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Compilation of extended recursion
in call-by-value functional languages

Tom Hirschowitz · Xavier Leroy · J. B. Wells

Abstract This paper formalizes and proves correct a compilation scheme for mutually-
recursive definitions in call-by-value functional languages. This scheme supports a wider
range of recursive definitions than previous methods. We formalize our technique as a trans-
lation scheme to a lambda-calculus featuring in-place update of memory blocks, and prove
the translation to be correct.
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1 Introduction

1.1 The need for extended recursion

Functional languages usually feature mutually recursive definition of values, for example via
the letrec construct in Scheme, let rec in Caml, val rec and fun in Standard ML, or
recursive equations in Haskell. Beyond syntax, functional languages differ also in the kind of
expressions they support as right-hand sides of mutually recursive definitions. For instance,
Haskell [25] allows arbitrary expressions as right-hand sides of recursive definitions, while
Standard ML [22] only allows syntactic λ -abstractions, and OCaml [21] allows both λ -
abstractions and limited forms of constructor applications.

The range of allowed right-hand sides crucially depends on the evaluation strategy of the
language. Call-by-name or lazy languages such as Haskell naturally implement arbitrary re-
cursive definitions: the on-demand unwinding of the recursive definition performed by lazy
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evaluation correctly reaches the fixed point when it exists, or diverges when the recursive
definition is ill-founded, as in x = x+1. For call-by-value languages, ill-founded definitions
are more problematic: during the evaluation of x = x + 1, the right-hand side x + 1 must be
evaluated while the value of x is still unknown. There is no strict call-by-value strategy that
allows this. Thus, such ill-founded definitions must be rejected, statically or dynamically.

The simplest way to rule out ill-founded definitions and ensure call-by-value evalua-
bility is to syntactically restrict the right-hand sides of recursive definitions to be function
abstractions, as Standard ML do. Such a restriction also enables efficient compilation of
the recursive definitions, for instance using the compilation scheme described by Appel [1].
While generally acceptable for direct programming, this restriction can be problematic when
we wish to encode higher-level constructs such as objects, classes, recursive modules and
mixin modules. For instance, Boudol [3] uses definitions of the shape x = c x (where c is a
variable) in his recursive record semantics of objects. Similarly, Hirschowitz and Leroy [15]
use mutually-dependent sets of such definitions for representing mixin modules. Putting
these works into practice requires the definition of an efficient, call-by-value intermediate
language supporting such non-standard recursive definitions. This definition is the topic of
the present article.

1.2 From backpatching to immediate in-place update

Backpatching of reference cells A famous example of a call-by-value language that does
not statically restrict the right-hand sides of recursive definitions is Scheme [18]. The op-
erational semantics of the letrec construct of Scheme is known as the backpatching se-
mantics1. It is illustrated in Figure 1. Consider two mutually-dependent definitions x1 = e1
and x2 = e2. First, a reference cell is assigned to each recursive variable, and initialized to
some dummy value undefined (represented by • in Figure 1). Then, the right-hand sides are
evaluated, building data structures that possibly include the reference cells, to obtain some
values v1 and v2. Until this point, any attempt to dereference the cells is a run-time error.
Finally, the reference cells are updated with v1 and v2, and the definitions can be considered
fully evaluated.

The backpatching scheme leaves some flexibility as to when the reference cells bound to
recursively-defined variables are dereferenced. In Scheme, every occurrence of these vari-
ables that is evaluated in the lexical scope of the letrec binding causes an immediate deref-
erence. Boudol and Zimmer [4] propose a compilation scheme for a call-by-value λ -calculus
with unrestricted mutually recursive definitions where the dereferencing is further delayed
because arguments to functions are passed by reference rather than by value. The difference
is best illustrated by the definition x = (λy.λ z.if z = 0 then 1 else y (z−1)) x. In Scheme,
it compiles down to the following intermediate code (written in ML-style notation)

letx = ref undefined in

x := (λy.λ z.if z = 0 then 1 else y (z−1)) !x

and therefore fails at run-time because the reference x is accessed at a time when it still
contains undefined. In Boudol and Zimmer’s compilation scheme, the y parameter is passed

1 The immediate in-place update compilation scheme studied in this paper also uses a kind of backpatch-
ing, but we only use the word “backpatching” to refer to the schemes described in this section, i.e., to abbre-
viate “backpatching of reference cells”.
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1. Initialization:

x1 x2

•
2. Computation:

v1 v2

x1 x2

•
3. Reference update:

v1 v2

x1 x2

Fig. 1 The backpatching scheme

by reference, resulting in the following compiled code:

letx = ref undefined in

x := (λy.λ z.if z = 0 then 1 else !y (z−1)) x

Here, x is passed as a function argument without being dereferenced, therefore ensuring that
the recursive definition evaluates correctly. The downside is that the recursive call to y has
now to be preceded by a dereferencing of y.

In summary, the backpatching semantics featured in Scheme enables a wider range of re-
cursive definitions to be evaluated under a call-by-value regime than the syntactic restriction
of ML. This range is even wider in Boudol and Zimmer’s variant [4]. In both cases, a draw-
back of this approach is that, in general, recursive calls to a recursively-defined function
must go through one additional indirection. For well-founded definitions, this indirection
seems superfluous, since no further update of the reference cells is needed. Scheme com-
pilers optimize this indirection away in some cases, typically when the right-hand sides are
syntactic functions; but removing it in all cases requires alternative approaches, which we
now describe.

In-place update The in-place update scheme [6] is a variant of the backpatching implemen-
tation of recursive definitions that avoids the additional indirection just mentioned. It is used
in the OCaml compilers [21].

Fig. 1 The backpatching scheme
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1. Pre-allocation:

• • •x1 x2

2. Computation:

v1 v2

• • •x1 x2

3. In-place update:

x1 x2

Fig. 2 The in-place update scheme

In-place update The in-place update scheme [6] is a variant of the backpatching implemen-
tation of recursive definitions that avoids the additional indirection just mentioned. It is used
in the OCaml compilers [21].

The in-place update scheme implements mutually recursive definitions that satisfy the
following two conditions. For a mutually recursive definition x1 = e1, . . . ,xn = en, first, the
value of each definition should be represented at run-time by a heap allocated block of
statically predictable size; second, for each i, the computation of ei should not need the
value of any of the definitions e j, but only their names x j. As an example of the second
condition, the recursive definition f = λx.(... f ...) is accepted, since the computation of the
right-hand side does not need the value of f . We say that it weakly depends on f . In contrast,
the recursive definition f = ( f 0) is rejected. We say that the right-hand side strongly depends
on f . Several techniques to check this condition have been proposed [3,15,13,9].

The evaluation of a set of mutually recursive definitions with in-place update consists of
three steps. First, for each definition, allocate an uninitialized block of the expected size, and
bind it to the recursively-defined identifier. Those blocks are called dummy blocks, and this
step is called the pre-allocation step. Second, compute the right-hand sides of the definitions.
Recursively-defined identifiers thus refer to the corresponding dummy blocks. Owing to the
second condition, no attempt is made to access the contents of the dummy blocks. This step
leads, for each definition, to a block of the expected size. Third, update the dummy blocks in
place with the contents of the computed blocks. (Alternatively, the second step could store
directly its results in the dummy blocks. However, this would require a special evaluation
scheme for right-hand sides of recursive definitions whereas, here, they are evaluated just
like any other expression.)

For example, consider a mutually recursive definition x1 = e1,x2 = e2, where it is stati-
cally predictable that the values of the expressions e1 and e2 will be represented at runtime
by heap-allocated blocks of sizes 2 and 1, respectively. Here is what the compiled code
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does, as depicted in Figure 2. First, it allocates two uninitialized heap blocks, at addresses `1
and `2, of respective sizes 2 and 1. Then, it computes e1, where x1 and x2 are bound to `1
and `2, respectively. The result is a heap block of size 2, possibly containing references to `1
and `2. The same process is carried on for e2, resulting in a heap block of size 1. The third
and final step copies the contents of the two obtained blocks to `1 and `2, respectively, then
garbage-collects the useless blocks. The result is that the two initially dummy blocks now
contain the proper cyclic data structures, without the indirection inherent in the backpatching
semantics.

Immediate in-place update The scheme described above computes all definitions in se-
quence, and only then updates the dummy blocks in place. From the example above, it
seems quite clear that in-place update for a definition could be done as soon as its value is
available. Waddell, Sarkar and Dybvig [31] proposed this improvement for the backpatching
implementation; we adapt it to our setting here. We call this method the immediate in-place
update scheme and concentrate on it in the remainder of this paper.

As long as definitions weakly depend on each other, as happens with functions for in-
stance, both schemes behave identically. Nevertheless, in the case where e2 strongly depends
on x1, for example if e2 = fst(x1)+ 1, the original scheme can go wrong. Indeed, the con-
tents of `1 are still undefined when e2 is computed. Instead, with immediate in-place update,
the value v1 is already available when computing e2. This trivial modification to the scheme
thus increases the expressive power of mutually recursive definitions. It allows definitions to
de-structure the values of previous definitions. Furthermore, it allows some of the mutually-
recursive definitions to have statically unknown sizes, as shown by the following example.

An example of execution is presented in Figure 3. The definition is x1 = e1,x2 = e2,x3 =

e3, where e1 and e3 are expected to evaluate to blocks of sizes 2 and 1, respectively, but
where the representation for the value of e2 is not statically predictable. The pre-allocation
step allocates dummy blocks for x1 and x3 only. The value v1 of e1 is then computed. It can
reference x1 and x3, which correspond to pointers to the dummy blocks, but not x2, which
would not make any sense here. This value is copied to the corresponding dummy block.
Then, the value v2 of e2 is computed. The computation can refer to both dummy blocks, and
can also strongly depend on x1 (provided this strong dependency does not trigger a need
for the value of e3), but not on x2. Finally, the value v3 of e3 is computed and copied to the
corresponding dummy block.

The immediate in-place update scheme implements more definitions than the original in-
place update scheme. In fact, it implements arbitrary non-recursive definitions, thus allowing
to merge the traditionally distinct constructs let and let rec.

Restrictions imposed on the source language What are the restrictions put on recursive defi-
nitions in the source language if we are to compile them with the immediate in-place update
scheme? We adopt the following sufficient conditions. First, the values of forward refer-
enced definitions must be represented by heap-allocated blocks. Second, the sizes of these
blocks must be known statically. Third, the contents of these blocks should not be accessed
before they have been updated with proper values. These restrictions are highly dependent
on the data representation strategy implemented by the compiler. The second restriction also
depends on how expected sizes are computed at compile-time, which entails a static anal-
ysis that is necessarily conservative. For instance, Hirschowitz [13] derives the sizes from
the static types of the right-hand sides of recursive definitions, while the OCaml compiler
proceeds by syntactic inspection of the shapes of the right-hand sides. More sophisticated
static analyses, such as 0-CFA [29] or enriched type systems, could also be used.
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1. Pre-allocation:

• • •x1 x3

2. Computation of e1:

v1

• • •x1 x3

3. Update of x1 with v1:

•x1 x3

4. Computation of e2 and binding of its value to x2:

•x1 x3

x2

5. Computation and update of e3:

x1 x3

x2

Fig. 3 The immediate in-place update scheme

In this article, we abstract over these compiler-dependent issues as follows. We define
a source language where each recursive definition is annotated by the expected size of the
representation of the right-hand side, if known. These annotations reflect the result of a prior
size analysis of the kind mentioned earlier. Both our source and target languages feature a
notion of size, which we only assume to be preserved by the translation (Hypothesis 17) and
satisfy a few natural requirements (Hypotheses 1 and 10).
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1.3 Summary of contributions

The contributions of this article are threefold. First, we introduce and formalize a call-by-
value functional language called λ◦, featuring an extended recursion construct that is not
restricted to λ -abstractions as right-hand sides of recursive definitions, but also supports
recursive definitions of data structures (x = cons 1 x) and of fixed points of certain higher-
order functions (x = f x). This recursion construct subsumes both the standard recursive and
non-recursive value binding constructs let and let rec, and is compilable by immediate
in-place update.

Second, we provide the first formalization of the in-place update implementation
scheme. It is formalized as a translation from λ◦ to a target language λa that does not feature
recursive definitions, but instead explicitly manipulates a heap via allocation and update
operations. This language is designed to closely match the Lambda intermediate languages
used by the OCaml compiler [21], attesting that it can be implemented efficiently.

Third, we prove that the evaluation of any λ◦ expression is correctly simulated by its
translation. This is the first formal correctness proof for the in-place update scheme.

The remainder of this paper is organized as follows. In Section 2, we formalize the
source language λ◦. Section 3 defines the target language λa. We define the compilation
scheme from λ◦ to λa in Section 4 and prove its correctness in Section 5. Finally, we discuss
related work in Section 6 and conclusions and future work in Section 7.

2 The source language λ◦

2.1 Notations

Given two sets A and B, A # B means that A and B are disjoint, P(A) denotes the set of all
subsets of A, and |A| denotes the cardinality of A.

For all sets A and B and function f : A→ B, dom( f ) denotes the domain A of f , and
cod( f ) denotes its codomain B. Moreover, f\C denotes f restricted to A \C. We also write
f 〈a 7→ b〉 for the unique function f ′ : (A∪{a})→ (B∪{b}) such that f ′(a) = b and for all
a′ ∈ A \ {a}, f ′(a′) = f (a′). Moreover, for all functions f1 : A1 → B1 and f2 : A2 → B2, if
A1 # A2, then f1 + f2 denotes the union of f1 and f2 as graphs.

For any syntactic entity ranged over by a meta variable X , with variables ranged over by
x, the notation [x1 7→ X1, . . . ,xn 7→ Xn] (for n≥ 1) denotes a substitution function σ that maps
xi to Xi for 1 ≤ i ≤ n, and maps all other variables to themselves. The identity substitution
is written id. The application of a substitution to a syntactic entity with bindings must use
standard techniques to avoid variable capture. The domain of this substitution is the set of all
variables, and its support supp(σ) is {x | x 6= σ(x)}. Substitutions are required to have finite
support. Accordingly, the cosupport is defined by cosupp(σ) = {σ(x) | x ∈ supp(σ)}. For
all substitutions σ1 and σ2, if supp(σ1) # supp(σ2), we define their disjoint union σ1 +σ2 by
(σ1 + σ2)(x) = σ1(x) for all x ∈ supp(σ1), (σ1 + σ2)(x) = σ2(x) for all x ∈ supp(σ2), and
(σ1 + σ2)(x) = x for all x /∈ (supp(σ1)] supp(σ2)). (This overloads the previous notation
f1 + f2 for functions with disjoint domains.) For all substitutions σ1 and σ2, we write σ1(σ2)
for the unique substitution of support supp(σ2) such that for all x ∈ supp(σ2), σ1(σ2)(x) =
σ1(σ2(x)). It is in general different from the composition σ1 ◦ σ2, since if x ∈ supp(σ1) \
supp(σ2), (σ1 ◦ σ2)(x) = σ1(x), whereas (σ1(σ2))(x) = x.
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Variable: x ∈ vars
Name: X ∈ names

Expression: e ∈ expr ::= x | λx.e | e1 e2 λ -calculus
| {r} | e.X Record operations
| rec b in e Recursive definitions

Record row: r ::= ε | X = x,r
Binding: b ::= ε | x � e,b

Size indication: � ::= =[n]|=[?] (n a natural number)

Fig. 4 Syntax of λ◦

FV(x) = {x} FV(λx.e) = FV(e)\{x}
FV(e1 e2) = FV(e1)∪FV(e2) FV({r}) = FV(r)
FV(e.X) = FV(e) FV(rec b in e) = (FV(b)∪FV(e))\dom(b)
FV(b) =

⋃
(x�e)∈b

{x}∪FV(e) FV(r) = {r(X) | X ∈ dom(r)}

Fig. 5 Free variables in λ◦

2.2 Syntax

The syntax of λ◦ is defined in Figure 4. The meta-variables X and x range over names and
variables, respectively. Variables are used in binders, as usual. Names are used for labeling
record fields. The metavariables for other syntactic entities are in lowercase, in order to ease
the distinction with the metavariables for syntactic entities of the target language (Section 3),
which will be in upper case. The syntax includes the λ -calculus: variable x, abstraction λx.e,
and application e1 e2. The language also features records, record selection e.X and a binding
construct written rec. By convention, the rec construct has lowest precedence, so that for
instance rec b in e1 e2 means rec b in(e1 e2). In a rec b in e expression, e is called the
body. To simplify the formalization and without loss of expressiveness, records are restricted
to contain only variables, i.e., be of the shape {X1 = x1, . . . ,Xn = xn}. Bindings b have the
shape x1 �1 e1, . . . ,xn �n en, where arbitrary expressions are syntactically allowed as the
right-hand sides of definitions, and every definition is annotated with a size indication �. A
size indication can be either the unknown size indication =[?], or a known size indication =[n],
where n is a natural number. We write ε for the empty binding.

Implicit syntactic constraints In what follows, we implicitly restrict ourselves to record
rows, bindings and expressions satisfying the following conditions:

1. Record rows do not define the same name twice;
2. Bindings do not define the same variable twice;
3. Bindings do not contain forward references to definitions of unknown size, in the sense

made precise next.

The free variables FV(e) of expressions, bindings, and record rows are defined induc-
tively by the rules in Figure 5. In a rec binding b = (x1 �1 e1, . . . ,xn �n en), we say that there
is a forward reference of xi to x j if i ≤ j and x j ∈ FV(ei). Condition 3 requires that for all
bindings b and forward reference of xi to x j in b, the size indication � j is =[n] for some n. This
is consistent with the immediate in-place update scheme, where no blocks are pre-allocated
for definitions of unknown size, so previous definitions must not refer to them.
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Value: v ∈ values ::= x | λx.e | {r}

Answer: a ∈ answers ::= v | rec bv in v

Size-respecting binding: bv ::= ε

| x =[?] v,bv

| x =[n] v,bv where size(v) = n

Fig. 6 Values and answers in λ◦

Finally, taking advantage of conditions 1 and 2 above, we implicitly view record rows
as finite functions from names to variables and bindings as finite functions from variables
to expressions, and use standard notations for domain, codomain, application, etc. Also,
we write r1,r2 for the concatenation of r1 and r2, and similarly for bindings. Finally, we
implicitly view records and bindings as sets of pairs (X ,x) (resp. of triples (x,�,e)), for
example to write (X = x) ∈ r (resp. (x � e) ∈ b).

Structural equivalence We consider expressions equivalent up to α-conversion2, i.e., non-
capturing renaming of bound variables, in functions and rec expressions. In the following,
to avoid ambiguity, we call raw expressions not considered up to α-conversion. Let = denote
equality of raw expressions and ≡ denote equality modulo α conversion.

2.3 Dynamic semantics

We now define the dynamic semantics of λ◦. Figure 6 defines λ◦ values to be variables,
functions, and records.

2.3.1 Overview: sizes and recursive definitions

We have seen that rec-bound definitions can be annotated with natural numbers representing
their sizes. The role of these size indications is to declare in advance the expected sizes of
the memory blocks representing the values of definitions. Technically, they will be required
to match the size of allocated blocks in the sense of our target calculus. For definitions that
are not forward-referenced from previous definitions, there is no need for annotations.

In λ◦, during the evaluation of a binding, if the currently evaluated definition is expected
to have size n, then it must evaluate to a non-variable value whose size equals n. Otherwise,
evaluation gets stuck.

Hypothesis 1 (Size in λ◦) We assume that size is a partial function from λ◦ values to natural
numbers, defined exactly on values\vars.

An evaluated definition not matching its size indication is considered an error, in the
sense that it prevents further reductions. Thus, only size-respecting bindings bv, as defined
in Figure 6, are considered fully evaluated.

Note that size-respecting bindings define only values. The intuition is that, given a def-
inition (x =[n] e), this forces the topmost block of the value of e to be determined by pre-
vious definitions. For instance, suppose that size({X = x}) = n. Then, the binding (y =[n]

2 The notion of structural equivalence could include reordering of record fields, but we do not need it, so
we just consider α-equivalence.
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{X = x},z =[n] y) is not fully evaluated, but we will see below that it evaluates correctly to
(y =[n] {X = x},z =[n] {X = x}). On the contrary, the binding (z =[n] y,y =[n] {X = x}) is not
size-respecting: y can not be replaced with its value, according to the reduction relation de-
fined below. (Such a reduction step could not be implemented by immediate in-place update
as depicted in Figure 3.)

