
Control structures, third lecture

Declarative programming:
getting rid of control?

Xavier Leroy
2024-02-08

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Declarative programming

A movement that appears in the 1960’s (LISP, APL) and grows
throughout the 1970’s (Prolog) and 1980’s (purely functional
languages, reactive languages, . . .).

Idea: programs should describe what needs to be computed
much more than each and every step of the computation.

This results in languages that avoid exposing memory (mutable
state) and control (sequencing of computations) to programmers.

The hope is not only to facilitate the writing of programs, but also
their execution in parallel.
(More declarative = fewer dependencies = more parallelism?)

2

Spreadsheets:
expressions with sharing

A language of expressions with sharing

Arithmetic expressions with variables:

e ::= 0 | 1.2 | 3.1415 | . . . constants
| x | y | z | . . . variables
| f (e1, . . . , en) operations (+, −, ×, /, Σ, etc)

Programs are sets of equations variable = expression:

p ::= {x1 = e1; . . . ; xn = en}

3

Spreadsheets

A visual display of a set of equations:
B2 = 235 C2 = 128 . . . B9 = 256 C9 = 121

D2 = B2− C2 . . . D9 = B9− C9
B10 = SUM(B2, . . . ,B9) C10 = SUM(C2, . . . , C9) B12 = AVG(D2, . . . ,D9)

4

The acyclicity condition

To guarantee that programs can always be evaluated, we rule out
equations x = e where e depends on x, directly or indirectly:

{x = x2 − 1} ✘ {x = y + 1; y = x − 1} ✘

This acyclicity condition holds if and only if we can write the
program as an ordered list

x1 = e1; . . . ; xn = en

where the only variables that can occur in ei are the xj with j < i.

5

Alternate presentation: combinational circuits

−B2
C2

−B3
C3

−B8
C8

−B9
C9

AV
G B12

SUM

SUM

B10

C10
6

Alternate presentation: the dependency DAG

−

B2 C2

−

B3 C3

−

B8 C8

−

B9 C9

AVGSUM SUM

B12B10 C10

7

Evaluation rules

We reduce the program by repeatedly applying the following
rules anywhere in the right-hand sides of equations:

x→ e if x = e is an equation
f (v1, . . . , vn)→ v if v = f ∗(v1, . . . , vn)

v ranges over numbers. f ∗ denotes the semantics of operator f ,
for instance +∗ is floating-point addition.

Evaluation stops when the program is in normal form
x1 = v1; . . . xn = vn.

Example:
{x = 1; y = x + x} → {x = 1; y = 1 + x}

→ {x = 1; y = 1 + 1} → {x = 1; y = 2}

8

Reduction sequences

We can apply reduction rules in different orders:

{x = 1 + 1; y = x + 2}
{x = 2; y = x + 2}

{x = 1 + 1; y = (1 + 1) + 2}

· · ·

· · ·

All reduction sequences terminate on the same normal form
(confluence property).

9

Evaluation strategies

Some reduction sequences are more costly than others!

Example: {x0 = 1; x1 = x0 + x0; . . . ; xn = xn−1 + xn−1}.

“Call by name” strategy: we substitute before evaluating

{x0 = 1; x1 = 1 + 1; x2 = (1 + 1) + (1 + 1); x3 = x2 + x2; . . .}

Some intermediate states have size O(2n).

“Call by value” strategy: we evaluate before substituting

{x0 = 1; x1 = 2; x2 = 4; x3 = x2 + x2; . . .}

All intermediate states have size O(n).

10

An optimal strategy

Substitute variables by values only:

x→ v if x = v is an equation

If the program is represented as an ordered list, this strategy can
be implemented as an evaluation function:

eval(ε) = ε

eval(x = e; p) = (x = v; eval(p[x← v])) where v = eval(e)

11

Adding non-strict operators

A conditional expression does not need to evaluate all its
arguments: it is “non-strict”.

if0(0, e, e′)→ e

if0(v, e, e′)→ e′ if v ̸= 0

The “call-by-value” strategy can perform useless computations.

