
Proving a compiler
Mechanized verification of program transformations and static analyses

Xavier Leroy

INRIA Paris-Rocquencourt

Oregon Programming Languages summer school 2012

X. Leroy (INRIA) Proving a compiler Oregon 2012 1 / 237

Part I

Prologue: mechanized semantics, what for?

X. Leroy (INRIA) Proving a compiler Oregon 2012 2 / 237

Formal semantics of programming languages

Provide a mathematically-precise answer to the question

What does this program do, exactly?

X. Leroy (INRIA) Proving a compiler Oregon 2012 3 / 237

What does this program do, exactly?

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 4 / 237

What does this program do, exactly?

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 4 / 237

What about this one?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,

author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 5 / 237

What about this one?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,

author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 5 / 237

Why indulge in formal semantics?

An intellectually challenging issue.

When English prose is not enough.
(e.g. language standardization documents.)

A prerequisite to formal program verification.
(Program proof, model checking, static analysis, etc.)

A prerequisite to building reliable “meta-programs”
(Programs that operate over programs: compilers, code generators,
program verifiers, type-checkers, . . .)

X. Leroy (INRIA) Proving a compiler Oregon 2012 6 / 237

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list ** p)

{

return ((*p)->tail = NULL); (*p)->tail = NULL;

return (*p)->tail;

}

No, not if p == &(l.tail) and l.tail == &l (circular list).

l:
p

X. Leroy (INRIA) Proving a compiler Oregon 2012 7 / 237

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list ** p)

{

return ((*p)->tail = NULL); (*p)->tail = NULL;

return (*p)->tail;

}

No, not if p == &(l.tail) and l.tail == &l (circular list).

l:
p

X. Leroy (INRIA) Proving a compiler Oregon 2012 7 / 237

What about this one?

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled for the Alpha processor with all optimizations and manually
decompiled back to C. . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 8 / 237

double dotproduct(int n, double * a, double * b)

{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;

double s0, s1, s2, s3, t0, t1, t2, t3;

int i, k;

dp = 0.0;

if (n <= 0) goto L5;

s0 = s1 = s2 = s3 = 0.0;

i = 0; k = n - 3;

if (k <= 0 || k > n) goto L19;

i = 4; if (k <= i) goto L14;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;

a3 = a[3]; b3 = b[3]; t1 = a1 * b1;

a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;

a1 = a[5]; b1 = b[5];

s0 += t0; s1 += t1; s2 += t2; s3 += t3;

a += 4; i += 4; b += 4;

prefetch(a + 20); prefetch(b + 20);

if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

dp = s0 + s1 + s2 + s3;

if (i >= n) goto L5;

L19: dp += a[0] * b[0];

i += 1; a += 1; b += 1;

if (i < n) goto L19;

L5: return dp;

L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;

}

X. Leroy (INRIA) Proving a compiler Oregon 2012 9 / 237

double dotproduct(int n, double * a, double * b)

{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;

double s0, s1, s2, s3, t0, t1, t2, t3;

int i, k;

dp = 0.0;

if (n <= 0) goto L5;

s0 = s1 = s2 = s3 = 0.0;

i = 0; k = n - 3;

if (k <= 0 || k > n) goto L19;

i = 4; if (k <= i) goto L14;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;

a3 = a[3]; b3 = b[3]; t1 = a1 * b1;

a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;

a1 = a[5]; b1 = b[5];

s0 += t0; s1 += t1; s2 += t2; s3 += t3;

a += 4; i += 4; b += 4;

prefetch(a + 20); prefetch(b + 20);

if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

dp = s0 + s1 + s2 + s3;

if (i >= n) goto L5;

L19: dp += a[0] * b[0];

i += 1; a += 1; b += 1;

if (i < n) goto L19;

L5: return dp;

L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;

}

X. Leroy (INRIA) Proving a compiler Oregon 2012 9 / 237

Proof assistants

Implementations of well-defined mathematical logics.

Provide a specification language to write definitions and state
theorems.

Provide ways to build proofs in interaction with the user.
(Not fully automated proving.)

Check the proofs for soundness and completeness.

Some mature proof assistants:

ACL2 HOL PVS

Agda Isabelle Twelf

Coq Mizar

X. Leroy (INRIA) Proving a compiler Oregon 2012 10 / 237

Using proof assistants to mechanize semantics

Formal semantics for realistic programming languages are large (but
shallow) formal systems.

Computers are better than humans at checking large but shallow proofs.

The proofs of the remaining 18 cases are similar and make
extensive use of the hypothesis that [. . .]

The proof was mechanically checked by the XXX proof
assistant. This development is publically available for review at
http://...

X. Leroy (INRIA) Proving a compiler Oregon 2012 11 / 237

This lecture

Using the Coq proof assistant, formalize some representative program
transformations and static analyses, and prove their correctness.

In passing, introduce the semantic tools needed for this effort.

X. Leroy (INRIA) Proving a compiler Oregon 2012 12 / 237

Lecture material

http://gallium.inria.fr/~xleroy/courses/Eugene-2012/

The Coq development (source archive + HTML view).

These slides.

X. Leroy (INRIA) Proving a compiler Oregon 2012 13 / 237

http://gallium.inria.fr/~xleroy/courses/Eugene-2012/

Contents

1 Compiling IMP to a simple virtual machine; first compiler proofs.

2 Notions of semantic preservation.

3 More on semantics: big-step, small-step, small-step with
continuations.

4 Finishing the proof of the IMP → VM compiler.

5 An example of optimizing program transformation and its correctness
proof: dead code elimination, with extension to register allocation.

6 A generic static analyzer (or: abstract interpretation for dummies).

7 Compiler verification “in the large”: the CompCert C compiler.

X. Leroy (INRIA) Proving a compiler Oregon 2012 14 / 237

Part II

Compiling IMP to virtual machine code

X. Leroy (INRIA) Proving a compiler Oregon 2012 15 / 237

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (INRIA) Proving a compiler Oregon 2012 16 / 237

Reminder: the IMP language
(Already introduced in Benjamin Pierce’s “Software Foundations” course.)

A prototypical imperative language with structured control flow.

Arithmetic expressions:
a ::= n | x | a1 + a2 | a1 − a2 | a1 × a2

Boolean expressions:
b ::= true | false | a1 = a2 | a1 ≤ a2

| not b | b1 and b2

Commands (statements):
c ::= SKIP (do nothing)
| x ::= a (assignment)
| c1; c2 (sequence)
| IFB b THEN c1 ELSE c2 FI (conditional)
| WHILE b DO c END (loop)

X. Leroy (INRIA) Proving a compiler Oregon 2012 17 / 237

Reminder: IMP’s semantics

As defined in file Imp.v of “Software Foundations”:

Evaluation function for arithmetic expressions

aeval st a : nat

Evaluation function for boolean expressions

beval st b : bool

Evaluation predicate for commands (in big-step operational style)

c/st ⇒ st ′

(st ranges over variable states: ident→ nat.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 18 / 237

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Proving a compiler Oregon 2012 19 / 237

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Proving a compiler Oregon 2012 19 / 237

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Proving a compiler Oregon 2012 19 / 237

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (INRIA) Proving a compiler Oregon 2012 20 / 237

The IMP virtual machine

Components of the machine:

The code C : a list of instructions.

The program counter pc: an integer, giving the position of the
currently-executing instruction in C .

The store st: a mapping from variable names to integer values.

The stack σ: a list of integer values
(used to store intermediate results temporarily).

X. Leroy (INRIA) Proving a compiler Oregon 2012 21 / 237

The instruction set

i ::= Iconst(n) push n on stack
| Ivar(x) push value of x
| Isetvar(x) pop value and assign it to x
| Iadd pop two values, push their sum
| Isub pop two values, push their difference
| Imul pop two values, push their product
| Ibranch forward(δ) unconditional jump forward
| Ibranch backward(δ) unconditional jump backward
| Ibeq(δ) pop two values, jump if =
| Ibne(δ) pop two values, jump if 6=
| Ible(δ) pop two values, jump if ≤
| Ibgt(δ) pop two values, jump if >
| Ihalt end of program

By default, each instruction increments pc by 1. Exception: branch instructions
increment it by 1 + δ (forward) or 1− δ (backward).

(δ is a branch offset relative to the next instruction.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 22 / 237

Example

stack ε 12
1

12 13 ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c . 0 1 2 3 4

code Ivar(x); Iconst(1); Iadd; Isetvar(x); Ibranch

backward(5)

X. Leroy (INRIA) Proving a compiler Oregon 2012 23 / 237

Semantics of the machine

Given by a transition relation (small-step), representing the execution of
one instruction.

Definition code := list instruction.

Definition stack := list nat.

Definition machine_state := (nat * stack * state)%type.

Inductive transition (C: code):

machine_state -> machine_state -> Prop :=

...

(See file Compil.v.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 24 / 237

Executing machine programs

By iterating the transition relation:

Initial states: pc = 0, initial store, empty stack.

Final states: pc points to a halt instruction, empty stack.

Definition mach_terminates (C: code) (s_init s_fin: state) :=

exists pc,

code_at C pc = Some Ihalt /\

star (transition C) (0, nil, s_init) (pc, nil, s_fin).

Definition mach_diverges (C: code) (s_init: state) :=

infseq (transition C) (0, nil, s_init).

Definition mach_goes_wrong (C: code) (s_init: state) :=

(* otherwise *)

(star is reflexive transitive closure. See file Sequences.v.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 25 / 237

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (INRIA) Proving a compiler Oregon 2012 26 / 237

Compilation of arithmetic expressions

General contract: if a evaluates to n in store st,

code for a

pc

σ

st
Before:

pc ′ = pc + |code|
n :: σ

st
After:

Compilation is just translation to “reverse Polish notation”.

(See function compile_aexpr in Compil.v)

X. Leroy (INRIA) Proving a compiler Oregon 2012 27 / 237

Compilation of arithmetic expressions

Base case: if a = x ,

Ivar(x)

pc

σ

st

pc ′ = pc + 1
st(x) :: σ

st

Recursive decomposition: if a = a1 + a2,

code for a1 code for a2 Iadd

pc

σ

st

pc ′

n1 :: σ

st

pc ′′

n2 :: n1 :: σ

st

pc ′′′

(n1 + n2) :: σ

st

X. Leroy (INRIA) Proving a compiler Oregon 2012 28 / 237

Compilation of boolean expressions

compile bexp b cond δ:
skip δ instructions forward if b evaluates to boolean cond
continue in sequence if b evaluates to boolean ¬cond

code for b

pc

σ

st
Before

pc ′

σ

st

After (if result 6= cond)

pc ′ + δ
σ

st

After (if result = cond)

X. Leroy (INRIA) Proving a compiler Oregon 2012 29 / 237

Compilation of boolean expressions

A base case: b = (a1 = a2) and cond = true:

code for a1 code for a2 Ibeq(δ)

pc

σ

st

pc ′

n1 :: σ

st

pc ′′

n2 :: n1 :: σ

st

pc ′′′

σ

st

pc ′′′ + δ
σ

st

X. Leroy (INRIA) Proving a compiler Oregon 2012 30 / 237

Short-circuiting “and” expressions

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2!

→ In this case, the code generated for b1 and b2 should skip over the
code for b2 and branch directly to the correct destination.

X. Leroy (INRIA) Proving a compiler Oregon 2012 31 / 237

Short-circuiting “and” expressions

If cond = false (branch if b1 and b2 is false):

code for b1 code for b2

skip |code(b2)|+ δ instrs if b1 false

skip δ instrs if b2 false

If cond = true (branch if b1 and b2 is true):

code for b1 code for b2

skip |code(b2)| instrs if b1 false

skip δ instrs if b2 true

X. Leroy (INRIA) Proving a compiler Oregon 2012 32 / 237

Compilation of commands

If the command c , started in initial state st, terminates in final state st ′,

code for c

pc

σ

st
Before:

pc ′ = pc + |code|
σ

st ′
After:

(See function compile_com in Compil.v)

X. Leroy (INRIA) Proving a compiler Oregon 2012 33 / 237

The mysterious offsets

Code for IFB b THEN c1 ELSE c2 FI:

code for b code for c1 Ibranch code for c2

skip |code(c1)|+ 1 instrs if b false

skip |code(c2)| instrs

X. Leroy (INRIA) Proving a compiler Oregon 2012 34 / 237

The mysterious offsets

Code for WHILE b DO c END:

code for b code for c Ibranch

skip |code(c)|+ 1 instrs if b false

go back |code(b)|+ |code(c)|+ 1 instrs

X. Leroy (INRIA) Proving a compiler Oregon 2012 35 / 237

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (INRIA) Proving a compiler Oregon 2012 36 / 237

Compiler verification

We now have two ways to run a program:

Interpret it using e.g. the ceval_step function defined in Imp.v.

