions are

ever introduced, so that the time complexity of constraint solving apparently

remains polynomial.

Several other works make opposite choices, sticking with Wand’s interpre-

tation of rows as finite mappings but forbidding duplicate labels. No kind

discipline is imposed: some other mechanism is used to ensure that dupli-

cate labels do not arise. In Jategaonkar and Mitchell (1988) and Jategaonkar

(1989), somewhat ad hoc steps are taken to ensure that, if the row (` : T ; X)

appears anywhere within a type derivation, then X is never instantiated with

a row that defines `. In Gaster and Jones (1996), Gaster (1998), and Jones

and Peyton Jones (1999), explicit constraints prevent duplicate labels from

arising. This line of work uses qualified types (Jones, 1994), a constraint-

based type system that bears strong similarity with HM(X). For every label

`, a unary predicate · lacks ` is introduced; roughly speaking, the constraint

R lacks ` is considered to hold if the (finite) row R does not define the label `.

The constrained type scheme assigned to record access is

·.〈`〉 : ∀XY[Y lacks `].Π (` : X ; Y)→ X.

The constraint Y lacks ` ensures that the row (` : X ; Y) is well-formed. Al-

though interesting, this approach is not as expressive as that described in

this chapter. For instance, although it accommodates record update (where

the field being modified is known to exist in the initial record) and strict

record extension (where the field is known not to initially exist), it cannot ex-

press a suitable type scheme for free record extension, where it is not known

whether the field initially exists. This approach has been implemented as the

“Trex” extension to Hugs (Jones and Peterson, 1999).

It is worth mentioning a line of type systems (Ohori and Buneman, 1988,

1989; Ohori, 1995) that do not have rows, because they lack feature (i) above,

but are still able to assign a polymorphic type scheme to record access. One

10.8 Rows 489

might explain their approach as follows. First, these systems are equipped

with ordinary, structural record types, of the form {`1 : T1; . . . ;`n : Tn}. Sec-

ond, for every label `, a binary predicate · has ` : · is available. The idea is

that the constraint T has ` : T′ holds if and only if T is a record type that

contains the field ` : T′. Then, record access may be assigned the constrained

type scheme

·.〈`〉 : ∀XY[X has ` : Y].X→ Y.

This technique also accommodates a restricted form of record update, where

the field being written must initially exist and must keep its initial type; it

does not, however, accommodate any form of record extension, because of

the absence of row extension in the syntax of types. Although the papers

cited above employ different terminology, we believe it is fair to view them as

constraint-based type systems. In fact, Odersky, Sulzmann, and Wehr (1999)

prove that Ohori’s system (1995) may be viewed as an instance of HM(X).

Sulzmann (2000) proposes several extensions of it, also presented as in-

stances of HM(X), which accommodate record extension and concatenation

using new, ad hoc constraint forms in addition to · has `.

In the label-selective λ-calculus (Garrigue and Aït-Kaci, 1994; Furuse and

Garrigue, 1995), the arrow type constructor carries a label, and arrows that

carry distinct labels may commute, so as to allow labeled function arguments

to be supplied in any order. Some of the ideas that underlie this type system

are closely related to rows.

Pottier (2003) describes an instance of HM(X) where rows are not part of

the syntax of types: equivalent expressive power is obtained via an exten-

sion of the constraint language. The idea is to work with constraints of the

form R1 ≤L R2, where L may be finite or cofinite, and to interpret such a

constraint as row subtyping inside L. In this approach, no new type variables

need be allocated during constraint solving; contrast this with S-Mutate-LL,

S-Mutate-GD, and S-Mutate-GL in Figure 10-14. One benefit is to simplify

the complexity analysis; another is to yield insights that lead to generaliza-

tions of rows.

Even though rows were originally invented with type inference in mind,

they are useful in explicitly typed languages as well; indeed, other approaches

to typechecking operations on records appear quite complex (Cardelli and

Mitchell, 1991).

A Solutions to Selected Exercises 523

2. Adding a conditional module expression destroys the phase distinction,

because the types in a conditional module, e.g.

if ... then LNat::*M else LUnit::*M,

depends on the run-time value of the test.

10.1.22 Solution: Within Damas and Milner’s type system, we have:

dm-Let

dm-Var
z1 : X ` z1 : X z1 : X;z2 : X ` z2 : X

dm-Var

dm-Abs
z1 : X ` let z2 = z1 in z2 : X

� ` λz1.let z2 = z1 in z2 : X→ X

Note that, because X occurs free within the environment z1 : X, it is impossible

to apply dm-Gen to the judgment z1 : X ` z1 : X in a nontrivial way. For this

reason, z2 cannot receive the type scheme ∀X.X, and the whole expression

cannot receive type X→ Y, where X and Y are distinct.

10.1.23 Solution: It is straightforward to prove that the identity function has type

int→ int:

Γ0;z : int ` z : int
dm-Var

Γ0 ` λz.z : int→ int
dm-Abs

In fact, nothing in this type derivation depends on the choice of int as the type

of z. Thus, we may just as well use a type variable X instead. Furthermore,

after forming the arrow type X → X, we may employ dm-Gen to quantify

universally over X, since X no longer appears in the environment.

dm-Gen

dm-Abs

dm-Var
Γ0;z : X ` z : X

Γ0 ` λz.z : X→ X X 6∈ ftv(Γ0)

Γ0 ` λz.z : ∀X.X→ X

It is worth noting that, although the type derivation employs an arbitrary

type variable X, the final typing judgment has no free type variables. It is thus

independent of the choice of X. In the following, we refer to the above type

derivation as ∆0.

Next, we prove that the successor function has type int → int under the

initial environment Γ0. We write Γ1 for Γ0;z : int, and make uses of dm-Var

implicit.

dm-App

dm-App
Γ1 ` +̂ : int→ int→ int Γ1 ` z : int

Γ1 ` +̂ z : int→ int Γ1 ` 1̂ : int

dm-Abs
Γ1 ` z +̂ 1̂ : int

Γ0 ` λz.z +̂ 1̂ : int→ int

524 A Solutions to Selected Exercises

In the following, we refer to the above type derivation as ∆1. We may now

build a derivation for the third typing judgment. We write Γ2 for Γ0;f : int →

int.

∆1

Γ2 ` f : int→ int Γ2 ` 2̂ : int

Γ2 ` f 2̂ : int
dm-App

Γ0 ` let f = λz.z +̂ 1̂ in f 2̂ : int
dm-Let

To derive the fourth typing judgment, we re-use ∆0, which proves that the

identity function has polymorphic type ∀X.X → X. We write Γ3 for Γ0;f :

∀X.X → X. By dm-Var and dm-Inst, we have both Γ3 ` f : (int → int) →

(int→ int) and Γ3 ` f : int→ int. Thus, we may build the following derivation:

∆0

dm-App

dm-App

Γ3 ` f : (int→ int)→ (int→ int)

Γ3 ` f : int→ int

Γ3 ` f f : int→ int Γ3 ` 2̂ : int

Γ3 ` f f 2̂ : int

Γ0 ` let f = λz.z in f f 2̂ : int
dm-Let

The first and third judgments are valid in the simply-typed λ-calculus, be-

cause they use neither dm-Gen nor dm-Inst, and use dm-Let only to introduce

the monomorphic binding f : int→ int into the environment. The second judg-

ment, of course, is not: because it involves a nontrivial type scheme, it is not

even a well-formed judgment in the simply-typed λ-calculus. The fourth judg-

ment is well-formed, but not derivable, in the simply-typed λ-calculus. This is

because f is used at two incompatible types, namely (int → int) → (int→ int)

and int→ int, inside the expression f f 2̂. Both of these types are instances of

∀X.X→ X, the type scheme assigned to f in the environment Γ3.

By inspection of the rules, a derivation of Γ0 ` 1̂ : T must begin with an

instance of dm-Var, of the form Γ0 ` 1̂ : int. It may be followed by an arbitrary

number of instances of the sequence (dm-Gen; dm-Inst), turning int into a

type scheme of the form∀X̄.int, then back to int. Thus, T must be int. Because

int is not an arrow type, there follows that the application 1̂ 2̂ cannot be

well-typed under Γ0. In fact, because this expression is stuck, it cannot be

well-typed in a sound type system.

The expression λf.(f f) is ill-typed in the simply-typed λ-calculus, because

no type T may coincide with a type of the form T → T′: indeed, T would be

a subterm of itself. In DM, this expression is ill-typed as well, but the proof

of this fact is slightly more complex. One must point out that, because f

is λ-bound, it must be assigned a type T (as opposed to a type scheme) in

the environment. Furthermore, one must note that dm-Gen is not applicable

(except in a trivial way) to the judgment Γ0;f : T ` f : T, because all of the

A Solutions to Selected Exercises 525

type variables in the type T appear free in the environment Γ0;f : T. Once these

points are made, the proof is the same as in the simply-typed λ-calculus.

It is important to note that the above argument crucially relies on the fact

that f is λ-bound and must be assigned a type, as opposed to a type scheme.

Indeed, we have proved earlier in this exercise that the self-application f f is

well-typed when f is let-bound and is assigned the type scheme ∀X.X → X.

For the same reason, λf.(f f) is well-typed in an implicitly-typed variant of

System F. It also relies on the fact that types are finite: indeed, λf.(f f) is well-

typed in an extension of the simply-typed λ-calculus with recursive types,

where the equation T = T→ T′ has a solution.

Later, we will develop a type inference algorithm for ML-the-type-system

and prove that it is correct and complete. Then, to prove that a term is ill-

typed, it will be sufficient to simulate a run of the algorithm and to check

that it reports a failure.

10.3.2 Solution: Our hypotheses are C, Γ ` t : ∀X̄[D].T (1) and C ð [~X , ~T]D (2).

We may also assume, w.l.o.g., X̄ # ftv(C, Γ , ~T) (3). By hmx-Inst and (1), we have

C∧D, Γ ` t : T, which by Lemma 10.3.1 yields C∧D∧~X = ~T, Γ ` t : T (4). Now,

we claim that ~X = ~T ð T ≤ [~X , ~T]T (5) holds; the proof appears in the next

paragraph. Applying hmx-Sub to (4) and to (5), we obtain C ∧D ∧ ~X = ~T, Γ `

t : [~X , ~T]T (6). By C-Eq and by (2), we have C ∧ ~X = ~T ð D, so (6) may be

written C∧~X = ~T, Γ ` t : [~X, ~T]T (7). Last, (3) implies X̄ # ftv(Γ , [~X, ~T]T) (8).

Applying rule hmx-Exists to (7) and (8), we get ∃X̄.(C ∧ ~X = ~T), Γ ` t : [~X ,
~T]T (9). By C-NameEq and by (3), ∃X̄.(C ∧ ~X = ~T) is equivalent to C, hence (9)

is the goal C, Γ ` t : [~X, ~T]T.

There now remains to establish (5). One possible proof method is to unfold

the definition of ð and reason by structural induction on T. Here is another,

axiomatic approach. Let Z be fresh for T, ~X, and ~T. By reflexivity of subtyping

and by C-ExTrans, we have true ≡ T ≤ T ≡ ∃Z.(T ≤ Z ∧ Z ≤ T), which by

congruence of ≡ and by C-ExAnd implies ~X = ~T ≡ ∃Z.(T ≤ Z ∧ ~X = ~T ∧ Z ≤

T) (10). Furthermore, by C-Eq, we have (~X = ~T ∧ Z ≤ T) ≡ (~X = ~T ∧ Z ≤ [~X ,
~T]T) ð (Z ≤ [~X , ~T]T) (11). Combining (10) and (11) yields ~X = ~T ð ∃Z.(T ≤

Z∧ Z ≤ [~X, ~T]T), which by C-ExTrans may be read ~X = ~T ð T ≤ [~X, ~T]T.

10.3.3 Solution: The simplest possible derivation of true, � ` λz.z : int → int is

syntax-directed. It closely resembles the Damas-Milner derivation given in

Exercise 10.1.23.

true,z : int ` z : int
hmx-Var

true, � ` λz.z : int→ int
hmx-Abs

As in Exercise 10.1.23, we may use a type variable X instead of the type int,

526 A Solutions to Selected Exercises

then employ hmx-Gen to quantify universally over X.

true,z : X ` z : X
hmx-Var

true, � ` λz.z : X→ X
hmx-Abs

X # ftv(true, �)

true, � ` λz.z : ∀X[true].X→ X
hmx-Gen

The validity of this instance of hmx-Gen relies on the equivalence true∧true ≡

true and on the fact that judgments are identified up to equivalence of their

constraint assumptions.

If we now wish to instantiate X with int, we may use hmx-Inst’ as follows:

true, � ` λz.z : ∀X[true].X→ X true ð [X, int]true

true, � ` λz.z : int→ int
hmx-Inst’

This is not, strictly speaking, an HM(X) derivation, since hmx-Inst’ is not

part of the rules of Figure 10-7. However, since the proof of Lemma 10.3.1

and the solution of Exercise 10.3.2 are constructive, it is possible to exhibit

the HM(X) derivation that underlies it. We find:

Y = int,z : X ` z : X
hmx-Var

Y = int, � ` λz.z : X→ X
hmx-Abs

Y = int, � ` λz.z : ∀X.X→ X
hmx-Gen

Y = int, � ` λz.z : Y→ Y
hmx-Inst

Y = int ð Y→ Y ≤ int→ int

Y = int, � ` λz.z : int→ int
hmx-Sub

∃Y.(Y = int), � ` λz.z : int→ int
hmx-Exists

Since ∃Y.(Y = int) is equivalent to true, the conclusion is indeed the desired

judgment.

10.4.1 Solution: Let X 6∈ ftv(Γ) (1). Assume that there exist a satisfiable constraint

C and a type T such that C, Γ ` t : T (2) holds. Thanks to (1), we find that,

up to a renaming of C and T, we may further assume X 6∈ ftv(C,T) (3). Then,

applying Lemma 10.3.1 to (2), we obtain C ∧ T = X, Γ ` t : T, which by hmx-

Sub yields C∧T = X, Γ ` t : X (4). Furthermore, by (3) and C-NameEq, we have

∃X.(C ∧ T = X) ≡ C. Because C is satisfiable, this implies that C ∧ T = X is

satisfiable as well. As a result, we have found a satisfiable constraint C′ such

that C′, Γ ` t : X holds.

