
Control structures, eighth lecture

Program logics
for control and effects

Xavier Leroy
2024-03-14

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Deductive verification
and Hoare logic

Deductive verification of programs

Annotate programs with logical assertions:

• preconditions: expected properties of inputs;
• postconditions: guarantees on outputs;
• invariants: attached to loops, objects, etc.

Example (ACSL specification of a C function)

/*@

requires \valid(a+(0..n-1));

assigns a[0..n-1];

ensures \forall integer i; 0 <= i < n ==> a[i] == 0;

*/

void set_to_0(int* a, size_t n)

2

Deductive verification of programs

Annotate programs with logical assertions:

Verify the consistency of these annotations:

preconditions⇒ invariants⇒ postconditions

along all the possible execution paths through the program.

3

Floyd’s approach

(Alan Turing, Checking a large routine, 1949.)
(Robert W. Floyd, Assigning meanings to programs, 1967.)

A control-flow graph (flowchart) whose edges are annotated with
assertions.

Check the logical consistency of annotations at each node:

x := f (x, y⃗)

P(x, y⃗)

Q

(
∃x0, x = f (x0, y⃗) ∧ P(x0, y⃗)

)
⇒ Q

b ?
P

Q1 Q0

P ∧ b⇒ Q1
P ∧ ¬b⇒ Q0

P1 P2

Q

P1 ∨ P2 ⇒ Q

4

Hoare’s approach

(C. A. R. Hoare, An axiomatic basis for computer programming, CACM 12, 1969.)

A program logic.

Axioms and deduction rules to prove properties
that hold of all executions of the commands
of an imperative language with structured control.

Strong connections with control structures
and structured programming:

The shape of the verification follows the structure of the program.
Axioms and rule follow the control structures of the language.

5

Hoare triples

{ P } c {Q }

c: a command from a structured imperative language (Algol, . . .)

P, Q: logical assertions about the program variables.

P: precondition, assumed true “before” the execution of c

Q: postcondition, guaranteed true “after” the execution of c

6

Hoare triples

“Weak” Hoare logic: (partial correctness)

{ P } c {Q } if P holds “before” and if c terminates,
then Q holds “after”

“Strong” Hoare logic: (full correctness)

[P] c [Q] if P holds “before”,
then c terminates and Q holds “after”

7

The rules of weak Hoare logic

Structured control:

{ P } c1 {Q } {Q } c2 {R }

{ P } c1; c2 {R }

{ P ∧ b } c1 {Q } { P ∧ ¬b } c2 {Q }

{ P } if b then c1 else c2 {Q }

{ P ∧ b } c { P }

{ P } while b do c { P ∧ ¬b }

8

The rules of weak Hoare logic

Empty command:
{ P } skip { P }

Assignment:
{Q[x← e] } x := e {Q }

Consequence:

P⇒ P′ { P′ } c {Q′ } Q′ ⇒ Q

{ P } c {Q }

9

Example of verification: Euclidean division

{ 0 ≤ a } ⇒ { a = b · 0 + a ∧ 0 ≤ a }
r := a;

{ a = b · 0 + r ∧ 0 ≤ r }
q := 0;

{ a = b · q+ r ∧ 0 ≤ r }
while r ≥ b do

{ a = b · q+ r ∧ 0 ≤ r ∧ r ≥ b } ⇒
{ a = b · (q+ 1) + (r− b) ∧ 0 ≤ r− b }

r := r− b;

{ a = b · (q+ 1) + r ∧ 0 ≤ r }
q := q+ 1

{ a = b · q+ r ∧ 0 ≤ r }
done

{ a = b · q+ r ∧ 0 ≤ r ∧ r < b } ⇒
{ q = a/b ∧ r = a mod b }

10

Extending Hoare logic
to various control structures

Other kinds of loops

The do. . .while loop, with exit test at end (C, Java):

{ P } c {Q } Q ∧ b⇒ P

{ P } do c while b {Q ∧ ¬b }

A loop with exit test in the middle (Ada):

{ P } c1 {Q } {Q ∧ ¬b } c2 { P }

{ P } loop c1; exit when b; c2 end {Q ∧ b }

A counted for loop:

[P ∧ i ≤ h] c [P[i← i + 1]] i, h not assigned in c

[P[i← ℓ]] for i = ℓ to h do c [P ∧ i > h]

11

Non-determinism

Drawing a number between 0 and N− 1:

{ ∀i ∈ [0,N− 1], Q[x← i] } x := choose(N) {Q }

Dijkstra’s “guarded conditional”:
executes one of the ci for which the condition bi is true.