Compile it, then run the generated virtual machine code.

Will we get the same results either way?

The compiler verification problem

Verify that a compiler is semantics-preserving:
the generated code behaves as prescribed by the semantics of the source
program.

X. Leroy (INRIA) Proving a compiler Oregon 2012 37 / 237

First verifications

Let’s try to formalize and prove the intuitions we had when writing the
compilation functions.

Intuition for arithmetic expressions: if a evaluates to n in store st,

code for a

pc

σ

st
Before:

pc ′ = pc + |code|
n :: σ

st
After:

A formal claim along these lines:

Lemma compile_aexp_correct:

forall st a pc stk,

star (transition (compile_aexp a))

(0, stk, st)

(length (compile_aexp a), aeval st a :: stk, st).

X. Leroy (INRIA) Proving a compiler Oregon 2012 38 / 237

Verifying the compilation of expressions

For this statement to be provable by induction over the structure of the
expression a, we need to generalize it so that

the start PC is not necessarily 0;

the code compile_aexp a appears as a fragment of a larger code C .

To this end, we define the predicate codeseq_at C pc C’ capturing the
following situation:

C’C =

pc

X. Leroy (INRIA) Proving a compiler Oregon 2012 39 / 237

Verifying the compilation of expressions

Lemma compile_aexp_correct:

forall C st a pc stk,

codeseq_at C pc (compile_aexp a) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_aexp a), aeval st a :: stk, st).

Proof: a simple induction on the structure of a.

The base cases are trivial:

a = n: a single Iconst transition.

a = x : a single Ivar(x) transition.

X. Leroy (INRIA) Proving a compiler Oregon 2012 40 / 237

An inductive case
Consider a = a1 + a2 and assume

codeseq at C pc (code(a1) + +code(a2) + +Iadd :: nil)

We have the following sequence of transitions:

(pc, σ, st)

↓ ∗ ind. hyp. on a1

(pc + |code(a1)|, aeval st a1 :: σ, st)

↓ ∗ ind. hyp. on a2

(pc + |code(a1)|+ |code(a2)|, aeval st a2 :: aeval st a1 :: σ, st)

↓ Iadd transition

(pc + |code(a1)|+ |code(a2)|+ 1, (aeval st a1 + aeval st a2) :: σ, st)

X. Leroy (INRIA) Proving a compiler Oregon 2012 41 / 237

Historical note

As simple as this proof looks, it is of historical importance:

First published proof of compiler correctness.
(McCarthy and Painter, 1967).

First mechanized proof of compiler correctness.
(Milner and Weyrauch, 1972, using Stanford LCF).

X. Leroy (INRIA) Proving a compiler Oregon 2012 42 / 237

Mathematical Aspects of Computer Science, 1967

X. Leroy (INRIA) Proving a compiler Oregon 2012 43 / 237

Machine Intelligence (7), 1972.

X. Leroy (INRIA) Proving a compiler Oregon 2012 44 / 237

(Even the proof scripts look familiar!)

X. Leroy (INRIA) Proving a compiler Oregon 2012 45 / 237

Verifying the compilation of expressions

Similar approach for boolean expressions:

Lemma compile_bexp_correct:

forall C st b cond ofs pc stk,

codeseq_at C pc (compile_bexp b cond ofs) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_bexp b cond ofs)

+ if eqb (beval st b) cond then ofs else 0,

stk, st).

Proof: induction on the structure of b, plus copious case analysis.

X. Leroy (INRIA) Proving a compiler Oregon 2012 46 / 237

Verifying the compilation of commands

Lemma compile_com_correct_terminating:

forall C st c st’,

c / st || st’ ->

forall stk pc,

codeseq_at C pc (compile_com c) ->

star (transition C)

(pc, stk, st)

(pc + length (compile_com c), stk, st’).

An induction on the structure of c fails because of the WHILE case. An
induction on the derivation of c / st || st’ works perfectly.

X. Leroy (INRIA) Proving a compiler Oregon 2012 47 / 237

Summary so far

Piecing the lemmas together, and defining

compile program c = compile command c + + Ihalt :: nil

we obtain a rather nice theorem:

Theorem compile_program_correct_terminating:

forall c st st’,

c / st || st’ ->

mach_terminates (compile_program c) st st’.

But is this enough to conclude that our compiler is correct?

X. Leroy (INRIA) Proving a compiler Oregon 2012 48 / 237

What could have we missed?

Theorem compile_program_correct_terminating:

forall c st st’,

c / st || st’ ->

mach_terminates (compile_program c) st st’.

What if the generated VM code could terminate on a state other than
st’? or loop? or go wrong?

What if the program c started in st diverges instead of terminating?
What does the generated code do in this case?

Needed: more precise notions of semantic preservation + richer semantics
(esp. for non-termination).

X. Leroy (INRIA) Proving a compiler Oregon 2012 49 / 237

Part III

Notions of semantic preservation

X. Leroy (INRIA) Proving a compiler Oregon 2012 50 / 237

Comparing the behaviors of two programs

Consider two programs P1 and P2, possibly in different languages.

(For example, P1 is an IMP command and P2 is virtual machine code
generated by compiling P1.)

The semantics of the two languages associate to P1,P2

sets B(P1),B(P2) of observable behaviors.

card(B(P)) = 1 if P is deterministic, and card(B(P)) > 1 if it is not.

X. Leroy (INRIA) Proving a compiler Oregon 2012 51 / 237

Observable behaviors

For an IMP-like language:

observable behavior ::= terminates(st) | diverges | goeswrong

(Alternative: in the terminates case, observe not the full final state st
but only the values of specific variables.)

For a functional language like STLC:

observable behavior ::= terminates(v) | diverges | goeswrong

where v is the value of the program.

X. Leroy (INRIA) Proving a compiler Oregon 2012 52 / 237

Observable behaviors

For an imperative language with I/O: add a trace of input-output
operations performed during execution.

x := 1; x := 2; ≈ x := 2;

(trace: ε) (trace: ε)

print(1); print(2); 6≈ print(2);

(trace: out(1).out(2)) (trace: out(2))

X. Leroy (INRIA) Proving a compiler Oregon 2012 53 / 237

Bisimulation (observational equivalence)

B(P1) = B(P2)

The source and transformed programs are completely undistinguishable.

Often too strong in practice . . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 54 / 237

Reducing non-determinism during compilation

Languages such as C leave evaluation order partially unspecified.

int x = 0;

int f(void) { x = x + 1; return x; }

int g(void) { x = x - 1; return x; }

The expression f() + g() can evaluate either

to 1 if f() is evaluated first (returning 1), then g() (returning 0);

to −1 if g() is evaluated first (returning −1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time.

The compiled code therefore has fewer behaviors than the source program
(1 instead of 2).

X. Leroy (INRIA) Proving a compiler Oregon 2012 55 / 237

Reducing non-determinism during optimization

In a concurrent setting, classic optimizations often reduce
non-determinism:

Original program:

a := x + 1; b := x + 1; run in parallel with x := 1;

Program after common subexpression elimination:

a := x + 1; b := a; run in parallel with x := 1;

Assuming x = 0 initially, the final states for the original program are

(a, b) ∈ {(1, 1); (1, 2); (2, 2)}

Those for the optimized program are

(a, b) ∈ {(1, 1); (2, 2)}

X. Leroy (INRIA) Proving a compiler Oregon 2012 56 / 237

Backward simulation (refinement)

B(P1) ⊇ B(P2)

All possible behaviors of P2 are legal behaviors of P1, but P2 can have
fewer behaviors (e.g. because some behaviors were eliminated during
compilation).

X. Leroy (INRIA) Proving a compiler Oregon 2012 57 / 237

Should “going wrong” behaviors be preserved?

Compilers routinely “optimize away” going-wrong behaviors. For example:

x := 1 / y; x := 42

(goes wrong if y = 0)
optimized to x := 42

(always terminates normally)

Justifications:

We know that the program being compiled does not go wrong
I because it was type-checked with a sound type system
I or because it was formally verified.

Or just “garbage in, garbage out”.

X. Leroy (INRIA) Proving a compiler Oregon 2012 58 / 237

Safe backward simulation

Restrict ourselves to source programs that cannot go wrong:

goeswrong /∈ B(P1) =⇒ B(P1) ⊇ B(P2)

Let Spec be the functional specification of a program:
a set of correct behaviors, not containing goeswrong.

A program P satisfies Spec iff B(P) ⊆ Spec.

Lemma

If “safe backward simulation” holds,
and P1 satisfies Spec, then P2 satisfies Spec.

X. Leroy (INRIA) Proving a compiler Oregon 2012 59 / 237

The pains of backward simulations

“Safe backward simulation” looks like “the” semantic preservation
property we expect from a correct compiler.

It is however rather difficult to prove:

We need to consider all steps that the compiled code can take, and
trace them back to steps the source program can take.

This is problematic if one source-level step is broken into several
machine-level steps.
(E.g. x ::= a is one step in IMP, but several instructions in the VM.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 60 / 237

General shape of a backward simulation proof

1+2 3

Iconst(1) Iconst(2) Iadd

nil 1 :: nil 2 :: 1 :: nil 3 :: nil

Source code:

VM code:

VM stack:

one step

compilation decompilation decompilation

Intermediate VM code sequences like Iconst(2); Iadd or just Iadd do
not correspond to the compilation of any source expression.

One solution: invent a decompilation function that is left-inverse of
compilation. (Hard in general!)

X. Leroy (INRIA) Proving a compiler Oregon 2012 61 / 237

Forward simulations

Forward simulation property:

B(P1) ⊆ B(P2)

Safe forward simulation property:

goeswrong /∈ B(P1) =⇒ B(P1) ⊆ B(P2)

Significantly easier to prove than backward simulations, but not
informative enough, apparently:

The compiled code P2 has all the good behaviors of P1, but could have
additional bad behaviors . . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 62 / 237

Determinism to the rescue!

Lemma

If P2 is deterministic (i.e. B(P2) is a singleton), then

“forward simulation” implies “backward simulation”

“forward simulation for correct programs” implies “backward
simulation for correct programs”

Trivial result: follows from ∅ ⊂ X ⊆ {y} =⇒ X = {y}.

X. Leroy (INRIA) Proving a compiler Oregon 2012 63 / 237

Relating preservation properties

Bisimulation

Backward
simulation

Safe backward
simulation

Preservation of
specifications

Forward
simulation

Safe forward
simulation

if P2 deterministic

if P1 deterministic

if P2 deterministic

if P1 deterministic

X. Leroy (INRIA) Proving a compiler Oregon 2012 64 / 237

Our plan for verifying a compiler

1 Prove “forward simulation for correct programs” between source and
compiled codes.

2 Prove that the target language (machine code) is deterministic.

3 Conclude that all functional specifications are preserved by
compilation.

Note: (1) + (2) imply that the source langage has deterministic
semantics. If this isn’t naturally the case (e.g. for C), start by
determinizing its semantics (e.g. fix an evaluation order a priori).

X. Leroy (INRIA) Proving a compiler Oregon 2012 65 / 237

Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code

: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3

X. Leroy (INRIA) Proving a compiler Oregon 2012 66 / 237

Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code
: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3

X. Leroy (INRIA) Proving a compiler Oregon 2012 66 / 237

Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code
: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3

X. Leroy (INRIA) Proving a compiler Oregon 2012 66 / 237

Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code
: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3

X. Leroy (INRIA) Proving a compiler Oregon 2012 66 / 237

Handling multiple compilation passes

Source (non-det)

Source (determinized)

Intermediate language 1

Intermediate language 2

Machine code
: forward simulation proof
: backward simulation proof

(same code)

pass 1

pass 2

pass 3

X. Leroy (INRIA) Proving a compiler Oregon 2012 66 / 237

Back to the IMP → VM compiler

We have already proved half of a safe forward simulation result:

Theorem compile_program_correct_terminating:

forall c st st’,

c / st || st’ ->

mach_terminates (compile_program c) st st’.

It remains to show the other half:

If command c diverges when started in state st,
then the virtual machine, executing code compile_program c

from initial state st, makes infinitely many transitions.

What we need: a formal characterization of divergence for IMP commands.