Example:
{x = e; y = E; z = if0(x − x, x, y)}

No need to evaluate the costly expression E to find the value of z.

→ Let’s use a “call-by-need” / “lazy” strategy.

12

Lazy evaluation

A kind of call-by-name with memoization: if x = e,
e is evaluated the first time x’s value is needed;
its value is reused the next times x’s value is needed.

Easy to express on the dependency DAG, using graph rewriting,
where operation nodes are progressively replaced by their values.

if0

−

e

E

if0

−

12

E

if0

0

12

E

12
+

13

Reactive programming

Computing over streams of values

A stream: a sequence of values v(0), v(1), . . . , v(t), . . .
indexed by discrete time t.

Arithmetic operations extend pointwise to streams, e.g.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
x x0 x1 x2 x3 x4 x5

1 1 1 1 1 1 1
x + 1 x0 + 1 x1 + 1 x2 + 1 x3 + 1 x4 + 1 x5 + 1

14

Temporal operators

Give access to the values of a stream at an earlier time.

v fby e (read: followed by)
is the constant v at time 0; is e(t) at time t+ 1;
≈ the cons constructor for infinite lists.

Example:

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
x 1 2 3 4 5 6

0 fby x 0 1 2 3 4 5
0 fby 0 fby x 0 0 1 2 3 4

15

Temporal operators

Derived operators:

pre(e) ≡ None fby e
is e(t) at time t+ 1; is undefined at time 0.

e1 -> e2 ≡ if (true fby false) then e1 else pre(e2)

is e1(0) at time 0 and e2(t) at time t+ 1.

Example:
t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

x 0 −1 −2 −3 −4 −5
y 1 2 3 4 5 6

pre(y) None 1 2 3 4 5
true fby false true false false false false false

x -> y 0 1 2 3 4 5

16

Stream equations

(Lustre (P. Caspi, N. Halbwachs, 1985), Scade, Simulink.)

A reactive program is a set of equations over streams
{x1 = e1; . . . ; xn = en}.

Example: {x = 0 fby 1 + x}
t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

x 0 1 2 3 4 5
1 + x 1 2 3 4 5 6

0 fby 1 + x 0 1 2 3 4 5

Example: {sum = 0 fby in+ sum} where in is an input stream.
t = 0 t = 1 t = 2 t = 3 t = 4

in i0 i1 i2 i3 i4
sum 0 i0 i0 + i1 i0 + i1 + i2 i0 + i1 + i2 + i3

17

Connections with synchronous circuits

The fby operator plays the role of a memory element
(flip-flop, latch, etc) in a synchronous circuit.

+
(0)

clk

1

+
(0)

clk

in

safe
div

average

In Simulink and in Scade, block diagrams like the above are a
graphical notation for sets of stream equations.

18

Causality condition

In an equation x = e, the right-hand side e must not depend
(directly or indirectly) on the current value of x, but may depend
on previous values of x.

In other words: every dependency cycle must cross a temporal
operator at least once.

Examples:

{x = x + 1} ✘ {x = y; y = x} ✘

{x = 0 fby x + 1} ✔ {x = 0 fby y; y = x + 1} ✔

19

Denotational semantics

The denotational semantics of the program {. . . ; xi = ei; . . .}
is the solution to the equations xi = ei
(an assignment of streams to variables xi),
provided this solution exists and is unique.

Examples:
{x = x + 1} no solution

{x = y; y = x} many solutions
{x = 0 fby x + 1} unique solution x = 0, 1, 2, 3, 4, . . .

Theorem: every causal program has a unique solution.

(Can be proved using metric spaces and the Banach-Tarski
fixed-point theorem.)

20

Operational semantics

(P. Caspi, D. Pilaud, N. Halbwachs, J. A. Plaice, LUSTRE: A declarative
language for programming synchronous systems, POPL 1987.)