Besides the non-standard notion of size, the dynamic semantics of λ◦ is unusual in its
handling of mutually recursive definitions, which is adapted from the equational theory of
Ariola and Blom [2]. There is no rule for eliminating rec: evaluated bindings remain at top-
level in the expression and also in evaluation answers, as defined in Figure 6. This top-level
binding serves as a kind of heap or recursive evaluation environment. An answer a is defined
to be a value, possibly surrounded by an evaluated, size-respecting binding. It thus may have
the shape rec bv in v.

The dynamic semantics of rec relies on five fundamental equations, which resemble
the rules used by Wright and Felleisen [32]. We start with an informal presentation of these
equations using contexts C, i.e., terms with a hole 2. Context application C[e] is textual,
possibly capturing replacement of 2 with e in C. The rules rely on additional conditions
defined later to (1) avoid variable captures and (2) enforce the reduction strategy of the
language, but are roughly as follows.

1. The first equation is lifting. It lifts a rec node up one level in an expression. An expres-
sion of the shape e1 (rec b in e2) is equated with rec b in(e1 e2).

2. The second equation is internal merging. In a binding, when one of the definitions starts
with another binding, then this binding can be merged with the enclosing one. An ex-
pression of the shape rec b1,x = (rec b2 in e1),b3 in e2 is equated with rec b1,b2,x =

e1,b3 in e2.
3. The third equation is external merging, which merges two consecutive bindings. An

expression of the shape rec b1 in rec b2 in e is equated with rec b1,b2 in e.
4. The fourth equation, external substitution, replaces variables defined in an enclos-

ing binding with their definitions. Given a context C, an expression of the shape
rec b in C[x] is equated with recbinC[e], if x = e appears in b.

5. The last equation, internal substitution, replaces variables defined in the same bind-
ing with their definitions. Given a context C, an expression of the shape rec b1,y =

C[x],b2 in e1 is equated with recb1,y = C[e2],b2 ine1 if x = e2 appears in b1,y =C[x],b2.

The issue is how to arrange these operations to make the evaluation deterministic and
to ensure that it reaches the answer when it exists. Our choice can be summarized as fol-
lows. First, bindings that are not at top-level in the expression must be lifted before their
evaluation can begin. Thus, only the top-level binding can be evaluated. As soon as one of
its definitions gets evaluated, evaluation can proceed with the next one, or with the body
if there is no unevaluated definition left. If evaluation encounters a binding inside the con-
sidered expression, then this binding is lifted up to the top level of the expression, or just
before the top-level binding if there is one. In this case, it is merged with the latter, internally
or externally, according to the context. External substitution is used to replace a variable in
dereferencing position (like x in x.X or x v, see the precise definition of dereferencing con-
texts below) with its value, fetched from the top-level binding. Internal substitution is used
similarly, but inside the top-level binding, and only from left to right (i.e., when the copied
definition comes from the left of the current evaluation point).

Remark 2 (Policy on substitution and call-by-value) The substitution rules only replace one
occurrence of a variable at a time, which has to be in dereferencing position. This strategy
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Lift context:
L ::= e 2 |2 v |2.X

Nested lift context:
F ::= 2 | e F | F v | F.X

Evaluation context:
E ::= F
| rec bv in F
| rec bv,x � F,b in e

Binding context:
B� ::= bv,x �2,b

Nested dereferencing context:
A ::= 2 v |2.X
| e A | A v | A.X

Dereferencing context:
D ::= A
| rec bv in A
| rec bv,x � A,b in e
| rec B=[n] in e

Fig. 7 Evaluation contexts of λ◦

Alpha equivalence:

e≡ e′

e F≡ e′ F
v≡ v′

F v≡ F v′
bv ≡ bv

′

rec bv in F≡ rec bv
′ in F

bv ≡ bv
′ b≡ b′ e≡ e′

(rec bv,x � F,b in e)≡ (rec bv
′,x � F,b′ in e′)

F≡ F′
E[F]≡ E[F′]

e≡ e′

(b1,x � e,b2)≡ (b1,x � e′,b2)

Free variables: FV(2) = /0
FV(e F) = FV(e)∪FV(F)
FV(F v) = FV(F)∪FV(v)
FV(F.X) = FV(F)
FV(rec bv in F) = FV(bv)∪FV(F)
FV(rec bv,x � F,b in e) = {x}∪FV(bv,b)∪FV(F)∪FV(e)

Captured variables: Capt2(rec bv in F) = dom(bv)
Capt2(rec bv,x � F,b in e) = {x}∪dom(bv,b)
Capt2(F) = /0

Fig. 8 Structural equivalence of λ◦ evaluation contexts

w.r.t. substitution, called destruct-time by Sewell et al. [28], does not contradict the fact
that λ◦ is call-by-value. Indeed, only values are copied, and any expression reached by the
evaluation is immediately evaluated. The fact that evaluated definitions are not immediately
substituted with their values in the rest of the expression is rather a matter of presentation.
Notably, this presentation allows λ◦ to properly represent recursive data structures, as shown
in Section 2.4 and Figure 14.

To implement our strategy, we remark that evaluation should not be the same at top-
level and inside an evaluation context. For example, consider e ≡ ((rec x =[?] e0 in x y) z),
where e0 reduces to e1. According to the informal specification above, before the evaluation
of e0 can start, the binding should first be lifted to the top level to obtain e′ ≡ (rec x =[?]
e0 in(x y z)). So, our reduction relation should not respect the usual rule saying that for any
e0 and e1, if e0 −→ e1, then E[e0] −→ E[e1] for any evaluation context E. This leads us to
define two relations: the subreduction relation  , handling reductions inside expressions,
and the reduction relation −→, handling top-level reductions. We write + (resp. ∗) for
the transitive (resp. transitive reflexive) closure of the relation , and similarly for −→.
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Subreduction rules ( )

{r}.X  r(X) (PROJECT◦)
x /∈ FV(v)

(λx.e) v rec x =[?] v in e
(BETA◦)

dom(b) # FV(L)
L[rec b in e] rec b in L[e]

(LIFT◦)

Reduction rules (−→)

e e′

E[e]−→ E[e′]
(CONTEXT◦)

dom(b1) # ({x}∪FV(bv,b2)∪FV(e′))
(rec bv,x � (rec b1 in e),b2 in e′) −→ (rec bv,b1,x � e,b2 in e′)

(IM◦)

dom(b) # FV(bv)
(rec bv in rec b in e)−→ rec bv,b in e

(EM◦) D[x]−→ D[D(x)] (SUBST◦)

Fig. 9 Dynamic semantics of λ◦

2.3.2 The subreduction relation

First, we define subreduction in Figure 9, using notions defined in Figures 7 and 8. It is first
defined on raw expressions, then lifted to α-equivalence classes of expressions by the usual
rule

e1 ≡ e′1 e′1 e′2 e′2 ≡ e2

e1 e2

Record projection selects the appropriate field in the record (rule PROJECT◦). The ap-
plication of a function λx.e to a value v reduces to the body of the function where the
argument has been rec-bound to x (rule BETA◦). Rule LIFT◦ describes how bindings are
lifted up to the top of the term. Lift contexts L are defined in Figure 7. Rule LIFT◦ states that
an expression of the shape L[rec b in e] subreduces to rec b in L[e], provided no variable
capture occurs. Alpha-equivalence is defined over contexts as follows: all variables may be
α-renamed, except those that have 2 in their scope. More formally, α-equivalence for eval-
uation contexts is the smallest equivalence relation over evaluation contexts respecting the
rules in Figure 8. In the same figure, we define the captured variables Capt2(E) of an evalu-
ation context E, and the free variables of an evaluation context. We have Capt2(E)⊆ FV(E)
for all E.

Remark 3 (Evaluation order) Function applications are evaluated from right to left. This
nonstandard choice is explained in Remark 11, in light of the semantics of the target lan-
guage λa. The results of the paper can be adapted to a left-to-right evaluation setting with
some additional work.
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2.3.3 The reduction relation

The reduction relation is defined in Figure 9. It is first defined on raw expressions, then lifted
to α-equivalence classes of expressions by the usual rule

e1 ≡ e′1 e′1 −→ e′2 e′2 ≡ e2

e1 −→ e2
·

Rule CONTEXT◦ extends the subreduction relation (as a relation over raw expressions)
to any evaluation context. As defined in Figure 7, a nested lift context F is a series of lift
contexts. Moreover, a binding context B� of size � is a binding (bv,x � 2,b) where the con-
text hole 2 corresponds to the next definition to be evaluated, and this definition is annotated
by �. An evaluation context E is a nested lift context, possibly appearing as the next def-
inition to evaluate in the top-level binding, or enclosed inside a fully evaluated top-level
binding. Our unusual, staged formulation of evaluation contexts enforces the determinism
of the reduction relation w.r.t. bindings: evaluation never takes place inside or after a bind-
ing, except the top-level one. Other bindings inside the expression first have to be lifted to
the top by rule LIFT◦, then be merged with the top-level binding, if any, by rules EM◦ and
IM◦ (respectively for external and internal merging). If the top-level binding is of the shape
bv,x � (rec b1 in e),b2, rule IM◦ allows to merge b1 with it, obtaining bv,b1,x � e,b2. When
an inner binding has been lifted to the top level, if there is already a top-level binding, then
the two bindings are merged together by rule EM◦. This implements the strategy informally
described above.

Finally, rule SUBST◦ describes how the variables defined by the top-level binding are
replaced with their values when needed, i.e., when they appear in a dereferencing context, as
defined in Figure 7. Dereferencing contexts may take two forms. First, they can be binding
contexts of known size rec bv,x =[n] 2,b in e. In the immediate in-place update compilation
scheme, any definition of known size yields an allocation of a dummy block, which has to
be updated. This is reflected here by requiring that in definitions of the shape (x =[n] y), y be
eventually replaced with a non-variable value of size n. Dereferencing contexts can also be
nested dereferencing contexts, i.e., function applications 2 v or record field selection 2.X ,
wrapped by an evaluation context, as defined in Figure 7. Therefore, in λ◦, the value of a
variable is copied only when needed for function application or record selection (or in-place
update, implicitly). The value of a variable x is found in the current evaluation context, as
formalized by the following notion of access in evaluation contexts.

Definition 4 Define Binding(F) ≡ ε

Binding(rec bv in F) ≡ bv

Binding(rec bv,x � F,b in e) ≡ bv.

The value E(x) of x in E is (Binding(E))(x), when the latter is defined.

Lemma 5 (Determinism of evaluation) The −→ relation is a function.

Proof We prove the result for raw expressions first, and then extend it to α-equivalence
classes. First, subreduction is obviously deterministic, on raw expressions as well as on α-
equivalence classes. Furthermore, both on raw expressions and on α-equivalence classes,
the reduction rules do not overlap, so we only have to prove that each rule is deterministic.

First consider the case of raw expressions. For all evaluation contexts E1,E2 and subre-
duction redexes e1 and e2, if E1[e1] = E2[e2], we show that E1 = E2. This is shown in three
steps: for lift contexts (by case analysis), nested lift contexts (by induction), and evaluation
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contexts (by case analysis). Hence, rule CONTEXT◦ is deterministic. Similarly, rule SUBST◦
is deterministic.

Consider now the case of α-equivalence classes. Let a renaming ρ be a substitution
function (as defined in Section 2.1) from variables to variables, and let ρ(e) denote capture-
avoiding substitution in the usual sense. For all evaluation contexts E1,E2 and sub re-
duction redexes e1 and e2, if E1[e1] ≡ E2[e2], then there exists a renaming ρ , such that
supp(ρ)⊆ Capt2(E1) and ρ(E1)≡ E2 and ρ(e1)≡ e2. This entails that rule CONTEXT◦ is
deterministic. We proceed similarly for rule SUBST◦. ut

Definition 6 (Faulty λ◦ expression) A faulty λ◦ expression is an expression whose reduction
gets stuck on an expression that is not an answer. By determinism, a non-faulty expression
is an expression whose evaluation either does not terminate or reaches an answer.

We now characterize faulty expressions, using the following notion of decomposition
of an expression e: a decomposition of an expression e is a pair (E,e′) such that e ≡ E[e′].
We consider pairs (E,e) modulo renaming of the captured variables of E. Decomposition is
well-defined on α-equivalence classes of expressions.

Let us now define an ordering over decompositions. Decompositions (E,e′) induce oc-
currences in the abstract syntax tree of expressions, i.e., paths from its root to the designated
occurrence of e′. This assignment is injective, i.e., these paths characterize decompositions.
However, it is not onto since some paths do not correspond to any evaluation context. Given
two decompositions (E,e) and (E′,e′) of some given e0, corresponding to paths p and p′,
consider their maximal common prefix p′′. We say that pv p′ when either:

– p′′ = p, or
– p′, after p′′, turns left in an application, i.e., p′′ corresponds to a decomposition

(E′′,(F[e] v)) and E′ ≡ E′′[F v] (the other decomposition thus has E≡ E′′[F[e] 2]), or
– p′, after p′′, goes further in the top-level binding than p, i.e., E≡ (rec bv,x �2,b in e1),

e is a value (of the expected size if needed), and E′ has shape rec bv,x � v,bv
′,y �

F,b′ in e1 or rec bv,bv
′ in F.

This relation v defines a total ordering on the set of decompositions of any expression e,
which furthermore has a maximal element – the decomposition turning left in applications
when possible, and going as far as possible in the top-level binding. Using this notion, we
prove the following characterization.

Proposition 7 For all e, the following are equivalent:

1. e is faulty;
2. e reduces to an expression D[v] in normal form, such that if D≡ rec B=[n] in e for some

n, B=[n] , and e, then size(v), if defined, is not n;
3. e reduces to an expression e0 such that:

– e0 ≡ D[x], with D(x) undefined,
– e0 ≡ rec bv,x =[n] v,b in e′ with size(v) 6= n and v /∈ vars,
– e0 ≡ E[{r} v],
– e0 ≡ E[{r}.X ] with X /∈ dom(r),
– e0 ≡ E[(λx.e′).X ].

Moreover, for all x and D, D(x) is undefined if and only if

– either x /∈ Capt2(D),
– or D≡ rec bv,x′ � F,b in e′, with x ∈ {x′}∪dom(b).
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Proof First, observe that all cases of (3) are faulty, hence (3) implies (1). We now show that
(1) implies (3).

Consider an expression with a normal form e which is not an answer. Consider its max-
imal decomposition (E,e′). The expression e is an answer exactly when e′ is a value and E
is either empty or of the shape rec bv in 2. We proceed by case analysis on the other cases.

If e′ is not a value, then by maximality, it has the shape rec b′ in e′′ for some b′ and e′′,
and E is not empty. But then one of rules IM◦, EM◦, and LIFT◦ applies, contradicting the
fact that e is in normal form.

If e′ is a value v, then E must have shape rec bv in F or rec bv,x � F,b in e′′.
If F is not empty, then E has the shape E′[L]. Now, if L ≡ (e 2), the decomposition

(E,e′) cannot be maximal, since the decomposition (E′[2 v],e) is greater. Otherwise, if
L ≡ (2 v′), then we have E′[v v′] in normal form, hence either v is a variable undefined in
E′, or is a record. Otherwise, L≡ (2.X), hence either v is a variable undefined in E′, or is a
function, or is a record without an X field. All these cases are covered by (3).

If otherwise F is empty, then E must have the shape rec bv,x � 2,b in e′′. But then, for
the decomposition (E,e′) to be maximal, we must have �= =[n] for some n, and either

– v is a variable undefined in E (first case of (3)), or
– size(v) is defined and different from n (second case).

Finally, to show the equivalence with (2), all the cases of (3) are covered by (2), so (3)
implies (2), and the only possibility for an expression D[v] in normal form to be an answer
is that D has the shape rec B=[n] in e with size(v) = n, so (2) implies (1). ut

Remark 8 In λ◦, we restrict record values to contain only variables. Actually, we could
permit other kinds of values in record expressions, but not in record values, because it would
break the properties of λ◦ w.r.t. sharing. In particular, as we also mention in Section 2.4, the
sharing properties of λ◦ make it directly extensible with mutable values. If we allowed non-
variable values in record values, then this would no longer be the case.

To see this, assume that λ◦ is extended with such record values and a ternary op-
erator e.X � e′ for mutation of record fields. Then, consider e ≡ (rec x =[?] {X = {Y =

v}} in x.X .Y � v′). The evaluation of e is as follows: first, the record is copied, then its
X field is projected, which gives rec x =[?] {X = {Y = v}} in {Y = v}.Y � v′, which is impos-
sible to rewrite to the expected result.

In addition to this undesirable behavior, enriching λ◦ with non-variable values in record
values would force us to considerably enrich the equational theory of our target language
λa. Indeed, λa gives a rather fine-grained account of sharing, and we would have to add
equations to reason modulo sharing.

2.4 Examples

In this section, we show examples of λ◦ reduction and give intuitions on important appli-
cations of λ◦, namely mixin modules and recursive modules. These examples demonstrate
the expressive power of λ◦, compared to the recursion constructs of both ML and Scheme,
and also compared to the conference version of this paper [16]. Other possible applications
include encodings of objects following Boudol [3]. However, λ◦ would have to be (straight-
forwardly) extended with mutable records to support this encoding.
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Expression Comments

rec x =[?] λy.y in x x Not a valid answer because, x x is not a
value, and the only possible reduction is by
rule SUBST◦.

↓
rec x =[?] λy.y in(λy.y) x Only the first occurrence of x is substituted.

We then apply rule BETA◦.
↓

rec x =[?] λy.y in

rec y =[?] x in y
Not yet a valid answer. We apply rule EM◦.

↓
rec x =[?] λy.y,y =[?] x in y The binding is now size-respecting, because

of the =[?].

Fig. 10 Substitution and function application

Expression Comments

rec z =[?] x x,
x =[n] λy.y

in z
�↓

The forward reference is syntactically cor-
rect (even if n 6= size(λy.y)), but the value
of x cannot be copied, because it would be
from right to left. This is consistent with
the in-place update compilation scheme
sketched in Section 1.2.

rec x =[n] λy.y,
z =[?] x x

in z

↓

The value of x can be copied, but only if the
size indication is correct, otherwise the first
definition is not considered valid. Note that
the size indication is in fact not necessary
here because x is not forward referenced.

rec x =[n] λy.y,
z =[?] (λy.y) x

in z
...

Fig. 11 Forward references

2.4.1 Basic examples

We start with small examples to give some intuition on the semantics. First, as noted in Re-
mark 2, substitution occurs at destruct-time in λ◦, following the terminology of [28]. This
means that substitution of an occurrence of a variable is only performed when this occur-
rence has to be replaced with a non-variable value in order for the evaluation to continue.
This is illustrated in Figure 10, which shows an example of substitution at function applica-
tion time. The first expression is partitioned into D≡ rec x =[?] λy.y in 2 x and x.

Figure 11 illustrates the left-to-right evaluation of bindings in λ◦ and the semantics of
size indications. In particular, it emphasizes the fact that if a size indication turns out to be
wrong, then the reduction is stuck. With respect to compilation, this models the fact that in
the in-place update method, pre-allocated blocks should not be updated with larger blocks,
otherwise execution might go wrong. In the second example of Figure 11, whose evaluation
is correct, the first expression is partitioned into D≡ rec x =[n] λy.y,z =[?] 2 x in z and x.
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Expression Comments

rec y =[?] {X = {}},
z =[?] y

in z

The definition z =[?] y respects sizes, so the
whole expression is an answer.

rec y =[?] {X = {}},
z =[n] y

in z
↓

The definition z =[n] y does not respect sizes,
so the expression reduces by rule SUBST◦.

rec y =[?] {X = {}},
z =[n] {X = {}}

in z

We eventually reach an answer.

Fig. 12 Size indications and dereferencing contexts

Expression Comments

rec even =[?] λx. (x = 0) or
(odd (x−1)),

odd =[n] λx. (x > 0) and
(even (x−1))

in even 56
↓

The forward reference to odd is syn-
tactically correct, and odd evaluates
correctly if n is the right size. We ap-
ply rule SUBST◦ to replace even with
its definition.

rec even =[?] . . . ,
odd =[n] . . .

in (λx.(x = 0)or(odd (x−1))) 56
↓+

We apply rule BETA◦, followed by
rule EM◦.

rec even =[?] . . . ,
odd =[n] . . . ,
x1 =[?] 56

in (x1 = 0) or (odd (x1−1))

↓+

We then perform the boolean test un-
successfully, obtaining odd (x1 − 1),
where we then replace x1 with its
value and obtain odd 55. We can then
replace odd with its value and apply
rule BETA◦ again, and so on.

rec even =[?] . . . ,
odd =[n] . . . ,
x1 =[?] 56

in odd 55
...

