
Control structures, second lecture

Non-local control:
from subroutines to functions and coroutines

Xavier Leroy
2024-02-01

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Subroutines, procedures, functions

Sharing and reusing code

Some computations occur repeatedly!

D = SQRT(B*B - 4*A*C)

X1 = (-B + D) / (2*A)

X2 = (-B - D) / (2*A)

How can we write this code once and just “call it” whenever we
need to run it?

2

Subroutines in assembly language

Easy to write using a computed jump instruction.

; Solve quadratic equation AX^2 + BX + C = 0

; Input: A in r1, B in r2, C in r3, return address in r4

; Output: solutions in r1 and r2

quadratic:

mul r5, r2, r2 ; compute solutions

...

jump r4 ; return to caller

Call sites:

mov r4, L100 ; set return address

branch quadratic ; invoke subroutine

L100: ... ; execution resumes here

3

Subroutines in assembly language

Most processors provide a call instruction that jumps to a given
code address while saving the address of the next instruction in a
register or on a stack.

call quadratic, r4 ; first invocation

...

call quadratic, r4 ; second invocation

...

To handle nested calls, use different registers or save the return
addresses in memory, e.g. on a call stack.

4

Subroutines in FORTRAN I

Like in assembly language, using the computed goto statement
(ASSIGN label TO var . . . GO TO var)

200: D = SQRT(B*B - 4*A*C)

X1 = (-B + D) / (2*A)

X2 = (-B - D) / (2*A)

GO TO RETADDR

1000: A = ... B = ... C = ...

ASSIGN 1010 TO RETADDR

GO TO 200

1010: PRINT X1

5

Subroutines and functions in Fortran II

Fortran II (1958) introduces language support for defining
subprograms with explicit parameters.

1- Subroutines:
SUBROUTINE QUADRATIC(A, B, C, X1, X2)

D = SQRT(B*B - 4*A*C)

X1 = (-B + D) / (2*A)

X2 = (-B - D) / (2*A)

RETURN

END

Invocation: CALL QUADRATIC(1.0, -2.0, 5.0, X1, X2)

Arguments that are variables or arrays are passed by reference.

All variables are local to a sub-program or to the main program,
unless declared COMMON. 6

Subroutines and functions in Fortran II

2- Simple functions: an expression with parameters.
INTPOL(X) = A * X + B * (1 - X)

X2 = INTPOL(0.5)

X3 = INTPOL(0.333333)

3- General functions: a subroutine + a return value.
FUNCTION AVRG(ARR, N)

DIMENSION ARR(N)

SUM = ARR(1)

DO 10 I=2, N

SUM = SUM + ARR(I)

10: AVRG = SUM / FLOATF(N)

RETURN

END

Invocation: X = AVRG(A,20) + AVRG(B,10) 7

Procedures and functions in Algol 60

Close to subprograms in Fortran II:

• a procedure = a command with parameters;
• a function = a procedure with a return value.

Main differences:

• arguments are passed by value or by name;
• procedures can be nested and can access the variables of

the enclosing procedure;
• recursion is explicitly supported;
• a procedure can be passed as an argument to another

procedure.

8

A procedure in Algol 60

procedure quadratic(a, b, c, x1, x2);

value a, b, c;

real a, b, c, x1, x2;

begin

real d;

d := sqrt(b * b - 4 * a * c);

x1 := (-b + d) / (2 * a);

x2 := (-b - d) / (2 * a)

end;

9

Nested functions, functions as arguments

real procedure test(a, b);

value a, b; real a, b;

begin

real procedure interpolate(x);

value x; real x;

begin

interpolate := a * x + b * (1 - x)

end;

test := integrate(interpolate, 0.0, 10.0)

end

10

Call by name

The famous copy rule:

Any formal parameter not quoted in the value list is replaced,
throughout the procedure body, by the corresponding actual
parameter . . . Possible conflicts between identifiers inserted
through this process and other identifiers already present
within the procedure body will be avoided by suitable system-
atic changes of the formal or local identifiers involved . . . Fi-
nally the procedure body, modified as above, is inserted in
place of the procedure statement [the call] and executed . . .