Given a program P = {xi = ei}, we can evaluate it at time 0 by
“projecting” is equations

P(0) def
= {xi(0) = now(ei)}

where now : stream expression→ value expression
is defined as

now(v) = v now(x) = x(0)
now(v fby e) = v now(f (. . . , ei, . . .)) = f (. . . , now(ei), . . .)

The program P(0) is an acyclic spreadsheet (if P is causal).
Evaluating it determines x1(0), . . . , xn(0).

21

Operational semantics

We then build the residual program

P′ def
= {xi = later(ei)}

where later : stream expression→ stream expression
is defined as

later(v) = v

later(x) = x

later(v fby e) = v′ fby e where v′ is the value of e at time 0
later(f (. . . , ei, . . .)) = f (. . . , later(ei), . . .)

We iterate execution with P′, then P′′, then . . .
→ sequences of values xi(t) for i = 1, . . . , n and t ∈ N

which are solutions of the stream equations xi = ei.

22

Normalizing programs

Every causal program can be put in the following normal form
(by adding variables and equations as needed):

m1 = v1 fby f1 (memory registers)...
mk = vk fby fk
x1 = e1 (wires)...
xn = en

Expressions ei and fj are instantaneous (no fby).

ei depends only on m1, . . . ,mk, e1, . . . ei−1 (“backward” deps.).

fj depends only on mj, . . . ,mk, e1, . . . , en (“forward” deps.).

23

Generating imperative code

From the normalized form, it is easy to produce imperative code
that implements the reactive program.

// initialization of the memory registers
m1 = v1; ...; mk = vk;
while (true) {

// acquiring the inputs
in = read_input();

// computing the values of the wires
x1 = e1; ...; xn = en;
// producing the outputs
write_output(xn);
// updating the memory registers
m1 = f1; ...; mk = fk

} 24

Functional programming

An applicative language with “second-class” functions

Start again from spreadsheets (equations var = expr) and add
optional parameters to the variables.

Example: Fibonacci’s sequence, as defined in textbooks.

F n = if n = 0 then 0 else

if n = 1 then 1 else

F (n− 1) + F (n− 2)
x = F 20

Or, closer to the usual iterative algorithm,

G n a b = if n = 0 then a else G (n− 1) b (a+ b)

F n = G n 0 1
x = F 20

25

An applicative language

Expressions:
e ::= 0 | 1.2 | . . . constants

| x variables
| op(e1, . . . , en) built-in operations
| if e1 then e2 else e3 conditional
| F e1 · · · en function application

Definitions:
def ::= x = e variable definition

| F x1 · · · xn = e function definition
Programs:

P ::= def ; . . . ;def

26

A Turing-complete language

This applicative language contains Kleene’s partial recursive
functions. It is therefore Turing-complete.

Assuming given the basic operations over tapes, we can easily
transcribe a given Turing machine as a program in our language:
each state of the machine becomes a function taking the tape as
argument.

S1 t = if read(t) = A then S2 (left(write(C, t)) else

if read(t) = B then S3 (right(write(A, t)) else . . .

S2 t = . . .

S3 t = . . .

27

Control structures in an applicative language

Conditionals are built in the language.
They are expression if cond then e1 else e2

instead of commands like in Algol.

Loops are presented as tail-recursive functions, e.g.

G n a b = if n = 0 then a else G(n− 1) b (a+ b)

is the loop while(n ̸= 0) {n = n− 1; (a, b) = (b, a+ b); }

“goto” jumps are presented as function calls in tail position, e.g.
(note: non-reducible CFG!)

F n = if n < 0 then Odd (−n) else Even n

Even n = if n = 0 then true else Odd (n− 1)
Odd n = if n = 0 then false else Even (n− 1)

28

A functional language with functions as first-class values

Add the expression λx.e, “the function that associates e to x”.
We no longer need to distinguish function names and variable
names.