Fig. 13 Mutual recursion

Figure 12 shows a subtle point of the semantics. Namely, the size indications change the
degree of sharing of definitions, in case they are just variables. From Figure 7, we remark
that a binding context of the shape x =[n] 2 is dereferencing. Therefore, if it is filled with a
variable, this variable has to be substituted with its value in order for evaluation to continue.
Figure 12 provides two examples differing only by one size indication. In the first case, the
expression is a valid answer. In the second case, at the level of compiled code, a block is
pre-allocated for z, which will eventually represent its value, so we must update it: the value
of y is copied to this block. At the source language level, this copying enables λ◦ to correctly
reflect sharing in the compiled code, and therefore makes it ready for extension with mutable
values.

Figure 13 shows an example of mutually recursive functions, assuming that λ◦ has been
extended with standard operations on booleans and integers. Finally, one may wonder why



18

Expression Comments

rec x =[n] {Head = 0,Tail = x}
in x

This is a valid answer, representing an
infinite (cyclic) list of zeroes.

Fig. 14 Recursive data structure

we do not perform substitution immediately after evaluation, as usual, but use destruct-time
substitution instead. The reason is that it better represents the semantics of the construct
we want to define. First, as previously mentioned, sharing is propertly modeled. Second, as
shown in Figure 14, it allows to represent recursive data structures such as infinite lists.

2.4.2 Mixin modules

We now consider a more elaborate example, namely an encoding of a simple language of
mixin modules, following the approach of [15]. The design of mixin modules in a call-by-
value setting raises a number of issues that fall outside the scope of this paper; see [13] for
a discussion. Our goal here is to informally explain why λ◦ is an adequate target language
for compiling mixin modules. Thus, we briefly describe a simple language of call-by-value
mixin modules, for which we sketch a compilation scheme.

Mixin modules Mixin modules are unevaluated modules with holes. Mixin modules are to
ML-style modules what classes are to objects in object-oriented languages. The language
provides a close operator to instantiate a complete mixin module into a module, thus trig-
gering the evaluation of its components (see below). In order to obtain a complete mixin
module, the language provides modularity operators, such as composition and deletion. For
instance, one can define the mixin modules Even and Odd as follows.

mixin Even = import

odd : int -> int

export

even x = (x = 0) or (odd (x - 1))

end

mixin Odd = import

even : int -> int

export

odd x = (x > 0) and (even (x - 1))

end

The holes of a mixin module are called its imports, and its defined components are its
exports. The contents of mixin modules are not evaluated until instantiation, as described
below. One can compose Even and Odd to obtain

mixin Nat1_Open = Even + Odd

which is equivalent to

mixin Nat1_Open = import

export

even x = (x = 0) or (odd (x - 1))

odd x = (x > 0) and (even (x - 1))

end
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The name Nat1_Open refers to the fact that the definitions of this mixin module are still
late bound and can be overridden. Then, this mixin module can be instantiated into a proper
module by

module Nat1 = close Nat1_Open

which is equivalent to

module Nat1 = struct

let rec even x = (x = 0) or (odd (x - 1))

and odd x = (x > 0) and (even (x - 1))

end

One can then select components from Nat1, and write for instance Nat1.even 56.
As an example of overriding, one can optimize the definition of even in Nat1_Open

by first removing it from Nat1_Open, and then composing the result with a mixin module
containing the new definition:

mixin Nat2_Open = (Nat1_Open - even) +

import

export

even x = ((x mod 2) = 0)

end

which is equivalent to

mixin Nat2_Open = import

export

odd x = (x > 0) and (even (x - 1))

even x = ((x mod 2) = 0)

end

The obtained mixin module can then be instantiated into a plain module, as above. Fi-
nally, we extend Nat1_Open with a computation using the defined functions:

mixin Nat_Test_Open = Nat1_Open +

import

even : int -> int

export

test = even 56

end

The obtained mixin module is equivalent to

mixin Nat_Test_Open = import

export

even x = (x = 0) or (odd (x - 1))

odd x = (x > 0) and (even (x - 1))

test = even 56

end
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An incorrect encoding in λ◦ A reasonable idea for encoding mixin modules in λ◦ would
be to adapt the standard encoding of objects and classes as recursive records [5]. However,
this encoding allows to represent mixin modules, but not to instantiate them. Consider for
instance Nat_Test_Open. It would be translated into a generator, that is, a function over
records:

rec Nat Test Open =[?] λ self .
{ even = λx.(x = 0) or (self .odd (x−1))

odd = λx.(x > 0) and (self .even (x−1))
test = self .even 56 }

in . . .

Then, the instantiation of Nat_Test_Open would consist of taking its fixed point, which
gives

rec Nat Test =[n] Nat Test Open Nat Test in . . .

(assuming n to be the correct size), which gives after substitution

rec Nat Test = (λ self .{ even = λx. . . .self .odd . . .
odd = λx. . . .self .even . . .
test = self .even 56 })
Nat Test

in . . .

−→+ rec self =[?] Nat Test
Nat Test =[n] { even = λx. . . .self .odd . . .

odd = λx. . . .self .even . . .
test = self .even 56 })

in . . .

−→ rec self =[?] Nat Test
Nat Test =[n] { even = λx. . . .self .odd . . .

odd = λx. . . .self .even . . .
test = Nat Test.even 56 })

in . . .

whose evaluation is stuck, because Nat Test is not yet evaluated and its definition is already
requested. So the recursive record semantics of objects and classes does not directly adapt to
mixin modules. The reason is that the components of a mixin module may strongly depend
on each other, in the sense of Section 1.2, while the components of a class are essentially
methods, which only weakly depend on each other.

Remark 9 (Objects and strong dependencies) In Java, initialization of instance and static
fields by arbitrary expressions can lead to strong dependencies between the fields. However,
the semantics of field initialization in Java does not guarantee that a fixed point is reached
[12, section 8.3.2.3]. Here is an example.

static int f() { return x + 1; }

static int x = f() * 2;

This code assigns 2 to x instead of causing an error as expected.
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A correct encoding in λ◦ We must find another way to compile mixin modules. In [15], a
mixin module is translated into a record of functions, whose fields correspond to the exports
of the source mixin module. Each export is abstracted over the other components upon
which it depends, and over a dummy argument, useful for suspending the computation in
the absence of dependencies. For instance, the mixin module Even has only one export even,
which depends on the import odd, so it is represented by

rec Even = {even = λodd.λ .λx.(x = 0) or (odd (x−1))}

where denotes an unused variable. Similarly, Odd is represented by

rec Odd = {odd = λeven.λ .λx.(x > 0) and (even (x−1))}

The translation of composition merely consists of picking the right fields in the arguments.
For example, composing Even and Odd yields

rec Nat1 Open = {even = Even.even,odd = Odd.odd}

The composition can be generated even in a separate compilation setting, where only the
types of Even and Odd are available. Indeed, it only relies on the names exported by the
two mixin modules, which are mentioned in their types. Deletion is as easy as composition,
since we only have to pick the non deleted fields of the argument.

Instantiation is more difficult, because of strong dependencies and sizes. Consider for
example the instantiation of Nat_Test_Open. Here, even and odd must be defined before
test, which strongly depends on them. Thus, we obtain

rec even =[?] Nat Test Open.even odd {},
odd =[n] Nat Test Open.odd even {},
test =[?] Nat Test Open.test even {}

in {even = even,odd = odd, test = test}

This translation evaluates as expected, provided we can statically guess the correct size n for
the odd component. For some data representation strategies, this size can be computed from
the static type of odd, but not always for other strategies; see Section 7 for a discussion.

Another difficulty of the translation outlined here is to determine a correct order in which
to evaluate the components of the mixin being closed. The approach proposed in [15] and
refined in [17] relies on exploiting dependency information added to the static types of mixin
modules. Another approach, outlined in [13,14], is to embed dependency information in the
run-time representation of mixin modules, and determine a correct evaluation order at run-
time.

2.4.3 Recursive modules

Another possible application of λ◦ is for compiling recursive modules in extensions of the
ML module system [7,27,21,10]. Recursive structures are easily encoded in λ◦. For exam-
ple, consider the following two mutually recursive structures:

module Even = struct

let even x = (x = 0) or (Odd.odd (x - 1))

end

and Odd = struct

let odd x = (x > 0) and (Even.even (x - 1))

end
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Define the syntactic sugar struct b end, where b is a list of declarations of the shape X1 .
x1 �1 e1, . . . ,Xn . xn �n en, to denote rec x1 �1 e1, . . . ,xn �n en in {X1 = x1, . . . ,Xn = xn}. Using
this notation, the example above can be expressed as

rec Even =[?] struct

even . even =[?] λx.(x = 0) or (Odd.odd (x−1))
end,
Odd =[n] struct

odd . odd =[?] λx.(x > 0) and (Even.even (x−1))
end

in . . .

(where n is assumed to be the right size indication). Notice that the function definitions and
the first module do not need to have known sizes, since the only forward reference concerns
the second module Odd.

Beyond recursive structures, it is desirable to encode recursive functor applications,
which appear in many practical uses of recursive modules. For instance, consider the fol-
lowing example, taken from the OCaml documentation [20, section 7.9].

module A : sig

type t = Leaf of string | Node of ASet.t

val compare: t -> t -> int

end = struct

type t = Leaf of string | Node of ASet.t

let compare t1 t2 = ... ASet.compare ...

end

and ASet : Set.S with type elt = A.t

= Set.Make(A)

After erasing the type components of structures, we encode this example in λ◦ by

rec A . A =[?] struct

compare . compare =[?] . . .ASet.compare . . .
end,
ASet . ASet =[n] Set.Make A

in . . .

(where n is, again, assumed to be the right size indication). This expression evaluates cor-
rectly because Set.Make only weakly depends on its argument. The extension of this encod-
ing to a separate compilation setting does not raise the problem of sizes we had for mixin
modules: the sizes of ML modules can be guessed from their types. However, the depen-
dency analysis remains difficult, and we are working on this issue.

This section has demonstrated the expressive power of λ◦ by showing encodings of
mixin modules and recursive modules, which attests its expressive power. In order to show
how to compile it to efficient machine code, we now define a more elementary language
called λa, into which we then translate λ◦.

3 The target language λa

In this section, we define λa, a λ -calculus with explicit heap. It was carefully engineered
to map directly to an abstract machine with a heap, and to enable efficient compilation to
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Variable: x ∈ vars
Name: X ∈ names

Expression: E ∈ Expr ::= n Natural number
| x | λx.E | E E λ -calculus
| let B in E Non-recursive definitions
| {R} | E.X Record operations
| alloc | update Heap operations

Record row: R ::= ε | (X =V,R)
Binding: B ::= ε | (t = E,B)

t ::= x | Variable or wildcard

Value: V ∈ Values ::= x | n
Stored value: S ∈ SValues ::= λx.E | alloc n | {R}

Heap: H ∈Heaps ::= ε | x = S,H
Configuration: C ::= RecH in E
Evaluation answer: A ∈ Answers ::= RecH inV

Fig. 15 Syntax of λa

machine code. In particular, the heaps used in the semantics closely correspond to machine-
level heaps. (This is apparent in the size requirement for the update operation to work.)

3.1 Syntax

The syntax of the target language λa is presented in Figure 15. It includes the λ -calculus with
natural numbers and non-recursive let binding. Note that a let definition t = E computes
E, and then either binds the result (if t is a variable) or ignores it (if t = ). The multiple
value binding let t1 = E1, . . . , tn = En in E should be understood as let t1 = E1 in . . .let tn =
En in E. We write ε for the empty binding. Having a multiple let binding contributes to
make the equational theory of λa rich enough for the immediate in-place update scheme to
be correct. Additionally, there are constructs for record operations (creation and selection),
and constructs for modeling the heap: an allocation operator alloc, and an update operator
update.

The semantics of λa uses a notion of heap, which comes in the form of a kind of global
let rec. A raw configuration C is a pair RecH in E of a heap H and an expression E. A
heap is list of bindings x = S, where the stored value S ∈ SValues is either a function λx.E, or
a record {R}, or an application of the shape alloc n for some natural number n. A value V
is either a natural number or a variable (but not a stored value). An evaluation answer is a
raw configuration of the shape RecH inV .

Record rows R, (resp. bindings B and heaps H) are required not to define the same
name (resp. variable) twice. We use for them the same notations as for λ◦ record rows and
bindings for domain, codomain, concatenation, and so on. Observe that the wildcard is not
a variable, hence is not in the domain of bindings nor in their free variables.

Structural equivalence Free variables are defined in Figure 16. We call structural equiva-
lence the smallest equivalence relation including reordering of heap bindings and renaming
of bound variables. We call configurations structural equivalence classes of raw configura-
tions. We write = for equality of raw configurations and ≡ for equality of configurations.
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FV(n) = /0 FV({R}) = FV(R)
FV(x) = {x} FV(E.X) = FV(E)
FV(λx.E) = FV(E)\{x} FV(alloc) = /0
FV(E1 E2) = FV(E1)∪FV(E2) FV(update) = /0
FV(let B in E) = FV(B, = E)\dom(B)

FV(ε) = /0 FV(t = E,B) = FV(E)∪FV(B)∪ ({t}∩vars)
FV(R) =

⋃
X∈dom(R)

FV(R(X)) FV(RecH in E) = (FV(H)∪FV(E))\dom(H)

FV(ε) = /0 FV(x = S,H) = {x}∪FV(S)∪FV(H)

Fig. 16 Free variables in λa

Lift context: η ::= E 2 |2 V |2.X

Nested lift context: ϕ ::= 2 | E ϕ | ϕ V | ϕ.X

Evaluation context: ξ ::= ϕ | let t = ϕ,B in E

Allocation context: α ::= 2 | α E | E α | α.X | let B1, t = α,B2 in E | let B in α

Fig. 17 Evaluation and allocation contexts of λa

We extend substitutions to expressions and configurations in the standard way. For defining
capture-avoiding substitution on expressions, the only non-trivial case is let B in E: the ap-
plication of a substitution to an expression of the shape let t1 =E1, . . . , tn =En in E proceeds
exactly as applying it to let t1 = E1 in . . .let tn = En in E.

Finally, the free variables of a substitution σ (any function from variables to one of the
syntactic classes) are defined by

FV(σ) =
⋃

x∈supp(σ)

{x}∪FV(σ(x)).

3.2 Dynamic semantics

The semantics of λa is defined by a reduction relation −→, which, like that of λ◦, is first
defined as a relation over raw configurations, then straightforwardly lifted to a relation over
configurations.

3.2.1 The reduction relation

The reduction relation is defined in Figures 17, 18, and 19, using the following hypothesis.

Hypothesis 10 (Size in λa) We assume given a function Size from stored values to natural
numbers such that

– for all n, Size(alloc n) = n, and
– for all σ ∈ vars→ Values and S ∈ SValues, Size(σ(S)) = Size(S).

The second part of this hypothesis captures the intuition that the size of a stored value
is determined by its top constructor, and is therefore invariant under substitution. From an
implementation viewpoint, it corresponds to a uniform data representation strategy where
λa values (integers and variables) are implemented as single-word data, so that substitution
is just replacement of word-sized data and preserves sizes.
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Alpha equivalence:

α2 ≡ α
′
2

α1[α2]≡ α1[α ′2]
E ≡ E ′

E α ≡ E ′ α

E ≡ E ′

α E ≡ α E ′

B1 ≡ B′1 (let B2 in E)≡ (let B′2 in E ′)
(let B1,x � α,B2 in E)≡ (let B′1,x � α,B′2 in E ′)

B≡ B′

let B in α ≡ let B′ in α

E ≡ E ′

(B1,x = E,B2)≡ (B1,x = E ′,B2)

Free variables:

FV(2) = /0
FV(α E) = FV(α)∪FV(E)
FV(E α) = FV(α)∪FV(E)
FV(α.X) = FV(α)
FV(let B in α) = FV(B)∪FV(α)
FV(let B1, t = α,B2 in E) = FV(B1)∪FV(α)∪FV(let B2 in E)∪ ({t}∩vars)

Captured variables:
Capt2(2) = /0
Capt2(α E) = Capt2(α)
Capt2(E α) = Capt2(α)
Capt2(α.X) = Capt2(α)
Capt2(let B in α) = dom(B)
Capt2(let B1, t = α,B2 in E) = dom(B1)∪Capt2(α)

Fig. 18 Structural equivalence of λa allocation contexts

The reduction rules are defined in Figure 19, using the notions of contexts defined in
Figure 17, and the scoping rules and functions of Figure 18.

Rule BETAa is unusual in that it applies a heap allocated function to an argument V . The
function must be a variable x bound in the heap to a value λy.E, and the result is [y 7→V ](E).
The reduction can take place in any evaluation context ξ .

Rule PROJECTa projects a name X out of a heap allocated record {R} at variable x,
returning R(X).

Rule UPDATEa copies the contents (the stored value) of a variable to another variable.
Both stored values must have exactly the same size and the copied one must not have the
shape alloc n. This condition may seem unnecessary, but it is used to prove that faultiness
is preserved by our translation. Recall that H〈x = S〉 denotes H where the binding for x is
replaced by x = S.

As in λ◦, the evaluation of bindings is confined to the top level of configurations. This
requires the LIFTa rule, which lifts a binding outside of a lift context η (the ambiguity with
functional abstraction should be clear from context).

By rule IMa, if the first definition of the top-level binding B is itself a binding
let B1 in E1, then B1 is merged with B.

Rule LETa describes the top-level evaluation of bindings. Let [t 7→V ] denote [x 7→V ] if t
is a variable x, and the identity substitution otherwise. Once the first definition is evaluated,
if t is a variable, then this variable is replaced with the obtained value in the rest of the
expression; if t = , evaluation proceeds directly. When the binding becomes empty, it can
be removed with rule EMPTYLETa.
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H(x) = λy.E
RecH in ξ [x V ]−→ RecH in ξ [[y 7→V ](E)]

(BETAa)

H(x) = {R}
RecH in ξ [x.X ]−→ RecH in ξ [R(X)]

(PROJECTa)

H(y) /∈ {alloc n | n ∈ N} Size(H(y)) = Size(H(x))
RecH in ξ [update x y]−→ RecH〈x = H(y)〉 in ξ [{}]

(UPDATEa)

dom(B) # FV(η)
RecH in ξ [η [let B in E]]−→ RecH in ξ [let B in η [E]]

(LIFTa)

dom(B1) # {t}∪FV(B2)∪FV(E2)
RecH in let t = (let B1 in E1),B2 in E2
−→ RecH in let B1, t = E1,B2 in E2

(IMa)
RecH in let t =V,B in E

−→ RecH in [t 7→V ](let B in E) (LETa)

RecH in let ε in E −→ RecH in E (EMPTYLETa)
x /∈ (FV(H\{x})∪FV(E))

RecH in E −→ RecH\{x} in E
(WEAKGCa)

x /∈ FV(S)∪FV(α)∪FV(H) FV(S) # Capt2(α)
RecH in α[S]−→ Recx = S,H in α[x]

(ALLOCa)

Fig. 19 Dynamic semantics of λa

By rule WEAKGCa, when a heap binding is not used by any other binding than itself,
and not used by the expression either, it can be removed. This is formalized by requiring that
the corresponding variable x be outside the set of free variables FV(H\{x})∪FV(E) of other
heap bindings and of the main expression. This simple rule is here to model the garbage
collection step mentioned in the explanation of Figure 2: it allows garbage-collecting the
blocks obtained by evaluation of the recursively-defined expressions once they have been
copied to the pre-allocated blocks. A general garbage collection rule could detect more kinds
of dead data structures, in particular mutually dependent, otherwise unused data structures.
This additional power is not needed in this paper, so we do not have a general garbage
collection rule.

Finally, rule ALLOCa is one of the key points of λa, by which a configuration of the
shape RecH in α[S] evaluates to the configuration Recx = S,H in α[x], where x is a fresh
variable. In particular, if S is alloc n, the evaluation allocates a dummy block of size n on
the heap. This reduction can happen in any allocation context α . Allocation contexts cover
all contexts of λa, except under λ -abstractions. The idea is that a value can be allocated in
advance in the heap. For instance, given a configuration RecH in let B in S, it is possible
to allocate S before computing the binding, provided S does not use the variables defined in
B. The side condition FV(S) # Capt2(α) ensures this, where Capt2(α) denotes the set of
binders located above the context hole in α , here dom(B) (see Figure 18).

Remark 11 (Non-determinism and evaluation order) Unlike in λ◦, the reduction of λa is not
deterministic because of rules WEAKGCa and ALLOCa. Nevertheless, λa remains close to
an abstract machine, which would simply implement a particular reduction strategy. Fur-
thermore, this non-determinism makes the equational theory of λa rich enough for the cor-
rectness proof of Section 5.
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Expression Comments

Recε in
(λx.(x.X .Y ))
(let y = {Y = 0} in {X = y})

↓+

Before applying rule BETAa, we must re-
duce the function and the argument to val-
ues. For this, we apply (several possible or-
ders) rules ALLOCa (three times), LETa and
EMPTYLETa.