(Report on the Algorithmic Language ALGOL 60)

Close to call-by-name in the lambda-calculus, and to hygienic
macros in Scheme. Exhibits some surprising behaviors!

11

Greatness of the copy rule

A versatile summation function:

real procedure Sum(k, l, u, ak)

value l, u; integer k, l, u; real ak;

begin

real s;

s := 0;

for k := l step 1 until u do

s := s + ak;

Sum := s

end;

Sum of array A: Sum(i, 1, m, A[i])

Sum of squares: Sum(i, 1, n, i*i)

Sum of matrix A: Sum(i, 1, m, Sum(j, 1, n, A[i,j]))

12

Misery of the copy rule

procedure swap(a, b)

integer a, b;

begin

integer temp;

temp := a;

a := b;

b := temp;

end;

This procedure does not always exchange its arguments!
For instance, swap(i, A[i]) expands to
temp := i; i := A[i]; A[i] := temp.

(→ A move towards call-by-value + call-by-reference in post-Algol
languages such as Pascal, Ada, C++, . . .)

13

Design dimensions for procedures and functions

Some possible choices:

• Semantics of argument passing
(by value, by reference, by pointer, by name, . . .)

• Recursion and reentrancy (or not)

• Nested functions (or not)

• Scoping of variables (lexical, dynamic)

• Lifetimes of variables (one block, the whole program, . . .)

• Functions as values
(first-class, or only as arguments to other functions).

The choices are tied to the implementation techniques for the
environments that maintain the values of variables.

14

Statically-allocated environments (FORTRAN)

DIMENSION A(10)

COMMON A

SUBROUTINE F(A, N)

... I ... J...

SUBROUTINE G(X, Y)

... I ... J ...

A

ret F A N I J

ret G X Y I J

One memory location per COMMON variable.
One memory location per variable of a subroutine.
One memory location per subroutine to hold the return address.

Simple and efficient, but does not support recursion.
15

Using a stack of activation records (stack frames)

procedure g(x, y)

begin

integer i, j;

...

end;

procedure f(n)

begin

integer i;

... f() ... g() ...

end
i

j
x

y
ret g

fra
m

e
fo

rg

i

n
ret f

fra
m

e
fo

rf

i

n
ret f

fra
m

e
fo

rf
The stack frame for a function activation contains its local
variables (unless declared static) and its return address.

Function call = push a frame; function return = pop this frame.
16

Using a stack of activation records (stack frames)

procedure g(x, y)

begin

integer i, j;

...

end;

procedure f(n)

begin

integer i;

... f() ... g() ...

end
i

j
x

y
ret g

fra
m

e
fo

rg

i

n
ret f

fra
m

e
fo

rf

i

n
ret f

fra
m

e
fo

rf
Without nested functions (as in C):
environment = current stack frame for the function

+ global and static variables;
function value = pointer to its code. 16

Stack frames for nested functions

procedure f(n)

begin

integer i;

procedure g(x, y)

begin

integer j;

...

end;

... f() ... g() ...

end i
x
y

ret g

fra
m

e
fo

rg

i
n

ret f

fra
m

e
fo

rf

i
n

ret f

fra
m

e
fo

rf
Chaining of the most recent stack frames for the enclosing
functions. When a function is called, the head of the chain is
passed as an extra argument.

17

Stack frames for nested functions

procedure f(n)

begin

integer i;

procedure g(x, y)

begin

integer j;

...

end;

... f() ... g() ...

end i
x
y

ret g

fra
m

e
fo

rg

i
n

ret f

fra
m

e
fo

rf

i
n

ret f

fra
m

e
fo

rf
Environment = current stack frame for the function

+ current stack frames for enclosing functions
+ global or static variables

17

Stack frames for nested functions

procedure f(n)

begin

integer i;

procedure g(x, y)

begin

integer j;

...

end;

... f() ... g() ...

end i
x
y

ret g

fra
m

e
fo

rg

i
n

ret f

fra
m

e
fo

rf

i
n

ret f

fra
m

e
fo

rf
Function value = code pointer + head of stack frame chain
(≈ a closure of the code by the environment).