Expressions:
e ::= 0 | 1.2 | . . . constants
| x variables
| op built-in operations
| if e1 then e2 else e3 conditional
| λx.e function abstraction
| e1 e2 function application

Programs:
P ::= x1 = e1; . . . ; xn = en

Notation: f x1 . . . xn = e stands for f = λx1 . . . λxn. e 29

Higher-order functions

Provide new ways to compose and reuse sub-programs.

Examples:

Compose f g = λx. f (g x)

Exp f n = if n = 0 then λx.x else

Compose f (Exp f (n− 1))

Iter stop step x = if stop x then x else Iter stop step (step x)

Map f ℓ = if ℓ = nil then nil else

cons (f (head ℓ)) (Map f (tail ℓ))

Foldl f a ℓ = if ℓ = nil then a else

Foldl f (f a (head ℓ)) (tail ℓ)

30

Reduction to lambda-calculus with constants

We can reduce our functional language to untyped
lambda-calculus with constants

e ::= cst | x | λx. e | e1 e2

via a few encodings:

• Non-recursive definitions:
let x = e1 in e2 ⇝ (λx.e2) e1

• Single recursive definition:
let rec f = e1 in e2 ⇝ let f = Fix(λf .e1) in e2

where Fix is a fixed-point combinator such as
λf . (λx. f (x x)) (λx. f (x x)).

• Mutually-recursive definitions⇝ one let rec + several let.

31

Evaluation rules

A function application reduces to the body of the function where
the formal parameter is replaced by the actual argument.
(β-reduction in the lambda-calculus; “copy rule” in Algol.)

(λx. e) e′ → e{x← e′}

Plus specific rules for constants and operators:

if true then e1 else e2 → e1

if false then e1 else e2 → e2

op cst1 . . . cstn → cst if cst = op∗(cst1, . . . , cstn)

32

Sensitivity to evaluation order

Confluence property: all terminating reduction sequences
terminate on the same normal form.

However, some reduction sequences can diverge while other
sequences terminate, more or less quickly.

Example: if Ω +→ Ω, (e.g. let rec Ω = Ω, i.e. Ω = Fix(λf .f)),

(λx. 0) Ω +→ (λx. 0) Ω +→ (λx. 0) Ω +→ · · ·

(λx. 0) Ω→ 0

33

The usual reduction strategies

Call by name: the function argument is substituted unevaluated
in the function body.

Avoids divergence, but duplicates computations:

(λx. 0) Ω→ 0

(λx. x + x) (Fib 20)→ Fib 20 + Fib 20
+→ 6765 + Fib 20 +→ 6765 + 6765→ 13530

Call by value: the function argument is reduced to a value before
being substituted in the function body.

Call by need (“lazy evaluation”):
like call by name, but using memoized evaluations
or, equivalently, using graph rewriting instead of term rewriting.

Avoids divergence without duplicating computations:

(λx. 0) Ω→ 0

(λx. x + x) (Fib 20)→ Fib 20 + Fib 20
↖ ↗

shared

+→ 6765 + 6765
↖ ↗
shared

→ 13530

34

The usual reduction strategies

Call by name: the function argument is substituted unevaluated
in the function body.

Call by value: the function argument is reduced to a value before
being substituted in the function body.

Avoids duplicate computations, but can cause divergence:

(λx. 0) Ω +→ (λx. 0) Ω +→ (λx. 0) Ω +→ . . .

(λx. x + x) (Fib 20) +→ (λx. x + x) 6765→ 6765 + 6765→ 13530

Call by need (“lazy evaluation”):
like call by name, but using memoized evaluations
or, equivalently, using graph rewriting instead of term rewriting.

Avoids divergence without duplicating computations:

(λx. 0) Ω→ 0

(λx. x + x) (Fib 20)→ Fib 20 + Fib 20
↖ ↗

shared

+→ 6765 + 6765
↖ ↗
shared

→ 13530

34

The usual reduction strategies

Call by name: the function argument is substituted unevaluated
in the function body.