Rec

 x1 = {Y = 0},
x2 = {X = x1},
x3 = λx.(x.X .Y )

in

x3 x2
↓

We then apply rule BETAa (the heap H re-
mains unchanged).

RecH in x2.X .Y

↓+
We finally apply rule PROJECTa twice.

RecH in 0

Fig. 20 An example of reduction in λa

Although λa is not deterministic, function applications are evaluated from right-to-left,
because of the lift contexts 2 V and E 2. This makes the presentation more concise, since
it avoids lift contexts of the shape alloc 2, update 2, and update x 2, and explains why
λ◦ also evaluates its arguments from right to left. The results of the paper can be adapted to
a left-to-right evaluation setting with some additional work.

3.2.2 Confluence and errors

Since reduction in λa is not deterministic, it is important to make sure that it is confluent.
In fact, we show that the reduction relation is strongly commuting, which implies that it is
confluent by Hindley’s lemma.

Lemma 12 (The reduction rules are strongly commuting) For all reduction rules R1,R2,

and configurations C,C1,C2, if C
R1−→C1 and C

R2−→C2, then there exists C′ such that C1
R2−→

C′ and C2
R1−→C′.

Proof By case analysis on the possible pairs of reductions. The reduction relation without
rules WEAKGCa and ALLOCa is deterministic, so we only have to examine the pairs in-
volving at least one of these rules. ut

A configuration is said to be faulty if it reduces to a configuration in normal form that is
not in Answers. For a better understanding of the semantics, we now characterize the set of
faulty configurations.

Proposition 13 (Faulty λa configurations) A configuration is faulty iff it reduces to a con-
figuration C in normal form such that:

– C ≡ RecH in ξ [x V ], with either
– x /∈ dom(H), or
– H(x) is not a function,

– C ≡ RecH in ξ [n V ],
– or C ≡ RecH in ξ [x.X ], with either
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Expression Comments

Recε in
let odd = alloc n,

even = λx. (x = 0) or
(odd (x−1)),

= updateodd
λx. (x > 0) and

(even (x−1)),
in even 56

↓+

We pre-allocate a block for odd, evaluate
even (which points to the dummy block),
then evaluate the definition of odd and up-
date the dummy block with it.

Rec


x1 = alloc n,
x2 = λx. (x = 0) or

(x1 (x−1)),
x3 = λx. (x > 0) and

(x2 (x−1))

in

let = update x1 x3
in x2 56

↓+

First, the two evaluated heap blocks defin-
ing odd and even are allocated, yielding x1
and x2, respectively. Then, the second argu-
ment of update is allocated, yielding x3.

Rec


x1 = λx. (x > 0) and

(x2 (x−1)),
x2 = λx. (x = 0) or

(x1 (x−1)),

in

x2 56

Now x1 is updated with x3, which can then
be garbage-collected, and the evaluation
can proceed with the two expected mutually
recursive functions.

Fig. 21 Mutually recursive functions in λa (compare with Figure 13)

– x /∈ dom(H), or
– H(x) is not a record with field X,

– or C ≡ RecH in ξ [n.X ],
– or C ≡ RecH in ξ [alloc] and ξ 6= α ′[2 n], for all α ′,n,
– or C ≡ RecH in ξ [update x y], with either

– x or y not in dom(H), or
– x and y have different sizes, i.e., Size(H(x)) 6= Size(H(y)), or
– H(y) of the shape alloc n,

– or C ≡ RecH in ξ [update] and ξ 6= ξ ′[2 x y], for all ξ ′,x,y.

3.3 Examples

Figure 20 exemplifies the evaluation of a function application in λa. The function selects
the Y field of the X field of its argument. However, in λa, neither the function nor the ar-
gument are considered values. The evaluation of the argument (let y = {Y = 0} in {X = y})
involves two heap allocations: first, x1 = {Y = 0} is allocated; then, we apply rules LETa and
EMPTYLETa; finally, we allocate x2 = {X = x1}. The evaluation of the function λx.(x.X .Y )
involves one heap allocation x3 = λx.(x.X .Y ). The executed expression is then x3 x2, which
reduces in one step to x2.X .Y , and then in two steps to 0.

Figure 21 shows the evaluation of a mutually recursive function definition. It is the λa

analogue of the example shown earlier in Figure 13.
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Translation of expressions: JxK ≡ x
Jλx.eK ≡ λx.JeK
Je1 e2K ≡ Je1K Je2K
J{r}K ≡ {r}
Je.XK ≡ JeK.X
Jrec b in eK ≡ let Dummy(b),Update(b) inJeK

Pre-allocation of bindings: Dummy(ε) ≡ ε

Dummy(x =[n] e,b) ≡ (x = alloc n,Dummy(b))
Dummy(x =[?] e,b) ≡ Dummy(b)

Computation of bindings: Update(ε) ≡ ε

Update(x =[n] e,b) ≡ ( = (update x JeK),Update(b))
Update(x =[?] e,b) ≡ (x = JeK,Update(b))

Fig. 22 Standard translation from λ◦ to λa

4 Compilation

4.1 The standard translation

We now define a translation from λ◦ to λa that straightforwardly implements the in-place
update trick. This translation, called the standard translation, is defined in Figure 22.

The translation is straightforward for variables, functions, applications, and record op-
erations. The translation of a binding b is the concatenation of two λa bindings. The first
binding Dummy(b) is called the pre-allocation binding, and gives instructions to allocate
dummy blocks on the heap for definitions of known sizes. The second binding Update(b)
is called the update binding. It evaluates the definitions and either updates the previously
pre-allocated dummy blocks for definitions of known sizes, or simply binds the result for
definitions of unknown sizes.

Example 14 The standard translation of the first expression of Figure 13 is (part of) the first
configuration of Figure 21:

rec


even =[?] λx. (x = 0) or

(odd (x−1)),
odd =[n] λx. (x > 0) and

(even (x−1))

in even 56

is translated to

let


odd = alloc n,
even = λx. (x = 0) or

(odd (x−1)),
= updateodd

(λx. (x > 0) and

(even (x−1))),

in even 56

Remark 15 (Restriction on forward references in λ◦) The standard translation crucially re-
lies on the fact that λ◦ forbids forward references to definitions of unknown sizes: such
forward references, after translation, would produce references to unbound variables. For
example, consider the illegal binding x =[?] y,y =[?] e. Its pre-allocation pass is empty, and
it is translated as x = y,y = JeK, where y is unbound. (Recall that λa bindings do not have a
recursive scope.)
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For any reduction rule R, write R−→ for the set of pairs of expressions or configurations
that are instances of R.

Proposition 16 For all v ∈ values\vars, there exist H,x such that

Recε inJvK ALLOCa−−−−→ RecH in x

Proof By case analysis on v. ut

From now on, we assume that the notions of size in λ◦ and λa are coherent, in the
following sense.

Hypothesis 17 (Size) For all H,x, and v ∈ values\vars, if Recε inJvK−→∗ RecH in x, then
size(v) = Size(H(x)).

Our main result is:

Theorem 18 (Correctness) For all e, if e reduces to an answer, loops, or is faulty in λ◦
then so does JeK in λa.

The rest of the paper is devoted to proving this theorem. This raises several difficulties,
which we explain before actually delving into the proof.

4.2 Overview of difficulties

A natural approach to proving the correctness of our translation is to use a simulation ar-
gument: if e −→ e′ in λ◦, then JeK −→+ Je′K; moreover, if e is an answer, JeK should be
an answer as well. However, both properties fail, for reasons illustrated in the following
examples.

Example 19 (Administrative reductions) Consider e ≡ λx.x. Its translation is E ≡ λx.x,
which is not an answer. An allocation has to be performed in order to reduce it to the an-
swer Recy = λx.xin y. In general, the translation of a λ◦ value reduces in a finite number of
ALLOCa steps to a λa answer.

Example 20 (More administrative reductions) Consider e1 ≡ rec y =[n] λx.x in e2, where
n = size(λx.x). If e2 e′2, then e1 reduces to e′1 ≡ rec y =[n] λx.x in e′2 in λ◦. However, the
translations of e1 and e′1 are

Je1K ≡ let y = alloc n, = update y (λx.x) inJe2K

Je′1K ≡ let y = alloc n, = update y (λx.x) inJe′2K

and Je1K does not reduce to Je′1K in λa: it is generally not possible to reduce Je2K until the
enclosing let has been fully evaluated. So, if evaluation in λ◦ occurs under a size-respecting
binding, then in the compiled code the evaluation of this binding requires a finite number of
ALLOCa, UPDATEa, LETa, EMPTYLETa, and WEAKGCa steps, which are exactly the same
in Je1K and Je′1K.

In order to deal with these administrative reductions, we will introduce another trans-
lation function, called the top-level translation, which performs them on the fly. This is
directly inspired by Plotkin’s colon translation [26]. However, there are other complications
that we now illustrate, writing becTOP for the top-level translation.
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Example 21 (Granularity) Consider e ≡ (rec x =[?] λy.y in x z). It reduces by rule
SUBST◦ to e′ ≡ (rec x =[?] λy.y in(λy.y) z), and then by rule BETA◦ to e′′ ≡ (rec x =[?]
λy.y in rec y =[?] z in y). Remark that rule SUBST◦ duplicates λy.y, which is not innocent
w.r.t. the translation: becTOP does not reduce to be′cTOP. Thus, rule SUBST◦ alone is not
simulated. In the compiled code, abstracting over the administrative reductions, there is no
substitution: rule BETAa is applied directly, fetching the value of x from the heap. Initially,
we have something like RecH in x′ z, where H(x′) ≡ λy.y, which reduces in one step to
RecH in z.

Example 22 (Beta and the top-level binding) From Example 21, one could expect that al-
though rule SUBST◦ is not exactly simulated, the combination of rules SUBST◦ and BETA◦
is. This is not the case, because rule BETA◦ leaves a fully evaluated binding right where the
subreduction happened, which is not necessarily at top-level. Consider again Example 21:
we have seen that becTOP is a configuration of the shape RecH in x′ z, where H(x′) ≡ λy.y,
which reduces in one step to C ≡ RecH in z. However, after applying SUBST◦ and BETA◦
to e, we obtain e′′ ≡ (rec x =[?] λy.y in rec y =[?] z in y), where the inner rec is not at top
level. Hence, be′′cTOP is RecH in let y = z in y, which is different from C. Nevertheless, ap-
plying EM◦ to e′′, we obtain e′′′ ≡ rec x =[?] λy.y,y =[?] z in y, whose top-level translation is
exactly C. More generally, it turns out that enough reduction sequences consisting of appli-
cations of SUBST◦, BETA◦, and a combination of LIFT◦, IM◦, and EM◦ are simulated by
b·cTOP.

Example 23 (Stuttering reductions) In some cases, we have e −→ e′, but becTOP ≡ be′cTOP.
For instance, consider e of the shape e ≡ rec bv in rec x =[?] (rec b in e1) in e2. By rule
EM◦, e reduces to e′ ≡ rec bv,x =[?] (rec b in e1) in e2. In fact, in both cases, b·cTOP trans-
lates bv on the fly, so that becTOP ≡ be′cTOP. Thus, the preservation of non-termination is not
trivial.

Example 24 (Lifting and allocation) Let b ≡ (y =[?] (λx2.x2) z) and consider e ≡
(λx1.x1) (rec b in y), which reduces by rule LIFT◦ to e′ ≡ rec b in(λx1.x1) y. Anticipat-
ing again the definition of b·cTOP below, in e, λx1.x1 appears at top-level, and is therefore
allocated on the fly, but not λx2.x2, so we obtain

C ≡ becTOP ≡ Recx = λx1.x1 in x (let y = (λx2.x2) z in y).

On the other hand, in e′, λx2.x2 appears at top-level, but not λx1.x1, which lies below a not
fully evaluated binding, so we have

C′ ≡ be′cTOP ≡ Recx′ = λx2.x2 in let y = x′ z in(λx1.x1) y.

Thus, some ALLOCa reductions performed in becTOP are not performed in be′cTOP. Here, C
reduces by LIFTa and ALLOCa to Recx = λx1.x1,x′ = λx2.x2 in let y = x′ z in x y, which can
be reached from C′ by ALLOCa.

4.3 Overview of the correctness proof

Here is how we deal with these difficulties. First, Example 24 shows that no small-step sim-
ulation holds, so we adopt a less accurate notion of observation, namely evaluation answers
and non-termination:

– if e reduces to an answer a, then its translation reduces to some λa answer related to a;
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– if e reduces infinitely, then so does its translation.

In order to prove this result, we consider some of the reduction rules of λ◦ and λa

as structural, i.e., not counting as proper reduction steps. This eliminates almost all the
difficulties and preserves our notion of observation. The only remaining difficulty is that of
Example 21, which we cannot solve in the same way. Indeed, we neither want SUBST◦ nor
BETA◦ and PROJECT◦ to be considered structural, as we now explain. First, deeming BETA◦
structural would prevent us from proving that non termination is preserved (and doing so for
PROJECT◦ is thus only a partial, unsatisfactory solution). Furthermore, the equational theory

of λa is not rich enough to equate becTOP and be′cTOP when e SUBST◦−→ e′. Indeed, this would
involve a currently forbidden duplication (“unsharing”) of a stored value. It seems possible
to extend λa in a meaningful way, so as to support unsharing of stored values in some cases.
It also seems possible to modify the semantics of λ◦ to avoid duplication before rules BETA◦
and PROJECT◦. However, the spirit of this article is to keep the source and target languages
as standard as possible, which rules out these solutions. Our solution is to consider bigger
steps as atomic in λ◦: we consider atomic a sequence of applications of SUBST◦, followed
by an application of BETA◦ or PROJECT◦, followed by possible applications of LIFT◦, and
terminated by a possible application of IM◦ or EM◦ (to lift a possible binding created by
application of BETA◦ and merge it with the top-level binding).

We now outline the main steps of the proof, detailed in Section 5.

The top-level translation We start by defining the top-level translation b·cTOP, based on an
enriched notion of context in λa, which lends itself better than the standard translation to a
simulation argument.

Quotient of λa Then, we consider λ a, defined as λa modulo rules UPDATEa, LETa,
EMPTYLETa, WEAKGCa, and ALLOCa. These rules are strongly normalizing, and we
define a faithful translation from λ a to λa, by taking normal forms as representatives of
equivalence classes. Furthermore, the translations J·K and b·cTOP are well-defined from
λ◦ to λ a, by composition with the canonical injection from λa to λ a. Define =a as the
equality in λ a, i.e., the equality of equivalence classes. We then show two crucial properties
gained by taking the quotient. First, we abstract over the administrative reductions:
for any e, JeK =a becTOP. Second, we make the translation compositional: for all e, E,
bE[e]cTOP =a bEcTOP[JeK]. This addresses the problems illustrated by Examples 19, 20,
and 24.

Quotient of λ◦ Then, we modify the notion of evaluation of λ◦ by merging rule SUBST◦
with the immediately following rules. We obtain a language where, instead of first copying
the value of a variable and then reducing, we perform the reduction exactly as in λa by fetch-
ing the value from the heap, applying the appropriate rule, and, in the case of beta reduction,
merging the obtained binding with the top-level one (all this in one step). This language cor-
rectly simulates λ◦, since it reaches the same values, diverges on the same expressions, and
goes wrong on the same expressions. This addresses the problems described in Examples 21
and 22. Then, we quotient the obtained language by rule EM◦. This gives a language called
λ ◦ which also simulates λ◦, eliminating the issue raised by Example 23.

Correctness Finally, b·cTOP, as a function from λ ◦ to λ a, yields a simulation. Writing −→◦
for reduction in λ ◦,−→a for reduction in λ a, i for the injection from λ◦ into λ ◦, and repr(C)
for the normal form of C modulo rules UPDATEa, LETa, EMPTYLETa, WEAKGCa, and
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Fig. 23 Summary of the proof (for observation of evaluation answers)

ALLOCa, the proof may be summarized as in Figure 23 (for observation of evaluation an-
swers), where the dotted arrows and equal signs corresponds to intermediate results.

5 Correctness

5.1 The top-level translation

5.1.1 Overview

We first define the top-level translation from λ◦ to λa. We start with a simple example.

Example 25 The top-level translation of the first expression of Figure 13 is the last config-
uration of Figure 21:

rec


even =[?] λx. (x = 0) or

(odd (x−1)),
odd =[n] λx. (x > 0) and

(even (x−1))

in even 56

gives

Rec


x1 = λx. (x > 0) and

(x2 (x−1)),
x2 = λx. (x = 0) or

(x1 (x−1)),

in x2 56

Informally, the translation distinguishes three levels in the translated expression e.

Top-level The first level consists of the (possibly empty) fully evaluated part bv of the top-
level binding of e, if any. At this level, b·cTOP performs all administrative reductions, as
previewed in Examples 19 and 20. Hence, the top-level translation maps bv to a pair of a
heap and a substitution, representing the heap after evaluation of the standard translation
of bv, plus the successive substitutions produced by this evaluation. For instance, if bv ≡
(y =[n] λx. . . .y . . .), then its standard translation is y = alloc n, = update y (λx. . . .y . . .).
Its top-level translation gives directly what we would obtain after performing the admin-
istrative reductions: the heap y′ = λx. . . .y′ . . . and the substitution [y 7→ y′].
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Allocating After bv, we expect b·cTOP to map answers to answers. Thus, we also want ad-
ministrative reductions to be performed on the fly. The difference with the previous level
is that (although we could do it) we do not perform administrative reductions on rec’s.
Indeed, it is not necessary, and it would lead to considering more rules as administrative
in λa. For example, consider an expression of the shape e≡ (rec bv in(rec b in e1) e2),
with dom(b) # FV(bv)∪ FV(e2). This expression reduces by rules LIFT◦ and EM◦ to
e′ ≡ (rec bv,b in e1 e2). The purpose of performing the administrative reductions on
the fly is to abstract over some reduction rules that are considered administrative in λa,
because they have no equivalent in λ◦. Here, rule LIFT◦ does have an equivalent in λ◦,
so we may avoid the administrative reductions for b in becTOP (and perform them for
be′cTOP).
Thus, for translating after bv, we must define a translation function different from b·cTOP,
but nevertheless performing some administrative reductions. This is the purpose of the
allocating translation b·c. In fact, except for the rec case, b·cTOP and b·c perform exactly
the same administrative reductions, and we define b·cTOP in terms of b·c.

Standard In other the parts of e, where no administrative reductions are to be performed,
we apply the standard translation J·K.

5.1.2 The allocating translation

We now formally define the allocating translation b·c. The idea is to translate the evaluated
part of the input expression into a proper λa evaluation context, performing the administra-
tive reductions on the fly. When the not-yet-evaluated parts of the expression are reached,
the standard translation is used. For instance, given a function application e1 e2, where e2
is not a value, one can consider that the current evaluation point is inside e2, and therefore
that e1 has remained untouched. So, we will use Je1K and be2c. The function b·c is defined
in Figure 24.

Definition 26 (Locations and substitutions) We choose a set Locs⊆ vars of locations, ranged
over by `, such that Locs and vars\Locs are both infinite. We consider only λ◦ raw expres-
sions whose free and bound variables are in vars\Locs, which is from now on ranged over
by x. We consider only λa raw configurations RecH in E such that dom(H) ⊆ Locs and
locations are never bound in E or the right-hand sides of H. From now on, we also call
substitutions, ranged over by σ , functions from vars to vars whose support is disjoint from
Locs. Composition of these substitutions is well defined as mere function composition. We
call variable allocations such substitutions that are furthermore injective on their support
and whose cosupport only contains locations. We denote them by ς (final sigma).

We stress in passing that the cosupport and free variables of substitutions stay the same,
e.g., cosupport may contain locations.

We then define b·c as a function from λ◦ equivalence classes to λa configurations (it is
obviously well defined).

As for the standard translation, variables are translated into themselves. A function λx.e
is translated to λx.JeK, but the result is allocated on the heap, at a fresh location `: Rec` =
λx.JeKin `. The translation of records is similar. For translating function application, we use
a new notation: given two heaps H1 and H2 such that dom(H1) # dom(H2), we write H1,H2
for their concatenation, which is a heap itself. If the argument part is not a value, then it
is translated with b·c, while the function is translated with J·K. If the argument is a value,
then both parts are translated with b·c. The translation of a record selection e.X consists of
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bxc ≡ Recε in x
bλx.ec ≡ Rec` = λx.JeKin `
b{r}c ≡ Rec` = {r}in `

be vc ≡ RecH1,H2 in E V if
{
bec ≡ RecH1 in E
bvc ≡ RecH2 inV

be1 e2c ≡ RecH inJe1K E if
{

e2 /∈ values
be2c ≡ RecH in E

be.Xc ≡ RecH in E.X if bec ≡ RecH in E
brec b in ec ≡ Recε inJrec b in eK

Fig. 24 The allocating translation from λ◦ to λa

translating e with b·c and then selecting the field X . Finally, a binding rec b in e is translated
to Recε inJrec b in eK.