17

Heap allocation of function closures and objects

let counter () =

let n = ref 0 in

fun () -> incr n; !n
0

code “incr n; !n”

Supports using as first-class values
function closures (functions with free variables) or
objects (set of methods sharing some instance variables).

Decouples the lifetimes of variables from the call stack discipline.

18

Control flow around function calls

Control flow for a procedure/function call

In Fortran II as in many later languages, the flow of control
around a procedure call is simple:

• when the procedure returns, execution continues with the
command that follows (syntactically) the call;

• labels are local to procedures
→ no goto jumps from a procedure to another.

In other words, the invocation CALL proc(e1, . . . , en)

is a base command, like an assignment x := e
(except that the call may not terminate).

19

Procedure with multiple return points

In Fortran 77, a procedure can have other return points besides
the point following the CALL. These alternate return points are
labels passed as extra arguments.

SUBROUTINE QUADRATIC(A, B, C, X1, X2, *)

D = B*B - 4*A*C

IF (D .LT. 0) RETURN 1

D = SQRT(D)

X1 = (-B + D) / (2*A)

X2 = (-B - D) / (2*A)

RETURN

END

...

CALL QUADRATIC(1.0, -2.0, 12.5, X1, X2, *99)

...

99: WRITE (*,*) ’Error - no real solutions’

STOP 20

Non-local “goto”

In Algol and Pascal, a goto L can exit one or several enclosing
blocks, as long as the goto is in the scope of the definition of L.

begin

...

begin

integer i;

... goto L ...

end;

L: ...

end

This works even if goto L is in a procedure defined in the scope
of L .

21

Exiting a procedure with a “goto”

procedure h(p)

begin

L: ... p() ...

end;

procedure f(n)

begin

procedure g()

begin goto L end;

... f() ... h(g) ...

L:...

end

frame g

frame h

frame f

frame f

frame f

frame f

goto L

The non-local goto L terminates procedure g and the previous
procedure activations, until it comes back to the activation that
defines L, i.e. the latest activation of f.

22

Example: fatal errors in the Pascal source of TEX

label end_of_TEX, final_end;

procedure jump_out;

begin goto end_of_TEX;

end;

begin

...

end_of_TEX: close_files_and_terminate;

final_end: ready_already:=0;

end.

23

Multiple return points and non-local “goto”

In Pascal, we cannot pass a label L as a parameter, but we can
pass a procedure that performs goto L .

procedure quadratic(a, b, c: real; var x1, x2: real;

esc: procedure ());

variable d: real;

begin

d := b * b - 4 * a * c;

if d < 0 then esc();

d := sqrt(d);

x1 = (-b + d) / (2*a);

x2 = (-b - d) / (2*a)

end;

24

Multiple return points and non-local “goto”

procedure solve(a, b, c: real);

variable x1, x2: real;

label error, done;

procedure goto_error;

begin goto error end;

begin

quadratic(a, b, c, x1, x2, goto_error);

writeln(’Solutions:’, x1, x2);

goto done;

error:

writeln(’No real solutions’);

done:

end;

25

Extra result vs. multiple return points

A more popular approach: return an extra result (result code,
error code) indicating how the function terminated
(normally or on an error).

int quadratic(double a, double b, double c,

double * x1, double * x2)

{

double d = b * b - 4 * a * c;

if (d < 0) return -1;

d = sqrt(d);

*x1 = (-b + d) / (2 * a);

*x2 = (-b - d) / (2 * a);

return 0;

}

26

Using return codes

void solve(double a, double b, double c)

{
double x1, x2;

int rc = quadratic(a, b, c, &x1, &x2);

if (rc < 0) {
printf("Error - no real solutions\n");

exit(2);

}
printf("Solutions: %f %f\n", x1, x2);

}

✔ Handling the error at point of call.

✔ Propagating the error code towards the caller.

✘ Ignoring the error and proceeding as if nothing happened.