X. Leroy (INRIA) Proving a compiler Oregon 2012 67 / 237

Part IV

More on mechanized semantics

X. Leroy (INRIA) Proving a compiler Oregon 2012 68 / 237

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (INRIA) Proving a compiler Oregon 2012 69 / 237

Big-step semantics

A predicate c/s ⇒ s ′, meaning “started in state s, command c terminates
and the final state is s ′”.

SKIP/s ⇒ s x := a/s ⇒ s[x ← aeval s a]

c1/s ⇒ s1 c2/s1 ⇒ s2

c1; c2/s ⇒ s2

c1/s ⇒ s ′ if beval s b = true

c2/s ⇒ s ′ if beval s b = false

IFB b THEN c1 ELSE c2 FI/s ⇒ s ′

beval s b = false

WHILE b DO c END/s ⇒ s

beval s b = true c/s ⇒ s1 WHILE b DO c END/s1 ⇒ s2

WHILE b DO c END/s ⇒ s2

X. Leroy (INRIA) Proving a compiler Oregon 2012 70 / 237

Pros and cons of big-step semantics

Pros:

Follows naturally the structure of programs.
(Gilles Kahn called it “natural semantics”).

Close connection with interpreters.

Powerful induction principle (on the structure of derivations).

Easy to extend with various structured constructs
(functions and procedures, other forms of loops)

Cons:

Fails to characterize diverging executions.
(More precisely: no distinction between divergence and going wrong.)

Concurrency, unstructured control (goto) nearly impossible to handle.

X. Leroy (INRIA) Proving a compiler Oregon 2012 71 / 237

Big-step semantics and divergence

For IMP, a negative characterization of divergence:

c/s diverges ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

In general (e.g. STLC), executions can also go wrong (in addition to
terminating or diverging). Big-step semantics fails to distinguish between
divergence and going wrong:

c/s diverges ∨ c/s goes wrong ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

Highly desirable: a positive characterization of divergence, distinguishing it
from “going wrong”.

X. Leroy (INRIA) Proving a compiler Oregon 2012 72 / 237

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (INRIA) Proving a compiler Oregon 2012 73 / 237

Small-step semantics

Also called “structured operational semantics”.

Like β-reduction in the λ-calculus: view computations as sequences of
reductions

M
β→ M1

β→ M2
β→ . . .

Each reduction M → M ′ represents an elementary computation.
M ′ represents the residual computations that remain to be done later.

X. Leroy (INRIA) Proving a compiler Oregon 2012 74 / 237

Small-step semantics for IMP

Reduction relation: c/s → c ′/s ′.

x := a/s → SKIP/s[x ← aeval s a]

c1/s → c ′1/s ′

(c1; c2)/s → (c ′1; c2)/s ′
(SKIP; c)/s → c/s

beval s b = true

IFB b THEN c1 ELSE c2 FI/s → c1/s

beval s b = false

IFB b THEN c1 ELSE c2 FI/s → c2/s

WHILE b DO c END/s → IFB b THEN c ; WHILE b DO c END ELSE SKIP/s

X. Leroy (INRIA) Proving a compiler Oregon 2012 75 / 237

Sequences of reductions

The behavior of a command c in an initial state s is obtained by forming
sequences of reductions starting at c/s:

Termination with final state s ′: finite sequence of reductions to SKIP.

c/s → · · · → SKIP/s ′

Divergence: infinite sequence of reductions.

c/s → c1/s1 → · · · → cn/sn → · · ·

Going wrong: finite sequence of reductions to an irreducible command
that is not SKIP.

(c, s)→ · · · → (c ′, s ′) 6→ with c 6= SKIP

X. Leroy (INRIA) Proving a compiler Oregon 2012 76 / 237

Equivalence small-step / big-step

A classic result:

c/s ⇒ s ′ ⇐⇒ c/s
∗→ SKIP/s ′

(See Coq file Semantics.v.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 77 / 237

Pros and cons of small-step semantics

Pros:

Clean, unquestionable characterization of program behaviors
(termination, divergence, going wrong).

Extends even to unstructured constructs
(goto, concurrency).

De facto standard in the type systems community and in the
concurrency community.

Cons:

Does not follow the structure of programs; lack of a powerful
induction principle.

Syntax often needs to be extended with intermediate forms arising
only during reductions.

“Spontaneous generation” of terms.

X. Leroy (INRIA) Proving a compiler Oregon 2012 78 / 237

Reasoning with or without structure

Reasoning, big-step style: by pre- and post-conditions

Single program: if c/s ⇒ s ′ and P s, then Q s ′.

Program transformation: if c/s ⇒ s ′ and T c c1 and P s s1, there
exists s ′1 s.t. c1/s1 ⇒ s ′1 and Q s ′ s ′1.

Proofs: by induction on a derivation of c/s ⇒ s ′.

Reasoning, small-step style: by invariants and simulations.

Single program: if c/s → c ′/s ′ and I (c, s) then I (c ′, s ′).

Program transformation: a relation I (c, s) (c1, s1) is a
(bi)-simulation for the transitions of the two programs.

Proofs: by case analysis on each transition.

X. Leroy (INRIA) Proving a compiler Oregon 2012 79 / 237

Intermediate forms extending the syntax

Many programming constructs require unnatural extensions of the syntax
of terms so that we can give reduction rules for these constructs.

Example: the break statement (as in C, Java, . . .).

Commands: c ::= . . . | BREAK | INLOOP c1 c2

Intuition: INLOOP c1 c2 ≈ c1; c2 but with special treatment of BREAK
arising out of c1.

WHILE b DO c END/s → IFB b THEN INLOOP c (WHILE b DO c END)ELSE SKIP/s

(BREAK; c)/s → BREAK/s (INLOOP SKIP c)/s → c/s

(INLOOP BREAK c)/s → SKIP/s
c1/s → c ′1/s ′

INLOOP c1 c2/s → INLOOP c ′1 c2/s ′

X. Leroy (INRIA) Proving a compiler Oregon 2012 80 / 237

Spontaneous generation of terms

(IFB b THEN c1 ELSE c2 FI; c)/s → (c1; c)/s

Compiled code for initial command:

code for b code for c1 Ibranch code for c2 code for c

This code nowhere contains the compiled code for c1; c , which is:

code for c1 code for c

(Similar problem for
WHILE b DO c END/s → IFB b THEN c; WHILE b DO c END ELSE SKIP/s.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 81 / 237

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (INRIA) Proving a compiler Oregon 2012 82 / 237

Small-step semantics with continuations

A variant of standard small-step semantics that addresses issues #2 (no
extensions of the syntax of commands) and #3 (no spontaneous
generation of commands).

Idea: instead of rewriting whole commands:

c/s → c ′/s ′

rewrite pairs of (subcommand under focus, remainder of command):

c/k/s → c ′/k ′/s ′

(Vaguely related to focusing in proof theory.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 83 / 237

Standard small-step semantics

Rewrite whole commands, even though only a sub-command (the redex)
changes.

Context C

c = C [redex]

redex

Context C

c ′ = C [reduct]

reduct

reduction

head
reduction

X. Leroy (INRIA) Proving a compiler Oregon 2012 84 / 237

Focusing the small-step semantics

Rewrite pairs (subcommand, context in which it occurs).

x ::= a , → SKIP ,

The sub-command is not always the redex: add explicit focusing and
resumption rules to move nodes between subcommand and context.

(c1; c2) , → c1 ,

; c2

SKIP , → c2 ,

; c2

Focusing on the left of a sequence Resuming a sequence

X. Leroy (INRIA) Proving a compiler Oregon 2012 85 / 237

Representing contexts “upside-down”

Inductive ctx := Inductive cont :=

| CThole: ctx | Kstop: cont

| CTseq: com -> ctx -> ctx. | Kseq: com -> cont -> cont.

CTseq

CTseq

CTseq

CThole

x

y

z

Kseq

Kseq

Kseq

x

y

z

Kstop

CTseq (CTseq (CTseq CThole z) y) x
Kseq z (Kseq y (Kseq x Kstop))

Upside-down context ≈ continuation.
(“Eventually, do z , then do y , then do x , then stop.”)

X. Leroy (INRIA) Proving a compiler Oregon 2012 86 / 237

Transition rules

x := a/k/s → SKIP/k/s[x ← aeval s a]

(c1; c2)/k/s → c1/Kseq c1 k/s

IFB b THEN c1 ELSE c2/k/s → c1/k/s if beval s b = true

IFB b THEN c1 ELSE c2/k/s → c2/k/s if beval s b = false

WHILE b DO c END/k/s → c/Kseq (WHILE b DO c END) k/s
if beval s b = true

WHILE b DO c END/k/s → SKIP/c/k if beval s b = false

SKIP/Kseq c k/s → c/k/s

Note: no spontaneous generation of fresh commands.

X. Leroy (INRIA) Proving a compiler Oregon 2012 87 / 237

Enriching the language
Let’s add a break statement. We need a new form of continuations for
loops, but no ad-hoc extension to the syntax of commands.

Commands: c ::= . . . | BREAK
Continuations: k ::= Kstop | Kseq c k | Kwhile b c k

New or modified rules:

WHILE b DO c END/k/s → c/Kwhile b c k/s
if beval s b = true

SKIP/Kwhile b c k/s → WHILE b DO c END/k/s

BREAK/Kseq c k/s → BREAK/k/s

BREAK/Kwhile b c k/s → SKIP/k/s

(Exercise: what about continue?)

X. Leroy (INRIA) Proving a compiler Oregon 2012 88 / 237

Equivalence with the other semantics

c/Kstop/s
∗→ SKIP/Kstop/s ′ ⇐⇒ c/s ⇒ s ′ ⇐⇒ c/s

∗→ SKIP/s ′

c/k/s →∞ ⇐⇒ c/s →∞

(See Coq file Semantics.v)

X. Leroy (INRIA) Proving a compiler Oregon 2012 89 / 237

Part V

Compiling IMP to virtual machine code,

continued

X. Leroy (INRIA) Proving a compiler Oregon 2012 90 / 237

Finishing the proof of forward simulation

One half already proved: the terminating case.

Theorem compile_program_correct_terminating:

forall c st st’,

c / st ==> st’ ->

mach_terminates (compile_program c) st st’.

One half to go: the diverging case.
(If c/st diverges, then mach_diverges (compile_program c) st.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 91 / 237

Forward simulations, small-step style

Show that every transition in the execution of the source program

is simulated by some transitions in the compiled program

while preserving a relation between the states of the two programs.

X. Leroy (INRIA) Proving a compiler Oregon 2012 92 / 237

Lock-step simulation

Every transition of the source is simulated by exactly one transition in the
compiled code.

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2 C , (pc2, σ2, s
′
2)

≈

≈

X. Leroy (INRIA) Proving a compiler Oregon 2012 93 / 237

Lock-step simulation

Further show that initial states are related:

c/Kstop/s ≈ (C , (0, nil , s)) with C = compile program(c)

Further show that final states are quasi-related:

SKIP/Kstop/s ≈ (C ,mst) =⇒ (C ,mst)
∗→ (C , (pc, nil , s))∧C (pc) = Ihalt

X. Leroy (INRIA) Proving a compiler Oregon 2012 94 / 237

Lock-step simulation

Forward simulation follows easily:

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2 C , (pc2, σ2, s
′
2)

SKIP/Kstop/sn C , (pcn, σn, s
′
n)

halt with store = sn

≈

≈

≈

≈

∗

(Likewise if c1/k1/s1 reduces infinitely.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 95 / 237

“Plus” simulation diagrams

In some cases, each transition in the source program is simulated by one or
several transitions in the compiled code.

(Example: compiled code for x ::= a consists of several instructions.)

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2 C , (pc2, σ2, s
′
2)

≈

≈
+

Forward simulation still holds.

X. Leroy (INRIA) Proving a compiler Oregon 2012 96 / 237

“Star” simulation diagrams (incorrect)

In other cases, each transition in the source program is simulated by zero,
one or several transitions in the compiled code.

(Example: source reduction (SKIP; c)/s → c/s makes zero transitions in
the machine code.)

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2 C , (pc2, σ2, s
′
2)

≈

≈
∗

Forward simulation is not guaranteed:
terminating executions are preserved;
but diverging executions may not be preserved.

X. Leroy (INRIA) Proving a compiler Oregon 2012 97 / 237

The “infinite stuttering” problem

c1/k1/s1 C , (pc, σ, s ′)

c2/k2/s2

cn/kn/sn

cn+1/kn+1/sn+1

≈
≈
≈
≈

The source program diverges but the compiled code can terminate,
normally or by going wrong.