Call by value: the function argument is reduced to a value before
being substituted in the function body.

Call by need (“lazy evaluation”):
like call by name, but using memoized evaluations
or, equivalently, using graph rewriting instead of term rewriting.

Avoids divergence without duplicating computations:

(λx. 0) Ω→ 0

(λx. x + x) (Fib 20)→ Fib 20 + Fib 20
↖ ↗

shared

+→ 6765 + 6765
↖ ↗
shared

→ 13530

34

Encoding call by name

Even if our language is call by value, we can implement a
call-by-name semantics by passing arguments e as thunks λz.e
(with z not free in e).

(This is “weak reduction”: e is not reduced in λz.e before application.)

A systematic program transformation:

N (x) = x ()

N (λx.e) = λx. N (e)

N (e1 e2) = N (e1) (λz. N (e2))

We obtain call by need if we use memoized thunks
(lazy e in OCaml) instead of plain thunks λz. e.

35

Encoding call by value

Using the continuation-passing style (CPS).
→ Lecture #4.

36

Logic programming

Logic programming

A program = a set of rules that define predicates.

Running the program = finding the values of variables Xi for which
a predicate p(X1, . . . , Xn) holds.

Connections with automated deduction:
satisfiability problems; Robinson’s resolution algorithm.

Connections with query processing in relational databases.

37

Horn clauses

A set of statements and hypothetical statements of the form

(∀⃗x,) p or (∀⃗x,) q1 ∧ · · · ∧ qn ⇒ p

p, qi are literals. Variables xi are implicitly universally quantified.

Ex: even(0) or (∀n,) odd(n− 1)⇒ even(n).

Prolog syntax:

p .

p :- q1, . . ., qn .

Alternate view: axioms and inference rules in natural deduction.

p

q1 · · · qn

p

38

Datalog

Literals = predicates over variables (uppercase) and constants
(lowercase).

parent(tom, sally).

parent(erica, sally).

parent(tom, bart).

parent(martha, tom).

sibling(X, Y) :- parent(Z, X), parent(Z, Y), X != Y.

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

39

Prolog (A. Colmerauer and R. Kowalski, 1972)

Literals = predicates over terms build from variables and
constants by constructor application
(e.g. the list constructor [X|Y], read “X cons Y”).

Example: the permutations of a list.

permut([], []).

permut([X|Xs], Ys) :- permut(Xs, Zs), insert(X, Zs, Ys).

insert(X, Ys, [X|Ys]).

insert(X, [Y|Ys], [Y|Zs]) :- insert(X, Ys, Zs).

40

Application: syntactic analysis

s(S0,S) :- np(S0,S1), vp(S1,S).

np(S0,S) :- det(S0,S1), n(S1,S).

vp(S0,S) :- tv(S0,S1), np(S1,S).

vp(S0,S) :- v(S0,S).

det([the|S],S).

det([a|S],S).

det([every|S],S).

n([man|S],S).

n([woman|S],S).

n([park|S],S).

tv([loves|S],S).

tv([likes|S],S).

v([walks|S],S).

S → NP VP

NP → Det N

VP → TV NP

VP → V

Det → the | a | every
N → man | woman | park
TV → loves | likes
V → walks

41

Executing a Prolog program

By backward reasoning from the user request,
repeatedly applying the SLD resolution rule (Kowalski):

to prove the goal g1 ∧ · · · ∧ gn:
choose a clause p :- q1, . . . , qm
and a unifier θ such that θ(p) = θ(gi);
now prove θ(g1 ∧ · · · ∧ gi−1 ∧ q1 ∧ · · · ∧ qm ∧ gi+1 ∧ · · · ∧ gn).

Most implementations use depth-first search,
with backtracking on failure.