Now, assume Γ is closed and X is arbitrary. Then, (1) holds, so the previous

paragraph proves that, if t is well-typed within Γ , then there exists a satisfi-

able constraint C′ such that C′, Γ ` t : X holds. By the completeness property,

A Solutions to Selected Exercises 527

we must then have C′ ð JΓ ` t : XK. Since C′ is satisfiable, this implies that

JΓ ` t : XK is satisfiable as well. Conversely, if JΓ ` t : XK is satisfiable, then,

by the soundness property, t is well-typed within Γ .

10.7.1 Solution: We have

let Γ0 in Jc t1 . . . tn : T′K

≡ let Γ0 in ∃Z1 . . .Zn.(
∧n
i=1Jti : ZiK∧ c � Z1 → . . .→ Zn → T′) (1)

≡ let Γ0 in ∃Z1 . . .ZnX̄.(
∧n
i=1Jti : ZiK

∧ T1 → . . .→ Tn → T ≤ Z1 → . . .→ Zn → T′)

(2)

≡ let Γ0 in ∃X̄.(
∧n
i=1Jti : TiK∧ T ≤ T′) (3)

where (1) is by definition of constraint generation; (2) is by C-InId; (3) is by

C-Arrow, C-ExAnd, and by Lemma 10.4.6.

10.7.2 Solution: We must first ensure that R-Add respects v (Definition 10.5.4).

Since the rule is pure, it is sufficient to establish that let Γ0 in Jn̂1 +̂ n̂2 : TK

entails let Γ0 in Jn̂1 + n2 : TK. In fact, we have

let Γ0 in Jn̂1 +̂ n̂2 : TK

≡ let Γ0 in (Jn̂1 : intK∧ Jn̂2 : intK∧ int ≤ T) (1)

≡ let Γ0 in (int ≤ int∧ int ≤ int∧ int ≤ T) (2)

≡ int ≤ T (3)

≡ let Γ0 in Jn̂1 + n2 : TK (4)

where (1) and (2) are by Exercise 10.7.1; (3) is by C-In* and by reflexivity of

subtyping; (4) is by Exercise 10.7.1 again.

Second, we must check that if the configuration c v1 . . . vk/µ (where k ≥ 0)

is well-typed, then either it is reducible, or c v1 . . . vk is a value.

We begin by checking that every value that is well-typed with type int is of

the form n̂. Indeed, suppose that let Γ0; refM in Jv : intK is satisfiable. Then, v

cannot be a program variable, for a well-typed value must be closed. v cannot

be a memory location m, for otherwise refM(m) ≤ int would be satisfiable—

but the type constructors ref and int are incompatible. v cannot be +̂ or +̂ v′,

for otherwise int→ int→ int ≤ int or int→ int ≤ int would be satisfiable—but

the type constructors → and int are incompatible. Similarly, v cannot be a

λ-abstraction. Thus, v must be of the form n̂, for it is the only case left.

Next, we note that, according to the constraint generation rules, if the

configuration c v1 . . . vk/µ is well-typed, then a constraint of the form

let Γ0; refM in (c � X1 → . . . → Xk → T∧ Jv1 : X1K∧ . . .∧ Jvk : XkK) is satisfiable.

We now reason by cases on c.

◦ Case c is n̂. Then, Γ0(c) is int. Because the type constructors int and →

are incompatible with each other, this implies k = 0. Since n̂ is a constructor,

the expression is a value.

528 A Solutions to Selected Exercises

◦ Case c is +̂. We may assume k ≥ 2, because otherwise the expression is

a value. Then, Γ0(c) is int → int → int, so, by C-Arrow, the above constraint

entails let Γ0; ref M in (X1 ≤ int ∧ X2 ≤ int ∧ Jv1 : X1K ∧ Jv2 : X2K), which, by

Lemma 10.4.5, entails let Γ0; ref M in (Jv1 : intK ∧ Jv2 : intK). Thus, v1 and

v2 are well-typed with type int. By the remark above, they must be integer

literals n̂1 and n̂2. As a result, the configuration is reducible by R-Add.

10.7.5 Solution: We must first ensure that R-Ref, R-Deref and R-Assign respect v

(Definition 10.5.4).

◦ Case R-Ref. The reduction is ref v/� -→m/(m , v), wherem 6∈ fpi(v) (1).

Let T be an arbitrary type. According to Definition 10.5.4, the goal is to show

that there exist a set of type variables Ȳ and a store type M′ such that

Ȳ # ftv(T) and ftv(M′) ⊆ Ȳ and dom(M′) = {m} and let Γ0 in Jref v : TK

entails ∃Ȳ.let Γ0; refM′ in Jm/(m , v) : T/M′K. Now, we have

let Γ0 in Jref v : TK

≡ ∃Y.let Γ0 in (ref Y ≤ T∧ Jv : YK) (2)

≡ ∃Y.let Γ0; refM′ in (m � T∧ Jv :M′(m)K) (3)

≡ ∃Y.let Γ0; refM′ in Jm/(m , v) : T/M′K (4)

where (2) is by Exercise 10.7.1 and by C-InEx; (3) assumes M′ is defined as

m , Y, and follows from (1), C-InId and C-In*; and (4) is by definition of

constraint generation.

◦ Case R-Deref. The reduction is !m/(m , v) -→ v/(m , v). Let T be an

arbitrary type and let M be a store type of domain {m}. We have

let Γ0; refM in J!m/(m , v) : T/MK

≡ let Γ0; refM in ∃Y.(refM(m) ≤ ref Y∧ Y ≤ T∧ Jv : M(m)K) (1)

≡ let Γ0; refM in ∃Y.(M(m) = Y∧ Y ≤ T∧ Jv : M(m)K) (2)

≡ let Γ0; refM in (M(m) ≤ T∧ Jv :M(m)K) (3)

ð let Γ0; refM in (Jv : TK∧ Jv :M(m)K) (4)

≡ let Γ0; refM in Jv/(m , v) : T/MK (5)

where (1) is by Exercise 10.7.1 and by C-InId; (2) follows from C-ExTrans and

from the fact that ref is an invariant type constructor; (3) is by C-NameEq;

(4) is by Lemma 10.4.5 and C-Dup; and (5) is again by definition of constraint

generation.

◦ Case R-Assign. The reduction is m := v/(m , v0) -→ v/(m , v). Let T

A Solutions to Selected Exercises 529

be an arbitrary type and let M be a store type of domain {m}. We have

let Γ0; refM in Jm := v/(m , v0) : T/MK

ð let Γ0; refM in Jm := v : TK (1)

≡ let Γ0; refM in ∃Z.(refM(m) ≤ ref Z∧ Jv : ZK∧ Z ≤ T) (2)

≡ let Γ0; refM in ∃Z.(M(m) = Z∧ Z ≤ T∧ Jv : ZK) (3)

≡ let Γ0; refM in (M(m) ≤ T∧ Jv : M(m)K) (4)

ð let Γ0; refM in Jv/(m , v) : T/MK (5)

where (1) is by definition of constraint generation; (2) is by Exercise 10.7.1

and C-InId; (3) follows from the fact that ref is an invariant type constructor;

(4) is by C-NameEq; and (5) is obtained as in the previous case.

Second, we must check that if the configuration c v1 . . . vk/µ (where k ≥ 0)

is well-typed, then either it is reducible, or c v1 . . . vk is a value. We only

give a sketch of this proof; see the solution to Exercise 10.7.2 for details of a

similar proof.

We begin by checking that every value that is well-typed with a type of the

form ref T is a memory location. This assertion relies on the fact that the type

constructor ref is isolated.

Next, we note that, according to the constraint generation rules, if the

configuration c v1 . . . vk/µ is well-typed, then a constraint of the form

let Γ0; refM in (c � X1 → . . . → Xk → T∧ Jv1 : X1K∧ . . .∧ Jvk : XkK) is satisfiable.

We now reason by cases on c.

◦ Case c is ref. If k = 0, then the expression is a value; otherwise, it is

reducible by R-Ref.

◦ Case c is !. We may assume k ≥ 1; otherwise the expression is a value.

By definition of Γ0(!), the above constraint entails let Γ0; ref M in ∃Y.(ref Y →

Y ≤ X1 → . . . → Xk → T ∧ Jv1 : X1K), which, by C-Arrow, Lemma 10.4.5, and

C-InEx, entails ∃Y.let Γ0; ref M in Jv1 : ref YK. Thus, v1 is well-typed with a

type of the form ref Y. By the remark above, v1 must be a memory location

m. Furthermore, because every well-typed configuration is closed, m must

be a member of dom(µ). As a result, the configuration ref v1 . . . vk/µ is

reducible by R-Deref.

◦ Case c is :=. We may assume k ≥ 2, because otherwise the expression is a

value. As above, we check that v1 must be a memory location and a member

of dom(µ). Thus, the configuration is reducible by R-Assign.

10.8.2 Solution: The record access operation ·.〈`b〉 may be given the type scheme

∀Xb.{`b : Xb} → Xb. However, this type scheme isn’t satisfactory, because it

allows accessing `b only in records where `a and `c are undefined. The type

scheme ∀XaXb.{`a : Xa;`b : Xb} → Xb is also a valid type scheme for ·.〈`b〉,

530 A Solutions to Selected Exercises

but allows accessing `b only in records where `a is defined and `c is not. To

sum up, a satisfactory description of ·.〈`b〉 requires a whole family of type

schemes, none of which is principal (more general than the others). A similar

problem arises with record extension 〈· with `b = ·〉.

A potential solution is to equip record types with a subtyping relationship,

so that (say) both {`a : Ta;`b : Tb} and {`a : Ta;`b : Tb;`c : Tc} are subtypes

of {`b : Tb}. Then, ∀Xb.{`b : Xb} → Xb becomes a satisfactory type scheme for

the record access operation ·.〈`b〉. Indeed, the operation is now applicable

to any record that admits a type of the form {`b : Tb}, that is, thanks to

subtyping, to any record where `b is defined, regardless of which other fields

are defined.

However, this is only half a solution, because there still is a problem with

record extension. The type scheme ∀Xb.{`b : Xb} → {`b : Xb} is valid, and

makes record extension applicable to any record where `b is defined, which

is good. The trouble is with its return type: it states that only `b may be

safely assumed to be defined in the new record. In other words, it causes

static information about all fields other than `b to be lost. Addressing this

dramatic loss of precision is one of the key motivations for introducing rows.

10.8.5 Solution: We let the reader check that X must have kind ?.Type and Y must

have kind ?.Row({`}). The type with all superscripts made explicit is

X→Type
Π (`?,Row(�) : intType ; (Y→Row({`}) ∂?,Row({`})X)).

In this case, because the type constructor Π occurs on the right-hand side

of the toplevel arrow, it is possible to guess that the type must have kind

?.Type. There are cases where it is not possible to guess the kind of a type,

because it may have several kinds; consider, for instance, ∂int.

10.8.27 Solution: For the sake of generality, we perform the proof in the presence of

subtyping, that is, we do not assume that subtyping is interpreted as equality.

We formulate some hypotheses about the interpretation of subtyping: the

type constructors (` : · ; ·), ∂, and Π must be covariant; the type constructors

→ and Π must be isolated.

We begin with a preliminary fact: if the domain of V is {`1, . . . , `n}, where

`1 < . . . < `n, then the constraint let Γ0 in J{V;v} : TK is equivalent to

let Γ0 in ∃Z1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK∧Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ T).

We let the reader check this fact using the constraint generation rules, the

definition of Γ0 and rule C-InId, and the above covariance hypotheses. We

note that, by C-Row-LL, the above constraint is invariant under a permuta-

tion of the labels `1, . . . , `n, so the above fact still holds when the hypothesis

`1 < . . . < `n is removed.

A Solutions to Selected Exercises 531

We now prove that rules R-Update, R-Access-1, and R-Access-2 enjoy sub-

ject reduction (Definition 10.5.4). Because the store is not involved, the goal

is to establish that let Γ0 in Jt : TK entails let Γ0 in Jt′ : TK, where t is the redex

and t′ is the reduct.

◦ Case R-Update. We have:

let Γ0 in J{{V;v} with ` = v′} : TK

≡ let Γ0 in ∃XX′Y.(J{V;v} : Π (` : X ; Y)K∧ Jv′ : X′K∧Π (` : X′ ; Y) ≤ T) (1)

≡ let Γ0 in ∃XX′YZ1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ Π (` : X ; Y)

∧ Jv′ : X′K∧Π (` : X′ ; Y) ≤ T)

(2)

where (1) is by Exercise 10.7.1, and (2) follows from the preliminary fact and

from C-ExAnd, provided {`1, . . . , `n} is the domain of V. We now distinguish

two subcases:

Subcase ` ∈ dom(V). We may assume, w.l.o.g., that ` is `1. Then, by our

covariance hypotheses, the subconstraint in the second line of (2) entails

(`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ Y, which in turn entails Π (`1 : X′;`2 : Z2; . . . ;`n :

Zn; ∂Z) ≤ Π (` : X′ ; Y). By transitivity of subtyping, the subconstraint in the

second and third lines of (2) entails Π (`1 : X′;`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ T. By

this remark and by C-Ex*, (2) entails

let Γ0 in ∃X′Z2 . . .ZnZ.(Jv′ : X′K∧
∧n
i=2JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : X′;`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ T)

(3)

which by our preliminary fact is precisely let Γ0 in J{V[` , v′];v} : TK.

Subcase ` ∉ dom(V). By C-Row-DL and C-Row-LL, the term (`1 : Z1; . . . ;`n :

Zn; ∂Z) may be replaced with (` : Z;`1 : Z1; . . . ;`n : Zn; ∂Z). Thus, reasoning as

in the previous subcase, we find that (2) entails

let Γ0 in ∃X′Z1 . . .ZnZ.(Jv′ : X′K∧
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : X′;`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ T)

(4)

which by our preliminary fact is precisely let Γ0 in J{V[` , v′];v} : TK.