X. Leroy (INRIA) Proving a compiler Oregon 2012 98 / 237

An incorrect optimization that exhibits infinite stuttering

Add special cases to compile_com so that the following trivially infinite
loop gets compiled to no instructions at all:

compile_com (WHILE true DO SKIP END) = nil

X. Leroy (INRIA) Proving a compiler Oregon 2012 99 / 237

Infinite stuttering

Adding special cases to the ≈ relation, we can prove the following naive
“star” simulation diagram:

WHILE true DO SKIP END/k/s C , (pc, σ, s)

SKIP/Kwhile true SKIP k/s

WHILE true DO SKIP END/k/s

≈
≈
≈

Conclusion: a naive “star” simulation diagram does not prove that a
compiler is correct.

X. Leroy (INRIA) Proving a compiler Oregon 2012 100 / 237

“Star” simulation diagrams (corrected)

Find a measure M(c) : nat over source terms that decreases strictly when
a stuttering step is taken. Then show:

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2 C , (pc2, σ2, s
′
2)

≈

≈
+

c1/k1/s1 C , (pc1, σ1, s
′
1)

c2/k2/s2

≈

≈OR

and M(c2) < M(c1)

Forward simulation, terminating case: OK (as before).

Forward simulation, diverging case: OK.
(If c/s diverges, it must perform infinitely many non-stuttering steps, so the

machine executes infinitely many transitions.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 101 / 237

Application to the IMP → VM compiler

Let’s try to prove a “star” simulation diagram for our compiler.

Two difficulties:

1 Rule out infinite stuttering.

2 Match the current command-continuation c , k (which changes during
reductions) with the compiled code C (which is fixed throughout
execution).

X. Leroy (INRIA) Proving a compiler Oregon 2012 102 / 237

Anti-stuttering measure

Stuttering reduction = no machine instruction executed. These include:

(c1; c2)/k/s → c1/Kseq c2 k/s

SKIP/Kseq c k/s → c/k/s

(IFB true THEN c1 ELSE c2)/k/s → c1/k/s

(WHILE true DO c END)/k/s → c/Kwhile true c k/s

No measure M on the command c can rule out stuttering: for M to
decrease in the second case above, we should have

M(SKIP) > M(c) for all command c

→ We must measure (c , k) pairs.

X. Leroy (INRIA) Proving a compiler Oregon 2012 103 / 237

Anti-stuttering measure

After some trial and error, an appropriate measure is:

M(c , k) = size(c) +
∑

c ′ appears in k

size(c ′)

(In other words, every constructor of com counts for 1, and every
constructor of cont counts for 0.)

M((c1; c2), k) = M(c1, Kseq c2 k) + 1

M(SKIP, Kseq c k) = M(c , k) + 1

M(IFB b THEN c1 ELSE c2 FI, k) ≥ M(c1, k) + 1

M(WHILE b DO c END, k) = M(c , Kwhile b c k) + 1

X. Leroy (INRIA) Proving a compiler Oregon 2012 104 / 237

Relating commands and continuations with compiled code

In the big-step proof: codeseq_at C pc (compile_com c).

compile com cC =

pc

In a proof based on the small-step continuation semantics: we must also
relate continuations k with the compiled code:

compile com c IhaltC =

pc pc’

machine instructions that “execute” k

X. Leroy (INRIA) Proving a compiler Oregon 2012 105 / 237

Relating continuations with compiled code

A predicate compile cont C k pc, meaning “there exists a code path in
C from pc to a Ihalt instruction that executes the pending computations
described by k”.

Base case k = Kstop:

Ihalt

pc
Sequence case k = Kseq c k ′:

compile com c

pc pc’ s.t. compile cont C k’ pc’

X. Leroy (INRIA) Proving a compiler Oregon 2012 106 / 237

Relating continuations with compiled code

A “non-structural” case allowing us to insert branches at will:

Ibranch

pc
pc’ s.t. compile cont C k pc’

Useful to handle continuations arising out of IFB b THEN c1ELSE c2:

code for b code for c1 Ibranch code for c2

pc s.t. compile cont C k pc

X. Leroy (INRIA) Proving a compiler Oregon 2012 107 / 237

The simulation invariant

A source-level configuration (c , k , s) is related to a machine configuration
C , (pc, σ, s ′) iff:

the memory states are identical: s ′ = s

the stack is empty: σ = ε

C contains the compiled code for command c starting at pc

C contains compiled code matching continuation k starting at
pc + |code(c)}.

X. Leroy (INRIA) Proving a compiler Oregon 2012 108 / 237

The simulation diagram

c1/k1/s1 (pc1, ε, s
′
1)

c2/k2/s2 (pc2, ε, s
′
2)

C ` c1/k1/s1 ≈ (pc1, ε, s1)

C ` c2/k2/s2 ≈ (pc2, ε, s2)

+

∨
∗ ∧M(c2, k2) < M(c1, k1)

Proof: by case analysis on the source transition on the left.

X. Leroy (INRIA) Proving a compiler Oregon 2012 109 / 237

Wrapping up

As a corollary of this simulation diagram, we obtain both:

An alternate proof of compiler correctness for terminating programs:
if c/Kstop/s

∗→ SKIP/Kstop/s ′

then mach terminates (compile program c) s s ′

A proof of compiler correctness for diverging programs:
if c/Kstop/s reduces infinitely,
then mach diverges (compile program c) s

Mission complete!

X. Leroy (INRIA) Proving a compiler Oregon 2012 110 / 237

Part VI

Optimizations based on liveness analysis

X. Leroy (INRIA) Proving a compiler Oregon 2012 111 / 237

Compiler optimizations

Automatically transform the programmer-supplied code into equivalent
code that

Runs faster
I Removes redundant or useless computations.
I Use cheaper computations (e.g. x * 5 → (x << 2) + x)
I Exhibits more parallelism (instruction-level, thread-level).

Is smaller
(For cheap embedded systems.)

Consumes less energy
(For battery-powered systems.)

Is more resistant to attacks
(For smart cards and other secure systems.)

Dozens of compiler optimizations are known, each targeting a particular
class of inefficiencies.

X. Leroy (INRIA) Proving a compiler Oregon 2012 112 / 237

Compiler optimization and static analysis

Some optimizations are unconditionally valid, e.g.:

x ∗ 2 → x + x

x ∗ 4 → x << 2

Most others apply only if some conditions are met:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y

x := y + 1 → skip only if x unused later

→ need a static analysis prior to the actual code transformation.

X. Leroy (INRIA) Proving a compiler Oregon 2012 113 / 237

Static analysis

Determine some properties of all concrete executions of a program.

Often, these are properties of the values of variables at a given program
point:

x = n x ∈ [n,m] x = expr a.x + b.y ≤ n

Requirements:

The inputs to the program are unknown.

The analysis must terminate.

The analysis must run in reasonable time and space.

X. Leroy (INRIA) Proving a compiler Oregon 2012 114 / 237

Running example:
dead code elimination via liveness analysis

Remove assignments x := e, turning them into skip, whenever the
variable x is never used later in the program execution.

Example

Consider: x := 1; y := y + 1; x := 2

The assignment x := 1 can always be eliminated since x is not used
before being redefined by x := 2.

Builds on a static analysis called liveness analysis.

X. Leroy (INRIA) Proving a compiler Oregon 2012 115 / 237

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (INRIA) Proving a compiler Oregon 2012 116 / 237

Notions of liveness

A variable is dead at a program point if its value is not used later in any
execution of the program:

either the variable is not mentioned again before going out of scope

or it is always redefined before further use.

A variable is live if it is not dead.

Easy to compute for straight-line programs (sequences of assignments):

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live

X. Leroy (INRIA) Proving a compiler Oregon 2012 117 / 237

Notions of liveness

Liveness information is more delicate to compute in the presence of
conditionals and loops:

def x

if

use x def x

use x

Conservatively over-approximate liveness, assuming all if conditionals can
be true or false, and all while loops are taken 0 or several times.

X. Leroy (INRIA) Proving a compiler Oregon 2012 118 / 237

Liveness equations

Given a set L of variables live “after” a command c , write live(c , L) for
the set of variables live “before” the command.

live(SKIP, L) = L

live(x := a, L) =

{
(L \ {x}) ∪ FV (a) if x ∈ L;

L if x /∈ L.

live((c1; c2), L) = live(c1, live(c2, L))

live((IFB b THEN c1 ELSE c2), L) = FV (b) ∪ live(c1, L) ∪ live(c2, L)

live((WHILE b DO c END), L) = X such that

X ⊇ L ∪ FV (b) ∪ live(c ,X)

X. Leroy (INRIA) Proving a compiler Oregon 2012 119 / 237

Liveness for loops

test b

c

test b

c

... exit point

entry point

X

live(c ,X)

L

X

live(c ,X)

L

X

We must have:

FV (b) ⊆ X
(evaluation of b)

L ⊆ X
(if b is false)

live(c ,X) ⊆ X
(if b is true and c is
executed)

X. Leroy (INRIA) Proving a compiler Oregon 2012 120 / 237

Fixpoints, a.k.a “the recurring problem”

Consider F = λX . L ∪ FV (b) ∪ live(c ,X).

To analyze while loops, we need to compute a post-fixpoint of F , i.e. an
X such that F (X) ⊆ X .

For maximal precision, X would preferably be the smallest fixpoint
F (X) = X ; but for soundness, any post-fixpoint suffices.

X. Leroy (INRIA) Proving a compiler Oregon 2012 121 / 237

The mathematician’s approach to fixpoints

Let A,≤ be a partially ordered type. Consider F : A→ A.

Theorem (Knaster-Tarski)

The sequence
⊥, F (⊥), F (F (⊥)), . . . , F n(⊥), . . .

converges to the smallest fixpoint of F , provided that

F is increasing: x ≤ y ⇒ F (x) ≤ F (y).

⊥ is a smallest element.

All strictly ascending chains x0 < x1 < . . . < xn are finite.

This provides an effective way to compute fixpoints.
(See Coq file Fixpoint.v).

X. Leroy (INRIA) Proving a compiler Oregon 2012 122 / 237

Problems with Knaster-Tarski

1 Formalizing and exploiting the ascending chain property
→ well-founded orderings and Noetherian induction.

2 In our case (liveness analysis), the ordering ⊂ has infinite ascending
chains: ∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · ·
Need to restrict ourselves to subsets of a given, finite universe of
variables (= all variables free in the program).
→ dependent types.

Time for plan B. . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 123 / 237

The engineer’s approach to post-fixpoints

F = λX . L ∪ FV (b) ∪ live(c ,X)

Compute F (∅),F (F (∅)), . . . ,FN(∅) up to some fixed N.

Stop as soon as a post-fixpoint is found (F i+1(∅) ⊆ F i (∅)).

Otherwise, return a safe over-approximation
(in our case, a ∪ FV (while b do c done)).

A compromise between analysis time and analysis precision.

(Coq implementation: see file Deadcode.v)

X. Leroy (INRIA) Proving a compiler Oregon 2012 124 / 237

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (INRIA) Proving a compiler Oregon 2012 125 / 237

Dead code elimination

The program transformation eliminates assignments to dead variables:

x := a becomes SKIP if x is not live “after” the assignment

Presented as a function dce : com→ VS.t→ com

taking the set of variables live “after” as second parameter
and maintaining it during its traversal of the command.

(Implementation & examples in file Deadcode.v)

X. Leroy (INRIA) Proving a compiler Oregon 2012 126 / 237

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (INRIA) Proving a compiler Oregon 2012 127 / 237

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (INRIA) Proving a compiler Oregon 2012 127 / 237

Liveness as an information flow property

Consider two executions of the same command c in different initial states:

c/s1 ⇒ s2

c/s ′1 ⇒ s ′2

Assume that the initial states agree on the variables live(c , L) that are
live “before” c :

∀x ∈ live(c , L), s1(x) = s ′1(x)

Then, the two executions terminate on final states that agree on the
variables L live “after” c :

∀x ∈ L, s2(x) = s ′2(x)

The proof of semantic preservation for dead-code elimination follows this
pattern, relating executions of c and dce c L instead.

X. Leroy (INRIA) Proving a compiler Oregon 2012 128 / 237

Agreement and its properties

Definition agree (L: VS.t) (s1 s2: state) : Prop :=

forall x, VS.In x L -> s1 x = s2 x.

Agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

Expressions evaluate identically in states that agree on their free variables:

Lemma aeval_agree:

forall L s1 s2, agree L s1 s2 ->

forall a, VS.Subset (fv_aexp a) L -> aeval s1 a = aeval s2 a.

Lemma beval_agree:

forall L s1 s2, agree L s1 s2 ->

forall b, VS.Subset (fv_bexp b) L -> beval s1 b = beval s2 b.

X. Leroy (INRIA) Proving a compiler Oregon 2012 129 / 237

Agreement and its properties

Agreement is preserved by parallel assignment to a variable:

Lemma agree_update_live:

forall s1 s2 L x v,

agree (VS.remove x L) s1 s2 ->

agree L (update s1 x v) (update s2 x v).

Agreement is also preserved by unilateral assignment to a variable that is
dead “after”:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~VS.In x L ->

agree L (update s1 x v) s2.

X. Leroy (INRIA) Proving a compiler Oregon 2012 130 / 237

Forward simulation for dead code elimination

For terminating source programs:

Theorem dce_correct_terminating:

forall st c st’, c / st || st’ ->

forall L st1,

agree (live c L) st st1 ->

exists st1’, dce c L / st1 || st1’ /\ agree L st’ st1’.

(Proof: an induction on the derivation of c / st ==> st’.)

st

st ′

st1

st ′1

agree (live c L)

ceval c ceval (dce c L)

agree L

X. Leroy (INRIA) Proving a compiler Oregon 2012 131 / 237

Forward simulation for dead code elimination

Exercise: extend the result to diverging programs by proving a simulation
diagram for the transitions of the small-step semantics of IMP (no need
for continuations):

c1/s1 dce c1 L/s ′1

c2/s2 dce c2 L/s ′2

agree (live c1 L) s1 s ′1

agree (live c2 L) s2 s ′2

1 or (0 and |c2| < |c1|)

X. Leroy (INRIA) Proving a compiler Oregon 2012 132 / 237

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (INRIA) Proving a compiler Oregon 2012 133 / 237

The register allocation problem

Place the variables used by the program (in unbounded number) into:

either hardware registers
(very fast access, but available in small quantity)

or memory locations (generally allocated on the stack)
(available in unbounded quantity, but slower access)

Try to maximize the use of hardware registers.

A crucial step for the generation of efficient machine code.

X. Leroy (INRIA) Proving a compiler Oregon 2012 134 / 237

Approaches to register allocation

Naive approach (injective allocation):

Assign the N most used variables to the N available registers.

Assign the remaining variables to memory locations.

Optimized approach (non-injective allocation):

Notice that two variables can share a register
as long as they are not simultaneously live.

X. Leroy (INRIA) Proving a compiler Oregon 2012 135 / 237

Example of register sharing

(def x)
x := . . .

(use x)
. . . x . . .

(def y)
y := . . .

(use y)
. . . y . . .

(use y)
. . . y . . .

x dead

x live

y dead

y live

(def R)
R := . . .

(use R)
. . .R . . .

(def R)
R := . . .

(use R)
. . .R . . .

(use R)
. . .R . . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 136 / 237

Register allocation for IMP

Properly done:

1 Break complex expressions by introducing temporaries.
(E.g. x = (a + b) * y becomes tmp = a + b; x = tmp * y.)

2 Translate IMP to a variant IMP′ that uses registers ∪ memory
locations instead of variables.

Simplified as follows in this lecture:

1 Do not break expressions.

2 Translate from IMP to IMP, by renaming identifiers.
(Convention: low-numbered identifiers ≈ hardware registers.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 137 / 237

The program transformation

Assume given a “register assignment” f : id→ id.

The program transformation consists of:

Renaming variables: all occurrences of x become f x .

Dead code elimination:

x ::= a −→ SKIP if x is dead “after”

Coalescing:
x ::= y −→ SKIP if f x = f y

X. Leroy (INRIA) Proving a compiler Oregon 2012 138 / 237

Correctness conditions on the register assignment

Clearly, not all register assignments f preserve semantics.

Example: assume f x = f y = f z = R

x ::= 1; R ::= 1;

y ::= 2; ----> R ::= 2;

z ::= x + y; R ::= R + R;

Computes 4 instead of 3 . . .

What are sufficient conditions over f ? Let’s discover them by reworking
the proof of dead code elimination.

X. Leroy (INRIA) Proving a compiler Oregon 2012 139 / 237

Agreement, revisited

Definition agree (L: VS.t) (s1 s2: state) : Prop :=

forall x, VS.In x L -> s1 x = s2 (f x).

An expression and its renaming evaluate identically in states that agree on
their free variables:

Lemma aeval_agree:

forall L s1 s2, agree L s1 s2 ->

forall a, VS.Subset (fv_aexp a) L ->

aeval s1 a = aeval s2 (rename_aexp a).

Lemma beval_agree:

forall L s1 s2, agree L s1 s2 ->

forall b, VS.Subset (fv_bexp b) L ->

beval s1 b = beval s2 (rename_bexp b).

X. Leroy (INRIA) Proving a compiler Oregon 2012 140 / 237

Agreement, revisited

As before, agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

As before, agreement is preserved by unilateral assignment to a variable
that is dead “after”:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~VS.In x L ->

agree L (update s1 x v) s2.

X. Leroy (INRIA) Proving a compiler Oregon 2012 141 / 237

Agreement, revisited

Agreement is preserved by parallel assignment to a variable x and its
renaming f x , but only if f satisfies a non-interference condition (in red
below):

Lemma agree_update_live:

forall s1 s2 L x v,

agree (VS.remove x L) s1 s2 ->

(forall z, VS.In z L -> z <> x -> f z <> f x) ->

agree L (update s1 x v) (update s2 (f x) v).

Counter-example: assume f x = f y = R.
agree {y} (x = 0, y = 0) (R = 0) holds, but
agree {x ; y} (x = 1, y = 0) (R = 1) does not.

X. Leroy (INRIA) Proving a compiler Oregon 2012 142 / 237

A special case for moves

Consider a variable-to-variable copy x ::= y .
In this case, the value v assigned to x is not arbitrary, but known to be
s1 y . We can, therefore, weaken the non-interference criterion:

Lemma agree_update_move:

forall s1 s2 L x y,

agree (VS.union (VS.remove x L) (VS.singleton y)) s1 s2 ->

(forall z, VS.In z L -> z <> x -> z <> y -> f z <> f x) ->

agree L (update s1 x (s1 y)) (update s2 (f x) (s2 (f y))).

This makes it possible to assign x and y to the same location, even if x
and y are simultaneously live.

X. Leroy (INRIA) Proving a compiler Oregon 2012 143 / 237

The interference graph

The various non-interference constraints f x 6= f y can be represented as
an interference graph:

Nodes = program variables.

Undirected edge between x and y =
x and y cannot be assigned the same location.

Chaitin’s algorithm to construct this graph:

For each move x ::= y , add edges between x and every variable z live
“after” except x and y .

For each other assignment x ::= a, add edges between x and every
variable z live “after” except x .

X. Leroy (INRIA) Proving a compiler Oregon 2012 144 / 237

Example of an interference graph

r := a;

q := 0;

WHILE b <= r DO

r := r - b;

q := q + 1

END

a

b

q

r

(Full edge = interference; dotted edge = preference.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 145 / 237

Register allocation as a graph coloring problem
(G. Chaitin, 1981; P. Briggs, 1987)

Color the interference graph, assigning a register or memory location to
every node;

under the constraint that the two ends of an interference edge have
different colors;

with the objective to

minimize the number (or total weight) of nodes that are colored by a
memory location

maximize the number of preference edges whose ends have the same
color.

(A NP-complete problem in general, but good linear-time heuristics exist.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 146 / 237

Example of coloring

a

b

q

r

X. Leroy (INRIA) Proving a compiler Oregon 2012 147 / 237

Example of coloring

a

b

q

r

a

b

q

r

yellow := yellow;

green := 0;

WHILE red <= yellow DO

yellow := yellow - red;

green := green + 1

END

X. Leroy (INRIA) Proving a compiler Oregon 2012 147 / 237

What needs to be proved in Coq?

Full compiler proof:
formalize and prove correct a good graph coloring heuristic.

George and Appel’s Iterated Register Coalescing ≈ 6 000 lines of Coq.

Validation a posteriori:
invoke an external, unproven oracle to compute a candidate allocation;
check that it satisfies the non-interference conditions;
abort compilation if the checker says false.

X. Leroy (INRIA) Proving a compiler Oregon 2012 148 / 237

The verified transformation–verified validation spectrum

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified

X. Leroy (INRIA) Proving a compiler Oregon 2012 149 / 237

Validating candidate allocations in Coq

It is easy to write a Coq boolean-valued function

correct_allocation: (id -> id) -> com -> VS.t -> bool

that returns true only if the expected non-interference properties are
satisfied.

(See file Regalloc.v.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 150 / 237

Semantic preservation

The proofs of forward simulation that we did for dead code elimination
then extend easily, under the assumption that correct_allocation
returns true:

Theorem transf_correct_terminating:

forall st c st’, c / st || st’ ->

forall L st1, agree (live c L) st st1 ->

correct_allocation c L = true ->

exists st1’, transf_com c L / st1 || st1’ / agree L st’ st1’.

X. Leroy (INRIA) Proving a compiler Oregon 2012 151 / 237

Part VII

A generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2012 152 / 237

A generic static analyzer

11 Introduction to static analysis

12 Static analysis as an abstract interpretation

13 An abstract interpreter in Coq

14 Improving the generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2012 153 / 237

Static analysis in a nutshell

Statically infer properties of a program that are true of all executions.

At this program point, 0 < x ≤ y and pointer p is not NULL.

Emphasis on infer: no programmer intervention required.
(E.g. no need to annotate the source with loop invariants.)

Emphasis on statically:

Inputs to the program are unknown.

Analysis must always terminate.

Analysis must run in reasonable time and space.

X. Leroy (INRIA) Proving a compiler Oregon 2012 154 / 237

Examples of properties that can be statically inferred

Properties of the value of a single variable: (value analysis)

x = n constant propagation

x > 0 or x = 0 or x < 0 signs

x ∈ [n1, n2] intervals

x = n1 (mod n2) congruences

valid(p[n1 . . . n2]) pointer validity

p pointsTo x or p 6= q (non-) aliasing of pointers

(n, n1, n2 are constants determined by the analysis.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 155 / 237

Examples of properties that can be statically inferred

Properties of several variables: (relational analysis)

∑
aixi ≤ c polyhedras

±x1 ± · · · ± xn ≤ c octagons

expr1 = expr2 Herbrand equivalences, a.k.a. value numbering

(ai , c are rational constants determined by the analysis.)

“Non-functional” properties:

Memory consumption.

Worst-case execution time (WCET).

X. Leroy (INRIA) Proving a compiler Oregon 2012 156 / 237

Using static analysis for optimization

Applying algebraic laws when their conditions are met:

x / 4 → x >> 2 if analysis says x ≥ 0

x + 1 → 1 if analysis says x = 0

Optimizing array and pointer accesses:

a[i]=1; a[j]=2; x=a[i]; → a[i]=1; a[j]=2; x=1;

if analysis says i 6= j

*p = a; x = *q; → x = *q; *p = a;

if analysis says p 6= q

Automatic parallelization:

loop1; loop2 → loop1 ‖ loop2 if polyh(loop1) ∩ polyh(loop2) = ∅

X. Leroy (INRIA) Proving a compiler Oregon 2012 157 / 237

Using static analysis for verification
(Also known as “static debugging”)

Use the results of static analysis to prove the absence of run-time errors:

b ∈ [n1, n2] ∧ 0 /∈ [n1, n2] =⇒ a/b cannot fail

valid(p[n1 . . . n2]) ∧ i ∈ [n1, n2] =⇒ ∗(p + i) cannot fail

Signal an alarm otherwise.

X. Leroy (INRIA) Proving a compiler Oregon 2012 158 / 237

Using static analysis for verification
(Also known as “static debugging”)

Use the results of static analysis to prove the absence of run-time errors:

b ∈ [n1, n2] ∧ 0 /∈ [n1, n2] =⇒ a/b cannot fail

valid(p[n1 . . . n2]) ∧ i ∈ [n1, n2] =⇒ ∗(p + i) cannot fail

Signal an alarm otherwise.

X. Leroy (INRIA) Proving a compiler Oregon 2012 158 / 237

True alarms, false alarms

True alarm False alarm
(dangerous behavior) (imprecise analysis)

More precise analysis (polyhedra instead of intervals):
false alarm goes away.