27

Using return codes

int solve(double a, double b, double c)

{
double x1, x2;

int rc = quadratic(a, b, c, &x1, &x2);

if (rc < 0) {
return -1;

}
printf("Solutions: %f %f\n", x1, x2); return 0;

}

✔ Handling the error at point of call.

✔ Propagating the error code towards the caller.

✘ Ignoring the error and proceeding as if nothing happened.

27

Using return codes

void solve(double a, double b, double c)

{
double x1, x2;

int rc = quadratic(a, b, c, &x1, &x2);

printf("Solutions: %f %f\n", x1, x2);

}

✔ Handling the error at point of call.

✔ Propagating the error code towards the caller.

✘ Ignoring the error and proceeding as if nothing happened.

27

The “option” and “result” types

Prevent programmers from ignoring errors by using sum types
and strong typing.

A common idiom in functional languages and in Rust.
E.g. in OCaml:

type ’a option = Some of ’a | None

type (’a, ’e) result = Ok of ’a | Error of ’e

let quadratic a b c : (float * float) option =

let d = b *. b -. 4. *. a *. c in

if d < 0.0 then None else

let d = sqrt d in

Some((-. b +. d) /. (2. *. a), (-. b -. d) /. (2. *. a))

28

The “option” and “result” types

Static typing and exhaustiveness of pattern matching make it
impossible to ignore errors:

let solve a b c =

match quadratic a b c with

| Some(x1, x2) ->

printf "Solutions: %f %f\n" x1 x2

| None ->

printf "Error - no real solutions\n"

Propagating the error towards the caller is achieved by clauses
| None -> None or | Err reason -> Err reason’

Haskell, OCaml, Rust provide lightweight syntax for this
(monadic notations, Rust’s “?” operator, etc).

29

Structured exceptions and exception handlers

An exception = a data structure describing an exceptional
condition (error, absence of a result value, . . .).

Two language constructs:

• Raising / throwing an exception: throw exn

abort the current computation and send the exception to the
first enclosing handler.

• Handling / catching exceptions: try s1 catch(. . .) s2

intercept exceptions raised during the execution of
command s1 and executes command s2.

30

Example of structured exception handling in Java

static double[] quadratic(double a, double b, double c)

throws NoSolution

{

... throws (new NoSolution()); ...

}

static void solve(double a, double b, double c)

{

try {

double[] sols = quadratic(a, b, c);

System.out.println(

"Solutions: " ++ sols[0] ++ ", " ++ sols[1]);

} catch (NoSolution e) {

System.out.println("No real solutions");

} finally {

System.out.println("I’m done!");

}

} 31

Intuitive semantics for structured exceptions

throw within the body of a try:

≈ break for early termination of a block (multi-level exit);
≈ forward goto.

throw in a function without a try:

• dynamic search of the call stack for a caller with a try that
can handle the exception;

• execution of the finally clauses of the try that were
skipped.

Compared with a non-local goto: the handler is determined
dynamically, instead of being determined by the code that raises
the exception.

32

A brief history of structured exception handling

1972 MacLisp: THROW, CATCH, then UNWIND-PROTECT (≈ try. . .finally).

1975 J. B. Goodenough. Exception handling: issues and a proposed
notation, CACM 18(12).

1975 CLU (B. Liskov, MIT).
(Declaration of exceptions that can escape a function, with
dynamic checking.)

1978 LCF ML and its descendants (SML, Caml, . . .).
(No declarations.)

1980 Ada
(No declarations.)

1990 C++
(Optional declarations, obsoleted in C11, removed in C17.)

1995 Java
(Mandatory declarations, with static checking)

33

The controversy around exceptions

Pros:

• No need to write code to obtain the most common behavior,
i.e. the propagation of exceptions towards the caller.

• Clearly separates the code that detects an error
from the code that is able to handle the error.

Cons:

• Creates control flows that are not visible in the source code.
• Too easy to forget to handle exceptions.
• Difficult to finalize resources in presence of exceptions.

(See Stroustrup’s note given in reference, and lecture #7.)