5.1.3 Generalized contexts

Given an expression e, in order to calculate becTOP, we will decompose e into its top-level
binding b1 and the rest of the expression e1, and the result will be the translation of e1 put
in some context representing b1, written bb1cTOP and defined in Figure 27 (Section 5.1.8),
using notions defined in Sections 5.1.3 to 5.1.7. The binding is divided into its evaluated part
bv and the rest b, which can be empty, but does not begin with a size-respecting definition.
We start by giving an informal account of the handling of bv and b, which leads us to the
definition of a generalized notion of context in λa.

Let us first explain the translation of the unevaluated part b. In J·K, the Dummy function
produces instructions for allocating dummy blocks. In the top-level translation, these blocks
are directly allocated by the function TDum (see Section 5.1.8), which returns the heap of
dummy blocks and the substitution replacing variables with the corresponding locations.
For example, given a binding b≡ (x1 =[?] e1,x2 =[n] e2), TDum(b) essentially returns a heap
`2 = alloc n and the substitution [x2 7→ `2]. This corresponds to the fact that after the pre-
allocation pass (as generated by the standard translation), the update pass takes place under
this heap and substitution.

In J·K, the Update function produces instructions to either update a dummy block with
the translation of the definition, or to perform the binding implied by the definition. In b·cTOP,
the only difference is that the first definition in b is translated with b·c, while the remaining
ones – still considered to lie past the current evaluation point – are translated with J·K. This is
done by function TUp (see Section 5.1.8). On the previous example, if be1c ≡ RecH1 in E1,
then TUp(b) essentially returns the heap H1 and the binding x1 = E1, = update x2 Je2K.
Under the substitution returned by TDum, the second definition becomes update `2 Je2K,
as expected.

Now, what should be the top-level translation, written Top(bv), of the evaluated part
bv? As mentioned above, this translation yields a heap and a substitution. The translation of
definitions is relatively natural, but it is difficult to assemble the results in a coherent manner.
First, consider a single definition x � v. The allocating translation of v is an answer, of the
shape RecH inV . It is thus clear that the generated heap and substitution should be H and
[x 7→V ], respectively.

The next question is how to assemble the results obtained for each definition. First,
we remark that in the absence of forward references, substitutions should be composed
from right to left. For instance, on a binding like bv ≡ (x1 =[?] x0,x2 =[?] x1), the generated
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substitution must be [x1 7→ x0] ◦ [x2 7→ x1], and not the converse. Thus, definitions can be
altered by previous definitions, which may have replaced some variables with other values.

However, because of forward references in λ◦ bindings, the translated definitions may
also have to be altered by subsequent definitions. For instance, consider the binding bv ≡
(x1 =[?] x2,x2 =[n] λx.x), where n = size(λx.x). The top-level translation turns bv into a heap
and a substitution. The translation of the first definition consists of the heap H1 ≡ ε and the
substitution σ = [x1 7→ x2], so that subsequent occurrences of x1 are replaced with x2. Then,
we translate the second definition. This gives H2 ≡ (`2 = λx.x) and ς = [x2 7→ `2], for some
fresh location `2. Naively, one could think that the substitution corresponding to the whole
binding should be the right-to-left composition σ ◦ ς of the obtained substitutions. This is
incorrect: under this substitution, a reference to x1 becomes [x1 7→ x2]([x2 7→ `2](x1)) = x2,
while it should instead be directed to `2. This example illustrates that variable allocations
performed by the translation are expected to alter previous forward references to them,
which possibly appear as substitutions.

This leads us to define a new notion of context in λa, called generalized context, in terms
of which we define the translation of bindings. The functions TDum,TUp, and Top will
be defined as returning generalized contexts, which makes their uniform treatment easier.
Basically, the idea of generalized contexts is that they contain a heap, an allocation context,
and two substitutions, rather than one. This allows distinguishing variable allocations x 7→ `,
which might alter previous translations, from normal substitutions x 7→ y, which may not.
Basically, only definitions of known size can alter previous translations, because they are
the only ones that can be forward referenced. Furthermore, it is crucial that the normal
substitution of a generalized context be one-way, in the following sense.

Definition 27 (One-way substitution) A substitution σ (with implicitly supp(σ) # Locs, by
Definition 26) is one-way iff supp(σ) # cosupp(σ).

From the informal explanations above, it should come as no surprise that definitions
x =[?] y with unknown sizes generate one-way substitutions. Indeed, they only “go left” in
the binding, and no binding may define for example x =[?] y,y =[?] x because of the syntactic
restriction on forward references.

We start by proving some useful properties of substitutions.

Lemma 28 For all one-way substitutions σ , σ ◦ σ = σ .

Proof For all variable x, either x /∈ supp(σ) and then both sides are equal to x; or x ∈
supp(σ), but then σ(x) ∈ cosupp(σ), which by hypothesis implies σ(x) /∈ supp(σ), hence
σ(σ(x)) = σ(x), as expected. ut

Lemma 29 For all substitutions σ1 and σ2,

– supp(σ1 ◦ σ2)⊆ supp(σ1)∪ supp(σ2), and
– cosupp(σ1 ◦ σ2)⊆ cosupp(σ1)∪ cosupp(σ2).

Proof The first point is point is easy by contradiction. For the second point, assume x ∈
cosupp(σ1 ◦ σ2). There is some y 6= x such that (σ1 ◦ σ2)(y) = x. Let z = σ2(y). If x /∈
cosupp(σ1), then z = x, so σ2(y) = x, and x ∈ cosupp(σ2). ut

Lemma 30 For all substitutions σ1 and σ2, if FV(σ1) # supp(σ2), then σ1 ◦ σ2 = σ1(σ2) ◦
σ1.
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Proof Let x ∈ vars. If x ∈ supp(σ2), then x /∈ FV(σ1), so (σ1(σ2) ◦ σ1)(x) = (σ1(σ2))(x),
which is the expected result. Otherwise, if x ∈ supp(σ1), then σ1(x) ∈ cosupp(σ1), so
σ1(x) /∈ supp(σ2), hence (σ1(σ2) ◦ σ1)(x) = σ1(x) = (σ1 ◦ σ2)(x). ut

Lemma 31 For all σ ,ς , if supp(σ) # supp(ς), then ς(σ) ◦ ς = ς ◦ σ ◦ ς .

Proof Let x∈ vars. If ς(x)∈ supp(σ), then both sides are equal to (ς ◦ σ ◦ ς)(x). Otherwise,
since ς is one-way, ς ◦ ς = ς , so (ς(σ) ◦ ς)(x) = ς(x) = (ς ◦ ς)(x) = (ς ◦ σ ◦ ς)(x). ut

Corollary 32 For all ς ,σ , if supp(ς) # supp(σ), then ς ◦ σ = ς ◦ σ ◦ ς .

Proof By Lemmas 30 and 31, since obviously supp(ς) # supp(σ) implies FV(ς) # supp(σ).
ut

Another useful result is the following commutation property between contexts and sub-
stitutions.

Proposition 33 For all α,σ ,E, if FV(σ) # Capt2(α), then σ(α[E])≡ (σ(α))[σ(E)].

Corollary 34 For all α,σ ,E, if σ ◦ σ = σ and FV(σ) # Capt2(α), then σ(α[E]) ≡
σ(α[σ(E)]).

Proof By Proposition 33, σ(α[E])≡ (σ(α))[σ(E)]≡ (σ(α))[(σ ◦ σ)(E)]≡ σ(α[σ(E)]).
ut

We then give the following sufficient condition for the composition of two one-way
substitutions to be one-way. We recall that FV(σ1) # supp(σ2) means

– supp(σ1) # supp(σ2) and
– cosupp(σ1) # supp(σ2).

Lemma 35 For all one-way substitutions σ1 and σ2, if FV(σ1) # supp(σ2), then

– σ1 ◦ σ2 is one-way,
– supp(σ1 ◦ σ2) = supp(σ1)∪ supp(σ2),
– cosupp(σ1)⊆ cosupp(σ1 ◦ σ2).

Proof We prove that σ1 ◦ σ2 is one-way by contradition. Let σ = σ1 ◦ σ2 and assume the
existence of x ∈ cosupp(σ)∩ supp(σ), i.e., the existence of x,y, and z, such that

– σ(x) = y with x 6= y, and
– σ(z) = x with x 6= z.

Define x′ = σ2(x) and z′ = σ2(z). Informally, we have:

x
σ2−→ x′

σ1−→ y
z

σ2−→ z′
σ1−→ x

– If x 6= x′ and x 6= z′, then x ∈ supp(σ2)∩ cosupp(σ1) which is impossible by hypothesis.
– If x = x′ and x 6= z′, then x ∈ supp(σ1)∩ cosupp(σ1), which is impossible because σ1 is

one-way.
– If x = z′ and x 6= x′, then x ∈ supp(σ2)∩ cosupp(σ2), which is impossible because σ2 is

one-way.
– If x = x′ and x = z′, then σ(z) = y which is impossible since σ(z) = x and x 6= y.
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FV(〈H ; α ; σ ; ς〉) = (FV(H)∪FV(α)∪FV(σ)∪FV(ς))\dom(H)
Capt2(〈H ; α ; σ ; ς〉) = Capt2(α)∪ supp(σ)∪ supp(ς)

Fig. 25 Free variables and captured variables for generalized contexts

The second point is proved as follows.

– By Lemma 29, supp(σ1 ◦ σ2)⊆ supp(σ1)∪ supp(σ2);
– If x∈ supp(σ1)∪supp(σ2) but x /∈ supp(σ1 ◦ σ2), i.e., σ1(σ2(x)) = x, then let y = σ2(x).

If x = y, then σ1(x) = σ1(y) = x, so x is neither in supp(σ1) nor in supp(σ2), which con-
tradicts x∈ supp(σ1)∪supp(σ2). Otherwise, we have y 6= x, which implies x∈ supp(σ2),
and furthermore and (σ1 ◦ σ2)(x) = σ1(y) = x, so x ∈ cosupp(σ1)∩ supp(σ2), a contra-
diction.

For the third point, take x ∈ cosupp(σ1). There exists y 6= x such that σ1(y) = x. By
hypothesis, this y is not in supp(σ2), so (σ1 ◦ σ2)(y) = x, and x ∈ cosupp(σ1 ◦ σ2). ut
Definition 36 (Generalized contexts) A generalized context γ ::= 〈H ; α ; σ ; ς〉 is a 4-tuple
of a heap H, an allocation context α , a substitution σ , and a variable allocation ς , such that

– σ is one-way;
– supp(σ) # supp(ς);
– no locations are free in α nor in the range of H;
– cosupp(σ)∩Locs⊆ dom(H);
– cosupp(ς)⊆ dom(H).

Note that dom(H) contains only locations, and is thus inherently disjoint from supp(σ)
and supp(ς). Moreover, recall that every evaluation context ξ is also an allocation context α .

A generalized evaluation context is a generalized context whose allocation context is an
evaluation context, i.e., a generalized context of the shape 〈H ; ξ ; σ ; ς〉.

The generalized contexts generated by the translation of size-respecting bindings will
have 2 as their allocation context. We call such generalized contexts generalized bindings,
and write them β .

The generalized contexts generated by dummy allocation of bindings will have the shape
〈H ; 2 ; id ; ς〉. We call such generalized contexts generalized dummy allocations, and write
them δ .

Also, we define the syntactic sugar 〈H ; B ; σ ; ς〉, which, if B is not empty, denotes
〈H ; let B in 2 ; σ ; ς〉, and otherwise denotes 〈H ; 2 ; σ ; ς〉. Further, bindings B are
implicitly coerced to generalized contexts 〈ε ; B ; id ; id〉. Finally, we simply write σ for
〈ε ; 2 ; σ ; id〉, and define Subst(〈H ; α ; σ ; ς〉) = ς ◦ σ and Cont(〈H ; α ; σ ; ς〉)≡ α .

Next, we define structural equivalence on generalized contexts, using the definition of
free variables in Figure 25. To help build intuition, we also define the captured variables for
generalized contexts. The intuition behind structural equivalence of generalized contexts is
that the locations bound in dom(H) may be renamed freely, since they may only be men-
tioned in the cosupport of σ and ς . Formally, structural equivalence is defined in Figure 26,
as the least equivalence relation respecting the rules. The first rule says that α-equivalence
on expressions, heaps, and stored values is included; the second rule says that a location in
the heap may be renamed, provided it does not clash with another one.

Example 37 Consider the bindings bv ≡ (x1 =[?] x0,x2 =[?] x4,x3 =[?] x1,x4 =[n] λx.x) and b≡
(x5 =[n] x2).

Via Top, each definition in bv yields a generalized context:
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H ≡ H ′ α ≡ α
′

σ ≡ σ
′

ς ≡ ς
′

〈H ; α ; σ ; ς〉 ≡ 〈H ′ ; α
′ ; σ

′ ; ς
′〉

`′ /∈ dom(H) σ
′ = [` 7→ `′](σ) ς

′ = [` 7→ `′](ς)
〈(H, ` = S) ; α ; σ ; ς〉 ≡ 〈(H, `′ = S) ; α ; σ

′ ; ς
′〉

Fig. 26 Structural equivalence of generalized contexts

– x1 yields γ11 ≡ 〈ε ; 2 ; [x1 7→ x0] ; id〉,
– x2 yields γ12 ≡ 〈ε ; 2 ; [x2 7→ x4] ; id〉,
– x3 yields γ13 ≡ 〈ε ; 2 ; [x3 7→ x1] ; id〉, and
– x4 yields γ14 ≡ 〈` = λx.x ; 2 ; id ; [x4 7→ `]〉.

The binding b, which is not evaluated yet, yields the heap H ≡ `′ = alloc n and the
variable allocation ς = [x5 7→ `′] by function TDum, which we write γ2 ≡ 〈H ; 2 ; id ; ς〉.

Via TUp, b yields the heap H ′ ≡ ε and the binding B ≡ ( = update x5 x2), which we
write γ3 ≡ 〈H ′ ; let B in 2 ; id ; id〉. Note that this is the only use of generalized contexts
using allocation contexts (here let B in 2) which are not evaluation contexts.

5.1.4 Composition of generalized contexts

We then need a notion of composition of generalized contexts, in order to assemble the
pieces of our translation. The guiding intuition here is that when composing two generalized
contexts γ1 ≡ 〈H1 ; α1 ; σ1 ; ς1〉 and γ2 ≡ 〈H2 ; α2 ; σ2 ; ς2〉, we want the result to be well-
defined and equal to

〈H1,H2 ; α1[α2] ; σ1 ◦ σ2 ; ς1 + ς2〉,
but we also want the following two equations to hold for any composable γ1 and γ2 and any
expression E:

((ς1 + ς2) ◦ σ1 ◦ σ2)(H1,H2) ≡ ((ς1 + ς2) ◦ σ1)(H1),(ς1 ◦ ς2(σ1) ◦ ς2 ◦ σ2)(H2))

((ς1 + ς2) ◦ σ1 ◦ σ2)(α1[α2[E]]) ≡ ((ς1 + ς2) ◦ σ1)(α1[(ς2 ◦ σ2)(α2[E])]).

In these equations, the left member is (part of) what we get by applying the result of the com-
position to E, as defined below (Definition 45). The right member describes how we would
like the four substitutions to interact. For instance, σ2 is a standard substitution, which does
not affect upper levels of context: in both left members, it does not act on the components of
γ1. On the other hand ς2 has to affect them, but should not be shortcut by α1 and σ1, which
explains why we require that it still affects the variables in α2[E] and H2 before, respectively,
α1 and σ1, which come first in the left members.

We say that two generalized contexts γ1 ≡ 〈H1 ; α1 ; σ1 ; ς1〉 and γ2 ≡ 〈H2 ; α2 ; σ2 ; ς2〉
are composable, and writte γ1 � γ2, iff

– the four substitutions σ1,ς1,σ2, and ς2 have pairwise disjoint supports,
– supp(σ2) # FV(γ1),
– Capt2(α1) # FV(σ2)∪FV(ς2).

These conditions are oviously preserved by structural equivalence, which justifies the defi-
nition of composability on equivalence classes of generalized contexts.

Definition 38 (Composition of generalized contexts) Let γ1 ≡ 〈H1 ; α1 ; σ1 ; ς1〉 and γ2 ≡
〈H2 ; α2 ; σ2 ; ς2〉 be two composable generalized contexts. Define their composition γ1 ~ γ2
by

γ1 ~ γ2 ≡ 〈H1,H2 ; α1[α2] ; σ1 ◦ σ2 ; ς1 + ς2〉
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assuming that dom(H1) # dom(H2) (which can always be reached by structural equivalence).

Proposition 39 The conditions for being composable are equivalent to

– FV(σ1) # supp(σ2),
– supp(ς1) # supp(ς2),
– supp(σ1)∪ supp(σ2) # supp(ς1)∪ supp(ς2),
– supp(σ2) # FV(H1)∪FV(α1),
– cosupp(σ2) # Capt2(α1),
– supp(ς2) # supp(σ1)∪Capt2(α1).

In light of Proposition 39, the conditions for composability can be understood as follows:

– The first three items ensure that the result is a well-formed generalized context. Actually,
they are stronger than strictly necessary: they use the sufficient condition of Lemma 35,
requiring FV(σ1) # supp(σ2) and supp(σ1)∪ supp(σ2) # supp(ς1)∪ supp(ς2) instead of
requiring σ1 ◦ σ2 to be one-way, and supp(σ1 ◦ σ2) # supp(ς1)∪ supp(ς2) to hold. This
more restrictive requirement allows an easy proof of weak associativity for composition
of generalized contexts, and is general enough for our purposes.

– The fourth item ensures that σ2 does not affect H1 and α1.
– The fifth item ensures that σ2 is not shortcut by α1 (i.e., σ2(α1[. . .])≡ σ2(α1)[σ2(. . .)],

which by the previous point is in fact α1[σ2(. . .)]).
– The sixth item ensures that ς2 is not shortcut by σ1 and α1.

Example 40 Consider again bv from Example 37. Its top-level translation is γ11 ~ γ12 ~
γ13 ~ γ14, which is exactly γ1 ≡ 〈Hbv ; 2 ; σbv ; ςbv〉, with the heap Hbv ≡ ` = λx.x, the vari-
able allocation ςbv = [x4 7→ `], and the substitution σbv = [x1,x3 7→ x0,x2 7→ x4]. Note that the
rest of the translation ensures that variable allocations are always applied after substitutions,
so that x2 will eventually be redirected to `.

We now prove useful sufficient conditions for composability and associativity. They use
the following notation for, respectively, the unknown size and known size variables of a
binding b:

– UV(b) = {x | ∃e,(x =[?] e) ∈ b},
– KV(b) = {x | ∃n,e,(x =[n] e) ∈ b}.

Proposition 41 If (b1,b2) is syntactically correct, then FV(b1) # UV(b2).

Definition 42 For all generalized contexts γ ≡ 〈H ; α ; σ ; ς〉, and correct bindings b, we
say that b justifies γ , and write b ` γ , iff:

– FV(γ)⊆ FV(b), and more specifically,
– supp(σ)⊆ UV(b),
– supp(ς)⊆ KV(b).

Lemma 43 Assume a correct binding of the shape (b1,b2) and two generalized contexts
γi ≡ 〈Hi ; αi ; σi ; ςi〉, such that bi ` γi, for i = 1,2. If moreover Capt2(α1) = /0, then γ1 � γ2
and b1,b2 ` γ1 ~ γ2.

Proof First, the four substitutions involved have as supports the domains of pairwise disjoint
parts of b1,b2, hence have pairwise disjoint supports. Furthermore, since b1,b2 is correct, b1
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makes no (forward) reference to UV(b2), hence supp(σ2) # FV(γ1). Thus, Capt2(α1) being
empty, we have γ1 � γ2. Furthermore, we have

FV(γ1 ~ γ2)⊆ FV(γ1)∪FV(γ2)⊆ FV(b1)∪FV(b2) = FV(b1,b2).

By a similar reasoning on substitutions, we obtain b1,b2 ` γ1 ~ γ2 as desired. ut

Lemma 44 Assume a correct binding of the shape (b1,b2,b3) and three generalized con-
texts γi ≡ 〈Hi ; αi ; σi ; ςi〉, such that bi ` γi, for i = 1,2,3. If moreover Capt2(αi) = /0, for
i = 1,2, then (γ1 ~ γ2)~ γ3 and γ1 ~ (γ2 ~ γ3) are defined and equal.