◦ Cases R-Access-1, R-Access-2. We have:

let Γ0 in J{V;v}.{`} : TK

≡ let Γ0 in ∃XY.(J{V;v} : Π (` : X ; Y)K∧ X ≤ T) (1)

≡ let Γ0 in ∃XYZ1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ Π (` : X ; Y)

∧ X ≤ T)

(2)

where (1) is by Exercise 10.7.1, and (2) follows from the preliminary fact and

from C-ExAnd, provided {`1, . . . , `n} is the domain of V. We now distinguish

two subcases:

532 A Solutions to Selected Exercises

Subcase ` ∈ dom(V), i.e., (R-Access-1). We may assume, w.l.o.g., that ` is

`1. Then, by our covariance hypotheses, the subconstraint in the second line

of (2) entails Z1 ≤ X. By transitivity of subtyping, by Lemma 10.4.5, and by

C-Ex*, we find that (2) entails let Γ0 in JV(`) : TK.

Subcase ` ∉ dom(V), i.e., (R-Access-2). By C-Row-DL and C-Row-LL, the

term (`1 : Z1; . . . ;`n : Zn; ∂Z) may be replaced with (` : Z;`1 : Z1; . . . ;`n :

Zn; ∂Z). Thus, reasoning as in the previous subcase, we find that (2) entails

let Γ0 in Jv : TK.

Before attacking the proof of the progress property, let us briefly check that

every value v that is well-typed with type Π T must be a record value, that is,

must be of the form {V;w}. Indeed, assume that let Γ0; ref M in Jv : Π TK

is satisfiable. Then, v cannot be a program variable, for a well-typed value

must be closed. Furthermore, v cannot be a memory location m, because

ref M(m) ≤ Π T is unsatisfiable: indeed, the type constructors ref and Π

are incompatible (recall that Π is isolated). Similarly, v cannot be a partially

applied constant or a λ-abstraction, because T′ → T′′ ≤ Π T is unsatisfiable.

Thus, v must be a fully applied constructor. Since the only constructors in

the language are the record constructors {}L, v must be a record value. (If

there were other constructors in the language, they could be ruled out as

well, provided their return types are incompatible with Π.)

We must now prove that if the configuration c v1 . . . vk/µ is is well-typed,

then either it is reducible, or c v1 . . . vk is a value. By the well-typedness hy-

pothesis, a constraint of the form let Γ0; refM in Jc v1 . . . vk : TK is satisfiable.

◦ Case c is {}L. If k is less than or equal to n + 1, where n is the cardinal

of L, then c v1 . . . vk is a value. Otherwise, unfolding the above constraint,

we find that it cannot be satisfiable, because Π and → are incompatible; this

yields a contradiction.

◦ Case c is {· with ` = ·}. Analogous to the next case.

◦ Case c is ·.{`}. If k = 0, then c v1 . . . vk is a value. Assume k ≥ 1. Then,

the constraint let Γ0; ref M in Jc v1 : TK is satisfiable. By Exercise 10.7.1, this

implies that let Γ0; refM in Jv1 : Π (` : X ; Y)K is satisfiable. Thus, v1 must be a

record value, and the configuration is reducible by R-Access-1 or R-Access-2.

10.8.33 Solution: To make extension strict, it suffices to restrict its binding in the

initial environment Γ0, as follows:

〈· with ` = ·〉 : ∀XY.Π (` : abs ; Y)→ X→ Π (` : pre X ; Y).

The new binding, which is less general than the former, requires the field `

to be absent in the input record. The operational semantics need not be mod-

ified, since strict extension coincides with free extension when it is defined.

A Solutions to Selected Exercises 533

Defining the operational semantics of (free) restriction is left to the reader.

Its binding in the initial environment should be:

· \ 〈`〉 : ∀XY.Π (` : X ; Y)→ Π (` : abs ; Y)

In principle, there is no need to guess this binding: it may be discovered

through the encoding of finite records in terms of full records (10.8.32). Strict

restriction, which requires the field to be present in the input record, may be

assigned the following type scheme:

· \ 〈`〉 : ∀XY.Π (` : pre X ; Y)→ Π (` : abs ; Y)

10.8.34 Solution: The informal sentence “supplying a record with more fields in a

context where a record with fewer fields is expected” may be understood as

“providing an argument of type Π (` : pre T ; T′) to a function whose domain

type is Π (` : abs ; T′),” or, more generally, as “writing a program whose

well-typedness requires some constraint of the form Π (` : pre T ; T′) ≤ Π

(` : abs ; T′) to be satisfiable.” Now, in a nonstructural subtyping order where

pre à abs holds, such a constraint is equivalent to true. On the opposite, if

subtyping is interpreted as equality, then such a constraint is equivalent to

false. In other words, it is the law pre T ≤ abs ≡ true that gives rise to width

subtyping.

It is worth drawing a comparison with the way width subtyping is defined in

type systems that do not have rows. In such type systems, a record type is of

the form {`1 : T1; . . . ;`n : Tn}. Let us forget about the types T1, . . . ,Tn, because

they describe the contents of fields, not their presence, and are thus orthog-

onal to the issue at hand. Then, a record type is a set {`1, . . . , `n}, and width

subtyping is obtained by letting subtyping coincide with (the reverse of) set

containment. In a type system that exploits rows, on the other hand, a record

type is a total mapping from row labels to either pre or abs. (Because we are

ignoring T1, . . . ,Tn, let us temporarily imagine that pre is a nullary type con-

structor.) The above record type is then written {`1 : pre; . . . ;`n : pre; ∂abs}.

In other words, a set is now encoded as its characteristic function. Width sub-

typing is obtained by letting pre à abs and by lifting this ordering, pointwise,

to rows (which corresponds to our convention that rows are covariant).

References

Abadi, Martín, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit sub-

stitutions. Journal of Functional Programming, 1(4):375–416, 1991. Summary in

ACM Symposium on Principles of Programming Languages (POPL), San Francisco,

California, 1990.

Adams, Rolf, Walter Tichy, and Annette Weinert. The cost of selective recompila-

tion and environment processing. ACM Transactions on Software Engineering and

Methodology, 3(1):3–28, January 1994.

Ahmed, Amal, Limin Jia, and David Walker. Reasoning about hierarchical storage.

In IEEE Symposium on Logic in Computer Science (LICS), Ottawa, Canada, pages

33–44, June 2003.

Ahmed, Amal and David Walker. The logical approach to stack typing. In ACM SIG-

PLAN Workshop on Types in Language Design and Implementation (TLDI), New

Orleans, Louisiana, pages 74–85, January 2003.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

Aiken, Alexander, Manuel Fähndrich, and Raph Levien. Better static memory man-

agement: Improving region-based analysis of higher-order languages. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

La Jolla, California, pages 174–185, June 1995.

Aiken, Alexander, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking

and inferring local non-aliasing. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), San Diego, California, pages 129–140,

June 2003.

Aiken, Alexander and Edward L. Wimmers. Solving systems of set constraints. In

IEEE Symposium on Logic in Computer Science (LICS), Santa Cruz, California, pages

329–340, June 1992.

536 References

Aiken, Alexander and Edward L. Wimmers. Type inclusion constraints and type infer-

ence. In ACM Symposium on Functional Programming Languages and Computer

Architecture (FPCA), Copenhagen, Denmark, pages 31–41, June 1993.

Altenkirch, Thorsten. Constructions, Inductive Types and Strong Normalization. PhD

thesis, Laboratory for Foundations of Computer Science, University of Edinburgh,

Edinburgh, Scotland, 1993.

Amadio, Roberto M. and Luca Cardelli. Subtyping recursive types. ACM Transac-

tions on Programming Languages and Systems, 15(4):575–631, 1993. Summary

in ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pp. 104–118; also DEC/Compaq Systems Research Center Research Report

number 62, August 1990.

Amtoft, Torben, Flemming Nielson, and Hanne Riis Nielson. Type and Effect Systems:

Behaviours for Concurrency. Imperial College Press, 1999.

Ancona, Davide and Elena Zucca. A theory of mixin modules: Basic and derived op-

erators. Mathematical Structures in Computer Science, 8(4):401–446, August 1998.

Ancona, Davide and Elena Zucca. A calculus of module systems. Journal of Functional

Programming, 12(2):91–132, March 2002.

Appel, Andrew W. Foundational proof-carrying code. In IEEE Symposium on Logic in

Computer Science (LICS), Boston, Massachusetts, pages 247–258, June 2001.

Appel, Andrew W. and Amy P. Felty. A semantic model of types and machine instruc-

tions for proof-carrying code. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), Boston, Massachusetts, pages 243–253, January

2000.

Aspinall, David. Subtyping with singleton types. In International Workshop on Com-

puter Science Logic (CSL), Kazimierz, Poland, volume 933 of Lecture Notes in Com-

puter Science, pages 1–15. Springer-Verlag, September 1994.

Aspinall, David and Martin Hofmann. Another type system for in-place update. In

European Symposium on Programming (ESOP), Grenoble, France, volume 2305 of

Lecture Notes in Computer Science, pages 36–52. Springer-Verlag, April 2002.

Augustsson, Lennart. Cayenne—A language with dependent types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Baltimore, Maryland,

pages 239–250, 1998.

Baader, Franz and Jörg Siekmann. Unification theory. In D. M. Gabbay, C. J. Hogger,

and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic

Programming, volume 2, Deduction Methodologies, pages 41–125. Oxford Univer-

sity Press, 1994.

Baker, Henry G. Lively linear Lisp—look ma, no garbage! ACM SIGPLAN Notices, 27

(8):89–98, 1992.

Barendregt, Henk P. The Lambda Calculus. North Holland, revised edition, 1984.

Barendregt, Henk P. Introduction to generalized type systems. Journal of Functional

Programming, 1(2):125–154, 1991.

References 537

Barendregt, Henk P. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and

T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, Computa-

tional Structures. Oxford University Press, 1992.

Barendsen, Erik and Sjaak Smetsers. Conventional and uniqueness typing in graph

rewrite systems. In Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), Bombay, India, volume 761 of Lecture Notes in Computer Science,

pages 41–51. Springer-Verlag, December 1993.

Barras, Bruno, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan

Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saibi, and Benjamin

Werner. The Coq proof assistant reference manual: Version 6.1. Technical Report

RT-0203, INRIA, 1997.

Bauer, Lujo, Andrew W. Appel, and Edward W. Felten. Mechanisms for secure modular

programming in Java. Technical Report TR-603-99, Princeton University, 1999.

Bellantoni, Stephan and Stephan Cook. A new recursion-theoretic characterization of

polytime functions. Computational Complexity, 2(2):97–110, 1992.

Bellantoni, Stephan, K.-H. Niggl, and H. Schwichtenberg. Higher type recursion, rami-

fication and polynomial time. Annals of Pure and Applied Logic, 104:17–30, 2000.

Berardi, Stefano. Towards a mathematical analysis of the Coquand-Huet calculus

of constructions and the other systems in Barendregt’s cube. Technical report,

Department of Computer Science, CMU, and Dipartimento Matematica, Universita

di Torino, 1988.

Berthomieu, Bernard. Tagged types: A theory of order sorted types for tagged expres-

sions. Research Report 93083, LAAS, 7, avenue du Colonel Roche, 31077 Toulouse,

France, March 1993.

Berthomieu, Bernard and Camille le Moniès de Sagazan. A calculus of tagged types,

with applications to process languages. In Workshop on Types for Program Analysis

(TPA), informal proceedings, pages 1–15, May 1995.

Biagioni, Edoardo, Nicholas Haines, Robert Harper, Peter Lee, Brian G. Milnes, and

Eliot B. Moss. Signatures for a protocol stack: A systems application of Stan-

dard ML. In ACM Symposium on Lisp and Functional Programming (LFP), Orlando,

Florida, pages 55–64, June 1994.

Bierman, G. M., A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymor-

phic linear lambda calculus with recursion. In Workshop on Higher Order Opera-

tional Techniques in Semantics (HOOTS), Montréal, Québec, volume 41 of Electronic

Notes in Theoretical Computer Science. Elsevier, September 2000.

Birkedal, Lars and Robert W. Harper. Constructing interpretations of recursive types

in an operational setting. Information and Computation, 155:3–63, 1999.

Birkedal, Lars and Mads Tofte. A constraint-based region inference algorithm. Theo-

retical Computer Science, 258:299–392, 2001.

538 References

Birkedal, Lars, Mads Tofte, and Magnus Vejlstrup. From region inference to von Neu-

mann machines via region representation inference. In ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 171–183, 1996.

Blume, Matthias. The SML/NJ Compilation and Library Manager, May 2002. Available

from http://www.smlnj.org/doc/CM/index.html.

Blume, Matthias and Andrew W. Appel. Hierarchical modularity. ACM Transactions

on Programming Languages and Systems, 21(4):813–847, 1999.

Bonniot, Daniel. Type-checking multi-methods in ML (a modular approach). In Inter-

national Workshop on Foundations of Object-Oriented Languages (FOOL), informal

proceedings, January 2002.

Bourdoncle, François and Stephan Merz. Type-checking higher-order polymorphic

multi-methods. In ACM SIGPLAN–SIGACT Symposium on Principles of Program-

ming Languages (POPL), Paris, France, pages 302–315, January 1997.

Bracha, Gilad and William R. Cook. Mixin-based inheritance. In ACM SIGPLAN Confer-

ence on Object Oriented Programming: Systems, Languages, and Applications (OOP-

SLA)/European Conference on Object-Oriented Programming (ECOOP), Ottawa, On-

tario, pages 303–311, October 1990.

Brandt, Michael and Fritz Henglein. Coinductive axiomatization of recursive type

equality and subtyping. In International Conference on Typed Lambda Calculi and

Applications (TLCA), Nancy, France, volume 1210 of Lecture Notes in Computer

Science, pages 63–81. Springer-Verlag, April 1997. Full version in Fundamenta

Informaticae, 33:309–338, 1998.