42

Examples of execution

The program:
append([], X, X).

append([H|T], X, [H|U]) :- append(T, X, U).

Some queries:
?- append([1,2], [3,4,5], [1,X,3,4,Y]).

% X = 2, Y = 5.
?- append([1,2], [3,4,5], X).

% X = [1, 2, 3, 4, 5].
?- append([1,2], X, [1,2,3,4,5]).

% X = [3, 4, 5]
?- append(X, [3,4,5], [1,2,3,4,5]).

% X = [1, 2]
?- append(X, Y, [1,2])

% X = [], Y = [1, 2] ; X = [1], Y = [2] ; X = [1, 2], Y = []
43

Sensitivity to the resolution strategy

Most Prolog implementations use depth-first search without
memoization, which can trivially diverge:

p(X) :- p(X).

q(X) :- q(f(X)).

Or, less trivially:

rstar(X, X).

rstar(X, Y) :- rstar(X, Z), r(Z, Y).

(Produces the first result, then diverges.)

44

Sensitivity to the resolution strategy

Backtracking often causes recomputations that are not
necessary, in the sense that they produce no new solutions.

list_mem(X, [X|_]).

list_mem(X, [_|Ys]) :- list_mem(X, Ys).

list_add(X, L, L) :- list_mem(X, L).

list_add(X, L, [X|L]) :- not(list_mem(X, L)).

There is only one solution to list_add(0, [
n zeros︷ ︸︸ ︷

0, . . . , 0], X)

but n different ways to obtain it!
→ Computing all the solutions takes time O(n2).

45

The cut operator

The cut operator, written “!”, gives programmers some control
over backtracking.

list_add(X, L, L) :- list_mem(X, L), ! .

list_add(X, L, [X|L]) :- not(list_mem(X, L)).

Executing the “!” removes the current alternatives for list_add,
which are “retry list_mem(X, L)”
and “try the second clause of list_add”.

Cuts can also express negation:

list_add(X, L, L) :- list_mem(X, L), ! .

list_add(X, L, [X|L]).

46

The cut operator: the “goto” of logic programming?

A low-level mechanism; formal semantics is unclear.

Affects not just the running time but also the meaning of
programs! (“green cuts” vs. “red cuts”). Example:

p(a) :- ! .

p(b).
vs. p(b).

p(a) :- ! .

Alternatives:

• Special operators such as firstof(p).
• Additional control structures such as the conditional literal
(p -> q ; r).

• Meta-languages to control the resolution strategy.

47

Summary

Declarative programming

Striking a delicate balance between

describing more what needs to be computed,
less how to compute it

and
keeping under control termination and complexity
(in time, in space) of programs.

Control structure remain needed,
no longer to specify the exact chaining of operations,
but to control the general execution strategy.

48

Three families of declarative languages

Reactive languages:

• Declarative AND efficient!
• At the expense of limited expressiveness.

Functional languages:

• A reduction strategy must be fixed in advance.
• Call by value: an intuitive cost model.
• Call by need: better properties; cost model hard to grasp.

Logic languages:

• Programmers need some control over the resolution strategy.
• How to do this? no consensus.

49

References

References

Declarative programming from a “functional” perspective:

• H. Abelson, G. J. Sussman. Structure and Interpretation of
Computer Programs, MIT Press, 1996. Chapter 1.

Declarative programming from a “logic” perspective:

• P. Van Roy, S. Haridi. Concepts, Techniques, and Models of
Computer Programming, MIT Press, 2004. Chapters 1, 2, 3 and 9.

An introduction to the Lustre language:

• N. Halbwachs, P. Raymond. A tutorial of Lustre, 2007.
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v4/

distrib/lustre_tutorial.pdf

50

https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v4/distrib/lustre_tutorial.pdf
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v4/distrib/lustre_tutorial.pdf

	Spreadsheets: expressions with sharing
	Reactive programming
	Functional programming
	Logic programming
	Summary
	References