Proof By the previous Lemma, we obtain γ1 � γ2 and b1,b2 ` γ1,γ2, hence by the same
Lemma, (γ1 ~ γ2) � γ3. Symmetrically, γ1 � (γ2 ~ γ3). Thus, both sides are defined at the
same time. The desired equality follows easily. ut

5.1.5 Generalized context application

We have seen that the top-level binding will be translated as a generalized context. We will
then fill the context hole with the translation of the rest of the expression, using generalized
context application, which we now define.

Definition 45 (Generalized context application) For every generalized context γ ≡ 〈H ; α ;
σ ; ς〉 and configuration C ≡ RecH ′ in E, let γ[C]≡ (Rec(ς ◦ σ)(H,H ′)in(ς ◦ σ)(α[E]))
be the application of γ to C, provided dom(H ′) # dom(H)∪ cosupp(σ)∪ cosupp(ς) (which
may always be reached by structural equivalence).

Example 46 Consider again the binding (bv,b) from Example 37. Its translation is γ2~ γ1~
γ3, which is exactly γ ≡ 〈H0 ; α0 ; σbv ; ς ◦ ςbv〉, with

– the heap H0 ≡
(

` = λx.x,
`′ = alloc n

)
– and the context α0 ≡ let B in 2.

If, for instance, γ is filled with a configuration RecH in E, if the conditions for the
generalized context application are met, we get γ[RecH in E]≡ Recσ(H0,H)in σ(α0[E]),

where σ = (ς ◦ ςbv ◦ σbv) =


x5 7→ `′,
x1,x3 7→ x0,
x2 7→ `,
x4 7→ `

 .

We now prove the equations that had motivated the definition of generalized context
composition.

Lemma 47 For all composable generalized contexts γi ≡ 〈Hi ; αi ; σi ; ςi〉 and configuration
RecH in E, if dom(H) # dom(H1,H2), then

(γ1 ~ γ2)[RecH in E]≡ Rec ((ς1 + ς2) ◦ σ1)(H1),
(ς1 ◦ ς2(σ1) ◦ ς2 ◦ σ2)(H2,H)

in((ς1 + ς2) ◦ σ1)(α1[(ς2 ◦ σ2)(α2[E])]).
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Proof First, by γ1 � γ2, we have FV(H1) # supp(σ2), so ((ς1 + ς2) ◦ σ1 ◦ σ2)(H1)≡ ((ς1 +
ς2) ◦ σ1)(H1).

Furthermore, ς1 + ς2 = ς1 ◦ ς2. But by γ1 � γ2 again, we have supp(ς2) # supp(σ1). So
by Lemma 30, ς2 ◦σ1 = ς2(σ1) ◦ ς2. This gives ((ς1 +ς2) ◦σ1 ◦σ2)(H2,H)≡ (ς1 ◦ ς2(σ1) ◦
ς2 ◦ σ2)(H2,H).

Now, by composability again, Capt2(α1) # FV(σ2) ∪ FV(ς2). But FV(ς2 ◦ σ2) ⊆
FV(σ2)∪FV(ς2), so Capt2(α1) # FV(ς2 ◦ σ2). By Proposition 33 and the above, this yields
(ς2 ◦ σ2)(α1[α2[E]])≡ ((ς2 ◦ σ2)α1)[(ς2 ◦ σ2)(α2[E])].

But supp(σ2) # FV(α1) and ς2 ◦ ς2 = ς2, so ((ς2 ◦ σ2)α1)[(ς2 ◦ σ2)(α2[E])] =
(ς2(α1))[(ς2 ◦ ς2 ◦ σ2)(α2[E])], hence by Proposition 33 again, this is equal to
ς2(α1[(ς2 ◦ σ2)(α2[E])]). Thus, ((ς1 + ς2) ◦ σ1 ◦ σ2)(α1[α2[E]]) is indeed equal to
(ς1 ◦ ς2(σ1) ◦ ς2)(α1[(ς2 ◦ σ2)(α2[E])]), which is in turn equal to ((ς1 + ς2) ◦ σ1)(α1[(ς2 ◦
σ2)(α2[E])]), as desired. ut

5.1.6 Weak composition of generalized contexts

Although the notion of composition of generalized contexts is needed to properly translate
size-respecting bindings, it is somewhat inconvenient to reason with. For instance, the usual
equation (γ1 ~ γ2)[C] ≡ γ1[γ2[C]] obviously does not hold in general: the variable alloca-
tion of γ2 may affect γ1 in (γ1 ~ γ2)[C], but not in γ1[γ2[C]]. Nevertheless, when γ1 and γ2
stem from distinct bindings with no defined variable in common, we recover more standard
properties. More generally, we define the following notions of context interference and weak
composition, which take advantage of such cases in the following sense: weak composition
has more standard properties than ~, and coincides with it when the considered contexts do
not interfere. We first define weak composition and show that it satisfies the equation above.

Definition 48 (Weak composition of generalized contexts) Let γi ≡ 〈Hi ; αi ; σi ; ςi〉, for
i = 1,2 be two generalized contexts such that γ1 � γ2. Their weak composition γ1 ◦ γ2 is
defined as

γ1 ◦ γ2 ≡ 〈(H1,H2) ; α1[α2] ; (ς1 ◦ σ1 ◦ ς2 ◦ σ2) ; id〉.

Proposition 49 For all γ1,γ2, and C, (γ1 ◦ γ2)[C]≡ γ1[γ2[C]], when the former is defined.

Proof By definition of weak composition and generalized context application. ut

Now, we define context interference, and state the expected result.

Definition 50 (Context interference) Given two generalized contexts γi ≡ 〈Hi ; αi ; σi ; ςi〉,
for i = 1,2, we say that the ordered pair (γ1,γ2) interferes iff supp(ς2) intersects FV(σ1), so
that ς2 ◦ σ1 and σ1 ◦ ς2 are not necessarily equal.

Proposition 51 If supp(ς) # FV(σ), then (ς ◦ σ) = (σ ◦ ς).

Proof Since ς is a variable allocation, cosupp(ς) # supp(σ), from which the result follows.
ut

Proposition 52 For all γ1 and γ2, γ1~ γ2 is defined if and only if γ1 ◦ γ2 is defined. Moreover,
if (γ1,γ2) does not interfere, then (γ1 ~ γ2)≡ (γ1 ◦ γ2).

Proof By definition of composition and interference. ut
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5.1.7 Preservation of some reductions inside generalized contexts

In this section, before presenting the top-level translation, we collect two small results about
preservation of certain reductions inside certain generalized contexts.

First, we remark that not every reduction is preserved inside generalized contexts, since
for instance, rules LETa and EMPTYLETa are only valid at top-level. However, inside gen-
eralized bindings, reduction is preserved. Note that every generalized dummy allocation is a
generalized binding, so the following result also applies to generalized dummy allocations.

Proposition 53 For all configurations C1,C2 and generalized binding β , if C1 −→C2 then
β [C1]−→ β [C2].

Proof By case analysis on the applied rule. ut

Moreover, we note that rule ALLOCa is preserved by generalized context application.

Proposition 54 For all generalized contexts γ and configurations C,C′, if C ALLOCa−−−−→C′, then

γ[C] ALLOCa−−−−→ γ[C′].

Proof Follows from composability of allocation contexts: for all α1 and α2, α1[α2] is an
allocation context. ut

5.1.8 The top-level translation

We now present the top-level translation b·cTOP, defined in Figure 27, as a function from (α-
equivalence classes of) λ◦ expressions to λa configurations (it is well defined). As explained
above, generalized bindings are used to record the already translated definitions along the
translation of top-level bindings, preserving the distinction between variable allocations ς

and ordinary substitutions σ . Variable allocations that must alter previous translations are
those generated by the translation of =[n] definitions, since only those can be forward refer-
enced.

We first define the top-level translation without checking the validity of the involved
generalized context compositions. They are checked shortly afterwards.

The top-level translation handles the size-respecting part of top-level bindings with the
function Top. This function expects a size-respecting binding. When its argument is the
empty binding, it returns the empty generalized binding. For non-empty bindings, the def-
initions are translated as sketched above. For a definition of unknown size x =[?] v, v is
translated by b·c to RecH inV , and is included in the translation as the generalized binding
〈H ; 2 ; [x 7→ V ] ; id〉. A definition of known size x =[n] v is translated into a heap and a
variable allocation: v has a translation of the shape RecH in `, and it is included in the trans-
lation of bv as 〈H ; 2 ; id ; [x 7→ `]〉. The top-level translation of an evaluated binding is the
composition of the translations of its definitions. If the result is some 〈H ; 2 ; σ ; ς〉, then
the variable allocation is applied after the ordinary substitution, which allows the correct
treatment of forward references, as sketched in Section 5.1.3.

The other two functions, TDum and TUp, are defined as announced in the beginning of
Section 5.1.3. The three functions return generalized contexts: TDum returns a generalized
dummy allocation 〈H ; 2 ; id ; ς〉, TUp returns 〈H ; B ; id ; id〉, which (by the notation of
Section 5.1.3) is 〈H ; let B in 2 ; id ; id〉 if B 6= ε , and 〈H ; 2 ; id ; id〉 otherwise.

In case the whole binding (bv,b) is evaluated (i.e., b is empty), the contexts for pre-
allocation and update, TDum(b) and TUp(b) are empty, and brec bv,b in ecTOP is bec,
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brec bv in ecTOP ≡ bbvcTOP[bec]
brec b in ecTOP ≡ bbcTOP[Recε inJeK] if b is not size-respecting
becTOP ≡ bec if e is not of the form rec b in e′

bbv,bcTOP ≡ TDum(b)~ Top(bv)~ TUp(b) where b does not begin with a
size-respecting definition.

Top(x =[?] v) ≡ 〈H ; 2 ; [x 7→V ] ; id〉 if bvc ≡ RecH inV
Top(x =[n] v) ≡ 〈H ; 2 ; id ; [x 7→ `]〉 if bvc ≡ RecH in ` and size(v) = n
Top(ε) ≡ 〈ε ; 2 ; id ; id〉
Top(x � v,bv0 ) ≡ Top(x � v)~ Top(bv0 )

TDum(ε) ≡ 〈ε ; 2 ; id ; id〉
TDum(x =[?] e,b) ≡ TDum(b)
TDum(x =[n] e,b) ≡ (〈` = allocn ; 2 ; id ; [x 7→ `]〉) ◦ TDum(b)

TUp(ε) ≡ 〈ε ; 2 ; id ; id〉
TUp(x =[?] e,b) ≡ 〈H ; (x = E,Update(b)) ; id ; id〉 if bec ≡ RecH in E
TUp(x =[n] e,b) ≡ 〈H ; ( = (update x E),Update(b)) ; id ; id〉 if bec ≡ RecH in E

Fig. 27 The top-level translation from λ◦ to λa

put in the context Top(bv). Otherwise, brec bv,b in ecTOP is Recε inJeK, put in the con-
text TDum(b) ~ Top(bv) ~ TUp(b). Notice that there is no context interference, since
the innermost one, TUp(b), does not have any variable allocation, and the outermost one,
TDum(b), has no substitution (but only a variable allocation). So, we could equivalently use
TDum(b) ◦ Top(bv) ◦ TUp(b).

Proposition 55 The function b·cTOP maps answers to answers.

Proof By a simple case inspection. ut

Proposition 56 For e0 of one of the shapes in (3) of Proposition 7, be0cTOP is faulty.

Proof By case inspection. ut

Finally, we prove that all the generalized context compositions we use are well-defined
and associative.

Proposition 57 For all b, x, v, and bv, the following hold:

b ` TDum(b), b ` TUp(b), x � v ` Top(x � v), bv ` Top(bv).

As a corollary, all the possible generalized contexts resulting from the top-level translation
can be composed (by Lemma 43) in an associative fashion (by Lemma 44). This justifies the
absence of parentheses in the definition.

5.2 Quotient of λa

In this section, we relate the three translation functions J·K, b·c, and b·cTOP: we show that
their results are equivalent modulo the rules UPDATEa, LETa, EMPTYLETa, WEAKGCa,
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and ALLOCa. So, letting λ a be the quotient of λa modulo these rules, we obtain that they
are equal as functions from λ◦ to λ a. Then, we study the compositionality of this function.

Definition 58 (λ a) Define =a as the smallest equivalence relation over λa containing the
rules UPDATEa, LETa, EMPTYLETa, WEAKGCa, and ALLOCa. Let λ a be the set of =a-
equivalence classes. Let reduction in λ a, written −→a, be defined by the rules:

C1 =a C′1 C′1
R−→C′2 C′2 =a C2

C1 −→a C2

where R ranges over the other rules (BETAa, PROJECTa, LIFTa, and IMa).
Define =ALLOCa

⊆=a to be λa convertibility by rule ALLOCa.

We obtain that λ a and λa behave identically:

Lemma 59 For all C, C reduces to an answer, loops, or is faulty in λa iff it does in λ a.

Proof We show the following:

1. If C −→∗ A, then C −→a
∗ repr(A). The reduction sequence in λa is one in λ a where

some steps become equalities.
2. Conversely, a reduction sequence to an answer in λ a corresponds to a sequence of re-

ductions and anti-reductions in λa, which by strong commutation (Lemma 12) lead to a
sequence of reductions.

3. If C loops in λa, then C also loops in λ a, because any infinite reduction sequence in-
volves an infinite number of rules BETAa and PROJECTa.

4. Conversely, we obtain from any infinite reduction sequence in λ a an infinite sequence of
reductions and anti-reductions in λa, with an infinite number of BETAa and PROJECTa
reductions and no such anti-reduction. By strong commutation, this yields an infinite
reduction sequence in λa.

5. Finally, faulty configurations are the same in both calculi.

ut

5.2.1 Equating the three translations

We first show that the three translations coincide as functions to λ a. First, we have the
following equalities for the allocating translation.

Proposition 60 For all v, bvc ≡ bvcTOP.

Proof By definition of b·cTOP. ut

Proposition 61 For all v, (Recε inJvK) =ALLOCa
bvc.

Proof Trivial for variables. For other values, apply Proposition 16. ut

Proposition 62 For all e, (Recε inJeK) =ALLOCa
bec.

Proof By induction on e, using Propositions 61 and 54. ut
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Consider now the top-level translation of bindings. It splits the bindings in two, cutting
at the first non-size-respecting or non-evaluated definition. But of course, one could split at
another point, provided the first part is size-respecting. Indeed, the first part is given as an
argument to the Top function, which is defined only on size-respecting, evaluated bindings,
whereas the second part is given as an argument to the TDum and TUp functions, which
work as well on value and non-value definitions.

Definition 63 (Partial translation) For all b ≡ (bv,b′), let the partial translation of b up to
bv be TDum(b′) ◦ Top(bv) ◦ TUp(b′).

The partial translation of b up to bv is its top-level translation, computed as if b′ did not
begin with a size-respecting definition. In fact, any partial translation is =a-equivalent to the
top-level translation, as we now show, using the following properties of the functions TDum

and TUp, and of substitution.

Proposition 64 For all C ≡ (Recε in E), and b, Update(b)[C] =ALLOCa
TUp(b)[C], using

the notation of Section 5.1.3 for coercing bindings to generalized contexts.

Proof By Propositions 62 and 54. ut

Proposition 65 For all b,B, and E,

Recε in let Dummy(b),B in E =a TDum(b)[Recε in let B in E].

Proof By induction on b and rules ALLOCa and LETa. ut

Proposition 66 For all V,σ , and x /∈ FV(σ), [x 7→ σ(V )] ◦ σ = σ ◦ [x 7→V ].

The key lemma (67) then states that the in-place update machinery indeed computes the
expected recursive definition. Hypothesis 17 is crucial here, ensuring that the update is valid.

Lemma 67 For all C ≡ Recε in E and size-respecting bv0 ≡ (bv,x � v), we have

(TDum(x � v) ◦ Top(bv) ◦ TUp(x � v,b))[C] =a (Top(bv0) ◦ Update(b))[C]

using the notation of Section 5.1.3 for coercing bindings to generalized contexts.

Proof Let δx ≡ TDum(x � v)≡ 〈Hdx ; 2 ; id ; ςdx〉 and βbv ≡ Top(bv)≡ 〈Hbv ; 2 ; σbv ; ςbv〉.
Consider C1 ≡ δx ◦ βbv ◦ TUp(x � v,b)[C] and C2 ≡ (Top(bv0) ◦ Update(b))[C]. First, we
have Top(bv0)≡ βbv ~ Top(x � v). Then, we proceed by case analysis on x � v.

– (x � v) ≡ (x =[n] v) with size(v) = n. Then, v is not a variable. Thus, by definition of
b·c, bvc has the shape Rec` = Sin `, for some ` /∈ FV(S). By α-equivalence, we may
choose another fresh location `′ such that bvc ≡ (Rec`′ = Sin `′). It then holds that
Hdx ≡ (` = alloc n) and ςdx = [x 7→ `], for some `.
Let σ1 = (ςdx + ςbv) ◦ σbv . We have:

C1 ≡ (Rec` = allocn, `′ = σ1(S),σ1(Hbv)
in let = update ` `′,σ1(Update(b)) in σ1(E))

=a (Rec` = σ1(S), `′ = σ1(S),σ1(Hbv)
in let σ1(Update(b)) in σ1(E))

(by rules UPDATEa and LETa),
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because Size(σ1(S)) = Size(S) = size(v) = n = Size(allocn), by Hypotheses 10 and 17.
But then, `′ is unused, so the obtained configuration reduces by rule WEAKGCa to

C′1 ≡ Rec` = σ1(S),σ1(Hbv)in σ1(let Update(b) in E)
≡ (〈` = S,Hbv ; 2 ; σbv ; (ςdx + ςbv)〉)[Recε in let Update(b) in E]
≡ (Top(bv0) ◦ Update(b))[C]≡C2.

– (x � v)≡ (x =[?] v). Then, δx ≡ 〈ε ; 2 ; id ; id〉. Let bvc ≡ RecHv inV . We have Top(x �
v)≡ 〈Hv ; 2 ; [x 7→V ] ; id〉.
Now, let H1 ≡ Hv,Hbv and σ1 = ςbv ◦ σbv . We have C1 ≡ Recσ1(H1)in σ1(let x =

V,Update(b) in E). By rule LETa, we have

C1 =a Recσ1(H1)in [x 7→ σ1(V )](σ1(let Update(b) in E)).

But b1 may not contain forward references to definitions of unknown size, so the defini-
tions of bv0 can not depend on x. So, σ1(H1)≡ [x 7→ σ1(V )](σ1(H1)), and moreover, by
Proposition 66, we have [x 7→ σ1(V )] ◦ σ1 = σ1 ◦ [x 7→V ]. So, the obtained configuration
is equal to Rec(σ1 ◦ [x 7→V ])(H1)in(σ1 ◦ [x 7→V ])(let Update(b) in E), which is C2,
since σ1 ◦ [x 7→V ] = ςbv ◦ (σbv ◦ [x 7→V ]).

ut

Lemma 68 For all bv,bv0 ,b, and C ≡ Recε in E, if (bv,bv0) is size-respecting, then
(TDum(bv0) ◦ Top(bv) ◦ TUp(bv0 ,b))[C] =a (Top(bv,bv0) ◦ TUp(b))[C].

Proof By induction on bv0 . The base case is obvious. For the inductive step, assume that
bv0 ≡ (x � v,bv1). We have TDum(bv0)≡ TDum(x � v),TDum(bv1). By Lemma 67,

(TDum(x � v) ◦ Top(bv) ◦ TUp(x � v,bv1 ,b))[C]
=a (Top(bv,x � v) ◦ Update(bv1 ,b))[C]
=a (Top(bv,x � v) ◦ TUp(bv1 ,b))[C] (by Proposition 64).

This obviously gives (using Proposition 49)

(TDum(x � v,bv1) ◦ Top(bv) ◦ TUp(x � v,bv1 ,b))[C]
≡ TDum(bv1)[(TDum(x � v) ◦ Top(bv) ◦ TUp(x � v,bv1 ,b))[C]]
=a (TDum(bv1) ◦ Top(bv,x � v) ◦ TUp(bv1 ,b))[C].

By induction hypothesis, we obtain

(TDum(bv1) ◦ Top(bv,x � v) ◦ TUp(bv1 ,b))[C] =a (Top(bv,bv0) ◦ TUp(b))[C],

which gives the expected result. ut

Lemma 69 For all b and E,

Recε in let Dummy(b),Update(b) in E =a bbcTOP[Recε in E].