X. Leroy (INRIA) Proving a compiler Oregon 2012 159 / 237

Some properties verifiable by static analysis

Absence of run-time errors:

Arrays and pointers:
I No out-of-bound accesses.
I No dereferencing of null pointers.
I No accesses after a free.
I Alignment constraints of the processor.

Integers:
I No division by zero.
I No overflows in (signed) arithmetic.

Floating-point numbers:
I No arithmetic overflows (infinite results).
I No undefined operations (not-a-number results).
I No catastrophic cancellations.

Variation intervals for program outputs.

X. Leroy (INRIA) Proving a compiler Oregon 2012 160 / 237

Floating-point subtleties and their analysis

Taking rounding into account:

float x, y, u, v; // x ∈ [1.00025, 2]
// y ∈ [0.5, 1]

u = 1 / (x - y); // OK

v = 1 / (x*x - y*y); // ALARM: undefined result

First division: (x − y) ∈ [0.00025, 1.5] and division cannot result in infinity
or not-a-number.

Second division:

(x∗x) ∈ [1, 4] (float rounding!)
(y∗y) ∈ [0.25, 1]

(x∗x − y∗y) ∈ [0, 3.75]

and division by zero is possible, resuting in +∞

X. Leroy (INRIA) Proving a compiler Oregon 2012 161 / 237

A generic static analyzer

11 Introduction to static analysis

12 Static analysis as an abstract interpretation

13 An abstract interpreter in Coq

14 Improving the generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2012 162 / 237

Abstract interpretation for dummies

“Execute” the program using a non-standard semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [n1, n2]” for interval analysis)
instead of concrete “things” like values and states.

Handles boolean conditions, even if they cannot be resolved statically.
(THEN and ELSE branches of IF are considered both taken.)
(WHILE loops execute arbitrarily many times.)

Always terminates.

X. Leroy (INRIA) Proving a compiler Oregon 2012 163 / 237

Orthodox presentation: collecting semantics

Define a semantics that collects all possible concrete states at every
program point.

// initial value of x is N

y := 1;

(x , y) ∈ { (N, 1) }
WHILE x > 0 DO

(x , y) ∈ { (N, 1); (N − 1, 2); . . . ; (1, 2N−1) }
y := y * 2;

(x , y) ∈ { (N, 2); (N − 1, 4); . . . ; (1, 2N) }
x := x - 1

(x , y) ∈ { (N − 1, 2); . . . ; (0, 2N) }
END

(x , y) ∈ { (0, 2N) }

X. Leroy (INRIA) Proving a compiler Oregon 2012 164 / 237

Orthodox presentation: Galois connection

Define a lattice A,≤ of abstract states and two functions:

Abstraction function α : sets of concrete states → abstract state

Concretization function γ : abstract state → sets of concrete states

(x , y) ∈ [1, 5]× [1, 3]

α γ

α and γ monotonic; X ⊆ γ(α(X)); and x] ≤ α(γ(x])).

X. Leroy (INRIA) Proving a compiler Oregon 2012 165 / 237

Orthodox presentation: calculating abstract operators

For each operation of the language, compute its abstract counterpart
(operating on elements of A instead of concrete values and states).

Example: for the + operator in expressions,

a1 +] a2 = α{n1 + n2 | n1 ∈ γ(a1), n2 ∈ γ(a2)}

(. . . calculations omitted . . .)

[l1, u1] +] [l2, u2] = [l1 + l2, u1 + u2]

+] is sound and optimally precise by construction.

X. Leroy (INRIA) Proving a compiler Oregon 2012 166 / 237

Pedestrian Coq presentation

Focus on the concretization relation x ∈ γ(y) viewed as a 2-place
predicate concrete-thing → abstract-thing → Prop.

Forget about the abstraction function α
(generally not computable; often not uniquely defined.)

Forget about calculating the abstract operators: just guess their definitions
and prove their soundness.

Forget about optimality; focus on soundness only.

X. Leroy (INRIA) Proving a compiler Oregon 2012 167 / 237

A generic static analyzer

11 Introduction to static analysis

12 Static analysis as an abstract interpretation

13 An abstract interpreter in Coq

14 Improving the generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2012 168 / 237

Abstract domains in Coq

Specified as module interfaces:

VALUE_ABSTRACTION: to abstract integer values.

STATE_ABSTRACTION: to abstract states.

(See Coq file Analyzer1.v.)

Each interface declares:

A type t of abstract “things”

A predicate vmatch/smatch relating concrete and abstract things.

Abstract operations on type t

(arithmetic operations for values; get and set operations for stores).

Soundness properties of these operations.

X. Leroy (INRIA) Proving a compiler Oregon 2012 169 / 237

Abstract interpretation of arithmetic expressions

Let V be a value abstraction and S a corresponding state abstraction.

Fixpoint abstr_eval (s: S.t) (a: aexp) : V.t :=

match a with

| ANum n => V.of_const n

| AId x => S.get s x

| APlus a1 a2 => V.add (abstr_eval s a1) (abstr_eval s a2)

| AMinus a1 a2 => V.sub (abstr_eval s a1) (abstr_eval s a2)

| AMult a1 a2 => V.mul (abstr_eval s a1) (abstr_eval s a2)

end.

(What else could we possibly write?)

X. Leroy (INRIA) Proving a compiler Oregon 2012 170 / 237

Abstract interpretation of commands

Computes the abstract state “after” executing command c in initial
abstract state s.

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.

X. Leroy (INRIA) Proving a compiler Oregon 2012 171 / 237

Abstract interpretation of commands

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.

For the time being, we do not try to guess the value of a boolean test
→ consider the THEN branch and the ELSE branch as both taken
→ take an upper bound of their final states.

X. Leroy (INRIA) Proving a compiler Oregon 2012 172 / 237

Abstract interpretation of commands

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| (x ::= a) => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp s c1) (abstr_interp s c2)

| WHILE b DO c END =>

fixpoint (fun x => S.join s (abstr_interp x c)) s

end.

Let s ′ be the abstract state “before” the loop body c .

entering c on the first iteration ⇒ s ≤ s ′.

re-entering c at next iteration ⇒ abstr interp s ′ c ≤ s ′.

Therefore compute a post-fixpoint s ′ such that s t abstr interp s ′ c ≤ s ′

X. Leroy (INRIA) Proving a compiler Oregon 2012 173 / 237

Soundness results

Show that all concrete executions produce results that belong to the
abstract things inferred by abstract interpretation.

Lemma abstr_eval_sound:

forall st s, S.smatch st s ->

forall a, V.vmatch (aeval st a) (abstr_eval s a).

Theorem abstr_interp_sound:

forall c st st’ s,

S.smatch st s ->

c / st || st’ ->

S.smatch st’ (abstr_interp s c).

(Easy structural inductions on a and c.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 174 / 237

An example of state abstraction

Parameterized by a value abstraction V.

Abstract states = ⊥ | finite maps ident → V.t. (Default value: V.top.)

Appropriate for all non-relational analyses.

X. Leroy (INRIA) Proving a compiler Oregon 2012 175 / 237

An example of value abstraction: constants

Abstract domain = the flat lattice of integers:

> = nat

⊥ = ∅

{0} {1} {2} {3} {4} . . .

Obvious interpretation of operations:

⊥+] x = x +] ⊥ = ⊥ >+] x = x +] > = > {n1}+] {n2} = {n1 + n2}

X. Leroy (INRIA) Proving a compiler Oregon 2012 176 / 237

A generic static analyzer

11 Introduction to static analysis

12 Static analysis as an abstract interpretation

13 An abstract interpreter in Coq

14 Improving the generic static analyzer

X. Leroy (INRIA) Proving a compiler Oregon 2012 177 / 237

First improvement: static analysis of boolean expressions

Our analyzer makes no attempt at analyzing boolean expressions
→ both arms of an IF are always assumed taken.

Can do better when the static information available allows to statically
resolve the IF. Example:

x := 0;

IF x = 0 THEN y := 1 ELSE y := 2 FI

Constant analysis in its present form returns y] = >
(joining the two branches where y] = {1} and y] = {2}.)

Since x] = {0} before the IF, the ELSE branch cannot be taken, hence we
should have y] = {1} at the end.

X. Leroy (INRIA) Proving a compiler Oregon 2012 178 / 237

Static analysis of boolean expressions

Even when the boolean expression cannot be resolved statically, the
analysis can learn much from which branch of an IF is taken.

x] = > initially

IF x = 0 THEN

learn that x] = {0}
y := x + 1

hence y] = {1}
ELSE

y := 1

y] = {1} as well

FI

hence y] = {1}, not >

X. Leroy (INRIA) Proving a compiler Oregon 2012 179 / 237

Static analysis of boolean expressions

We can also learn from the fact that a WHILE loop terminates:

x] = > initially

WHILE not (x = 42) DO

x := x + 1

DONE

learn that x] = 42] = {42}

More realistic example using intervals instead of constants:

x] = > = [0, ∞] initially

WHILE x <= 1000 DO

x := x + 1

DONE

learn that x] = [1001, ∞]

X. Leroy (INRIA) Proving a compiler Oregon 2012 180 / 237

Inverse analysis of expressions

learn from test s b res :
return abstract state s ′ ≤ s reflecting the fact that b (a boolean
expression) evaluates to res (one of true or false).

learn from eval s a res :
return abstract state s ′ ≤ s reflecting the fact that a (an arithmetic
expression) evaluates to a value matching res (an abstract value).

Examples:

learn from test (x 7→ >) (x = 0) true = (x 7→ {0})
learn from test (x 7→ {1}) (x = 0) true = ⊥
learn from eval (x 7→ >) (x + 1) {10} = (x 7→ {9})

X. Leroy (INRIA) Proving a compiler Oregon 2012 181 / 237

Inverse analysis of expressions

The abstract domain for values is enriched with inverse abstract operators
add_inv, etc and inverse abstract tests eq_inv, etc.

Examples with intervals:

le_inv [0,10] [2,5] = ([0,5], [2,5])

add_inv [0,1] [0,1] [0,0] = ([0,0], [0,0])

X. Leroy (INRIA) Proving a compiler Oregon 2012 182 / 237

Inverse analysis of expressions

In orthodox presentation:

le inv x] y] = (α{x | x ∈ γ(x]), y ∈ γ(y]), x ≤ y},
α{y | x ∈ γ(x]), y ∈ γ(y]), x ≤ y})

add inv x] y] z] = (α{x | x ∈ γ(x]), y ∈ γ(y]), x + y ∈ γ(z])},
α{y | x ∈ γ(x]), y ∈ γ(y]), x + y ∈ γ(z])}

In Coq: see file Analyzer2.v.

X. Leroy (INRIA) Proving a compiler Oregon 2012 183 / 237

Using inverse analysis

Fixpoint abstr_interp (s: S.t) (c: com) : S.t :=

match c with

| SKIP => s

| x ::= a => S.set s x (abstr_eval s a)

| (c1; c2) => abstr_interp (abstr_interp s c1) c2

| IFB b THEN c1 ELSE c2 FI =>

S.join (abstr_interp (learn_from_test s b true) c1)

(abstr_interp (learn_from_test s b false) c2)

| WHILE b DO c END =>

let s’ :=

fixpoint

(fun x => S.join s

(abstr_interp (learn_from_test x b true) c))

s in

learn_from_test s’ b false

end.

X. Leroy (INRIA) Proving a compiler Oregon 2012 184 / 237

Second improvement: accelerating convergence

Consider the computation of (post-) fixpoints when analyzing loops.

Remember the two approaches previously discussed:

1 The mathematician’s approach based on the Knaster-Tarski theorem.
(Only if the abstract domain is well-founded, e.g. the domain of
constants.)

2 The engineer’s approach:
force convergence to > after a bounded number of iterations.

1- is often not applicable or too slow.
2- produces excessively coarse results.

X. Leroy (INRIA) Proving a compiler Oregon 2012 185 / 237

Non-well-founded domains

Many interesting abstract domains are not well-founded.

Example: intervals.

[0, 0] ⊂ [0, 1] ⊂ [0, 2] ⊂ · · · ⊂ [0, n] ⊂ · · ·

This causes problems for analyzing non-counted loops such as

x := 0;

WHILE unpredictable-condition DO x := x + 1 END

(x] is successively [0, 0] then [0, 1] then [0, 2] then . . .)