{ P ∧ bi } ci {Q } for i = 1, . . . , n

{ P ∧ (b1 ∨ · · · ∨ bn) } if b1 → c1 8 · · · 8 bn → cn fi {Q }

12

A Hoare logic for “goto”?

is that they give no basis for a proof that a program suc-
cessfully terminates. Failure to terminate may be due to an
infinite loop; or it may be due to violation of an imple-
mentation-defined limit, for example, the range of numeric
operands, the size of storage, or an operating system time
limit. Thus the notation "PIQ}R" should be interpreted
"provided tha t the program successfully terminates, the
properties of its results are described by R." I t is fairly
easy to adapt the axioms so that they cannot be used to
predict the "results" of nonterminating programs; but the
actual use of the axioms would now depend on knowledge
of many implementation-dependent features, for example,
the size and speed of the computer, the range of numbers,
and the choice of overflow technique. Apart from proofs of
the avoidance of infinite loops, it is probably better to
prove the "conditional" correctness of a program and rely
on an implementation to give a warning if it has had to

TABLE III

Line
number Formal proof Justification

1 t r u e ~ x = x ~ y X 0 L e m m a l
2 x = x - { - y X O{r := x } x = r . - t - y X O DO
3 x = r ~ y X O { q : = O } x = r . - b y X q DO
4 t r u e {r := x} x = r ~ y X 0 D1 (1, 2)

5 t r u e {r := x; q := 0} x = r -t- y X q D2 (4, 3)
6 x = r ~ y X q A y ~ r ~ x =

(r - y) ~ y X (1-t-q) L e m m a 2
7 x = (r - - y) .-{- y X (1-t-q){r := r - y } x =

r + y X (l + q) DO
8 x = r + y X (l + q) [q := 1.-bq}x =

r - t - y X q DO
9 x = (r - - y) -~ y X (l + q) { r := r - - y ;

q := 1+q} x = r + y X q D2 (7, 8)
10 x = r + y X q A y ~ r {r := r - - y ;

, q : = l + q } x = r + y X q D1 (6, 9)
11 x = r -b y X q [w h i l e y ~ r d o

(r := r - - y ; q := 1--bq)}

~- -Ty < r /~ x = r ~ y X q D3 (10)
12 t r u e {((r := x; q := 0); w h i l e y ~ r d o

(r := r - - y ; q := l + q)) } -~y ~ r A x =

r + y X q D2 (5,11)

NOTES
i. The left hand column is used to number the lines, and the

right hand column to justify each line, by appealing to an axiom,
a lemma or a rule of inference applied to one or two previous
lines, indicated in brackets. Neither of these columns is part
of the formal proof. For example, line 2 is an instance of the
axiom of assignment (DO); line 12 is obtained from lines 5 and 11
by application of the rule of composition (D2).

2. Lemma 1 may be proved from axioms A7 and AS.
3. Lemma 2 follows directly from the theorem proved in See. 2.

abandon execution of the program as a result of violation
of an implementation limit.

Finally it is necessary to list some of the areas which have
not been covered: for example, real arithmetic, bit and
character manipulation, complex arithmetic, fractional
arithmetic, arrays, records, overlay definition, files, input /
output, declarations, subroutines, parameters, recursion,
and parallel execution. Even the characterization of integer
arithmetic is far from complete. There does not appear to
be any great difficulty in dealing with these points, pro-
vided that the programming language is kept simple.
Areas which do present real difficulty are labels and jumps,
pointers, and name parameters. Proofs of programs which
made use of these features are likely to be elaborate, and
it is not surprising that this should be reflected in the
complexity of the underlying axioms.

5. P r o o f s o f P r o g r a m C o r r e c t n e s s

The most important property of a program is whether it
accomplishes the intentions of its user. If these intentions
can be described rigorously by making assertions about the
values of variables at the end (or at intermediate points) of
the execution of the program, then the techniques described
in this paper may be used to prove the correctness of the
program, provided that the implementation of the pro-
gramming language conforms to the axioms and rules which
have been used in the proof. This fact itself might also be
established by deductive reasoning, using an axiom set
which describes the logical properties of the hardware
circuits. When the correctness of a program, its compiler,
and the hardware of the computer have all been established
with mathematical certainty, it will be possible to place
great reliance on the results of the program, and predict
their properties with a confidence limited only by the
reliability of the electronics.