Proof If b is empty, then the results holds by application of rule EMPTYLETa, which is
included in =a. Otherwise, we have

Recε in let Dummy(b),Update(b) in E
=a TDum(b)[Recε in let Update(b) in E] (By Proposition 65)
≡ TDum(b)[Update(b)[C]] (For C ≡ Recε in E)
=a TDum(b)[TUp(b)[C]] (By Proposition 64)
=a (TDum(b) ◦ TUp(b))[C] (By Proposition 49).
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Now, b may be decomposed as b ≡ (bv0 ,b0), where b0 does not begin with a size-
respecting definition. By Lemma 68 with bv = ε , we have

(TDum(bv0) ◦ TUp(bv0 ,b0))[C] =a (Top(bv0) ◦ TUp(b0))[C],

which gives

TDum(b) ◦ TUp(b))[C]
≡ TDum(bv0 ,b0) ◦ TUp(bv0 ,b0))[C]
≡ TDum(b0)[(TDum(bv0) ◦ TUp(bv0 ,b0))[C]] (By Proposition 49)
=a TDum(b0)[(Top(bv0) ◦ TUp(b0))[C]] (By Proposition 53)
≡ (TDum(b0) ◦ Top(bv0) ◦ TUp(b0))[C] (By Proposition 49)
≡ bbcTOP[C] (By definition of b·cTOP).

ut
Corollary 70 For all b and e, Recε inJrec b in eK=a bbcTOP[Recε inJeK].

Finally, the following lemma states that the three translations J·K, b·c, and b·cTOP are
equal as functions from λ◦ to λ a.

Lemma 71 For all e, we have (Recε inJeK) =a bec=a becTOP.

Proof Proposition 62 directly implies (Recε inJeK) =a bec.
To prove bec =a becTOP, we proceed by case analysis on e. If e is not of the

shape rec b in e′, then the result follows by definition of b·cTOP. Otherwise, by Corol-
lary 70, we have bec ≡ Recε inJrec b in e′K =a bbcTOP[Recε inJe′K], so we just have
to prove bbcTOP[Recε inJe′K] =a brec b in e′cTOP. If b is not size-respecting, then the
result holds by definition of b·cTOP. Otherwise, we have brec b in e′cTOP ≡ bbcTOP[be′c].
But by Proposition 62, (Recε inJe′K) =ALLOCa

be′c, so by Proposition 54 we obtain
bbcTOP[be′c] =ALLOCa

bbcTOP[Recε inJe′K], which gives the expected result. ut

5.2.2 Compositionality

For proving that the evaluation of an expression in λ◦ corresponds to the evaluation of its
translation in λa, we seek compositionality properties of our translations. The standard trans-
lation is obviously compositional, in the following sense.

Definition 72 (Standard translation of contexts) Define JEK by extension of J·K on expres-
sions, with J2K≡ 2.

Proposition 73 For all E and e, JE[e]K≡ JEK[JeK].

Proof By trivial induction on E. ut
However, we have seen that J·K does not lend itself to a simulation argument, so we

consider the compositionality of b·cTOP. Corollary 77 below shows bE[e]cTOP =a bEcTOP[bec]
for all expressions e and evaluation contexts E. This is not exactly what one could have
hoped for, namely bE[e]cTOP =a bEcTOP[becTOP], but it will suffice to prove the correctness of
our translation.

Figure 28 defines Gen(RecH in ϕ) as the obvious generalized context made of H and
ϕ , using the fact that nested lift contexts are allocation contexts. Then, define b·c on nested
lift contexts by extension of b·c on expressions: we consider 2 not to be a value, and put
b2c ≡ Recε in 2. For any F, the translation bFcTOP has the shape RecH in ϕ for some H
and ϕ . This gives
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Gen(RecH in ϕ) ≡ 〈H ; ϕ ; id ; id〉
bFcTOP ≡ Gen(bFc)
brec bv in FcTOP ≡ bbvcTOP ◦ Gen(bFc)
brec bv,x � F,b in ecTOP ≡ TDum(x � F,b) ◦ Top(bv) ◦ TUpJeK(x � F,b)
TUpE (x � F,b) ≡ 〈H ; let t = ϕ,B in E ; id ; id〉

if TUp(x � F,b)≡ 〈H ; (t = ϕ,B) ; id ; id〉

Fig. 28 Top-level translation of contexts from λ◦ to λa

Proposition 74 For all F, Gen(bFc) is a generalized evaluation context.

Proof By induction on F and case analysis on lift contexts. ut

Figure 28 then defines the translation of evaluation contexts. The translation TDum(x �
F,b) has no hole; TUp(x � F,b) has two: one from F, plus one for the body of the returned
let-binding (present for any TUp(b)). The special notation TUpE(x � F,b) fills the latter
with E. We obtain the following immediately.

Proposition 75 For all E, bEcTOP is a generalized evaluation context whose variable allo-
cation is id.

Proof By case analysis on E and Proposition 74, bEcTOP is a generalized evaluation context.
By case analysis, we then prove that its variable allocation is id. If E is a nested lift context,
then by definition of Gen, it is the case. In both other cases, bEcTOP is defined as the weak
composition of more than one generalized evaluation context, which by definition has id as
its variable allocation. ut

This allows stating the expected compositionality result.

Lemma 76 For E≡ 2 and all e, bE[e]cTOP ≡ bEcTOP[becTOP].
For E 6≡ 2 and all e, if e /∈ values, then bE[e]cTOP ≡ bEcTOP[bec].
For all E and v, bE[v]cTOP =a bEcTOP[bvc].

Proof The first point is trivial. The second is obtained for lift contexts first (by a simple case
analysis), then for nested lift contexts by straightforward induction, and finally by case anal-
ysis on E. As for the last point, if 2 is replaced with a value, it may permit the allocating and
top-level translations to perform more administrative reductions, as for instance in contexts
of the shape e 2. The proof uses Lemma 68. ut

Corollary 77 (Weak compositionality) For all E and e, bE[e]cTOP =a bEcTOP[bec].

Full compositionality does not hold: bE[e]cTOP is not always =a-equivalent to
bEcTOP[becTOP]. The reason is because =a does not include rule IMa, as shown
by taking E ≡ (rec x =[?] 2 in x) and e ≡ (rec y =[?] {X = z},z′ =[?] y.X in y). In
this case, bE[e]cTOP ≡ (Recε in let x = (let y = {X = z},z′ = y.X in y) in x), and
bEcTOP[becTOP] ≡ (Rec` = {X = z}in let x = (let z′ = `.X in `) in x). An application
of IMa is needed in order to relate them.

Further quotienting λ a by rule IMa might lead to full compositionality. Moreover, we
think that it would preserve the good properties of the translation. In particular, λ◦ reductions
by rule IM◦ cannot be infinite, so non-termination would remain correctly simulated by the
translation. However, this is not needed to complete our correctness proof, so we did not
investigate this approach.
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5.3 Quotient of λ◦

We now define λ̃◦, based on the following notions of binding scraping b∗P(x) and context
scraping E∗(v). The intuition is that E∗(x) does much the same work as iterating the rule
SUBST◦ until a non-variable value is found. Below, we use it to replace rule SUBST◦, in the
case where E is dereferencing. In such cases, if there is no non-variable value for x, then
E[x] is faulty, so we do not have to consider it. Technically, E∗(x) is then undefined.

Example 78 Let bv ≡ (x =[?] λx′.x′,y =[?] x) and consider e≡ (rec bv in(y {})). In order to

reduce to e′ ≡ (rec bv in((λx′.x′) {})), e takes two SUBST◦ steps. In λ̃◦, we will directly
replace y with (rec bv in 2)∗(y), which is λx′.x′, and perform the BETA◦ step on-the-fly.

Definition 79 (Binding scraping) For all sets P of variables, bindings b (not necessarily
size-respecting), and variables x ∈ dom(b), define binding scraping recursively by:

b∗P(x) ≡ b(x) if b(x) /∈ vars or b(x) ∈ vars\dom(b)
b∗P(x) ≡ cycle if b(x) ∈ dom(b)∩P
b∗P(x) ≡ b∗({x}∪P)(b(x)) if b(x) ∈ dom(b)\P.

For all such b and x, if b∗/0(x) 6≡ cycle, define b∗(x)≡ b∗/0(x).

Definition 80 (Context scraping)
Define E∗(x) ≡ (Binding(E))∗(x) if x ∈ dom(Binding(E))

E∗(v) ≡ v if v /∈ vars or v ∈ vars\dom(Binding(E)).

Let us now prove elementary properties of binding scraping.

Lemma 81 Binding scraping is well defined: for all b and P, the function b∗P is total.

Proof Let the measure µ be defined from pairs of a binding and a set of variables to natural
numbers by µ(b,P) = |dom(b)\P|, the cardinality of dom(b)\P.

First, we notice that if µ(b,P) = 0, then binding scraping immediately returns, on any
variable x ∈ dom(b). Indeed, if b(x) /∈ vars, it returns b(x). Otherwise, if the variable b(x) is
in dom(b), then it is also in P, so b∗P(x) = cycle, and if the variable b(x) is not in dom(b),
then b∗P(x) = b(x).

Then, as the measure decreases by 1 at each recursive call, we conclude that b∗P(x) is
well-defined for any x ∈ dom(b). ut

Proposition 82 For all b,P,y, and x ∈ dom(b), if b∗P(x)≡ y, then y /∈ dom(b).

Proof By induction on the proof of b∗P(x) ≡ y. The base case is b(x) ≡ y and y /∈ dom(b),
which gives immediately the expected result. The inductive step is when there exists z ∈
dom(b) \P such that b∗{x}∪P(z) ≡ y. By induction hypothesis, this gives y /∈ dom(b) as ex-
pected. ut

We now define λ̃◦ as having the same expressions as λ◦, but a different reduction rela-
tion, written −→◦̃.

Definition 83 Let the merging E〈rec b in e〉 of rec b in e into the context E be defined as

– rec b in e if E≡ 2,
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– and otherwise the result of normalizing E[rec b in e] w.r.t. rule CONTEXT◦/LIFT◦, plus,
if E had a top-level binding, applying IM◦ or EM◦ once.

Note that the capture-avoiding side conditions of Definition 83 are always satisfiable by
renaming bound variables.

Then, we define −→◦̃ relatively to −→ by removing rules BETA◦, PROJECT◦, and
SUBST◦, and adding the following three rules:

E∗(v0) = λy.e
E[v0 v]−→◦̃ E〈rec y =[?] v in e〉 (BETA′◦)

E∗(v0) = {r}
E[v0.X ]−→◦̃ E[r(X)]

(PROJECT′◦)

bv
∗(y) = v size(v) = n

rec bv,x =[n] y,b in e−→◦̃ rec bv,x =[n] v,b in e
(UPDATE′◦)

Observe that all λ◦ rules are simulated in λ̃◦, except rule SUBST◦. Indeed, rules BETA◦
and PROJECT◦ are special cases of rules BETA′◦ and PROJECT′◦. Rule SUBST◦, albeit
not directly simulated, yields a simulation w.r.t. our observables: evaluation answers,
non-termination, and faultiness, as we now show.

Lemma 84 For all D and bv ≡ Binding(D), for all x ∈ vars, v /∈ vars, and finite sets of
variables P, if x /∈ P and bv

∗
P(x) ≡ v, then there exists a value v′ such that D(x) ≡ v′ and

D[v′]−→∗ D[v].

Proof We proceed by induction on the proof of bv
∗
P(x)≡ v.

– If bv(x) ∈ vars\dom(b), then bv
∗
P(x) 6≡ v, contradiction.

– If bv(x) ≡ v, then, taking v′ ≡ v, we have D(x) ≡ bv(x) ≡ v and D[v] −→∗ D[v] by
reflexivity, as expected.

– If bv(x) ∈ dom(b)∩P, then bv
∗
P(x)≡ cycle, contradiction.

– If bv(x) ∈ dom(b)\P, let y = bv(x). We know bv
∗
{x}∪P(y)≡ v, so y /∈ {x}∪P. Thus, by

induction hypothesis, there exists a v′′ such thatD(y)≡ v′′ andD[v′′]−→∗ D[v]. But then,
D[y]−→ D[v′′]−→∗ D[v]. So, taking v′ ≡ y, we obtain D(x)≡ v′ and D[v′]−→∗ D[v].

ut

Lemma 85 For all D,x, and v /∈ vars, if D[x]−→+ D[v] then D∗(x)≡ v.

Proof By Lemma 84, there exists v′ such that D(x)≡ v′ and D[v′]−→∗ D[v], which imme-
diately gives the expected result. ut

Lemma 86 For all e, if e reduces to an answer, loops, or is faulty in λ◦, then so does it
in λ̃◦.

Proof First, consider a reduction sequence from e to a normal form e1 in λ◦. We prove by
induction on its length that

– if e1 is an answer, then e reduces to an answer in λ̃◦, and
– if e1 has the shape D[v], i.e., e is faulty in λ◦, then e is faulty in λ̃◦ as well.
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The base case is trivial. For the inductive step, if the first reduction step in the given se-
quence is not SUBST◦, then it is simulated in λ̃◦, so we get the expected result by induction
hypothesis. Otherwise, e≡D[x] and the first step has the shapeD[x]−→D[v], with v≡D(x).
Consider the maximal subsequence of the given reduction sequence having the shape

D[x]≡ D[v0]
SUBST◦−−−−→ D[v1]

SUBST◦−−−−→ . . .
SUBST◦−−−−→ D[vn]

with each vi 6≡ vi+1, i.e., rule SUBST◦ applies each time at D. Thus, n > 0, and for i < n, vi
is a variable.

Now, ifD[vn] is an answer, thenD has the shape rec B=[m] in v′ with size(vn) = m, hence
e−→◦̃ e1 by rule UPDATE′◦.

Otherwise, if D[vn] is not an answer, but is actually e1, i.e., is in normal form, then D[x]
is in normal form in λ̃◦ and not an answer, hence faulty in both calculi.

Otherwise, ifD has the shape rec B=[n′ ] in e′ for some n′,B=[n′ ] , and e′, then e−→◦̃ D[vn]

by rule UPDATE′◦ in λ̃◦, and we conclude by induction hypothesis.
Otherwise, D[vn] further reduces by one of BETA◦ and PROJECT◦, and then the corre-

sponding rule (BETA′◦ or PROJECT′◦) applies in λ̃◦, and we again conclude by induction
hypothesis.

Finally, to show that non-termination is preserved, consder an infinite reduction se-
quence in λ◦ and build an infinite reduction sequence in λ̃◦ by the same algorithm: if the
first step is not SUBST◦, then it is simulated directly; otherwise, consider the maximal sub-
sequence of SUBST◦ steps. ut

We now quotient λ̃◦ by EM◦ and UPDATE′◦ to obtain λ ◦.

Definition 87 (λ ◦) Define =◦ as the smallest equivalence relation over λ̃◦ containing the
rules EM◦ and UPDATE′◦. Let the terms of λ ◦ be the set of =◦-equivalence classes. Let
reduction in λ ◦, written −→◦, be defined by the rules:

e1 =◦ e′1 e′1
R−→◦ e′2 e′2 =◦ e2

e1 −→◦ e2

where R ranges over the other rules (LIFT◦, CONTEXT◦, IM◦, BETA′◦, and PROJECT′◦).

We now show that λ ◦ simulates λ̃◦, and that b·cTOP remains well-defined as a function
from λ ◦ to λ a. For this, we prove that rules EM◦ and UPDATE′◦ preserve b·cTOP (modulo
=a, which λ a is quotiented by) and that infinite λ̃◦ reductions can not exclusively contain
EM◦ or UPDATE′◦ reductions. For each of these two rules, we start by defining a measure,
and show that each rule makes its measure strictly decrease, and preserves the top-level
translation. We start with EM◦.

Definition 88 (Number of rec nodes) Nbletrec(e) is the number of rec nodes in e.

Lemma 89 (External merging) For all e and e′, if e EM◦−−→ e′, then Nbletrec(e) >
Nbletrec(e′) and becTOP =a be′cTOP.
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Proof Let e ≡ rec bv in rec b in e0 and e′ ≡ rec bv,b in e0. Obviously, Nbletrec(e) >
Nbletrec(e′). Furthermore, we have

becTOP ≡ Top(bv)[Recε in let Dummy(b),Update(b) inJe0K].

If b is empty, after applying rule EMPTYLETa (which is in =a), the configuration becomes
Top(bv)[Recε inJe0K], which is =a-equivalent to Top(bv)[be0c]≡ be′cTOP.

Otherwise, using Proposition 53, and after checking that Top(bv) is a generalized bind-
ing, we have

becTOP ≡ Top(bv)[Recε in let Dummy(b),Update(b) inJe0K]

=a (Top(bv) ◦ TDum(b))[Recε in let Update(b) inJe0K]
(by Propositions 53, 49, and 65)

=a (TDum(b) ◦ Top(bv))[Recε in let Update(b) inJe0K]
(by Proposition 52, since dom(b) # dom(bv)∪FV(bv))

=a (TDum(b) ◦ Top(bv) ◦ TUp(b))[Recε inJe0K]
(by Propositions 53, 49, and 64) .

Let b≡ (bv0 ,b
′) with b′ not beginning with a size-respecting definition. We have

(TDum(b) ◦ Top(bv) ◦ TUp(b))[Recε inJe0K]
≡ (TDum(bv0 ,b

′) ◦ Top(bv) ◦ TUp(bv0 ,b
′))[Recε inJe0K]

≡ (TDum(bv0) ◦ TDum(b′) ◦ Top(bv) ◦ TUp(bv0 ,b
′))[Recε inJe0K]

≡ (TDum(b′) ◦ TDum(bv0) ◦ Top(bv) ◦ TUp(bv0 ,b
′))[Recε inJe0K]

(by Proposition 52)

≡ TDum(b′)[(TDum(bv0) ◦ Top(bv) ◦ TUp(bv0 ,b
′))[Recε inJe0K]]

(by Proposition 49)

=a TDum(b′)[(Top(bv,bv0) ◦ TUp(b′))[Recε inJe0K]]
(by Lemma 68 and Proposition 53)

≡ (TDum(b′) ◦ Top(bv,bv0) ◦ TUp(b′))[Recε inJe0K]
(by Proposition 49).

If b′ is not empty, then this last configuration is exactly be′cTOP. Otherwise, if b′ is
empty, then (TDum(b′) ◦ Top(bv,bv0) ◦ TUp(b′)) ≡ Top(bv,bv0) is a generalized binding.
By Propositions 62 and 53,

Top(bv,bv0)[Recε inJe0K] =a Top(bv,bv0)[be0c]≡ be′cTOP,

which gives the expected result. ut

Next, we define a measure that strictly decreases by application of rule UPDATE′◦.

Definition 90 We define Lengthv as follows:

Lengthv(rec bv,b in e) = |dom(b)| where b does not begin with a
size-respecting definition.

Lengthv(e) = 0 if e does not begin with rec.

The lemma for rule UPDATE′◦ requires the following properties of the top-level transla-
tion, about how variables can be accessed in the translation of a binding.
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Lemma 91 For all x,v,H,σ ,ς , and bv, if Top(bv) ≡ 〈H ; 2 ; σ ; ς〉 and bv
∗(x) ≡ v, then

there exist Hv and V such that bvc ≡ RecHv inV , (ς ◦ σ)(x) = V and Hv ⊆ H.

Proof We prove more generally that for all x,v,H,σ ,ς ,P and bv, if Top(bv)≡ 〈H ; 2 ; σ ; ς〉
and bv

∗
P(x)≡ v, then there exist Hv and V such that bvc ≡ RecHv inV , (ς ◦ σ)(x) = V and

Hv ⊆ H.
We proceed by induction on the proof of bv

∗
P(x)≡ v.

The base case amounts to proving the result with the additional hypothesis that bv(x)≡
v. For this, we decompose bv into bv0 ,x � v,bv1 . By definition of Top, we have Top(bv) ≡
(Top(bv0)~Top(x � v)~Top(bv1)). Let Top(bv0)≡ 〈H0 ; 2 ; σ0 ; ς0〉, and Top(bv1)≡ 〈H1 ;
2 ; σ1 ; ς1〉.

– If v is a variable y, then Top(x � v) ≡ 〈ε ; 2 ; [x 7→ y] ; id〉. Let Hv ≡ ε and V ≡ y. We
have σ = (σ0 ◦ [x 7→ y] ◦ σ1) and ς = (ς0 ◦ ς1). Furthermore, we know x /∈ dom(σ1),
and by Proposition 82, y /∈ dom(bv). This also gives y /∈ dom(ς)∪ dom(σ), because
(dom(ς)∪dom(σ))⊆ dom(bv). Thus (ς ◦ σ)(x) = (ς ◦ σ0)(y) = y, as expected.