34

Inverting or symmetrizing control:
iterators, generators, coroutines

Example: print a linked list of integers

In C:
for (list l = lst; l != NULL; l = l->next)

printf("%d\n", l->val);

In OCaml:
List.iter (fun n -> printf "%d\n" n) lst

In Java:
for (Iterator<Int> i = lst.iterator(); i.hasNext();) {

System.out.println(i.next())

}

In Python:
for n in lst: print(n)

35

Two ways to abstract over the traversal of a data structure

“Internal” iterator:
a higher-order function that calls the user-provided code.

List.iter: (’a -> unit) -> ’a list -> unit

List.map: (’a -> ’b) -> ’a list -> ’b list

List.fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

“External” iterator:
user code calls the methods of an “iterator” object.

interface Iterator<T> {

boolean hasNext();

T next();

}

This is called control inversion: don’t call us, we’ll call you!

36

The flexibility provided by external iterators

Make it easy to traverse several data structures at the same time.

Example: the same fringe problem (determine whether two
binary search trees contain the same values).

boolean same_fringe(TreeSet<T> s1, TreeSet<T> s2) {

Iterator<T> i1 = s1.iterator();

Iterator<T> i2 = s2.iterator();

while (i1.hasNext() && i2.hasNext()) {

if (! i1.next().equals(i2.next())) return false;

}

return ! i1.hasNext() && ! i2.hasNext();

}

37

Implementing an external iterator

Easy in an object-oriented language: use instance variables of
the iterator object to “remember where we are” in the traversal.

class ArrayIterator<T> {

private T[] arr;

private int i;

boolean hasNext() { return i < arr.length; }

T next() { T res = arr[i]; i++; return res; }

ArrayIterator(T [] arr) { this.arr = arr; this.i = 0; }

}

(In red: the parts of the code that would also occur in a direct traversal
with a for loop.)

38

Implementing an external iterator

Easy as well in a functional/imperative language: use functions
with free mutable variables as first-class values.

let array_iterator (arr: ’a array) : unit -> ’a option =

let i = ref 0 in

fun () ->

if !i >= Array.length arr

then None

else (let res = arr.(!i) in incr i; Some res)

39

Generators (in the style of Python)

A way to write iterators in direct style, as functions that return
successive results at each call.

def array_elements(a):

i = 0

while i < len(a):

yield a[i]

i += 1

yield v : return value v to the caller; the function execution can
restart later just after the yield.

return v : return value v to the caller; terminates the function
execution.

40

Generators (in the style of Python)

A way to write iterators in direct style, as functions that return
successive results at each call.

def array_elements(a):

i = 0

while i < len(a):

yield a[i]

i += 1

Examples of use:

for i in array_elements((1,2,3)): print(i)

g = array_elements((1,2,3))

print(next(g))

print(next(g))

40

Producing an infinite sequence on demand

def primes():

””” Generator for prime numbers”””
p = [2]; yield 2

m = 3

while True:

i = 0

while i < len(p) and p[i] * p[i] <= m:

if m % p[i] == 0: break

i += 1

else:

p.append(m); yield m

m += 2

41

Generators for non-determinism and error reporting

Non-determinism ≈ several return values are possible.
Error ≈ lack of a return value.

def quadratic(a, b, c):

””” Generate the solutions of axˆ2 + bx + c = 0”””
d = b * b - 4 * a * c

if d < 0: return

d = math.sqrt(d)

yield ((-b - d) / (2 * a))

if d != 0: yield ((-b + d) / (2 * a))

42

Compiling a generator

Idea: a remanent variable of “code pointer” type, where we store
the code address (the label) that follows the yield.

def generator():

n = 0; while True: yield n; yield (-n); n += 1

In GNU C (where labels can be used as values):
int generator(void) {

static void * pc = &&start;

static int n;

goto *pc;

start: n = 0; while (true) {

pc = &&yield1; return n; yield1:

pc = &&yield2; return (-n); yield2:

n += 1;

}

} 43

Stackless generators vs. stackful generators

Example: enumerate the values at the nodes of a binary tree,
following an infix traversal.

def inorder(t):

if t:

inorder(t.left)

yield t.val

inorder(t.right)

Doesn’t work, because Python’s generators are stackless.
Recursive calls to inorder create new generators, which are
unused. A single value is returned, that of the top of the tree.