Breazu-Tannen, Val, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance

as implicit coercion. Information and Computation, 93(1):172–221, July 1991. Also

in C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design, MIT Press, 1994.

Bruce, Kim B. Typing in object-oriented languages: Achieving expressibility and

safety, 1995. Available through http://www.cs.williams.edu/~kim.

Bruce, Kim B. Foundations of Object-Oriented Languages: Types and Semantics. MIT

Press, 2002.

Bruce, Kim B., Luca Cardelli, Giuseppe Castagna, the Hopkins Objects Group

(Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens, and Benjamin

Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221–242,

1996.

Bruce, Kim B., Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.

In International Symposium on Theoretical Aspects of Computer Software (TACS),

September 1997. An earlier version was presented as an invited lecture at the Third

International Workshop on Foundations of Object Oriented Languages (FOOL 3),

July 1996; full version in Information and Computation, 155(1–2):108-133, 1999.

References 539

de Bruijn, Nicolas G. A survey of the project AUTOMATH. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus,

and Formalism, pages 589–606. Academic Press, 1980.

Brus, Tom, Marko van Eekelen, Maarten van Leer, and Marinus Plasmeijer. Clean: A

language for functional graph rewriting. In ACM Symposium on Functional Pro-

gramming Languages and Computer Architecture (FPCA), Portland, Oregon, vol-

ume 274 of Lecture Notes in Computer Science, pages 364–384. Springer-Verlag,

September 1987.

Burstall, Rod and Butler Lampson. A kernel language for abstract data types and

modules. In International Symposium on Semantics of Data Types, Sophia-Antipolis,

France, volume 173 of Lecture Notes in Computer Science, pages 1–50. Springer-

Verlag, June 1984.

Burstall, Rod, David MacQueen, and Donald Sannella. HOPE: an experimental ap-

plicative language. In ACM Symposium on Lisp and Functional Programming (LFP),

Stanford, California, pages 136–143, August 1980.

Calcagno, Cristiano. Stratified operational semantics for safety and correctness of re-

gion calculus. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), London, England, pages 155–165, 2001.

Calcagno, Cristiano, Simon Helsen, and Peter Thiemann. Syntactic type soundness

results for the region calculus. Information and Computation, 173(2):199–221,

2002.

Cardelli, Luca. A polymorphic λ-calculus with Type:Type. Research report 10,

DEC/Compaq Systems Research Center, May 1986.

Cardelli, Luca. Phase distinctions in type theory, 1988a. Manuscript, available from

http://www.luca.demon.co.uk.

Cardelli, Luca. Typechecking dependent types and subtypes. In Foundations of Logic

and Functional Programming, Trento, Italy, (December, 1986), volume 306 of Lec-

ture Notes in Computer Science, pages 45–57. Springer-Verlag, 1988b.

Cardelli, Luca. Program fragments, linking, and modularization. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Paris, France,

pages 266–277, January 1997.

Cardelli, Luca, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The

Modula-3 type system. In Proceedings of the Sixteenth Annual ACM Symposium

on Principles of Programming Languages, pages 202–212, January 1989.

Cardelli, Luca and Xavier Leroy. Abstract types and the dot notation. In IFIP TC2

Working Conference on Programming Concepts and Methods. North Holland, 1990.

Also appeared as DEC/Compaq SRC technical report 56.

Cardelli, Luca and Giuseppe Longo. A semantic basis for Quest. Journal of Functional

Programming, 1(4):417–458, October 1991. Summary in ACM Conference on Lisp

and Functional Programming, pp. 30-43, 1990. Also available as DEC/Compaq SRC

Research Report 55, Feb. 1990.

540 References

Cardelli, Luca and John Mitchell. Operations on records. Mathematical Structures

in Computer Science, 1:3–48, 1991. Also in C. A. Gunter and J. C. Mitchell, edi-

tors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and

Language Design, MIT Press, 1994; available as DEC/Compaq Systems Research

Center Research Report #48, August, 1989; and in the Proceedings of Workshop

on the Mathematical Foundations of Programming Semantics (MFPS), New Orleans,

Louisiana, Springer LNCS, volume 442, pp. 22-52, 1989.

Cartmell, John. Generalised algebraic theories and contextual categories. Annals of

Pure and Applied Logic, 32:209–243, 1986.

Cartwright, Robert and Mike Fagan. Soft typing. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), Toronto, Ontario, pages

278–292, June 1991.

Cervesato, Iliano, Joshua S. Hodas, and Frank Pfenning. Efficient resource manage-

ment for linear logic proof search. Theoretical Computer Science, 232(1–2):133–

163, February 2000.

Cervesato, Iliano and Frank Pfenning. A linear logical framework. Information and

Computation, 179(1):19–75, November 2002.

Chaki, Sagar, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model checking

message-passing programs. In ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages (POPL), Portland, Oregon, pages 45–57, 2002.

Chirimar, Jawahar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a com-

putational interpretation of linear logic. Journal of Functional Programming, 6(2):

195–244, March 1996.

Christiansen, Morten Voetmann and Per Velschow. Region-based memory manage-

ment in Java. Master’s thesis, University of Copenhagen, Department of Computer

Science, 1998.

Church, Alonzo. The Calculi of Lambda Conversion. Princeton University Press, 1941.

Church, Alonzo. The weak theory of implication. Kontroliertes Denken: Untersuchun-

gen zum Logikkalk ul und zur Logik der Einzelwissenschaften, pages 22–37, 1951.

Clement, Dominique, Joelle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A

simple applicative language: Mini-ML. In ACM Symposium on Lisp and Functional

Programming (LFP), Cambridge, Massachusetts, pages 13–27, August 1986.

Colby, Christopher, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth

Cline. A certifying compiler for Java. ACM SIGPLAN Notices, 35(5):95–107, May

2000.

Comon, Hubert. Constraints in term algebras (short survey). In Conference on Alge-

braic Methodology and Software Technology (AMAST), June, 1993, Workshops in

Computing, pages 97–108. Springer-Verlag, 1994.

Constable, Robert L., Stuart F. Allen, Mark Bromley, Rance Cleaveland, James F. Cre-

mer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Paul Mendler, Prakash

Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathematics with

the NuPRL Proof Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

References 541

Coquand, Catarina. The AGDA proof system homepage, 1998. http://www.cs.

chalmers.se/~catarina/agda/.

Coquand, Thierry. An analysis of Girard’s paradox. In IEEE Symposium on Logic in

Computer Science (LICS), Cambridge, Massachusetts, pages 227–236, June 1986.

Coquand, Thierry. An algorithm for testing conversion in type theory. In G. Huet

and G. Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University

Press, 1991.

Coquand, Thierry. Pattern matching with dependent types. In Workshop on

Types for Proofs and Programs (TYPES), Båstad, Sweden, informal proceed-

ings. Available from ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.

92/proc.ps.Z, June 1992.

Coquand, Thierry and Gérard Huet. The calculus of constructions. Information and

Computation, 76(2–3):95–120, February/March 1988.

Coquand, Thierry, Randy Pollack, and Makoto Takeyama. A logical framework with

dependently typed records. In International Conference on Typed Lambda Calculi

and Applications (TLCA), Valencia, Spain, volume 2701 of Lecture Notes in Com-

puter Science, pages 105–119. Springer-Verlag, June 2003.

Courant, Judicaël. Strong normalization with singleton types. In Workshop on In-

tersection Types and Related Systems (ITRS), Copenhagen, Denmark, volume 70 of

Electronic Notes in Theoretical Computer Science. Elsevier, July 2002.

Crank, Erik and Matthias Felleisen. Parameter-passing and the lambda calculus.

In ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pages 233–244, January 1991.

Crary, Karl. A simple proof technique for certain parametricity results. In ACM SIG-

PLAN International Conference on Functional Programming (ICFP), Paris, France,

pages 82–89, September 1999.

Crary, Karl. Toward a foundational typed assembly language. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), New Orleans,

Louisiana, pages 198–212, January 2003.

Crary, Karl, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

pages 50–63, May 1999.

Crary, Karl, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in

type-erasure semantics. In ACM SIGPLAN International Conference on Functional

Programming (ICFP), Baltimore, Maryland, pages 301–312, 1998. Full version in

Journal of Functional Programming, 12(6), Nov. 2002, pp. 567–600.

Curtis, Pavel. Constrained Quantification in Polymorphic Type Analysis. PhD thesis,

Cornell University, Ithaca, New York, February 1990.

van Daalen, Diederik T. The Language Theory of Automath. PhD thesis, Technische

Hogeschool Eindhoven, Eindhoven, The Netherlands, 1980.

542 References

Damas, Luis and Robin Milner. Principal type schemes for functional programs. In

ACM Symposium on Principles of Programming Languages (POPL), Albuquerque,

New Mexico, pages 207–212, 1982.

Danvy, Olivier. Functional unparsing. Journal of Functional Programming, 8(6):621–

625, 1998.

DeLine, Rob and Manuel Fähndrich. Enforcing high-level protocols in low-level soft-

ware. In ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), Snowbird, Utah, pages 59–69, June 2001.

Donahue, James and Alan Demers. Data types are values. ACM Transactions on

Programming Languages and Systems, 7(3):426–445, July 1985.

Došen, Kosta. A historical introduction to substructural logics. In K. Došen and

P. Schroeder-Heister, editors, Substructural Logics, pages 1–30. Oxford University

Press, 1993.

Dreyer, Derek, Karl Crary, and Robert Harper. A type system for higher-order mod-

ules. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan-

guages (POPL), New Orleans, Louisiana, pages 236–249, New Orleans, January

2003.

Dussart, Dirk, Fritz Henglein, and Christian Mossin. Polymorphic recursion and sub-

type qualifications: Polymorphic binding-time analysis in polynomial time. In Inter-

national Symposium on Static Analysis (SAS) , Paris, France, volume 983 of Lecture

Notes in Computer Science, pages 118–135. Springer-Verlag, July 1995.

Emms, Martin and Hans LeiSS. Extending the type checker for SML by polymor-

phic recursion—A correctness proof. Technical Report 96-101, Centrum für

Informations- und Sprachverarbeitung, Universität München, 1996.

Erhard, Thomas. A categorical semantics of constructions. In IEEE Symposium on

Logic in Computer Science (LICS), Edinburgh, Scotland, pages 264–273, July 1988.

Fähndrich, Manuel. Bane: A Library for Scalable Constraint-Based Program Analysis.

PhD thesis, University of California at Berkeley, Berkeley, California, 1999.

Fähndrich, Manuel and Rob DeLine. Adoption and focus: Practical linear types for

imperative programming. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), Berlin, Germany, pages 13–24, June 2002.

Fähndrich, Manuel, Jakob Rehof, and Manuvir Das. Scalable context-sensitive flow

analysis using instantiation constraints. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), Vancouver, British Columbia,

Canada, pages 253–263, June 2000.

Felleisen, Matthias and Robert Hieb. A revised report on the syntactic theories of

sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.

Fisher, Kathleen and John H. Reppy. The design of a class mechanism for Moby. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Atlanta, Georgia, pages 37–49, May 1999.

References 543

Flanagan, Cormac and Shaz Qadeer. A type and effect system for atomicity. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), San Diego, California, pages 338–349, June 2003.

Flatt, Matthew and Matthias Felleisen. Units: Cool modules for HOT languages. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Montréal, Québec, pages 236–248, 1998.

Fluet, Matthew. Monadic regions. In Workshop on Semantics, Program Analysis and

Computing Environments for Memory Management (SPACE), informal proceedings,

January 2004.

Fluet, Matthew and Riccardo Pucella. Phantom types and subtyping. In IFIP Interna-

tional Conference on Theoretical Computer Science (TCS), pages 448–460, August

2002.

Foster, Jeffrey S., Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Berlin, Germany, pages 1–12, June 2002.

Frey, Alexandre. Satisfying subtype inequalities in polynomial space. In International

Symposium on Static Analysis (SAS) , Paris, France, volume 1302 of Lecture Notes

in Computer Science, pages 265–277. Springer-Verlag, September 1997.

Fuh, You-Chin and Prateek Mishra. Type inference with subtypes. In European Sym-

posium on Programming (ESOP), Nancy, France, volume 300 of Lecture Notes in

Computer Science, pages 94–114. Springer-Verlag, March 1988.

Furuse, Jun P. and Jacques Garrigue. A label-selective lambda-calculus with optional

arguments and its compilation method. RIMS Preprint 1041, Kyoto University,

October 1995.

Garcia, Ronald, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and Jeremia h Will-

cock. A comparative study of language support for generic programming. In ACM

SIGPLAN Conference on Object Oriented Programming: Systems, Languages, and

Applications (OOPSLA), Anaheim, California, pages 115–134, October 2003.

Garrigue, Jacques. Programming with polymorphic variants. In ACM SIGPLAN Work-

shop on ML, informal proceedings, September 1998.

Garrigue, Jacques. Code reuse through polymorphic variants. In Workshop on Foun-

dations of Software Engineering (FOSE), November 2000.

Garrigue, Jacques. Simple type inference for structural polymorphism. In Interna-

tional Workshop on Foundations of Object-Oriented Languages (FOOL), informal

proceedings, January 2002.

Garrigue, Jacques. Relaxing the value restriction. In International Symposium on

Functional and Logic Programming (FLOPS), Nara, Japan, volume 2998 of Lecture

Notes in Computer Science, pages 196–213. Springer-Verlag, April 2004.

Garrigue, Jacques and Hassan Aït-Kaci. The typed polymorphic label-selective

lambda-calculus. In ACM SIGPLAN–SIGACT Symposium on Principles of Program-

ming Languages (POPL), Portland, Oregon, pages 35–47, 1994.

544 References

Garrigue, Jacques and Didier Rémy. Extending ML with semi-explicit higher-order

polymorphism. Information and Computation, 155(1):134–169, 1999.

Gaster, Benedict R. Records, variants and qualified types. PhD thesis, University of

Nottingham, Nottingham, England, July 1998.