– If v is not a variable, then Top(x � v) ≡ 〈Hv ; 2 ; id ; [x 7→ `]〉, with bvc ≡ RecHv in `.
Take V = `. We have ς = (ς0 ◦ [x 7→ `] ◦ ς1) and σ = (σ0 ◦ σ1). But we know x /∈
dom(σ)∪dom(ς1)∪dom(ς0), so (ς ◦ σ)(x) = (ς0 ◦ [x 7→ `])(x) = ` = V as expected.

For the induction step, assume bv(x) ≡ y and bv
∗
{x}∪P(y) ≡ v. Then, bv has the shape

(bv0 ,x � y,bv1) for some bv0 ,bv1 . By definition of Top, we have Top(bv) ≡ (Top(bv0) ~
Top(x � y) ~ Top(bv1)). Let Top(bv0) ≡ 〈H0 ; 2 ; σ0 ; ς0〉, and Top(bv1) ≡ 〈H1 ; 2 ; σ1 ;
ς1〉. We know that H ≡ (H0,H1), σ = (σ0 ◦ [x 7→ y] ◦ σ1) and ς = (ς0 ◦ ς1). By induction
hypothesis, there exist Hv and V such that bvc ≡ RecHv inV , Hv ⊆ H, and (ς ◦ σ)(y) = V .
Thus, there only remains to prove that (ς ◦ σ)(y) = (ς ◦ σ)(x).

– If y ∈ dom(bv1), then, since bv contains a forward reference from x to y, y has a known
size indication in bv. So, y ∈ dom(ς1), hence y /∈ dom(σ). Thus, (ς ◦ σ)(y) = ς(y) =
(ς ◦ σ0 ◦ [x 7→ y])(x) = (ς ◦ σ)(x).

– If y /∈ dom(bv1), then (ς ◦ σ)(y) = (ς ◦ σ0)(y) = (ς ◦ σ0 ◦ [x 7→ y])(x) = (ς ◦ σ)(x).

ut

Lemma 92 For all E,x,H,ξ ,σ , and v /∈ vars, if bEcTOP ≡ 〈H ; ξ ; σ ; id〉, and E∗(x) ≡ v,
then there exist Hv and ` such that bvc ≡ RecHv in `, σ(x) = ` and Hv ⊆ H.

Proof By case analysis on E. First, if E is a nested lift context, then v≡ x and x /∈ dom(σ),
which gives the expected result.

If E≡ (rec bv in F), then bEcTOP ≡Top(bv) ◦Gen(bFc). But by definition, Gen(bFc)≡
〈H ′ ; ϕ ; id ; id〉 for some H ′ and ϕ . So, σ = Subst(Top(bv)), and we conclude by Lemma 91.

If E ≡ (rec bv,y � F,b in e), then bEcTOP ≡ (TDum(y � F,b) ◦ Top(bv) ◦ TUpJeK(y �
F,b)). Let TDum(y �F,b)≡〈H0 ; 2 ; id ; ς0〉, Top(bv)≡〈Hbv ; 2 ; σbv ; ςbv〉, and TUpJeK(y �
F,b)≡ 〈H1 ; ξ ; id ; id〉 (they have these shapes by definition). We have σ = (ς0 ◦ ςbv ◦ σbv),
H ≡ (H0,Hbv ,H1). By Lemma 91, we obtain Hv and ` (because v /∈ vars) such that bvc ≡
RecHv in `, Hv ⊆ Hbv , and (ςbv ◦ σbv)(x) = `. Here, this immediately gives Hv ⊆ Hbv ⊆ H
and σ(x) = `. ut

Lemma 93 For all e and e′, if e
UPDATE′◦−−−−−→ e′, then Lengthv(e) > Lengthv(e′) and moreover

becTOP =a be′cTOP.
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Proof Obviously, Lengthv(e) > Lengthv(e′). Furthermore, we have e ≡ (rec(bv,y =[n]

x,b) in e0). Let D ≡ (rec(bv,y =[n] 2,b) in e0). Since D[x]
UPDATE′◦−−−−−→ e′, we have some

non-variable value v such that bv
∗(x) ≡ v and size(v) = n. By Lemma 92, and letting

bDcTOP ≡ 〈H ; ξ ; σ ; id〉, we have bvc ≡ RecHv in ` such that Hv ⊆ H and σ(x) = `.
Then, let δb ≡ TDum(b) and δy ≡ 〈`′ = alloc n ; 2 ; ςy ; id〉 ≡ TDum(y =[n] 2) for some
location `′, with ςy = [y 7→ `′]. Let δ ≡ δy ◦ δb, and Top(bv) ≡ 〈H1 ; 2 ; σ1 ; id〉, such that
Hv ⊆ H1 ⊆ H and σ = Subst(δ ) ◦ σ1 = Subst(δb) ◦ ςy ◦ σ1. We have

bD[x]cTOP ≡ (δ ◦ Top(bv))[let = update y x,Update(b) inJe0K].

But y /∈ supp(σ1), therefore

bD[x]cTOP ≡ (δ ◦ Top(bv))[let = update `′ `,Update(b)in Je0K].

Furthermore, size(v) = Size(Hv(`)) = n, by Hypothesis 17, and moreover by construction of
the translation, Hv only contains one binding. Therefore, the update copies bvc entirely, and
the previous configuration reduces by UPDATEa and LETa to

(δb ◦ Top(bv,y =[n] v))[let Update(b) inJe0K].

Finally, by Proposition 64 and Lemma 68, this is =a-equivalent to bD[v]cTOP, which is ex-
actly be′cTOP. ut

We obtain that λ ◦ simulates λ̃◦, and hence also simulates λ◦.

Lemma 94 For all e, if e reduces to an answer, loops, or is faulty in λ̃◦, then so does it
in λ ◦.

Proof The only non-trivial point is non termination. By Lemmas 89 and 93, and since
UPDATE′◦ preserves Nbletrec, the lexicographic order (Nbletrec,Lengthv) stricly decreases
by EM◦ and UPDATE′◦. Thus, there is no infinite reduction sequence in λ̃◦ involving only
these rules. ut

5.4 Correctness

We now have the tools to prove the expected correctness theorem. We first notice the fol-
lowing useful property of E〈rec bv in e〉.

Proposition 95 For all E,bv,e, if E〈rec bv in e〉 is defined, then bE〈rec bv in e〉cTOP ≡
bEcTOP ◦ bbvcTOP[bec].

Proof By commutation of Top(bv) with Gen(bFc), where F is the nested lift context part
of E. ut

Lemma 96 (Correctness) For all e and e′, if e−→◦ e′, then becTOP −→a
+ be′cTOP.

Proof We proceed by case analysis on the rule used.

BETA′◦ There exist E,v0, and v such that e≡ E[v0 v], E∗(v0)≡ λx.g, and e′ ≡ E〈rec x =[?]
v in g〉. Let bvc ≡ RecHv inV and bλx.gc ≡ RecH1 in ` (with H1 ≡ ` = λx.JgK). Let
bEcTOP ≡ 〈H ; ξ ; σ ; id〉.



56

– If v0 ≡ λx.g, then

becTOP =a bEcTOP[bv0 vc]
=a bEcTOP[RecH1,Hv in ` V ]
−→a bEcTOP[RecH1,Hv in [x 7→V ](JgK)]
=a bEcTOP[RecHv in [x 7→V ](JgK)]
=a bEcTOP ◦ bx =[?] vcTOP[Recε inJgK]
=a bEcTOP ◦ bx =[?] vcTOP[bgc]
=a be′cTOP.

– If v0 ≡ y with E∗(y) ≡ λx.g, then by Lemma 92 we have a location ` = σ(y) such
that H(`)≡ λx.JgK. So we have

becTOP =a bEcTOP[by vc]
=a bEcTOP[RecHv in y V ]
=a bEcTOP[RecHv in ` V ]
−→a bEcTOP[RecHv in [x 7→V ](JgK)]
=a be′cTOP (as above).

PROJECT′◦ There exist E,v0, and X such that e≡E[v0.X ], and E∗(v0)≡ {r} with r(X)≡ z.
Let b{r}c ≡ RecH1 in ` (with H1 ≡ ` = {r}). The whole expression reduces to E[z]. Let
bEcTOP ≡ 〈H ; ξ ; σ ; id〉.

– If v0 ≡ {r}, then
becTOP =a bEcTOP[bv0.Xc]

=a bEcTOP[RecH1 in `.X ]
−→a bEcTOP[RecH1 in z]
=a bEcTOP[Recε in z]
=a bE[z]cTOP.

– If v0 ≡ y with E∗(y) ≡ {r}, then by Lemma 92 we have a location ` = σ(y) such
that H(`)≡ {r}. So we have

becTOP =a bEcTOP[by.Xc]
=a bEcTOP[Recε in `.X ]
−→a bEcTOP[Recε in z]
=a bE[z]cTOP.

CONTEXT◦ with LIFT◦ We have e≡ E[e1], with e1 ≡ L[rec b in e0], and e′ ≡ E[e2], with
e2 ≡ rec b in L[e0]. Let γ ≡ 〈H ; ξ ; σ ; id〉 ≡ bEcTOP and bLc ≡ 〈HL ; ηL ; id ; id〉. We
have

bE[e1]cTOP =a γ[RecHL in ηL[let Dummy(b),Update(b) inJe0K]]
−→a γ[RecHL in let Dummy(b),Update(b) in ηL[Je0K]]
=a γ[Recε inJe2K]
=a Je′K.

IM◦ We have e ≡ rec b in e0 and e′ ≡ rec b′ in e0, with b ≡ (bv,x � (rec b1 in e1),b2),
and b′ ≡ (bv,b1,x � e1,b2).
Let βbv ≡ Top(bv), b0 ≡ (x � (rec b1 in e1),b2) and b′0 ≡ (x � e1,b2).
By definition of the translation, we have brec b in e0cTOP ≡ TDum(b0) ◦ βbv ◦
TUp(b0)[Recε inJe0K].
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Define (t,ϕ)≡
{

(x,2) if �= =[?]
( ,update x 2) otherwise.

We have

brec b1 in e1c ≡ (Recε inJrec b1 in e1K)
≡ (Recε in let Dummy(b1),Update(b1) inJe1K)
≡ Recε in E1.

Hence, brec b in e0cTOP ≡ TDum(b0) ◦ βbv [Recε in let t = ϕ[E1],Update(b2) inJe0K].
But this reduces by (maybe rule LIFTa and) rule IMa to

TDum(b0) ◦ βbv [Recε in let Dummy(b1),Update(b1),
t = ϕ[Je1K],Update(b2)

in Je0K].

We recognize Update(b1,b′0), therefore the obtained configuration is equal to

C ≡ TDum(b0) ◦ βbv [Recε in let Dummy(b1),Update(b1,b′0) inJe0K].

Then, by Propositions 53 and 65, we obtain

C =a TDum(b0) ◦ βbv ◦ TDum(b1)[Recε in let Update(b1,b′0) inJe0K].

Since dom(b1) # dom(bv)∪FV(bv), this is equal to

TDum(b1,b′0) ◦ βbv [Recε in let Update(b1,b′0) inJe0K],

which by Proposition 64 and Lemma 68 is =a-equivalent to brec b′ in e0cTOP. This con-
cludes the proof.

ut

Corollary 97 For all e, if e reduces to an answer, loops, or is faulty in λ ◦, then so does
becTOP in λ a.

Proof Since b·cTOP maps answers to answers (Proposition 55), if e reduces to an answer,
then so does becTOP. Moreover, because Lemma 96 uses −→a

+, if e loops, so does becTOP.
Finally, if e is faulty, then it reduces to a term e0 in normal form of one of the shapes in
Proposition 55, hence becTOP reduces to be0cTOP, which is faulty by Proposition 56. Hence
becTOP is faulty. ut

Combined, these results prove the main correctness theorem for the immediate in-place
compilation scheme.

Proof (of Theorem 18) By composing Lemmas 86, 94, Corollary 97, and Lemma 59, we ob-
tain the result for becTOP. But becTOP =a JeK in λ a, hence they behave the same by Lemma 59.

ut
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6 Related work

Ariola and Blom [2] study λ -calculi with let rec, in relation with the graphs they repre-
sent. The λ◦ language presented here is mostly a deterministic variant of their call-by-value
calculus. The main difference lies in our size indications, which specialize the language for
efficient compilation.

Dougherty et al [8] study λ -calculi with sharing and recursion, resulting in the notion
of Addressed Term Rewriting Systems. Unlike in λ◦, cyclic data structures are represented
using addresses: each node of a term is given an address, which can be referred to by a back
pointer. Addresses can be shared among instances of the same term. Moreover, addresses
are not bound in the considered term, whereas in λ◦, rec does bind variables.

Erkök and Launchbury [11] consider the interaction of recursion with side effects. In the
setting of monadic meta-languages, Moggi and Sabry [23] devise an operator named Mfix,
with an operational semantics, which unifies different language constructs for recursion.
This very interesting work is more abstract than ours, in the sense that it unifies several
recursion constructs from both eager and lazy languages, whereas our work is specific to
call-by-value. Also, we are not specifically interested in the interaction between recursion
and side effects, although we treat it with care. Moreover, Erkök and Launchbury and Moggi
and Sabry are not concerned with compilation.

Another work on recursion, already discussed in Section 1.2, is Boudol’s calculus [3].
From the standpoint of expressive power, this calculus is incomparable with λ◦. On the one
hand, the semantics of λ◦, based on Ariola et al.’s work, allows to represent cyclic data
structures such as let rec x = cons 1 x, while such a definition loops in Boudol’s calculus.
On the other hand, the unrestricted let rec of Boudol’s calculus avoids the difficult guess
of correct size indications.

From the standpoint of compilation, Boudol and Zimmer [4] use a backpatching ap-
proach, thus increasing the number of run-time tests and indirections. A similar backpatch-
ing approach is used in Russo’s extension of ML with recursive modules [27], implemented
in Moscow ML, and in Dreyer’s work on typing of extended recursion [9].

Syme [30] extends the F# language with generalized recursive definitions where the
right-hand sides are arbitrary computations. Haskell-style lazy evaluation is used to evaluate
these recursive definitions: a strong, forward reference to a recursively-defined variable x is
not an error, but causes the definition of x to be evaluated at this point. In the application
scenario considered by Syme, namely interfacing with libraries written in object-oriented
languages, no compile-time information is available on dependencies and object sizes, ren-
dering our approach inapplicable and imposing the use of lazy evaluation. However, lazy
evaluation has some additional run-time costs and makes evaluation order hard to guess in
advance.

Nordlander, Carlsson and Gill [24] describe an original variant of the in-place update
scheme where the sizes of the recursively-defined values need not be known at compile-
time. Consider a recursive definition rec x = e. The variable x is first bound to a unique
marker; then, e is evaluated to a value v; finally, the memory representation of v is recur-
sively traversed, replacing all occurrences of the unique marker with a pointer to v. This
recursive traversal can be much more costly than the updating of dummy blocks performed
by the in-place update scheme: a naive implementation runs in time O(N) where N is the
size of the value v. (This size can be arbitrarily large even if the evaluation of e is trivial:
consider rec x = Cons l x where l is a 106 element list previously computed.) Assuming
linear allocation and a copying garbage collector, the traversal can be restricted to blocks
allocated during the evaluation of e, resulting in a reasonable complexity O(min(N,M))
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Variable: x ∈ vars
Name: X ∈ names

Expression: e ∈ expr ::= x | λx.e | e1 e2 λ -calculus
| {r} | e.X Record operations
| rec b in e Recursive definitions

Record row: r ::= ε | X = x,r
Binding: b ::= ε | x � e,b

Size indication: � ::= =[e]|=[?]

Fig. 29 Syntax of generalized λ◦

where M is the number of allocations performed by the evaluation of e. However, this im-
provement seems impossible for memory managers that perform non-linear allocation like
those of OCaml and F#.

Mutually-recursive definitions of functions (syntactic λ -abstractions) is a frequently-
occurring special case that admits a very efficient implementation [19,1]. Instead of allo-
cating one closure block for each function, containing pointers to the other closure blocks,
it is possible to share a single memory block between the closures, and use pointer arith-
metic to recover pointers to the other closures from any given closure. No in-place update
is needed to build loops between the closures. We believe that this trick could be combined
with a more general in-place update scheme to efficiently compile recursive definitions that
contain both syntactic λ -abstractions and more general computations. However, significant
extensions to λa would be needed to account for this approach.

7 Conclusions and future work

In this article, we have developed the first formal semantic account of the in-place update
scheme, and proved its ability to faithfully implement an extended call-by-value recursion
construct, as characterized by our source language λ◦.

At this point, one may wonder whether λ◦ embodies the most powerful call-by-value
recursion construct that can be compiled via in-place update. The answer is no, because of
the requirement that the sizes (of definitions that are forward-referenced) be known exactly
at compile-time. In a context of separate compilation and higher-order functions, often the
only thing that the compiler knows about definitions is their static types. With some data rep-
resentation strategies, the sizes are functions of the static types, but not with other strategies.
For example, the closures that represent function values can either follow a “two-block”
strategy (a closure is a pair of a code pointer and a pointer to a separately-allocated block
holding the values of free variables) or a “one-block” strategy (the code pointer and the val-
ues of the free variables are in the same block). With the two-block strategy, all definitions
of function type τ1→ τ2 have known size 2; but with the one-block strategy, the size is 1+n
where n (the number of free variables) is not reflected in the function type and is therefore
difficult to guess at compile-time.

There are several ways to relax the size requirement and therefore increase the usability
of λ◦ as an intermediate language. First, one could permit values of size smaller than ex-
pected to fill the pre-allocated blocks. In this case, updating a pre-allocated block changes
not only its contents but also its size, an operation that most memory managers support well.
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All we now need to determine statically is a conservative upper bound on the actual size. For
example, if the type of a definition is an ML datatype (sum type), we can take the maximum
of the sizes of its constructors. In the case of one-block closures, we can allocate dummy
blocks with a fixed size, say 10 words, and instruct the compiler to never generate closures
larger than this, switching to a two-block representation for closures with more than 9 free
variables (such closures are uncommon). This simple extension can be formalized with min-
imal changes to λ◦, λa and the proofs presented in this paper.

Another way to relax the size requirement is to notice that the sizes of pre-allocated
blocks do not need to be compile-time constants: the in-place update scheme works just as
well if these sizes are determined by run-time computations that take place before the recur-
sive definition is evaluated. For example, in the encoding of mixins outlined in Section 2.4.2,
each component of a mixin could be represented not just as a generator function f , but as a
pair (n, f ) where n is the size of the result of f . The recursive definition implementing the
close operation could, then, extract these sizes n from the run-time representation of the
mixin and use them to pre-allocate dummy blocks.

In preparation for future work, we now sketch an extension of λ◦ where the size indica-
tions over bindings are no longer compile-time constants but arbitrary expressions. Figure 29
gives the syntax of this extended language. In bindings, the size indications are all evalu-
ated before the evaluation of definitions begins, and cannot refer to the recursively defined
variables.

From the standpoint of compilation, we believe that in-place update applies straight-
forwardly. However, a serious issue with this extension is how to ensure statically that the
predicted sizes are correct: given a definition x =[e1] e2, we would like to guarantee that e2
will evaluate to a value of size the value of e1. If e1 is an arbitrary expression, a type system
or another static analysis can not try and evaluate e1 because this would make it undecid-
able. Instead, we have to find static means of ensuring the validity of definitions in the useful
cases.

For this, we plan to start from Hirschowitz’s type system for λ◦ [13] and extend it with
dependent product types and a special sized type Sizedv(τ) denoting the set of values of
type τ and of size v. Given n and e of size n, one could give a dependent product type
to the pair (n,e), namely 〈x : int,Sizedx(τ)〉. Conversely, consider a dependent pair e of
type 〈x : int,τ1 → Sizedx(τ2)〉. The expression (snd(e) e′) has size fst(e), and this can
be checked statically. This guarantees that the definition x =[fst(e)] (snd(e) e′) is correct
w.r.t. sizes.

Acknowledgements The authors warmly thank the anonymous referees for their detailed comments and
helpful suggestions for improving the presentation.

References

1. Appel, A.W.: Compiling with continuations. Cambridge University Press (1992)
2. Ariola, Z.M., Blom, S.: Skew confluence and the lambda calculus with letrec. Annals of pure and applied

logic 117(1–3), 95–178 (2002)
3. Boudol, G.: The recursive record semantics of objects revisited. Journal of Functional Programming

14(3), 263–315 (2004)
4. Boudol, G., Zimmer, P.: Recursion in the call-by-value lambda-calculus. In: Z. Ésik, A. Ingólfsdóttir
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