Alternatives: pipelining generators (Python’s yield from),
or a different syntax and a different implementation for stackful
generators, with a call stack that persists between yield.

44

Stackless generators vs. stackful generators

Example: enumerate the values at the nodes of a binary tree,
following an infix traversal.

def inorder(t):

if t:

inorder(t.left)

yield t.val

inorder(t.right)

Doesn’t work, because Python’s generators are stackless.
Recursive calls to inorder create new generators, which are
unused. A single value is returned, that of the top of the tree.

Alternatives: pipelining generators (Python’s yield from),
or a different syntax and a different implementation for stackful
generators, with a call stack that persists between yield.

44

Asymmetric coroutines vs. symmetric coroutines

Asymmetric coroutines: another name for stackful generators.

• distinguish callee (generator) from caller (consumer);
• yield branches back to the caller.

Symmetric coroutines: a kind of cooperative threads.

• all coroutines stand “at the same level”;
• yield passes control to an explicitly-specified coroutine.

(Simula, Modula-2)

45

An example of symmetric coroutines

q = queue.Queue(maxsize = 100)

coroutine produce():

while True:

while not q.full(): item = build(); q.put(item)

yield to consume

coroutine consume():

while True:

while not q.empty(): item = q.get(); use(item)

yield to produce

produce()

46

The same example with cooperative threads

def produce():

while True:

while q.full(): yield

item = build(); q.put(item)

yield

def consume():

while True:

while q.empty(): yield

item = q.get(); use(item)

yield

spawn(produce); spawn(consume)

The interleaving of computations is partially left to the scheduler.

47

An analysis of coroutines by de Moura and Ierusalimschy

(Ana Lúcia de Moura and Roberto Ierusalimschy, Revisiting Coroutines, TOPLAS 31(2),
2009.)

Three design dimensions:

• asymmetric / symmetric coroutines; (semantics of yield)
• stackful / stackless coroutines; (position of yield)
• as first-class values or limited to e.g. for loops.

Main result:

Asymmetric, stackful, first-class coroutines
have the expressive power of one-shot delimited continuations
and can encode all the other control structures seen today.

(→ Lectures #4 and #5)

48

An analysis of coroutines by de Moura and Ierusalimschy

(Ana Lúcia de Moura and Roberto Ierusalimschy, Revisiting Coroutines, TOPLAS 31(2),
2009.)

Three design dimensions:

• asymmetric / symmetric coroutines; (semantics of yield)
• stackful / stackless coroutines; (position of yield)
• as first-class values or limited to e.g. for loops.

Main result:

Asymmetric, stackful, first-class coroutines
have the expressive power of one-shot delimited continuations
and can encode all the other control structures seen today.

(→ Lectures #4 and #5)

48

Examples of encodings

Symmetric coroutines encoded with asymmetric coroutines:
yield to C becomes yield of value C to a trampoline.

c = first generator
while True: c = next(c)

Cooperative threads encoded with asymmetric coroutines:
a scheduler calls the coroutines in round-robin manner.

while not q.empty():

c = q.get()

try: next(c); q.put(c)

except StopIteration: pass

49

Summary

Summary

Subroutines, procedures, functions and methods remain even
today the main language construct to support the decomposition
of programs in pieces that are reusable and understandable
independently.

The corresponding control flow (call – compute – return)
is simple. . . except when it is not:

• multiple returns, non-local jumps, . . . ;
• structured exceptions and exception handlers;
• control inversion: iterators, generators;
• control symmetrization: symmetric coroutines, threads.

50

References

References

An analysis and a formalization of coroutines:

• Ana Lúcia de Moura and Roberto Ierusalimschy,
Revisiting Coroutines, TOPLAS 31(2), 2009.

A discussion of exceptions vs. return codes:

• Bjarne Stroustrup, C++ exceptions and alternatives,
note P1947, 2019.

51

	Subroutines, procedures, functions
	Control flow around function calls
	Inverting or symmetrizing control: iterators, generators, coroutines
	Summary
	References