Gaster, Benedict R. and Mark P. Jones. A polymorphic type system for extensible

records and variants. Technical Report NOTTCS-TR-96-3, Department of Computer

Science, University of Nottingham, November 1996.

Gay, David and Alexander Aiken. Language support for regions. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Snow-

bird, Utah, pages 70–80, June 2001.

Ghelli, Giorgio and Benjamin Pierce. Bounded existentials and minimal typing,

1992. Circulated in manuscript form. Full version in Theoretical Computer Science,

193(1–2):75–96, February 1998.

Gifford, David K. and John M. Lucassen. Integrating functional and imperative pro-

gramming. In ACM Symposium on Lisp and Functional Programming (LFP), Cam-

bridge, Massachusetts, pages 28–38, August 1986.

Girard, Jean-Yves. Interprétation fonctionnelle et élimination des coupures de l’arith-

métique d’ordre supérieur. Thèse d’état, University of Paris VII, 1972. Summary

in J. E. Fenstad, editor, Scandinavian Logic Symposium, pp. 63–92, North-Holland,

1971.

Girard, Jean-Yves. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Girard, Jean-Yves. Light linear logic. Information and Computation, 143:175–204,

1998.

Girard, Jean-Yves, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

Glew, Neal. Type dispatch for named hierarchical types. In ACM SIGPLAN Interna-

tional Conference on Functional Programming (ICFP), Paris, France, pages 172–182,

1999.

GNU. GNU C library, version 2.2.5, 2001. Available from http://www.gnu.org/

manual/glibc-2.2.5/html_mono/libc.html.

Goguen, Healfdene. A Typed Operational Semantics for Type Theory. PhD thesis,

LFCS, University of Edinburgh, Edinburgh, Scotland, 1994. Report ESC-LFCS-94-

304.

Gordon, Andrew D. Bisimilarity as a theory of functional programming. In Workshop

on the Mathematical Foundations of Programming Semantics (MFPS), New Orleans,

Louisiana, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier,

April 1995.

Gordon, Andrew D. Operational equivalences for untyped and polymorphic object

calculi. In A. D. Gordon and A. M. Pitts, editors, Higher-Order Operational Tech-

niques in Semantics, Publications of the Newton Institute, pages 9–54. Cambridge

University Press, 1998.

References 545

Gordon, Andrew D. and Alan Jeffrey. Authenticity by typing for security protocols. In

IEEE Computer Security Foundations Workshop (CSFW), Cape Breton, Nova Scotia,

pages 145–159, 2001a.

Gordon, Andrew D. and Alan Jeffrey. Typing correspondence assertions for commu-

niation protocols. In Workshop on the Mathematical Foundations of Programming

Semantics (MFPS), Aarhus, Denmark, volume 45 of Electronic Notes in Theoretical

Computer Science, pages 379–409. Elsevier, May 2001b.

Gordon, Andrew D. and Alan Jeffrey. Types and effects for asymmetric cryptographic

protocols. In IEE Computer Security Foundations Workshop (CSFW) , Cape Breton,

Nova Scotia, pages 77–91, 2002.

Gordon, Andrew D. and Don Syme. Typing a multi-language intermediate code.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), London, England, pages 248–260, January 2001.

Gordon, Michael J., Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF,

volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

Gough, John. Compiling for the .NET Common Language Runtime. .NET series. Pren-

tice Hall, 2002.

Grossman, Dan, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James

Cheney. Region-based memory management in Cyclone. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), Berlin, Ger-

many, pages 282–293, 2002.

Gustavsson, Jörgen and Josef Svenningsson. Constraint abstractions. In Symposium

on Programs as Data Objects (PADO), Aarhus, Denmark, volume 2053 of Lecture

Notes in Computer Science, pages 63–83. Springer-Verlag, May 2001.

Hallenberg, Niels, Martin Elsman, and Mads Tofte. Combining region inference and

garbage collection. In ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI), Berlin, Germany, pages 141–152, June 2002.

Hallgren, Thomas and Aarne Ranta. An extensible proof text editor (abstract). In

International Conference on Logic for Programming and Automated Reasoning

(LPAR), Reunion Island, volume 1955 of Lecture Notes in Computer Science, pages

70–84. Springer-Verlag, 2000.

Hamid, Nadeem, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.

A syntactic approach to foundational proof-carrying code. In IEEE Symposium on

Logic in Computer Science (LICS), pages 89–100, July 2002.

Hanson, David R. Fast allocation and deallocation of memory based on object life-

times. Software—Practice and Experience, 20(1):5–12, 1990.

Hardin, Thérèse, Luc Maranget, and Bruno Pagano. Functional runtimes within the

lambda-sigma calculus. Journal of Functional Programming, 8(2):131–172, March

1998.

Harper, Robert, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 40(1):143–184, 1993. Summary in IEEE Symposium on Logic in

Computer Science (LICS), Ithaca, New York, 1987.

546 References

Harper, Robert and Mark Lillibridge. A type-theoretic approach to higher-order mod-

ules with sharing. In ACM SIGPLAN–SIGACT Symposium on Principles of Program-

ming Languages (POPL), Portland, Oregon, pages 123–137, January 1994.

Harper, Robert and John C. Mitchell. On the type structure of Standard ML. ACM

Transactions on Programming Languages and Systems, 15(2):211–252, April 1993.

An earlier version appeared in ACM Symposium on Principles of Programming Lan-

guages (POPL), San Diego, California, under the title “The Essence of ML” (Mitchell

and Harper), 1988.

Harper, Robert, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the

phase distinction. In ACM Symposium on Principles of Programming Languages

(POPL), San Francisco, California, pages 341–354, January 1990.

Harper, Robert and Frank Pfenning. On equivalence and canonical forms in the LF

type theory. ACM Transactions on Computational Logic, 2004. To appear. An ear-

lier version is available as Technical Report CMU-CS-00-148, School of Computer

Science, Carnegie Mellon University.

Harper, Robert and Robert Pollack. Type checking with universes. Theoretical Com-

puter Science, 89:107–136, 1991.

Harper, Robert and Christopher Stone. A type-theoretic interpretation of Standard

ML. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction:

Essays in Honour of Robin Milner. MIT Press, 2000.

Heintze, Nevin. Set based analysis of ML programs. In ACM Symposium on Lisp and

Functional Programming (LFP), Orlando, Florida, pages 306–317, June 1994.

Heintze, Nevin. Control-flow analysis and type systems. In International Sympo-

sium on Static Analysis (SAS) , Glasgow, Scotland, volume 983 of Lecture Notes in

Computer Science, pages 189–206. Springer-Verlag, 1995.

Helsen, Simon and Peter Thiemann. Syntactic type soundness for the region calculus.

In Workshop on Higher Order Operational Techniques in Semantics (HOOTS), Mon-

tréal, Québec, volume 41(3) of Electronic Notes in Theoretical Computer Science,

pages 1–20. Elsevier, September 2000.

Helsen, Simon and Peter Thiemann. Polymorphic specialization for ML. ACM Trans-

actions on Programming Languages and Systems, 26(4):652–701, July 2004.

Henglein, Fritz. Polymorphic Type Inference and Semi-Unification. PhD thesis, Rutgers

University, April 1989. Available as NYU Technical Report 443, May 1989, from

New York University, Courant Institute of Mathematical Sciences, Department of

Computer Science, 251 Mercer St., New York, NY 10012, USA.

Henglein, Fritz. Type inference with polymorphic recursion. ACM Transactions on

Programming Languages and Systems, 15(2):253–289, 1993.

Henglein, Fritz, Henning Makholm, and Henning Niss. A direct approach to control-

flow sensitive region-based memory management. In ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (PPDP), Firenze,

Italy, pages 175–186, September 2001.

References 547

Henglein, Fritz and Christian Mossin. Polymorphic binding-time analysis. In European

Symposium on Programming (ESOP), Edinburgh, Scotland, volume 788 of Lecture

Notes in Computer Science, pages 287–301. Springer-Verlag, April 1994.

Hirschowitz, Tom and Xavier Leroy. Mixin modules in a call-by-value setting. In

European Symposium on Programming (ESOP), Grenoble, France, pages 6–20, April

2002.

Hoare, C. A. R. Proof of correctness of data representation. Acta Informatica, 1:

271–281, 1972.

Hofmann, Martin. A mixed modal/linear lambda calculus with applications to

bellantoni-cook safe recursion. In International Workshop on Computer Science

Logic (CSL), Aarhus, Denmark, pages 275–294, August 1997a.

Hofmann, Martin. Syntax and semantics of dependent types. In A. M. Pitts and

P. Dybjer, editors, Semantics and Logic of Computation, pages 79–130. Cambridge

University Press, 1997b.

Hofmann, Martin. Linear types and non-size-increasing polynomial time computa-

tion. In IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, pages

464–473, June 1999.

Hofmann, Martin. Safe recursion with higher types and BCK-algebra. Annals of Pure

and Applied Logic, 104(1–3):113–166, 2000.

Honsell, Furio, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A variable typed

logic of effects. Information and Computation, 119(1):55–90, 1995.

Howard, William A. Hereditarily majorizable functionals of finite type. In A. S. Troel-

stra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and Analy-

sis, volume 344 of Lecture Notes in Mathematics, pages 454–461. Springer-Verlag,

Berlin, 1973.

Howard, William A. The formulas-as-types notion of construction. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism, pages 479–490. Academic Press, 1980. Reprint of 1969

article.

Howe, Douglas J. Proving congruence of bisimulation in functional programming

languages. Information and Computation, 124(2):103–112, 1996.

Huet, Gérard. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Thèse de

Doctorat d’Etat, Université de Paris 7, Paris, France, 1976.

Igarashi, Atsushi and Naoki Kobayashi. A generic type system for the Pi-calculus.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), London, England, pages 128–141, January 2001.

Igarashi, Atsushi and Naoki Kobayashi. Resource usage analysis. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Portland,

Oregon, pages 331–342, January 2002.

548 References

Igarashi, Atsushi and Benjamin C. Pierce. Foundations for virtual types. In European

Conference on Object-Oriented Programming (ECOOP), Lisbon, Portugal, June 1999.

Also in informal proceedings of the Workshop on Foundations of Object-Oriented

Languages (FOOL), January 1999. Full version in Information and Computation,

175(1): 34–49, May 2002.

Ishtiaq, Samin and Peter O’Hearn. BI as an assertion language for mutable data

structures. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), London, England, pages 14–26, January 2001.

Jacobs, Bart. Categorical Logic and Type Theory. Studies in Logic and the Foundations

of Mathematics 141. Elsevier, 1999.

Jategaonkar, Lalita A. ML with extended pattern matching and subtypes. Master’s

thesis, Massachusetts Institute of Technology, August 1989.

Jategaonkar, Lalita A. and John C. Mitchell. ML with extended pattern matching and

subtypes (preliminary version). In ACM Symposium on Lisp and Functional Pro-

gramming (LFP), Snowbird, Utah, pages 198–211, Snowbird, Utah, July 1988.

Jensen, Kathleen and Niklaus Wirth. Pascal User Manual and Report. Springer-Verlag,

second edition, 1975.

Jim, Trevor. What are principal typings and what are they good for? In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), St. Petersburg

Beach, Florida, pages 42–53, 1996.

Jim, Trevor, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In General Track: USENIX Annual

Technical Conference, pages 275–288, June 2002.

Jim, Trevor and Jens Palsberg. Type inference in systems of recursive types with sub-

typing, 1999. Manuscript, available from http://www.cs.purdue.edu/homes/

palsberg/draft/jim-palsberg99.pdf.

Johann, Patricia. A generalization of short-cut fusion and its correctness proof.

Higher-Order and Symbolic Computation, 15(4):273–300, 2002.

Jones, Mark P. Qualified Types: Theory and Practice. Cambridge University Press,

1994.

Jones, Mark P. Using parameterized signatures to express modular structure. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

St. Petersburg Beach, Florida, January 21–24, 1996.

Jones, Mark P. Typing Haskell in Haskell. In ACM Haskell Workshop, informal pro-

ceedings, October 1999.

Jones, Mark P. and John C. Peterson. The Hugs 98 user manual, 1999. Available from

http://www.haskell.org/hugs/.

Jones, Mark P. and Simon Peyton Jones. Lightweight extensible records for Haskell.

In ACM Haskell Workshop, informal proceedings, October 1999.

References 549

Jouannaud, Jean-Pierre and Claude Kirchner. Solving equations in abstract algebras:

a rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computa-

tional Logic: Essays in honor of Alan Robinson, pages 257–321. MIT Press, 1991.

Jouvelot, Pierre and David Gifford. Algebraic reconstruction of types and effects.

In ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pages 303–310, January 1991.

Jouvelot, Pierre and David K. Gifford. Reasoning about continuations with control

effects. In ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI), Portland, Oregon, pages 218–226, June 1989.

Jung, Achim and Allen Stoughton. Studying the fully abstract model of PCF within its

continuous function model. In International Conference on Typed Lambda Calculi

and Applications (TLCA), Utrecht, The Netherlands, volume 664 of Lecture Notes in

Computer Science, pages 230–244. Springer-Verlag, March 1993.

Jutting, L.S. van Benthem, James McKinna, and Robert Pollack. Checking algorithms

for Pure Type Systems. In International Workshop on Types for Proofs and Pro-

grams (TYPES), Nijmegen, The Netherlands, May 1993, volume 806 of Lecture Notes

in Computer Science, pages 19–61. Springer-Verlag, 1994.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is dexptime-

complete. In Colloquium on Trees in Algebra and Programming (CAAP), Copen-

hagen, Denmark, volume 431 of Lecture Notes in Computer Science, pages 206–

220. Springer-Verlag, May 1990.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the semi-

unification problem. Information and Computation, 102(1):83–101, January 1993.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. An analysis of ML typability.

Journal of the ACM, 41(2):368–398, March 1994.