The practice of supplying proofs for nontrivial programs
will not become widespread until considerably more power-
ful proof techniques become available, and even then will
not be easy. But the practical advantages of program prov-
ing will eventually outweigh the difficulties, in view of the
increasing costs of programming error. At present, the
method which a programmer uses to convince himself of
the correctness of his program is to t ry it out in particular
cases and to modify it if the results produced do not cor-
respond to his intentions. After he has found a reasonably
wide variety of example cases on which the program seems
to work, he believes that it will always work. The time
spent in this program testing is often more than half the
time spent on the entire programming project; and with a
realistic costing of machine time, two thirds (or more) of
the cost of the project is involved in removing errors during
this phase.

The cost of removing errors discovered after a program
has gone into use is often greater, particularly in the case
of items of computer manufacturer 's software for which a
large part of the expense is borne by the user. And finally,
the cost of error in certain types of program may be almost

V o l u m e 12 / N u m b e r 10 / O c t o b e r , 1969 C o m m u n i c a t i o n s o f t h e ACM 579

(C. A. R. Hoare, An axiomatic basis for computer programming, 1969)

13

A Hoare logic for “goto”?

Consider goto in Algol 60: the scope of a label L is the block
where it is defined⇒ no jump to the inside of a block.

begin

...

{R}

goto L

{Q1}

...

L:

{R}

...

begin ...

{R}

goto L

{Q2}

... end;

...

end

Idea: each label L has a precondition R, which is the precondition
of the following command. Each goto L has precondition R and
an arbitrary postcondition.

14

A Hoare logic for “goto”?

Consider goto in Algol 60: the scope of a label L is the block
where it is defined⇒ no jump to the inside of a block.

begin

...

{R} goto L {Q1}
...

L: {R}
...

begin ... {R} goto L {Q2} ... end;

...

end

Idea: each label L has a precondition R, which is the precondition
of the following command. Each goto L has precondition R and
an arbitrary postcondition.

14

Clint and Hoare’s rule for “goto”

(M. Clint, C. A. R. Hoare, Program proving: jumps and functions,
Acta Informatica 1, 1971.)

{R } goto L { false } ⊢ { P } c1 {R }
{R } goto L { false } ⊢ {R } c2 {Q }

{ P } begin c1; L : c2 end {Q }

X ⊢ Y reads as a hypothetical deduction in natural deduction:
“assuming X we can derive Y”.

From the hypothesis {R } goto L { false } we can derive
{R } goto L {Q } for any Q, using the consequence rule.

15

Problems with Clint and Hoare’s rule

(M. J. O’Donnell, A critique of the foundations of Hoare style programming
logics, CACM 25, 1982.)

In case of nested blocks

begin . . . begin . . . L : . . . end . . . L : . . . end

“the” precondition associated with L is ambiguous:

{R1 } goto L { false } ⊢ ({R2 } goto L { false } ⊢ X)

Moreover, the logical interpretation of X ⊢ Y is delicate. If we
read it as “there exists a model where X implies Y”, we can take
X = Y = false, and deduce
{ false } goto L { false } =⇒ { true } goto L { false }

✘ { true } begin goto L; L : skip end { false }

16

The Arbib-Alagic-de Bruin approach

(M. Arbib, S. Alagić, Proof rules for gotos, Acta Informatica 11, 1979.
A. de Bruin, Goto statements: semantics and deduction systems,
Acta Informatica 15, 1981.)

Idea: goto is another way to exit a command c, in addition to
normal termination. Let’s give goto an extra postcondition J.

{ P } c {Q } { J }

J is a function label 7→ assertion. It can be weakened like the
usual postcondition Q.

P′ ⇒ P { P } c {Q } { J } Q⇒ Q′ ∀L, J(L)⇒ J′(L)

{ P′ } c {Q′ } { J′ }

17

The Arbib-Alagic-de Bruin approach

The J postcondition can be false for commands that always
terminate normally:

{Q[x← e] } x := e {Q } {λL. false }

J is shared between the sub-commands of a sequence and a
conditional:

{ P } c1 {R } { J } {R } c2 {Q } { J }

{ P } c1; c2 {Q } { J }

{ P ∧ b } c1 {Q } { J } { P ∧ ¬b } c2 {Q } { J }

{ P } if b then c1 else c2 {Q } { J }

18

The rules of Arbib-Alagic-de Bruin

goto L can have all its postconditions false except J(L), which is
the precondition P of the goto:

{ P } goto L { false } {λL′. if L′ = L then P else false }

In a block that defines L with precondition R, all exits on goto L
must satisfy R:

{ P } c1 {R } { J[L← R] } {R } c2 {Q } { J[L← R] }

{ P } begin c1; L : c2 end {Q } { J }

19

Early exits from loops

Constructs such as break (early loop exit) can also be treated as
a special postcondition:

{ P } c {Q } {B } (B = precondition for break)

Selected rules:

{ P } break { false } { P }

{ P ∧ b } c { P } {Q } P ∧ ¬b⇒ Q

{ P } while b do c {Q } {B }

{ P ∧ b } c { P } {Q } { P ∧ ¬b } c′ {Q } {B }

{ P } while b do c else c′ {Q } {B }

20

A unified treatment of multiple exits

Instead of having one postcondition for each way of exiting a
command, we can have one postcondition that is a function

Q : kind of exit 7→ assertion

Exit kinds K are, for example,

K ::= norm normal termination
| break | continue loop exits
| break(n) | continue(n) multi-level exits
| return(v) function return
| goto(L) jump
| exn(E) exception raising

21

A unified treatment of multiple exits

The rules for commands that trigger an exit all have the same
shape:

{ P } skip { [norm 7→ P] }
{ P } break { [break(1) 7→ P] }
{ P } break n { [break(n) 7→ P] }
{ P } goto L { [goto(L) 7→ P] }
{ P } raise E { [exn(E) 7→ P] }

We write [T 7→ P] def
= λT′. if T′ = T then P else false .

22

A unified treatment of multiple exits

The sequence “handles” normal termination:

{ P } c1 {Q[norm← R] } {R } c2 {Q }

{ P } c1; c2 {Q }

The loop also “handles” the break and continue exits:

Q′ = Q

norm← P;
break(1)← Q(norm);
break(n + 1)← Q(break(n))
continue(1)← P;
continue(n + 1)← Q(continue(n))

{ P ∧ b } c {Q′ } P ∧ ¬b⇒ Q(norm)

{ P } while b do c {Q }

23

A unified treatment of multiple exits

The declaration of label L “handles” the goto(L) exit:

{ P } c1 {Q[norm← R, goto(L)← R] }
{R } c2 {Q[goto(L)← R] }

{ P } begin c1; L : c2 end {Q }

Exception handlers “handle” exn(E) exits:

{ P } c1 {Q[exn(E)← R] } {R } c2 {Q }

{ P } try c1 catch E→ c2 {Q }

24

Coroutines

(M. Clint, Program proving: coroutines, Acta Informatica 2, 1973.)

A simple model of asymmetric coroutines:

coroutine p = c1 in c2

When the consumer c2 performs call p, the execution of c1 starts
or resumes just after the most recent yield p.

When the generator c1 performs yield p, the execution of c2

resumes just after the most recent call p.

The coroutine command terminates as soon as c1 or c2

terminates.

Exchange of values takes place over shared variables.

25

An example of a coroutine

var obs: int, c: int = 0, h: array [0..N-1] of int = { 0, ... }

coroutine p =

begin

while c < N do

h[obs] := h[obs] + 1; c := c + 1;

yield p

done

end

in

... obs = 12; call p; ...

... obs = 41; call p; ...

The coroutine maintains a histogram h of the observed values
obs, and stops as soon as N values have been observed.

The client calls p on various values of obs.
26

Clint’s rule for coroutines

Two assertions associated with coroutine p:

• Ap: the pre of call p, hence also the post of yield p;
• Bp: the pre of yield p, hence also the post of call p.

Clint’s rule:

{Bp } yield p { Ap } ⊢ { Ap } c1 {Q }
{ Ap } call p {Bp } ⊢ { P } c2 {Q }

{ P } coroutine p = c1 in c2 {Q }

(Note: same problems with the X ⊢ Y notation as for Clint-Hoare rule
for goto; same solution.)

27

An example of verification

coroutine p =

begin {Inv ∧ 0 ≤ obs < N}
while c < N do

h[obs] := h[obs] + 1; c := c + 1;

{Inv} yield p {Inv ∧ 0 ≤ obs < N}
done

end

in

... obs = 12; {Inv ∧ 0 ≤ obs < N} call p; {Inv} ...