X. Leroy (INRIA) Proving a compiler Oregon 2012 186 / 237

Slow convergence

In other cases, the fixpoint computation via Tarski’s method does
terminate, but takes too much time.

x := 0;

WHILE x <= 1000 DO x := x + 1 END

(Starting with x] = [0, 0], it takes 1000 iterations to reach x] = [0, 1000],
which is a fixpoint.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 187 / 237

Imprecise convergence

The engineer’s algorithm (return > after a fixed number of unsuccessful
iterations) does converge quickly, but loses too much information.

x := 0;

y := 0;

WHILE x <= 1000 DO x := x + 1 END

In the final abstract state, not only x] = >, but also y] = >.

X. Leroy (INRIA) Proving a compiler Oregon 2012 188 / 237

Widening

A widening operator ∇ : A → A→ A computes an upper bound of its
second argument in such a way that the following fixpoint iteration always
converges (and converges quickly):

X0 = ⊥ Xi+1 =

{
Xi if F (Xi) ≤ Xi

Xi ∇ F (Xi) otherwise

The limit X of this sequence is a post-fixpoint: F (X) ≤ X .

For intervals of natural numbers, the classic widening operator is:

[l1, u1]∇ [l2, u2] = [(if l2 < l1 then 0 else l1,
if u2 > u1 then ∞ else u1)]

X. Leroy (INRIA) Proving a compiler Oregon 2012 189 / 237

Example of widening

x := 0;

WHILE x <= 1000 DO x := x + 1 END

The transfer function for x ’s abstraction is
F (X) = [0, 0] ∪ (X ∩ [0, 1000]) + 1.

X0 = ⊥
X1 = X0 ∇ F (X0) = ⊥∇ [0, 0] = [0, 0]
X2 = X1 ∇ F (X1) = [0, 0]∇ [0, 1] = [0,∞]
X2 is a post-fixpoint: F (X2) = [0, 1001] ⊆ [0,∞].

Final abstract state is x] = [0,∞] ∩ [1001,∞] = [1001,∞].

X. Leroy (INRIA) Proving a compiler Oregon 2012 190 / 237

Widening in action

X

F (X)

Tarski iteration

Iteration with widening

X. Leroy (INRIA) Proving a compiler Oregon 2012 191 / 237

Refining the fixpoint

The quality of a post-fixpoint can be improved by iterating F some more:

Y0 = a post-fixpoint Yi+1 = F (Yi)

If F is monotone, each of the Yi is a post-fixpoint: F (Yi) ≤ Yi .

Often, Yi < Y0, so we obtain a more precise post-fixpoint.

We can stop iteration when a Yi is a fixpoint, or at any convenient time.

X. Leroy (INRIA) Proving a compiler Oregon 2012 192 / 237

Widening plus refinement in action

X

F (X)

Tarski iteration

Iteration with widening

Refinement by post-iteration

X. Leroy (INRIA) Proving a compiler Oregon 2012 193 / 237

Example of refinement

x := 0;

WHILE x <= 1000 DO x := x + 1 END

The transfer function for x ’s abstraction is
F (X) = [0, 0] ∪ (X ∩ [0, 1000]) + 1.

The post-fixpoint found by iteration with widening is [0,∞].

Y0 = [0,∞]
Y1 = F (Y0) = [0, 1001]
Y2 = F (Y1) = [0, 1001]

Final post-fixpoint is Y1 (actually, a fixpoint).

Final abstract state is x] = [0, 1001] ∩ [1001,∞] = [1001, 1001].

X. Leroy (INRIA) Proving a compiler Oregon 2012 194 / 237

Specification of widening operators

For reference:

y ≤ x ∇ y for all x , y .

For all increasing sequences x0 ≤ x1 ≤ . . .,
the sequence y0 = x0, yi+1 = yi ∇ xi
is not strictly increasing.

X. Leroy (INRIA) Proving a compiler Oregon 2012 195 / 237

Coq implementation of accelerated convergence
Because we have not proved the monotonicity of abstr_interp nor the
nice properties of widening, we still bound arbitrarily the number of
iterations.

Fixpoint iter_up (n: nat) (s: S.t) : S.t :=

match n with

| 0 => S.top

| S n1 =>

let s’ := F s in

if S.ble s’ s then s else iter_up n1 (S.widen s s’)

end.

Fixpoint iter_down (n: nat) (s: S.t) : S.t :=

match n with

| 0 => s

| S n1 =>

let s’ := F s in

if S.ble (F s’) s’ then iter_down n1 s’ else s

end.

Definition fixpoint (start: S.t) : S.t :=

iter_down num_iter_down (iter_up num_iter_up start).

X. Leroy (INRIA) Proving a compiler Oregon 2012 196 / 237

In summary. . .

The abstract interpretation approach leads to highly modular static
analyzers:

The language-specific parts of the analyzer are written once and for
all.

It can then be combined with various abstract domains, which are
largely independent of the programming language analyzed.

Domains can be further combined together (e.g. by reduced product).

The technical difficulty is concentrated in the definition and
implementation of domains, esp. the widening and narrowing operators.

Relational analyses are much more difficult (but much more precise!) than
the non-relational analyses presented here.

X. Leroy (INRIA) Proving a compiler Oregon 2012 197 / 237

Static analysis tools in the real world

General-purpose tools:

Coverity

MathWorks Polyspace verifier.

Frama-C value analyzer (open source!)

Microsoft’s Code Contract

Tools specialized to an application area:

Microsoft Static Driver Verifier (Windows system code)

Astrée (control-command code at Airbus)

Fluctuat (symbolic analysis of floating-point errors)

Tools for non-functional properties:

aiT WCET (worst-case execution time)

aiT StackAnalyzer (stack consumption)

X. Leroy (INRIA) Proving a compiler Oregon 2012 198 / 237

Part VIII

Compiler verification in the large

X. Leroy (INRIA) Proving a compiler Oregon 2012 199 / 237

Compiler verification in the large

15 Compiler issues in critical software

16 The CompCert project

17 Status and ongoing challenges

18 Closing

X. Leroy (INRIA) Proving a compiler Oregon 2012 200 / 237

The classroom setting

IMP

V.M.

Compiler

Static
analysis

Hoare
logic

X. Leroy (INRIA) Proving a compiler Oregon 2012 201 / 237

The reality of critical embedded software

C

Executable

Assembly

ScadeSimulink

Hand-written

Compiler

Code gen. Code gen.

Test

Code
reviews

Static
analyzers

Program
prover

Model
checker

X. Leroy (INRIA) Proving a compiler Oregon 2012 202 / 237

Example: fly-by-wire software

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%GH%IE%GG%EJ

1K$?LB$%M%04??"@7$6%=$%N4B%1B$>:89O5$6

!"#$%&'()*+),-,&./$)*$)0123)4567)8)%9:&;<=$;)&9+&$,)=$,),+;(>%$,

!"#$%&'()*+ ,"#-%&'.)*+

/0"1234%&'.)*+%-30"12%
'5)*+

678812%&')*+

9"1:#$32%&'*)*+

;20<<#="1 >320?34$#"
!$#=0"0?12

@233-
A3%1&'*)*+

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

(G. Ladier)

X. Leroy (INRIA) Proving a compiler Oregon 2012 203 / 237

Example: fly-by-wire software

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%GH%IE%GG%EJ

1K$?LB$%M%04??"@7$6%=$%N4B%1B$>:89O5$6

!"#$%&'()*+),-,&./$)*$)0123)4567)8)%9:&;<=$;)&9+&$,)=$,),+;(>%$,

!"#$%&'()*+ ,"#-%&'.)*+

/0"1234%&'.)*+%-30"12%
'5)*+

678812%&')*+

9"1:#$32%&'*)*+

;20<<#="1 >320?34$#"
!$#=0"0?12

@233-
A3%1&'*)*+

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

(G. Ladier)

X. Leroy (INRIA) Proving a compiler Oregon 2012 203 / 237

Requirements for qualification
(E.g. DO178-B in avionics.)

Compilers and code generation tools: Can introduce bugs in programs!

Either: the code generator is qualified at the same level of assurance
as the application.
(Implies: much testing, rigorous development process, no recursion,
no dynamic allocation, . . .)

Or: the generated code needs to be qualified as if hand-written.
(Implies: testing, code review and analysis on the generated code . . .)

Verification tools used for bug-finding:
Cannot introduce bugs, just fail to notice their presence.
→ can be qualified at lower levels of assurance.

Verification tools used to establish the absence of certain bugs:
Status currently unclear.

X. Leroy (INRIA) Proving a compiler Oregon 2012 204 / 237

The compiler dilemma

If the compiler is untrusted (= not qualified at the highest levels of
assurance):

We still need to review & analyze the generated assembly code,
which implies turning off optimizations,
and is costly, and doesn’t scale.

We cannot fully trust the results obtained by formal verification of the
source program.

Many benefits of programming in a high-level language are lost.

Yet: the traditional techniques to qualify high-assurance software do not
apply to compilers.

Could formal verification of the compiler help?

X. Leroy (INRIA) Proving a compiler Oregon 2012 205 / 237

Compiler verification in the large

15 Compiler issues in critical software

16 The CompCert project

17 Status and ongoing challenges

18 Closing

X. Leroy (INRIA) Proving a compiler Oregon 2012 206 / 237

The CompCert project
(X.Leroy, S.Blazy, et al — http://compcert.inria.fr/)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a subset of C.

Target language: PowerPC, ARM and x86-32 assembly.

Generates reasonably compact and fast code
⇒ some optimizations.

This is “software-proof codesign” (as opposed to proving an existing
compiler).

Uses Coq to mechanize the proof of semantic preservation and also to
implement most of the compiler.

X. Leroy (INRIA) Proving a compiler Oregon 2012 207 / 237

The subset of C supported

Supported:

Types: integers, floats, arrays, pointers, struct, union.

Operators: arithmetic, pointer arithmetic.

Control: if/then/else, loops, simple switch, goto.

Functions, recursive functions, function pointers.

Not supported:

The long long and long double types.

Unstructured switch, longjmp/setjmp.

Variable-arity functions.

Supported via de-sugaring (not proved!):

Block-scoped variables.

Returning struct and union by value from functions

Bit-fields.

X. Leroy (INRIA) Proving a compiler Oregon 2012 208 / 237

The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

function inlining, (LCM)

(Instruction scheduling)

X. Leroy (INRIA) Proving a compiler Oregon 2012 209 / 237

The whole CompCert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB

X. Leroy (INRIA) Proving a compiler Oregon 2012 210 / 237

Verified in Coq

Theorem transf_c_program_is_refinement:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

A composition of

15 proofs of the “safe forward simulation” kind

1 proof of the “safe backward simulation” kind.

X. Leroy (INRIA) Proving a compiler Oregon 2012 211 / 237

Observable behaviors

Inductive program_behavior: Type :=

| Terminates: trace -> int -> program_behavior

| Diverges: trace -> program_behavior

| Reacts: traceinf -> program_behavior

| Goes_wrong: trace -> program_behavior.

trace = list of input-output events.
traceinf = infinite list (stream) of i-o events.

I/O events are generated for:

Calls to external functions (system calls)

Memory accesses to global volatile variables (hardware devices).

X. Leroy (INRIA) Proving a compiler Oregon 2012 212 / 237

Styles of semantics used (as a function of time)

Clight . . . Cminor RTL . . . Mach Asm

1st gen. big-step “mixed-step” small-step
(b.s. for calls,

(s.s. otherwise)

2nd gen. big-step small-step small-step
(+ divergence) (coinductive) (w/ call stacks)

3rd gen. small-step small-step small-step
(+ goto (w/ continuations) (w/ call stacks)
& tailcalls)

X. Leroy (INRIA) Proving a compiler Oregon 2012 213 / 237

The Coq proof

4 person-years of work.

Size of proof: 50000 lines of Coq.

Size of program proved: 8000 lines.

Low proof automation (could be improved).

13%

Code

8%

Sem.

17%

Statements

55%

Proof scripts

7%

Misc

X. Leroy (INRIA) Proving a compiler Oregon 2012 214 / 237

Programmed in Coq

The verified parts of the compiler are directly programmed in Coq’s
specification language, in pure functional style.

Monads are used to handle errors and state.

Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from these
Coq definitions, which is then linked with hand-written Caml parts.

Claim: pure functional programming is the shortest path between an
executable program and its proof.