Kirchner, Claude and Francis Klay. Syntactic theories and unification. In IEEE Sympo-

sium on Logic in Computer Science (LICS), Philadelphia, Pennsylvania, pages 270–

277, June 1990.

Knight, Kevin. Unification: a multidisciplinary survey. ACM Computing Surveys, 21

(1):93–124, March 1989.

Kobayashi, Naoki. Quasi-linear types. In ACM SIGPLAN–SIGACT Symposium on Princi-

ples of Programming Languages (POPL), San Antonio, Texas, pages 29–42, January

1999.

Kozen, Dexter, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub-

typing. Mathematical Structures in Computer Science, 5(1):113–125, 1995.

Kuncak, Viktor and Martin Rinard. Structural subtyping of non-recursive types is

decidable. In IEEE Symposium on Logic in Computer Science (LICS), Ottawa, Canada,

pages 96–107, June 2003.

Lafont, Yves. The linear abstract machine. Theoretical Computer Science, 59:157–180,

1988.

550 References

Lambek, Joachim. The mathematics of sentence structure. American Mathematical

Monthly, 65:154–170, 1958.

Lampson, Butler and Rod Burstall. Pebble, a kernel language for modules and abstract

data types. Information and Computation, 76:278–346, February/March 1988.

Lassen, Søren Bøgh. Relational Reasoning about Functions and Nondeterminism. PhD

thesis, Department of Computer Science, University of Aarhus, Aarhus, Denmark,

1998.

Lassez, Jean-Louis, Michael J. Maher, and Kim G. Marriott. Unification revisited. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming,

pages 587–625. Morgan Kaufmann, 1988.

Lee, Oukseh and Kwangkeun Yi. Proofs about a folklore let-polymorphic type infer-

ence algorithm. ACM Transactions on Programming Languages and Systems, 20

(4):707–723, July 1998.

Leivant, Daniel. Stratified functional programs and computational complexity.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), Charleston, South Carolina, pages 325–333, January 1993.

Leroy, Xavier. Polymorphic typing of an algorithmic language. Research Report 1778,

INRIA, October 1992.

Leroy, Xavier. Manifest types, modules and separate compilation. In ACM SIGPLAN–

SIGACT Symposium on Principles of Programming Languages (POPL), Portland,

Oregon, pages 109–122, January 1994.

Leroy, Xavier. Applicative functors and fully transparent higher-order modules.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), San Francisco, California, pages 142–153, January 1995.

Leroy, Xavier. A syntactic theory of type generativity and sharing. Journal of Func-

tional Programming, 6(5):667–698, September 1996.

Leroy, Xavier. The Objective Caml system: Documentation and user’s manual, 2000.

With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Avail-

able from http://caml.inria.fr.

Leroy, Xavier and François Pessaux. Type-based analysis of uncaught exceptions.

ACM Transactions on Programming Languages and Systems, 22(2):340–377, March

2000. Summary in ACM SIGPLAN–SIGACT Symposium on Principles of Program-

ming Languages (POPL), San Antonio, Texas, 1999.

Lillibridge, Mark. Translucent Sums: A Foundation for Higher-Order Module Systems.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

Pennsylvania, May 1997.

Lindholm, Tim and Frank Yellin. The Java Virtual Machine Specification. The Java

Series. Addison-Wesley, Reading, MA, January 1997.

Liskov, Barbara. A history of CLU. ACM SIGPLAN Notices, 28(3):133–147, 1993.

References 551

Loader, Ralph. Finitary PCF is not decidable. Theoretical Computer Science, 266(1–2):

341–364, September 2001.

Lucassen, John M. Types and Effects towards the Integration of Functional and Impera-

tive Programming. PhD thesis, Massachusetts Institute of Technology, Cambridge,

Massachusetts, August 1987. Technical Report MIT-LCS-TR-408.

Lucassen, John M. and David K. Gifford. Polymorphic effect systems. In ACM Sympo-

sium on Principles of Programming Languages (POPL), San Diego, California, pages

47–57, 1988.

Luo, Zhaohui. Computation and Reasoning: A Type Theory for Computer Science.

Number 11 in International Series of Monographs on Computer Science. Oxford

University Press, 1994.

Luo, Zhaohui and Robert Pollack. The LEGO proof development system: A user’s

manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

MacQueen, David. Modules for Standard ML. In ACM Symposium on Lisp and Func-

tional Programming (LFP), Austin, Texas, pages 198–207, 1984.

MacQueen, David. Using dependent types to express modular structure. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 277–286, January 1986.

MacQueen, David B. and Mads Tofte. A semantics for higher-order functors. In Eu-

ropean Symposium on Programming (ESOP), Edinburgh, Scotland, volume 788 of

Lecture Notes in Computer Science, pages 409–423. Springer-Verlag, April 1994.

Magnusson, Lena and Bengt Nordström. The ALF proof editor and its proof engine. In

International Workshop on Types for Proofs and Programs (TYPES), Nijmegen, The

Netherlands, May, 1993, volume 806 of Lecture Notes in Computer Science, pages

213–237. Springer-Verlag, 1994.

Mairson, Harry G., Paris C. Kanellakis, and John C. Mitchell. Unification and ML type

reconstruction. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays

in Honor of Alan Robinson, pages 444–478. MIT Press, 1991.

Makholm, Henning. Region-based memory management in Prolog. Master’s thesis,

University of Copenhagen, Department of Computer Science, March 2000. Techni-

cal Report DIKU-TR-00/09.

Makholm, Henning. A Language-Independend Framework for Region Inference. PhD

thesis, University of Copenhagen, Department of Computer Science, Copenhagen,

Denmark, 2003.

Makholm, Henning and Kostis Sagonas. On enabling the WAM with region support.

In International Conference on Logic Programming (ICLP), volume 2401 of Lecture

Notes in Computer Science, pages 163–178. Springer-Verlag, July 2002.

Martelli, Alberto and Ugo Montanari. Unification in linear time and space: A struc-

tured presentation. Internal Report B76-16, Istituto di Elaborazione delle Infor-

mazione, Consiglio Nazionale delle Ricerche, Pisa, July 1976.

552 References

Martelli, Alberto and Ugo Montanari. An efficient unification algorithm. ACM Trans-

actions on Programming Languages and Systems, 4(2):258–282, 1982.

Martin-Löf, Per. Intuitionistic Type Theory. Bibliopolis, 1984.

Mason, Ian A., Scott F. Smith, and Carolyn L. Talcott. From operational semantics to

domain theory. Information and Computation, 128(1):26–47, 1996.

Mason, Ian A. and Carolyn L. Talcott. Equivalence in functional languages with effects.

Journal of Functional Programming, 1:287–327, 1991.

McAllester, David. On the complexity analysis of static analyses. Journal of the ACM,

49(4):512–537, July 2002.

McAllester, David. A logical algorithm for ML type inference. In International Con-

ference on Rewriting Techniques and Applications (RTA), Valencia, Spain, volume

2706 of Lecture Notes in Computer Science, pages 436–451. Springer-Verlag, June

2003.

McBride, Conor. Dependently Typed Functional Programs and their Proofs. PhD thesis,

LFCS, University of Edinburgh, Edinburgh, Scotland, 2000.

McBride, Conor and James McKinna. The view from the left. Journal of Functional

Programming, 14(1):69–111, 2004.

McKinna, James and Robert Pollack. Pure Type Sytems formalized. In International

Conference on Typed Lambda Calculi and Applications (TLCA), Utrecht, The Nether-

lands, volume 664 of Lecture Notes in Computer Science, pages 289–305. Springer-

Verlag, March 1993.

Melski, David and Thomas Reps. Interconvertibility of a class of set constraints

and context-free language reachability. Theoretical Computer Science, 248(1–2),

November 2000.

Milner, Robin. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17:348–375, August 1978.

Milner, Robin, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML, Revised edition. MIT Press, 1997.

Minamide, Yasuhiko. A functional representation of data structures with a hole.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), San Diego, California, pages 75–84, January 1998.

Minamide, Yasuhiko, Greg Morrisett, and Robert Harper. Typed closure conversion.

In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), St. Petersburg Beach, Florida, pages 271–283, January 1996.

Miquel, Alexandre. Le calcul des constructions implicite: syntaxe et sémantique. PhD

thesis, University Paris 7, Paris, France, 2001.

Mitchell, John C. Coercion and type inference. In ACM Symposium on Principles

of Programming Languages (POPL), Salt Lake City, Utah, pages 175–185, January

1984.

References 553

Mitchell, John C. Representation independence and data abstraction. In ACM Sympo-

sium on Principles of Programming Languages (POPL), St. Petersburg Beach, Florida,

pages 263–276, January 1986.

Mitchell, John C. On the equivalence of data representations. In V. Lifschitz, editor,

Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of

John McCarthy, pages 305–330. Academic Press, 1991a.

Mitchell, John C. Type inference with simple subtypes. Journal of Functional Pro-

gramming, 1(3):245–286, July 1991b.

Mitchell, John C. Foundations for Programming Languages. MIT Press, 1996.

Mitchell, John C. and Gordon D. Plotkin. Abstract types have existential types. ACM

Transactions on Programming Languages and Systems, 10(3):470–502, 1988. Sum-

mary in ACM Symposium on Principles of Programming Languages (POPL), New

Orleans, Louisiana, 1985.

Moggi, Eugenio. Computational lambda-calculus and monads. In IEEE Symposium

on Logic in Computer Science (LICS), Asilomar, California, pages 14–23, June 1989.

Full version, titled Notions of Computation and Monads, in Information and Com-

putation, 93(1), pp. 55–92, 1991.

Moh, Shaw-Kwei. The deduction theorems and two new logical systems. Methodos, 2:

56–75, 1950.

Mohring, Christine. Algorithm development in the calculus of constructions. In IEEE

Symposium on Logic in Computer Science (LICS), Cambridge, Massachusetts, pages

84–91, June 1986.

Monnier, Stefan, Bratin Saha, and Zhong Shao. Principled scavenging. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

Snowbird, Utah, pages 81–91, June 2001.

Morrisett, Greg, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly

language. Journal of Functional Programming, 12(1):43–88, January 2002.

Morrisett, Greg, David Walker, Karl Crary, and Neal Glew. From System-F to typed

assembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, May 1999.

Mossin, Christian. Flow Analysis of Typed Higher-Order Programs. PhD thesis, Uni-

versity of Copenhagen, Department of Computer Science, Copenhagen, Denmark,

1997. Also available as Technical Report DIKU-TR-97/1.

Müller, Martin. A constraint-based recast of ML-polymorphism. In International Work-

shop on Unification, June 1994. Also available as Technical Report 94-R-243, CRIN,

Nancy, France.

Müller, Martin. Notes on HM(X), August 1998. Available from http://www.ps.

uni-sb.de/~mmueller/papers/HMX.ps.gz.

Müller, Martin, Joachim Niehren, and Ralf Treinen. The first-order theory of ordering

constraints over feature trees. Discrete Mathematics and Theoretical Computer

Science, 4(2):193–234, 2001.

554 References

Müller, Martin and Susumu Nishimura. Type inference for first-class messages with

feature constraints. In Asian Computer Science Conference (ASIAN), Manila, The

Philippines, volume 1538 of Lecture Notes in Computer Science, pages 169–187.

Springer-Verlag, December 1998.

Mycroft, Alan. Polymorphic type schemes and recursive definitions. In International

Symposium on Programming, Toulouse, France, volume 167 of Lecture Notes in

Computer Science, pages 217–228, Toulouse, France, April 1984. Springer-Verlag.

Necula, George C. Proof-carrying code. In ACM SIGPLAN–SIGACT Symposium on Prin-

ciples of Programming Languages (POPL), Paris, France, pages 106–119, January

1997.

Necula, George C. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

Pittsburgh, Pennsylvania, September 1998. Technical report CMU-CS-98-154.

Necula, George C. Translation validation for an optimizing compiler. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

Vancouver, British Columbia, Canada, pages 83–94, June 2000.

Necula, George C. and Peter Lee. Safe kernel extensions without run-time checking.

In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

Seattle, Washington, pages 229–243, October 1996.

Necula, George C. and Peter Lee. The design and implementation of a certifying

compiler. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), Montréal, Québec, pages 333–344, June 1998a.

Necula, George C. and Peter Lee. Efficient representation and validation of logical

proofs. In IEEE Symposium on Logic in Computer Science (LICS), Indianapolis, Indi-

ana, pages 93–104, June 1998b.

Niehren, Joachim, Martin Müller, and Andreas Podelski. Inclusion constraints over

non-empty sets of trees. In Theory and Practice of Software Development (TAP-

SOFT), Lille, France, volume 1214 of Lecture Notes in Computer Science, pages

217–231. Springer-Verlag, April 1997.

Niehren, Joachim and Tim Priesnitz. Non-structural subtype entailment in automata

theory. Information and Computation, 186(2):319–354, November 2003.

Nielson, Flemming and Hanne Riis Nielson. From CML to its process algebra. Theo-

retical Computer Science, 155:179–219, 1996.

Nielson, Flemming, Hanne Riis Nielson, and Christopher L. Hankin. Principles of Pro-

gram Analysis. Springer-Verlag, 1999.

Nielson, Flemming, Hanne Riis Nielson, and Helmut Seidl. A succinct solver for ALFP.

Nordic Journal of Computing, 9(4):335–372, 2002.

Nielson, Hanne Riis and Flemming Nielson. Higher-order concurrent programs with

finite communication topology. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), Portland, Oregon, pages 84–97, January 1994.

References 555

Nishimura, Susumu. Static typing for dynamic messages. In ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), San Diego, California,

pages 266–278, 1998.

Niss, Henning. Regions are Imperative: Unscoped Regions and Control-Flow Sensi-

tive Memory Management. PhD thesis, University of Copenhagen, Department of

Computer Science, Copenhagen, Denmark, 2002.

Nöcker, Erick and Sjaak Smetsers. Partially strict non-recursive data types. Journal

of Functional Programming, 3(2):191–215, 1993.