The invariant Inv is c ≤ N ∧ c = ΣN−1
i=0 h[i] .

The precondition Ap of call is Inv ∧ 0 ≤ obs < N .
It ensures that the access h[obs] is within bounds.

The postcondition Bp is Inv.
28

Cooperative threads

A simple model of cooperative threads:

run c1 ∥ · · · ∥ cn end

The executions of commands c1, . . . , cn are interleaved.

Each command performs yield to offer to suspend itself and
give control to another command. Between two yield, execution
is sequential.

The run . . . end terminates when all commands ci have
terminated.

29

Example: a producer-consumer model

var full: bool = false; var data: T = null;

run

while true do

x := produce();

while full do

yield

done;

data := x;

full := true

done

while true do

while not full do

yield

done;

y := data;

full := false

consume(y)

done

end

30

A rule for cooperative threads

A symmetrized version of Clint’s rule for coroutines:

{ P } yield { P } ⊢ { P } ci {Q } for i = 1, . . . , n

{ P } run c1 ∥ · · · ∥ cn end {Q }

The precondition P is the invariant at each “context switch” from
a yield to the beginning of a ci, or from yield to another yield.

Computation can start with any of the ci and terminate with any
of the ci.

31

Verifying the producer-consumer schema

while true do {P}
x := produce(); {P ∧ R(x)}
while full do

yield {P ∧ R(x)}
done;

{full = false ∧ P ∧ R(x)}
⇒ {R(x)}
data := x; {R(data)}
full := true {P}

done

while true do {P}
while not full do

yield {P}
done;

{full = true ∧ P}
⇒ {R(data)}
y := data; {R(y)}
full := false; {R(y) ∧ P}
consume(y) {P}

done

Let R(x) be an invariant over values x of type T, such that
{ true } x := produce() {R(x) }
and {R(x) } consume(x) { true } .

32

Verifying the producer-consumer schema

while true do {P}
x := produce(); {P ∧ R(x)}
while full do

yield {P ∧ R(x)}
done;

{full = false ∧ P ∧ R(x)}
⇒ {R(x)}
data := x; {R(data)}
full := true {P}

done

while true do {P}
while not full do

yield {P}
done;

{full = true ∧ P}
⇒ {R(data)}
y := data; {R(y)}
full := false; {R(y) ∧ P}
consume(y) {P}

done

The invariant for the coroutine is
P def

= full = true⇒ R(data)
It shows that all the values passed to consume satisfy R.

32

Separation logics
for control operators

A small functional and imperative language

In the style of ML languages, using references to represent
mutable state.

e ::= cst | x | λx. e | e1 e2 functional constructs
| let x = e1 in e2 sequencing
| if e1 then e2 else e3 conditional
| ℓ location of a reference
| ref e creating a reference
| ! e | e1 := e2 dereference, assignment
| free e freeing a reference

Notation: e1; e2 est let z = e1 in e2 where z is not free in e2.

Example: let x = ref 0 in (if b then x := 1 else ()); ! x

33

Separation logic triples

{ P } e {Q }

The precondition P is an assertion.

The postcondition Q is a function value of e 7→ assertion.

v value P⇒ Q v

{ P } v {Q }

{ P } e1 {R } ∀x, {R x } e2 {Q }

{ P } let x = e1 in e2 {Q }

34

Separation logic assertions

Assertions that describe fragments of the memory state (sets of
locations and their contents):
emp the memory is empty

⟨P⟩ the memory is empty and proposition P holds

ℓ 7→ v the memory comprises one location ℓ containing value v

ℓ 7→ the memory comprises one location ℓ (= ∃v, ℓ 7→ v)

P ✶ Q separating conjunction:
the memory splits in two disjoint fragments,
one satisfying P, the other satisfying Q

P —✶ Q separating implication (magic wand):
if we add to the memory a fragment satisfying P,
we obtain a memory that satisfies Q.

35

Selected rules for separation logic

The “small” rules for mutable state:

{ emp } ref v {λℓ. ℓ 7→ v }
{ ℓ 7→ v } ! ℓ {λx. ⟨x = v⟩ ✶ ℓ 7→ v }
{ ℓ 7→ } ℓ := v {λx. ⟨x = ()⟩ ✶ ℓ 7→ v }
{ ℓ 7→ } free ℓ {λx. ⟨x = ()⟩ }

Combine with the frame rule to apply to larger memory states:

{ P } e {Q }

{ P ✶ R } e {λx. Q x ✶ R }

36

Strengths of separation logic

1– We can reason locally on pointer programs without worrying
about aliasing:

{ ℓ1 7→ 1 ✶ ℓ2 7→ v } ℓ1 := 0 { ℓ1 7→ 0 ✶ ℓ2 7→ v }

No need to handle the case ℓ1 = ℓ2: the precondition is false in
this case.