X. Leroy (INRIA) Proving a compiler Oregon 2012 215 / 237

Performance of generated code
(On a PowerPC G5 processor)

A
E

S

A
lm

ab
en

ch

B
in

ar
yt

re
es

F
an

n
ku

ch

F
F

T

K
n

u
cl

eo
ti

d
e

N
b

o
d

y

Q
so

rt

R
ay

tr
ac

er

S
p

ec
tr

al

V
M

ac
h

Execution time

gcc -O0

Compcert
gcc -O1
gcc -O3

X. Leroy (INRIA) Proving a compiler Oregon 2012 216 / 237

Compiler verification in the large

15 Compiler issues in critical software

16 The CompCert project

17 Status and ongoing challenges

18 Closing

X. Leroy (INRIA) Proving a compiler Oregon 2012 217 / 237

Preliminary conclusions

At this stage of the Compcert experiment, the initial goal – proving
correct a realistic compiler – appears feasible.

Moreover, proof assistants such as Coq are adequate (but barely) for this
task.

What next?

X. Leroy (INRIA) Proving a compiler Oregon 2012 218 / 237

Enhancements to CompCert

Upstream:

Formalize some of the emulated features (bitfields, etc).

Verified parsing (J.-H. Jourdan), lexing?, preprocessing???

Downstream:

Currently, we stop at assembly language with a C-like memory model.

Refine the memory model to a flat array of bytes.
(Issues with bounding the total stack size used by the program.)

Refine to real machine language?
(Cf. Moore’s Piton & Gypsy projects circa 1995)

X. Leroy (INRIA) Proving a compiler Oregon 2012 219 / 237

Enhancements to CompCert

In the middle:

More static analyses: nonaliasing, intervals, . . .

More optimizations? Possibly using verified translation validation?

transformation transformation

validator

×

Verified transformation Verified translation validation

(See e.g. J.B. Tristan’s verified translation validators for instruction
scheduling, lazy code motion, and software pipelining.)

X. Leroy (INRIA) Proving a compiler Oregon 2012 220 / 237

Connections with hardware verification

Hardware verification:

A whole field by itself.

At the circuit level: a strong tradition of formal synthesis and
verification, esp. using model checking.

At the architectural level (machine language semantics, memory
model, . . .): almost no publically available formal specifications, let
alone verifications.

A very nice work in this area: formalizing the ARM architecture and
validating it against the ARM6 micro-architecture.
(Anthony Fox et al, U. Cambridge).

X. Leroy (INRIA) Proving a compiler Oregon 2012 221 / 237

The ARM6 micro-architecture
A
R
E
G
N

C
TR

L

4

CTRL

C
TR

L

IR
E
G

C
TR

L

C
TR

L

C
TR

L

C
TR

L

S
C
T
R
L
R
E
G

SHCOUT

C
TR

L

S
H
C
O
U
T

P
S
R
F
B

C
P
S
R
L

C
TR

L

Mux

Mux

Mux

Mux

Mux

Memory
Interface

R
B
A

P
C
W
A

R
A
A

R
W
A

P
S
R
A

P
S
R
W
A

Register
Bank

Program
Status
Registers
Bank

AREG

DIN

ALUB

ALUA

Field
Extractor

&
Field

Extender

Shifter

+

ALU

DATA

INC

RA A

PSRRD

ALU

ALUNZCV

PCBUS

PSRDAT

IMM/DIN’

RB

B

PIPE

SCTRLREG

PSR
CPSR P

S
R
C

PSR

Figure 3: The ARM6 Data Path.

14

X. Leroy (INRIA) Proving a compiler Oregon 2012 222 / 237

The ARM6 instruction pipeline

0 1 2 3 4 5 6 7 8 9 10 11 12

a: sub D E

b: swp F D

c: add F D

b: swp F D E E E E

c: add F D E E

d: b F D E E E

e: mvn F

f: cmp F

a: sub F D

b: swp F

Figure 4: Pipeline flow for Example 1.

State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

pipea,pipeaval b,T c,F b,T c,T d,T d,T d,T d,T e,T e,T f,T a,T b,T
pipeb,pipebval b,T c,F b,T c,T c,T c,T c,T d,T d,T e,T f,T a,T b,T
ireg,iregval a,T b,F c,F b,T b,T b,T b,T c,T c,T d,T d,T d,T a,T
ointstart F F F F F F F F F F F F F
onewinst T T T T F F F T F T F F T
opipebll T T T T F F F T F T T T T
nxtic data proc swp reg shift swp swp swp swp reg shift reg shift br br br data proc
nxtis t3 t3 t3 t3 t4 t5 t6 t3 t4 t3 t4 t5 t3

Table 8: The pipeline behaviour for Example 1.

instruction code prior to decode. (If the fetch and decode were always simultaneous then pipeb
would be redundant.) A fetch occurs on each execute cycle of the branch. With single-cycle
instructions fetch and decode occur simultaneously with the execute. From Figure 4 it is clear that
all but the first instruction is multi-cycle. The first instruction (sub) is single-cycle, but a further
two cycles are needed to re-fill the pipeline after pc is modified. Strictly speaking, these extra cycles
are deemed not to constitute part of the instruction’s execute stage but they are of significance from
a correctness standpoint.

Table 8 shows the pipeline behaviour with respect to the first thirteen components of the control
unit. The instruction labels have been used, in place of the instruction codes, to indicate the state
of the components pipea, pipeb and ireg. Observe that the components pipeaval, pipebval and
iregval are used to implement the re-filling of the pipeline (tagging invalidated instruction codes)
after the sub instruction writes to register pc. This differs from the branch instruction, which takes
three cycles to execute, re-filling the pipeline in the process.

The states are grouped together into blocks, with the cycle at the start of each block underlined.
This grouping corresponds with the temporal abstraction used in verifying the design. The under-
lined cycles are specified by an immersion, which gives the times at which data abstraction yields
ISA states. These states are characterised by the fact that the pipeline is ready for the first execute
cycle of the instruction in ireg.

19

Difficulty for verification:
several instructions are “in flight” at any given time.

Redeeming feature: synchrony. The machine state is determined as a
function of time and the initial state.

X. Leroy (INRIA) Proving a compiler Oregon 2012 223 / 237

Other source languages

Cminor PPC,ARMClight

Mini-MLGallina

GCminorGHC core

Lustre??

Spark Ada??

New problem: run-time system verification (allocator, GC, etc).

X. Leroy (INRIA) Proving a compiler Oregon 2012 224 / 237

Connections with verification tools

Subsets
of C

Verified
compiler

Code
generator

Static
analyzer

Model
checker

Program
prover

X. Leroy (INRIA) Proving a compiler Oregon 2012 225 / 237

Connections with verification tools

Code generators, static analyzers, model checkers, program provers, . . .

deserve formal verification if we are to fully trust their results

. . . and must be verified against the same semantics as the compiler.

The Verasco project (just started):

an abstract interpreter for the CompCert languages

will include advanced relational domains and combinations thereof

formally verified in Coq.

X. Leroy (INRIA) Proving a compiler Oregon 2012 226 / 237

Towards shared-memory concurrency

Programs containing data races are generally compiled in a
non-semantic-preserving manner.

Issue #1: apparently atomic operations are decomposed into sequences of
instructions, exhibiting more behaviors.

x = *p + *p; || *p = 1;

t1 = load(p) || store(p, 1)

t2 = load(p)

x = add(t1,t2)

In Clight (top): final x ∈ {0, 2}.
In RTL (bottom): final x ∈ {0, 1, 2}.

X. Leroy (INRIA) Proving a compiler Oregon 2012 227 / 237

Towards shared-memory concurrency

Issue #2: weakly-consistent memory models, as implemented in hardware,
introduce more behaviors than just interleavings of loads and stores.

store(q, 1); || store(p, 1);

x = load(p) || y = load(q)

Interleaving semantics: (x , y) ∈ {(0, 1); (1, 0); (1, 1)}.

Hardware semantics: x = 0 and y = 0 is also possible!

X. Leroy (INRIA) Proving a compiler Oregon 2012 228 / 237

Plan A

Expose all behaviors in the semantics of all languages (source,
intermediate, machine):

“Very small step” semantics
(expression evaluation is not atomic).

Weakly-consistent model of memory.

Turn off optimizations that are wrong in this setting.
(common subexpression elimination; uses of nonaliasing properties).

Prove backward simulation results for every pass.

→ The CompCertTSO project at Cambridge
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/

X. Leroy (INRIA) Proving a compiler Oregon 2012 229 / 237

Plan B

Restrict ourselves to data-race free source programs . . .

. . . as characterized by concurrent separation logic.

X. Leroy (INRIA) Proving a compiler Oregon 2012 230 / 237

Separation logic (quick reminder)

Like Hoare triples {P} c {Q},
but assertions P,Q control the memory footprint of commands c .

Application: the frame rule

{P} c {Q}

{P ? R} c {Q ? R}

X. Leroy (INRIA) Proving a compiler Oregon 2012 231 / 237

Concurrent separation logic (intutions)

Two concurrently-running threads do not interfere if their memory
footprints are disjoint:

{P1} c1 {Q1} {P2} c2 {Q2}

{P1 ? P2} (c1 ‖ c2) {Q1 ? Q2}

But how can two threads communicate through shared memory?

X. Leroy (INRIA) Proving a compiler Oregon 2012 232 / 237

Concurrent separation logic (intutions)

Locks L are associated with resource invariants R.

R’s footprint describes the set of shared data protected by lock L.

Locking ⇒ acquire rights to access this shared data.
Unlocking ⇒ forego rights to access this shared data.

{P} lock L {P ? R(L)}
{P ? R(L)} unlock L {P}

X. Leroy (INRIA) Proving a compiler Oregon 2012 233 / 237

Quasi-sequential semantics

(Hobor, Appel, Zappa Nardelli, Oracle Semantics for Concurrent Separation Logic,

ESOP 2008).

For parallel programs provable in concurrent separation logic, we can
restrict ourselves to “quasi-sequential” executions:

In between two lock / unlock operations, each thread executes
sequentially; other threads are stopped.

Interleaving at lock / unlock operations only.

Interleaving is determined in advance by an “oracle”.

Claim: for programs provable in CSL, quasi-sequential semantics and
concrete semantics (arbitrary interleavings + weakly-consistent memory)
predict the same sets of behaviors.

X. Leroy (INRIA) Proving a compiler Oregon 2012 234 / 237

Verifying a compiler for data-race free programs

“Just” have to show that quasi-sequential executions are preserved by
compilation:

Easy?? extensions of the sequential case.

Can still use forward simulation arguments.

Most classic sequential optimizations remain valid.

The only “no-no”: moving memory accesses across lock and unlock

operations.

Work in progress, stay tuned . . .

X. Leroy (INRIA) Proving a compiler Oregon 2012 235 / 237

Compiler verification in the large

15 Compiler issues in critical software

16 The CompCert project

17 Status and ongoing challenges

18 Closing

X. Leroy (INRIA) Proving a compiler Oregon 2012 236 / 237

To finish . . .

The formal verification of compilers and related programming tools

. . . could be worthwhile,

. . . appears to be feasible,

. . . and is definitely exciting!

X. Leroy (INRIA) Proving a compiler Oregon 2012 237 / 237

To finish . . .

The formal verification of compilers and related programming tools

. . . could be worthwhile,

. . . appears to be feasible,

. . . and is definitely exciting!

X. Leroy (INRIA) Proving a compiler Oregon 2012 237 / 237

To finish . . .

The formal verification of compilers and related programming tools

. . . could be worthwhile,

. . . appears to be feasible,

. . . and is definitely exciting!

X. Leroy (INRIA) Proving a compiler Oregon 2012 237 / 237

To finish . . .

The formal verification of compilers and related programming tools

. . . could be worthwhile,

. . . appears to be feasible,

. . . and is definitely exciting!

X. Leroy (INRIA) Proving a compiler Oregon 2012 237 / 237

	Prologue: mechanized semantics, what for?
	Compiling IMP to virtual machine code
	Reminder: the IMP language
	The IMP virtual machine
	The compiler
	Verifying the compiler: first results

	Notions of semantic preservation
	More on mechanized semantics
	Reminder: big-step semantics for terminating programs
	Small-step semantics
	Small-step semantics with continuations

	Compiling IMP to virtual machine code, continued
	Optimizations based on liveness analysis
	Liveness analysis
	Dead code elimination
	Advanced topic: register allocation

	A generic static analyzer
	Introduction to static analysis
	Static analysis as an abstract interpretation
	An abstract interpreter in Coq
	Improving the generic static analyzer

	Compiler verification in the large
	Compiler issues in critical software
	The CompCert project
	Status and ongoing challenges
	Closing