Nöcker, Erick G. M. H., Sjaak E. W. Smetsers, Marko C. J. D. van Eekelen, and Mari-

nus J. Plasmeijer. Concurrent clean. In Symposium on Parallel Architectures and

Languages Europe, Volume I: Parallel Architectures and Algorithms (PARLE), Eind-

hoven, The Netherlands, volume 505 of Lecture Notes in Computer Science, pages

202–219. Springer-Verlag, June 1991.

Odersky, Martin. Observers for linear types. In European Symposium on Program-

ming (ESOP), Rennes, France, volume 582 of Lecture Notes in Computer Science,

pages 390–407. Springer-Verlag, February 1992.

Odersky, Martin, Vincent Cremet, Christine Rockl, and Matthias Zenger. A nominal

theory of objects with dependent types. In International Workshop on Foundations

of Object-Oriented Languages (FOOL), informal proceedings, 2003.

Odersky, Martin, Martin Sulzmann, and Martin Wehr. Type inference with constrained

types. Theory and Practice of Object Systems, 5(1):35–55, 1999. Summary in Inter-

national Workshop on Foundations of Object-Oriented Languages (FOOL), informal

proceedings, 1997.

O’Hearn, Peter. On bunched typing. Journal of Functional Programming, 13(4):747–

796, 2003.

O’Hearn, Peter and David Pym. The logic of bunched implications. Bulletin of Symbolic

Logic, 5(2):215–244, 1999.

Ohori, Atsushi. A polymorphic record calculus and its compilation. ACM Transac-

tions on Programming Languages and Systems, 17(6):844–895, November 1995.

Ohori, Atsushi and Peter Buneman. Type inference in a database programming lan-

guage. In ACM Symposium on Lisp and Functional Programming (LFP), Snowbird,

Utah, pages 174–183, July 1988.

Ohori, Atsushi and Peter Buneman. Static type inference for parametric classes. In

Conference on Object Oriented Programming: Systems, Languages, and Applica-

tions (OOPSLA), New Orleans, Louisiana, pages 445–456, October 1989. Also in C.

A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-

gramming: Types, Semantics, and Language Design, MIT Press, 1994.

Orlov, Ivan E. The calculus of compatibility of propositions (in Russian). Matematich-

eskii Sbornik, 35:263–286, 1928.

556 References

Owre, Sam, Sreeranga Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K.

Srivas. PVS: Combining specification, proof checking, and model checking. In

International Conference on Computer Aided Verification (CAV), New Brunswick,

New Jersey, volume 1102 of Lecture Notes in Computer Science, pages 411–414.

Springer-Verlag, July 1996.

Palsberg, Jens. Efficient inference of object types. Information and Computation, 123

(2):198–209, 1995.

Palsberg, Jens. Type-based analysis and applications. In ACM SIGPLAN–SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering (PASTE), Snow-

bird, Utah, pages 20–27, June 2001.

Palsberg, Jens and Patrick O’Keefe. A type system equivalent to flow analysis. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Francisco, California, pages 367–378, 1995.

Palsberg, Jens and Michael Schwartzbach. Type substitution for object-oriented

programming. In ACM SIGPLAN Conference on Object Oriented Programming:

Systems, Languages, and Applications (OOPSLA)/European Conference on Object-

Oriented Programming (ECOOP), Ottawa, Ontario, volume 25(10) of ACM SIGPLAN

Notices, pages 151–160, October 1990.

Palsberg, Jens and Michael I. Schwartzbach. Object-Oriented Type Systems. Wiley,

1994.

Palsberg, Jens, Mitchell Wand, and Patrick M. O’Keefe. Type inference with non-

structural subtyping. Formal Aspects of Computing, 9:49–67, 1997.

Parnas, David. The criteria to be used in decomposing systems into modules. Com-

munications of the ACM, 14(1):221–227, 1972.

Paterson, Michael S. and Mark N. Wegman. Linear unification. Journal of Computer

and System Sciences, 16:158–167, 1978.

Paulin-Mohring, Christine. Extracting Fω’s programs from proofs in the calculus

of constructions. In ACM Symposium on Principles of Programming Languages

(POPL), Austin, Texas, pages 89–104, January 1989.

Petersen, Leaf, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT

internal language. Technical Report CMU-CS-00-180, Department of Computer Sci-

ence, Carnegie Mellon University, 2000.

Petersen, Leaf, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for

memory allocation and data layout. In ACM SIGPLAN–SIGACT Symposium on Prin-

ciples of Programming Languages (POPL), New Orleans, Louisiana, pages 172–184,

January 2003.

Peyton Jones, Simon. Special issue: Haskell 98 language and libraries. Journal of

Functional Programming, 13, January 2003.

Pfenning, Frank and Rowan Davies. A judgmental reconstruction of modal logic.

Mathematical Structures in Computer Science, 11(4):511–540, 2001.

References 557

Pfenning, Frank and Carsten Schürmann. Algorithms for equality and unification

in the presence of notational definitions. In T. Altenkirch, W. Naraschewski,

and B. Reus, editors, International Workshop on Types for Proofs and Programs

(TYPES), Kloster Irsee, Germany, volume 1657 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1998.

Pierce, Benjamin C. Types and Programming Languages. MIT Press, 2002.

Pierce, Benjamin C. and David N. Turner. Object-oriented programming without re-

cursive types. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), Charleston, South Carolina, pages 299–312, January 1993.

Pitts, Andrew M. Relational properties of domains. Information and Computation,

127:66–90, 1996.

Pitts, Andrew M. Existential types: Logical relations and operational equivalence.

In International Colloquium on Automata, Languages and Programming (ICALP),

Aalborg, Denmark, volume 1443 of Lecture Notes in Computer Science, pages 309–

326. Springer-Verlag, 1998.

Pitts, Andrew M. Parametric polymorphism and operational equivalence. Mathemat-

ical Structures in Computer Science, 10:321–359, 2000.

Pitts, Andrew M. Operational semantics and program equivalence. In G. Barthe, P. Dy-

bjer, and J. Saraiva, editors, Applied Semantics, Advanced Lectures, volume 2395 of

Lecture Notes in Computer Science, Tutorial, pages 378–412. Springer-Verlag, 2002.

Pitts, Andrew M. and Ian D. B. Stark. Observable properties of higher order functions

that dynamically create local names, or: What’s new? In International Symposium

on Mathematical Foundations of Computer Science, Gdańsk, Poland, volume 711 of

Lecture Notes in Computer Science, pages 122–141. Springer-Verlag, 1993.

Pitts, Andrew M. and Ian D. B. Stark. Operational reasoning for functions with local

state. In A. D. Gordon and A. M. Pitts, editors, Higher-Order Operational Techniques

in Semantics, Publications of the Newton Institute, pages 227–273. Cambridge Uni-

versity Press, 1998.

Plotkin, Gordon D. Lambda-definability and logical relations. Memorandum SAI–RM–

4, University of Edinburgh, Edinburgh, Scotland, October 1973.

Plotkin, Gordon D. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

Plotkin, Gordon D. Lambda-definability in the full type hierarchy. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, pages 363–373. Academic Press, 1980.

Plotkin, Gordon D. and Martín Abadi. A logic for parametric polymorphism. In In-

ternational Conference on Typed Lambda Calculi and Applications (TLCA), Utrecht,

The Netherlands, volume 664 of Lecture Notes in Computer Science, pages 361–375.

Springer-Verlag, March 1993.

558 References

Polakow, Jeff and Frank Pfenning. Natural deduction for intuitionistic non-

commutative linear logic. In International Conference on Typed Lambda Calculi

and Applications (TLCA), L’Aquila, Italy, volume 1581 of Lecture Notes in Computer

Science, pages 295–309. Springer-Verlag, April 1999.

Poll, Erik. Expansion Postponement for Normalising Pure Type Systems. Journal of

Functional Programming, 8(1):89–96, 1998.

Pollack, Robert. The Theory of LEGO: A Proof Checker for the Extended Calculus of

Constructions. PhD thesis, University of Edinburgh, Edinburgh, Scotland, 1994.

Popkorn, Sally. First Steps in Modal Logic. Cambridge University Press, 1994.

Pottier, François. A versatile constraint-based type inference system. Nordic Journal

of Computing, 7(4):312–347, November 2000.

Pottier, François. A semi-syntactic soundness proof for HM(X). Research Report

4150, INRIA, March 2001a.

Pottier, François. Simplifying subtyping constraints: a theory. Information and Com-

putation, 170(2):153–183, November 2001b.

Pottier, François. A constraint-based presentation and generalization of rows. In IEEE

Symposium on Logic in Computer Science (LICS), Ottawa, Canada, pages 331–340,

June 2003.

Pottier, François and Vincent Simonet. Information flow inference for ML. ACM Trans-

actions on Programming Languages and Systems, 25(1):117–158, January 2003.

Pottier, François, Christian Skalka, and Scott Smith. A systematic approach to static

access control. In European Symposium on Programming (ESOP), Genova, Italy,

volume 2028 of Lecture Notes in Computer Science, pages 30–45. Springer-Verlag,

April 2001.

Pratt, Vaughan and Jerzy Tiuryn. Satisfiability of inequalities in a poset. Fundamenta

Informaticae, 28(1–2):165–182, 1996.

Pugh, William and Grant Weddell. Two-directional record layout for multiple in-

heritance. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), White Plains, New York, pages 85–91, June 1990.

Rajamani, Sriram K. and Jakob Rehof. A behavioral module system for the pi-calculus.

In International Symposium on Static Analysis (SAS) , Paris, France, volume 2126 of

Lecture Notes in Computer Science, pages 375–394. Springer-Verlag, July 2001.

Rajamani, Sriram K. and Jakob Rehof. Conformance checking for models of asyn-

chronous message passing software. In International Conference on Computer

Aided Verification (CAV), Copenhagen, Denmark, pages 166–179, July 2002.

Rehof, Jakob. Minimal typings in atomic subtyping. In ACM SIGPLAN–SIGACT Sym-

posium on Principles of Programming Languages (POPL), Paris, France, pages 278–

291, January 1997.

Rehof, Jakob and Manuel Fähndrich. Type-based flow analysis: From polymorphic

subtyping to CFL reachability. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), London, England, pages 54–66, 2001.

References 559

Reid, Alastair, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide. Knit: Com-

ponent composition for systems software. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), San Diego, California, pages 347–360,

October 2000.

Rémy, Didier. Typechecking records and variants in a natural extension of ML. In

ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas,

pages 242–249, January 1989. Long version in C. A. Gunter and J. C. Mitchell, ed-

itors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and

Language Design, MIT Press, 1994.

Rémy, Didier. Algèbres Touffues. Application au Typage Polymorphe des Objets Enreg-

istrements dans les Langages Fonctionnels. PhD thesis, Université Paris VII, 1990.

Rémy, Didier. Extending ML type system with a sorted equational theory. Research

Report 1766, Institut National de Recherche en Informatique et Automatisme, Roc-

quencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992a.

Rémy, Didier. Projective ML. In ACM Symposium on Lisp and Functional Programming

(LFP), San Francisco, California, pages 66–75, June 1992b.

Rémy, Didier. Syntactic theories and the algebra of record terms. Research Report

1869, Institut National de Recherche en Informatique et Automatisme, Rocquen-

court, BP 105, 78 153 Le Chesnay Cedex, France, 1993.

Rémy, Didier. Programming objects with ML-ART: An extension to ML with abstract

and record types. In International Symposium on Theoretical Aspects of Computer

Software (TACS), Sendai, Japan, volume 789 of Lecture Notes in Computer Science,

pages 321–346. Springer-Verlag, April 1994.

Rémy, Didier and Jérôme Vouillon. Objective ML: An effective object-oriented exten-

sion to ML. Theory And Practice of Object Systems, 4(1):27–50, 1998. Summary

in ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL), Paris, France, 1997.

van Renesse, Robbert, Kenneth P. Birman, Mark Hayden, Alexey Vaysburd, and David

Karr. Building adaptive systems using Ensemble. Software: Practice and Experience,

28(9):963–979, August 1998.

Restall, Greg. An Introduction to Substructural Logics. Routledge, February 2000.

Restall, Greg. Relevant and substructural logics. In D. Gabbay and J. Woods, editors,

Handbook of the History and Philosophy of Logic, volume 6, Logic and the Modalities

in the Twentieth Century. Elsevier, 2005. To appear.

Reynolds, John C. Automatic computation of data set definitions. In Information

Processing 68, Edinburgh, Scotland, volume 1, pages 456–461. North Holland, 1969.

Reynolds, John C. Towards a theory of type structure. In Colloque sur la Programma-

tion, Paris, France, volume 19 of Lecture Notes in Computer Science, pages 408–425.

Springer-Verlag, 1974.

560 References

Reynolds, John C. Syntactic control of interference. In ACM Symposium on Principles

of Programming Languages (POPL), Tucson, Arizona, pages 39–46, January 1978.

Reprinted in O’Hearn and Tennent, ALGOL-like Languages, vol. 1, pages 273–286,

Birkhäuser, 1997.

Reynolds, John C. Types, abstraction, and parametric polymorphism. In R. E. A.

Mason, editor, Information Processing 83, Paris, France, pages 513–523. Elsevier,

1983.

Reynolds, John C. Syntactic control of interference, part 2. Report CMU-CS-89-130,

Carnegie Mellon University, April 1989.

Reynolds, John C. Intuitionistic reasoning about shared mutable data structure. In

J. Davies, A. W. Roscoe, and J. Woodcock, editors, Millennial Perspectives in Com-

puter Science: Proceedings of the 1999 Oxford-Microsoft Symposium in honour of

Sir Tony Hoare. Palgrave Macmillan, 2000.

Robinson, J. Alan. Computational logic: The unification computation. Machine Intel-

ligence, 6:63–72, 1971.

Ross, Douglas T. The AED free storage package. Communications of the ACM, 10(8):

481–492, 1967.

Russo, Claudio V. Types for Modules. PhD thesis, Edinburgh University, Edinburgh,

Scotland, 1998. LFCS Thesis ECS–LFCS–98–389.