2– The logic keeps track of resources (memory, etc) and makes
sure that they are used in a linear or affine way:

✔ { emp } let x = ref v in . . . ; free(x) {λ .emp }
✘ { emp } let x = ref v in . . . ; free(x); ! x {λ .emp } (use after free)

✘ { emp } let x = ref v in . . . ; free(x); free(x) {λ .emp } (double free)

✘ { emp } let x = ref v in . . . {λ .emp } (memory leak)

37

Revisiting the producer-consumer schema

while true do {P}
x := produce(); {P ✶ R(x)}
while full do

yield {P ✶ R(x)}
done;

{full = false ✶ P ✶ R(x)}
⇒ {R(x)}
data := x; {R(data)}
full := true {P}

done

while true do {P}
while not full do

yield {P}
done;

{full = true ✶ P}
⇒ {R(data)}
y := data; {R(y)}
full := false; {R(y) ✶ P}
consume(y) {P}

done

In separation logic, the invariant R also describes the allocation
and freeing of resources:
{ emp } x := produce() {R(x) } and {R(x) } consume(x) { emp } .

38

Revisiting the producer-consumer schema

while true do {P}
x := produce(); {P ✶ R(x)}
while full do

yield {P ✶ R(x)}
done;

{full = false ✶ P ✶ R(x)}
⇒ {R(x)}
data := x; {R(data)}
full := true {P}

done

while true do {P}
while not full do

yield {P}
done;

{full = true ✶ P}
⇒ {R(data)}
y := data; {R(y)}
full := false; {R(y) ✶ P}
consume(y) {P}

done

Take as invariant P def
= if full then R(data) else emp

so that full = false ✶ P⇐⇒ emp

and full = true ✶ P⇐⇒ R(data) .

38

Revisiting the producer-consumer schema

while true do {P}
x := produce(); {P ✶ R(x)}
while full do

yield {P ✶ R(x)}
done;

{full = false ✶ P ✶ R(x)}
⇒ {R(x)}
data := x; {R(data)}
full := true {P}

done

while true do {P}
while not full do

yield {P}
done;

{full = true ✶ P}
⇒ {R(data)}
y := data; {R(y)}
full := false; {R(y) ✶ P}
consume(y) {P}

done

We see the resources R(data) being transferred from the
producer to the consumer. It shows that each resource allocated
by produce is freed exactly once by consume.

38

An issue with control operators

{ P } e1 {R } ∀x, {R(x) } e2 {Q }

{ P } let x = e1 in e2 {Q }

A control operator such as callcc can invalidate the rule above:
if e1 captures its continuation, e2 can be executed multiple times,
the first time in a state that satisfies R(x), the second time in a
state not satisfying it.

39

An issue with control operators

(A. Timany, L. Birkedal, Mechanized relational verification of concurrent
programs with continuations, ICFP 2019.)

e def
= let x = ref 0 in

let g = f () in

x := ! x + 1; g (); ! x

Assuming that f is a pure function that returns a pure function:

{ emp } f () {λg. { emp } g () {λ .emp } }

we can prove that e evaluates to 1:

{ emp } e {λv. v = 1 }

40

An issue with control operators

(A. Timany, L. Birkedal, Mechanized relational verification of concurrent
programs with continuations, ICFP 2019.)

e def
= let x = ref 0 in

let g = f () in

x := ! x + 1; g (); ! x

However, if

f = λ().callcc (λk. λ(). throw k (λ().()))

the assignment x := ! x + 1 is executed twice, and in the end
! x = 2.

40

An issue with control operators

(A. Timany, L. Birkedal, Mechanized relational verification of concurrent
programs with continuations, ICFP 2019.)

e def
= let x = ref 0 in

let g = f () in

x := ! x + 1; g (); ! x

f = λ().callcc (λk. λ(). throw k (λ().()))

f is pure insofar as it does not modify the state. More precisely,
when executed in the empty context, it satisfies the contract
{ emp } f () {λg. { emp } g () {λ .emp } } .

40

A logic for whole programs

Timany & Birkedal’s approach: define the logic { P } e {Q } for
whole programs e.

The rules apply to decompositions e = C[e1],
where C is an evaluation context and e1 an expression that can
reduce. They look very much like the reduction rules!

{ P } C[e[x← v]] {Q }

{ P } C[(λx. e) v] {Q }

{ P } C[e1] {Q }

{ P } C[if true then e1 else e2] {Q }

{ P } C[v (cont C)] {Q }

{ P } C[callcc v] {Q }

{ P } D[v] {Q }

{ P } C[throw (cont D) v] {Q }

41

A logic for whole programs

Example of a verification:

{ emp } 5 + 2 {λx. ⟨x = 7⟩ }
(**)

{ emp } throw (cont ([] + 2) 5 + 4) {λx. ⟨x = 7⟩ }
(*)

{ emp } callcc(λk. throw k 5 + 4) + 2 {λx. ⟨x = 7⟩ }

(*) uses the callcc rule with the context C = [] + 2.

(**) uses the throw rule with the context C = [].

(See Timany and Birkedal’s paper for more complex examples.)

42

Triples valid in all contexts

To facilitate verification, we define the Pour faciliter la
vérification, on définit les triples valid in all contexts
{{ P }} e {{Q }} as those triples that validate the context rule
contexte

{{ P }} e {{R }} ∀v, {R v } C[v] {Q }

{ P } C[e] {Q }

We can define rules for {{ P }} e {{Q }} that look very much like
the usual separation logic rules, for all kinds of expressions e
except callcc and throw. (See the paper.)

43

Towards a logic for effect handlers

User-defined effects and effect handlers ought to support
reasoning rules that are simpler than those for callcc:

• delimited continuations,
• which can be specified in advance by contracts: precondition

on the arguments / postcondition on the results (like
functions are specified);

provided that

• continuations can only be used once (one-shot
continuations).

44

An issue with multiple-shot continuations

{ P } e1 {R } ∀x, {R(x) } e2 {Q }

{ P } let x = e1 in e2 {Q }

This rule is invalid if e1 can return several times. Example:

handle

let b = perform Flip in x := !x + 1

with

val(x) -> x

Flip(_, k) -> k false; k true

x is incremented twice, not once as predicted by the let rule with
P = x 7→ 0 and Q = λ . x 7→ 1.

45

Effect protocols

(P. E. de Vilhena, F. Pottier, A separation logic for effect handlers, POPL 2021.)

A specification of the behaviors of effects. Acts as a contract
between effect producers and effect handlers.

Ψ ::= ⊥ no effect
| ! x⃗ (F v) { P }. ? y⃗ (w) {Q } protocol for F
| Ψ1 +Ψ2 union of two protocols

The protocol ! x⃗ (F v) { P }. ? y⃗ (w) {Q } reads as:
“for all x⃗, the program can perform effect F with argument value
v, provided that the precondition P holds; then, there exists y⃗
such that the result w of F satisfies the postcondition Q”.

46

Examples of protocols

The Abort effect, which never returns:

! (Abort ()) { true }. ? y (y) { false }

The Next effect, which simulates a counter:

! n (Next ()) { Count n }. ? (n) { Count (n + 1) }

The abstract predicate Count n keeps trace of the current value of
the counter.

The Get and Set effects, which simulate a reference:

! v (Get ()) { State v }. ? (v) { State v }
+ ! v v′ (Set v′) { State v }. ? (()) { State v′ }

The abstract predicate State v keeps trace of the current value of
the reference.

47

A Hoare quadruple

{ P } e ⟨Ψ ⟩ {Q }

The protocol Ψ plays the role of an extra postcondition.

In particular, { P } e ⟨⊥ ⟩ {Q } guarantees that e performs no
unhandled effect.

The protocol “distributes over” computations that do not perform
effects:

v value P⇒ Q v

{ P } v ⟨Ψ ⟩ {Q }

{ P } e1 ⟨Ψ ⟩ {R } ∀x, {R x } e2 ⟨Ψ ⟩ {Q }

{ P } let x = e1 in e2 ⟨Ψ ⟩ {Q }
48

Performing an effect

P⇒ Ψ allows (F v′) {Q }

{ P } perform F v′ ⟨Ψ ⟩ {Q }

⊥ allows (F v′) {Q } is always false.

Ψ1 +Ψ2 allows (F v′) {Q } is the disjunction
Ψ1 allows (F v′) {Q} ∨Ψ2 allows (F v′) {Q } .