Russo, Claudio V. Non-dependent types for standard ML modules. In ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming

(PPDP), Paris France, pages 80–97, September 1999.

Russo, Claudio V. Recursive structures for Standard ML. In ACM SIGPLAN Interna-

tional Conference on Functional Programming (ICFP), Firenze, Italy, pages 50–61,

September 2001.

Sabry, Amr. What is a purely functional language? Journal of Functional Program-

ming, 8(1):1–22, January 1998.

Saha, Bratin, Nevin Heintze, and Dino Oliva. Subtransitive CFA using types. Technical

Report YALEU/DCS/TR-1166, Yale University, Department of Computer Science,

October 1998.

Sangiorgi, Davide and David. The π -Calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

Sannella, Donald, Stefan Sokolowski, and Andrzej Tarlecki. Toward formal develop-

ment of programs from algebraic specifications: Parameterisation revisited. Acta

Informatica, 29(8):689–736, 1992.

Schneider, Fred B. Enforceable security policies. ACM Transactions on Information

and System Security, 3(1):30–50, February 2000.

Schwartz, Jacob T. Optimization of very high level languages (parts I and II). Com-

puter Languages, 1(2–3):161–194, 197–218, 1975.

References 561

Seldin, Jonathan. Curry’s anticipation of the types used in programming languages.

In Proceedings of the Annual Meeting of the Canadian Society for History and Phi-

losophy of Mathematics, Toronto, Ontario, pages 143–163, May 2002.

Semmelroth, Miley and Amr Sabry. Monadic encapsulation in ML. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Paris, France, pages

8–17, September 1999.

Sestoft, Peter. Replacing function parameters by global variables. In ACM Sympo-

sium on Functional Programming Languages and Computer Architecture (FPCA),

London, England, pages 39–53, September 1989. Also available as University of

Copenhagen, Department of Computer Science Technical Report 88-7-2.

Sestoft, Peter. Moscow ML homepage, 2003. http://www.dina.dk/~sestoft/

mosml.html.

Severi, Paula and Erik Poll. Pure type systems with definitions. In International Sym-

posium on Logical Foundations of Computer Science (LFCS), St. Petersburg, Russia,

volume 813 of Lecture Notes in Computer Science, pages 316–328. Springer-Verlag,

September 1994.

Shao, Zhong. An overview of the FLINT/ML compiler. In ACM SIGPLAN Workshop on

Types in Compilation (TIC), Amsterdam, The Netherlands, June 1997.

Shao, Zhong. Typed cross-module compilation. In ACM SIGPLAN International Con-

ference on Functional Programming (ICFP), Baltimore, Maryland, pages 141–152,

September 1998.

Shao, Zhong. Transparent modules with fully syntactic signatures. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Paris, France, pages

220–232, September 1999.

Shao, Zhong, Christopher League, and Stefan Monnier. Implementing typed inter-

mediate languages. In ACM SIGPLAN International Conference on Functional Pro-

gramming (ICFP), Baltimore, Maryland, pages 313–323, September 1998.

Shivers, Olin. Control flow analysis in Scheme. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), Atlanta, Georgia, pages

164–174, June 1988.

Shivers, Olin. Control-Flow Analysis of Higher-Order Languages or Taming Lambda.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991.

Simonet, Vincent. Type inference with structural subtyping: a faithful formalization

of an efficient constraint solver. In Asian Symposium on Programming Languages

and Systems (APLAS), Beijing, China, pages 283–302, November 2003.

Skalka, Christian and François Pottier. Syntactic type soundness for HM(X). In Work-

shop on Types in Programming (TIP), Dagstuhl, Germany, volume 75 of Electronic

Notes in Theoretical Computer Science. Elsevier, July 2002.

Smith, Frederick, David Walker, and Greg Morrisett. Alias types. In European Sym-

posium on Programming (ESOP), Berlin, Germany, volume 1782 of Lecture Notes in

Computer Science, pages 366–381. Springer-Verlag, April 2000.

562 References

Smith, Geoffrey S. Principal type schemes for functional programs with overloading

and subtyping. Science of Computer Programming, 23(2–3):197–226, December

1994.

Smith, Jan, Bengt Nordström, and Kent Petersson. Programming in Martin-Löf’s Type

Theory: An Introduction. Oxford University Press, 1990.

Statman, Richard. Logical relations and the typed λ-calculus. Information and Con-

trol, 65(2–3):85–97, May–June 1985.

Steele, Guy L., Jr. Common Lisp: The Language. Digital Press, 1990.

Stone, Christopher A. Singleton Kinds and Singleton Types. PhD thesis, Carnegie

Mellon University, Pittsburgh, Pennsylvania, August 2000.

Stone, Christopher A. and Robert Harper. Deciding type equivalence in a language

with singleton kinds. In ACM SIGPLAN–SIGACT Symposium on Principles of Pro-

gramming Languages (POPL), Boston, Massachusetts, pages 214–227, January 2000.

Stone, Christopher A. and Robert Harper. Extensional equivalence and singleton

types. 2005. To appear.

Streicher, Thomas. Semantics of Type Theory. Springer-Verlag, 1991.

Su, Zhendong, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen.

The first-order theory of subtyping constraints. In ACM SIGPLAN–SIGACT Sym-

posium on Principles of Programming Languages (POPL), Portland, Oregon, pages

203–216, January 2002.

Sulzmann, Martin. A General Framework for Hindley/Milner Type Systems with Con-

straints. PhD thesis, Yale University, Department of Computer Science, New Haven,

Connecticut, May 2000.

Sulzmann, Martin, Martin Müller, and Christoph Zenger. Hindley/Milner style type

systems in constraint form. Research Report ACRC–99–009, University of South

Australia, School of Computer and Information Science, July 1999.

Sumii, Eijiro and Benjamin C. Pierce. A bisimulation for type abstraction and re-

cursion. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan-

guages (POPL), Long Beach, California, 2005.

Sun. JavaTM 2 Platform Micro Edition (J2METM) Technology for Creating Mobile

Devices—White Paper. Sun Microsystems, May 2000. Available from http://java.

sun.com/products/kvm/wp/KVMwp.pdf.

Tait, William W. Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic, 32(2):198–212, June 1967.

Talcott, C. Reasoning about functions with effects. In A. D. Gordon and A. M. Pitts,

editors, Higher Order Operational Techniques in Semantics, Publications of the

Newton Institute, pages 347–390. Cambridge University Press, 1998.

Talpin, Jean-Pierre and Pierre Jouvelot. Polymorphic type, region and effect inference.

Journal of Functional Programming, 2(2):245–271, 1992.

References 563

Talpin, Jean-Pierre and Pierre Jouvelot. The type and effect discipline. Information

and Computation, 111:245–296, 1994.

Tarditi, David, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and

Peter Lee. TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), Philadephia,

Pennsylvania, pages 181–192, May 1996.

Tarjan, Robert Endre. Efficiency of a good but not linear set union algorithm. Journal

of the ACM, 22(2):215–225, April 1975.

Tarjan, Robert Endre. Applications of path compression on balanced trees. Journal

of the ACM, 26(4):690–715, October 1979.

Terlouw, J. Een nadere bewijstheoretische analyse van GSTTs. Manuscript, University

of Nijmegen, Netherlands, 1989.

Thorup, Kresten Krab. Genericity in Java with virtual types. In European Confer-

ence on Object-Oriented Programming (ECOOP), Jyväskylä, Finland, volume 1241

of Lecture Notes in Computer Science, pages 444–471. Springer-Verlag, June 1997.

Tiuryn, Jerzy. Subtype inequalities. In IEEE Symposium on Logic in Computer Science

(LICS), Santa Cruz, California, pages 308–317, June 1992.

Tiuryn, Jerzy and Mitchell Wand. Type reconstruction with recursive types and

atomic subtyping. In Theory and Practice of Software Development (TAPSOFT),

Orsay, France, volume 668 of Lecture Notes in Computer Science, pages 686–701.

Springer-Verlag, April 1993.

Tofte, Mads. Operational Semantics and Polymorphic Type Inference. PhD thesis,

Computer Science Department, Edinburgh University, Edinburgh, Scotland, 1988.

Tofte, Mads and Lars Birkedal. A region inference algorithm. ACM Transactions on

Programming Languages and Systems, 20(4):724–767, 1998.

Tofte, Mads, Lars Birkedal, Martin Elsman, and Niels Hallenberg. Region-based mem-

ory management in perspective. In ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming (PPDP), Firenze, Italy, pages

175–186, September 2001a.

Tofte, Mads, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen,

and Peter Sestoft. Programming with regions in the ML Kit (for version 4). Technical

report, IT University of Copenhagen, October 2001b.

Tofte, Mads and Jean-Pierre Talpin. Implementing the call-by-value lambda-calculus

using a stack of regions. In ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages (POPL), Portland, Oregon, January 1994.

Tofte, Mads and Jean-Pierre Talpin. Region-based memory management. Information

and Computation, 132(2):109–176, February 1997.

Torgersen, Mads. Virtual types are statically safe. In International Workshop on Foun-

dations of Object-Oriented Languages (FOOL), informal proceedings, January 1998.

564 References

Trifonov, Valery and Scott Smith. Subtyping constrained types. In International Sym-

posium on Static Analysis (SAS) , Aachen, Germany, volume 1145 of Lecture Notes

in Computer Science, pages 349–365. Springer-Verlag, September 1996.

Turner, David N. and Philip Wadler. Operational interpretations of linear logic. The-

oretical Computer Science, 227:231–248, 1999. Special issue on linear logic.

Turner, David N., Philip Wadler, and Christian Mossin. Once upon a type. In ACM

Symposium on Functional Programming Languages and Computer Architecture

(FPCA)San Diego, California, pages 1–11, June 1995.

Vouillon, Jerome and Paul-André Melliès. Semantic types: A fresh look at the ideal

model for types. In ACM SIGPLAN–SIGACT Symposium on Principles of Program-

ming Languages (POPL), Venice, Italy, pages 52–63, 2004.

Wadler, Philip. Theorems for free! In ACM Symposium on Functional Programming

Languages and Computer Architecture (FPCA), London, England, pages 347–359,

September 1989.

Wadler, Philip. Linear types can change the world. In IFIP TC 2 Working Conference

on Programming Concepts and Methods, Sea of Galilee, Israel, pages 546–566, April

1990.

Wadler, Philip. The marriage of effects and monads. ACM Transactions on Computa-

tional Logic, 4(1):1–32, 2003.

Wahbe, Robert, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient

software-based fault isolation. In ACM Symposium on Operating Systems Principles

(SOSP), Asheville, North Carolina, pages 203–216, December 1993.

Walker, David, Karl Crary, and Greg Morrisett. Typed memory management via static

capabilities. ACM Transactions on Programming Languages and Systems, 22(4):

701–771, July 2000.

Walker, David and Greg Morrisett. Alias types for recursive data structures. In ACM

SIGPLAN Workshop on Types in Compilation (TIC), Montréal, Québec, September,

2000, volume 2071, pages 177–206. Springer-Verlag, 2001.

Walker, David and Kevin Watkins. On regions and linear types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), Firenze, Italy, pages

181–192, September 2001.

Wand, Mitchell. Complete type inference for simple objects. In IEEE Symposium on

Logic in Computer Science (LICS), Ithaca, New York, pages 37–44, June 1987a.

Wand, Mitchell. A simple algorithm and proof for type inference. Fundamenta Infor-

maticae, 10:115–122, 1987b.

Wand, Mitchell. Corrigendum: Complete type inference for simple objects. In IEEE

Symposium on Logic in Computer Science (LICS), Edinburgh, Scotland, page 132,

1988.

Wand, Mitchell. Type inference for objects with instance variables and inheritance.

In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented

References 565

Programming: Types, Semantics, and Language Design, pages 97–120. MIT Press,

1994.

Wang, Daniel C. and Andrew W. Appel. Type-preserving garbage collectors. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

London, England, pages 166–178, January 2001.

Wansbrough, Keith and Simon Peyton Jones. Once upon a polymorphic type. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Antonio, Texas, pages 15–28, January 1999.

Wells, Joe B. Typability and type checking in system F are equivalent and undecidable.

Annals of Pure and Applied Logic, 98(1–3):111–156, 1999.

Wells, Joe B. The essence of principal typings. In International Colloquium on Au-

tomata, Languages and Programming (ICALP), volume 2380 of Lecture Notes in

Computer Science, pages 913–925. Springer-Verlag, 2002.

Werner, Benjamin. Une Théorie des Constructions Inductives. PhD thesis, Université

Paris 7, Paris, France, May 1994.

Wirth, Niklaus. Systematic Programming: An Introduction. Prentice Hall, 1973.

Wirth, Niklaus. Programming in Modula-2. Texts and Monographs in Computer Sci-

ence. Springer-Verlag, 1983.

Wright, Andrew K. Simple imperative polymorphism. Lisp and Symbolic Computation,

8(4):343–355, 1995.

Wright, Andrew K. and Robert Cartwright. A practical soft type system for Scheme.

In ACM Symposium on Lisp and Functional Programming (LFP), Orlando, Florida,

pages 250–262, June 1994. Full version available in ACM Transactions on Program-

ming Languages and Systems, 19(1):87–52, January 1997.

Wright, Andrew K. and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, November 1994.

Xi, Hongwei. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon

University, Pittsburgh, Pennsylvania, 1998.

Xi, Hongwei and Robert Harper. A dependently typed assembly language. In ACM SIG-

PLAN International Conference on Functional Programming (ICFP), Firenze, Italy,

pages 169–180, September 2001.

Xi, Hongwei and Frank Pfenning. Dependent types in practical programming. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San

Antonio, Texas, pages 214–227, January 1999.

Zenger, Christoph. Indexed types. Theoretical Computer Science, 187:147–165, 1997.

Zwanenburg, Jan. Pure type systems with subtyping. In International Conference

on Typed Lambda Calculi and Applications (TLCA), L’Aquila, Italy, volume 1581 of

Lecture Notes in Computer Science, pages 381–396. Springer-Verlag, April 1999.