! x⃗ (F v) { A }. ? y⃗ (w) {B } allows (F v′) {Q } holds if

∃⃗x, ⟨v′ = v⟩ ✶ A ✶ (∀y⃗, B —✶ Q(w))

Read: if we choose x⃗ so that the effective argument v′ and the formal parameter
v are equal, the precondition A of F must hold, and for any choice of y⃗ that
satisfies the postcondition B of F, the postcondition Q(w) holds.

49

Effect handling

{ P } e ⟨Ψ ⟩ {Q } isHandler ⟨Ψ ⟩ {Q } (eval, eeff) ⟨Ψ′ ⟩ {Q′ }

{ P } handle e with eval, eeff ⟨Ψ′ ⟩ {Q′ }

As always, the purpose of the handler is to transform the results
⟨Ψ⟩ {Q } of the computation e that is being handled into results
⟨Ψ′⟩ {Q′ } .

If e terminates normally, its value v satisfies Q, and eval v
is executed. Therefore, this computation must satisfy

{Q(v) } eval v ⟨Ψ′ ⟩ {Q′ }

50

Effect handling

{ P } e ⟨Ψ ⟩ {Q } isHandler ⟨Ψ ⟩ {Q } (eval, eeff) ⟨Ψ′ ⟩ {Q′ }

{ P } handle e with eval, eeff ⟨Ψ′ ⟩ {Q′ }

If e terminates by performing an effect with value v and
continuation k, eeff v k is executed, and must satisfy

{R } eeff v k ⟨Ψ′ ⟩ {Q′ }

The precondition R could say something like: if v is F v′ and the
protocol Ψ associates to F the pre A and the post B, then
• v′ satisfies A;
• k is a function with pre B and post ⟨Ψ′ ⟩ {Q′ } .

50

Effect handling

{ P } e ⟨Ψ ⟩ {Q } isHandler ⟨Ψ ⟩ {Q } (eval, eeff) ⟨Ψ′ ⟩ {Q′ }

{ P } handle e with eval, eeff ⟨Ψ′ ⟩ {Q′ }

More simply, R states that v and k are any values and
continuations that are permitted by the protocol Ψ:

R def
= Ψ allows v {λw. { emp } k w ⟨Ψ′ ⟩ {Q′ } }

As a bonus, the Iris formalization of this theory uses
“non-persistent triples”, hence { emp } k w ⟨Ψ′ ⟩ {Q′ } gives the
permission to invoke continuation k only once!

50

Effect handling

{ P } e ⟨Ψ ⟩ {Q } isHandler ⟨Ψ ⟩ {Q } (eval, eeff) ⟨Ψ′ ⟩ {Q′ }

{ P } handle e with eval, eeff ⟨Ψ′ ⟩ {Q′ }

Putting it all together, we have

isHandler ⟨Ψ ⟩ {Q } (eval, eeff) ⟨Ψ′ ⟩ {Q′ } def
=

(∀v, {Q(v) } eval v ⟨Ψ′ ⟩ {Q′ })
∧ (∀v, k, {Ψ allows v {λw. { emp } k w ⟨Ψ′ ⟩ {Q′ } } }

eeff v k
⟨Ψ′ ⟩ {Q′ }

This describes a shallow handler. For a deep handler, see the
paper.

50

Summary

Summary

Designed initially for structured control, program logics such as
Hoare logic and separation logic extend fairly easily

• to goto jumps, break/continue exits, and exceptions;
• to coroutines and cooperative threads;
• to first-order functions. (not treated in this lecture)

Other language features are more problematic:

• higher-order functions; (not treated in this lecture);
• control operators.

The additional structure provided by effect handlers compared
with callcc is helpful.

51

References

References

An introduction to Hoare logic and separation logic:

• My 2020–2021 course on “Program logics”, lectures #1 to #3.

A logic for callcc:

• Amin Timany, Lars Birkedal: Mechanized Relational Verification of
Concurrent Programs with Continuations, PACMPL 3(ICFP), 2019.

A logic for user-defined effects and effect handlers:

• Paulo Emı́lio de Vilhena, François Pottier: A Separation Logic for
Effect Handlers, PACMPL 5(POPL), 2021.

52

THE END

53

	Deductive verification and Hoare logic
	Extending Hoare logic to various control structures
	Separation logics for control operators
	Summary
	References

