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Waving the magic wand



An adaptation problem

Often, in a verification step, we want to apply

• a “small rule” { ` 7→ } set(`, v) {λ . ` 7→ v }
• or a “small specification” for a function
{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

in a bigger context, such as

list(p,w) V list(q,w′) V 〈x > 0〉 V t 7→ x V t + 1 7→ q

In general, we need to 1- unroll representation predicates,
2- find a framing, 3- apply the consequence rule.
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The framed consequence rule

(Derived from the frame rule + the consequence rule.)

A general ways to adapt what we already know { P′ } c {Q′ } to
what we need to prove { P } c {Q }.

{ P′ } c {Q′ } P⇒ P′ V R ∀v,Q′ v V R⇒ Q v

{ P } c {Q }

Automated or semi-automated theorem proving works well to
show the implications P⇒ P′ V R and Q′ v V R⇒ Q v.

The di�culty is to find assertion R.
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Abduction and magic wand

The abduction problem
Given P and Q, find a minimal X such that P V X ⇒ Q.

(In other words: what does P lack in order to ensure Q?)

In general we cannot calculate a simple form for the solution X.
But we can characterize it as follows:

X h = ∀h′, h′ ⊥ h ∧ P h′ ⇒ Q(h′ ] h)

This operation is written P —V Q, pronounced magic wand:

P —V Q def
= λh. ∀h′ ⊥ h, P h′ ⇒ Q(h′ ] h)
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Magic wand = separating implication

Separating implication —V is to separating conjunction V what
plain implication⇒ is to plain conjunction ∧.

Adjunction property:

H⇒ (P —V Q) ⇐⇒ H V P⇒ Q

Some other properties:

P V (P —V Q) ⇒ Q (elimination)
emp ⇒ P —V P (idempotence)

(P —V Q) V (Q —V R) ⇒ P —V R (transitivity)
(P V Q) —V R = P —V Q —V R (currying)
(P —V Q) V R ⇒ P —V (Q V R) (distribution)
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The ramified consequence rule

{ P′ } c {Q′ } P⇒ (P′ V (∀v,Q′ v —V Q v))

{ P } c {Q }

Like the framed consequence rule, but with a canonical choice for
the “frame”: R = ∀v,Q′ v —V Q v

Replaces the problem of finding R with the problem of reasoning
with formulas that use —V and V.

6



Weakest preconditions

In separation logic, just like in Hoare logic, a command c with
postcondition Q has a weakest precondition wp c Q,
characterized by:

• It’s a precondition: {wp c Q } c {Q }
• It’s the weakest: if { P } c {Q } then P⇒ wp c Q

We can define wp c Q in two ways:

from the operational semantics: wp c Q = λh. Term c h Q (or Safe)

from the triples: wp c Q = ∃P. P V 〈 { P } c {Q } 〉
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Weakest preconditions

An equivalence with triples:

{ P } c {Q } if and only if P⇒ wp c Q

A view of deductive verification as a calculation, directed by the
syntax of the command c:

“Given a command c and the specification Q of its results,
what precondition should the initial state satisfy
so that c executes without errors and the final state satisfies Q?”
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A weakest precondition calculus

The rules of separation logic can be rephrased using wp:

Q [[a]] ⇒ wp a Q

wp c (λv. wp c′[x← v] Q) ⇒ wp (let x = c in c′) Q

(if [[b]] then wp c1 Q else wp c2 Q) ⇒ wp (if b then c1 else c2) Q
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A weakest precondition calculus

For the imperative constructs, the “small rules” lead to wp
equations that are unusable, because they work only for
postconditions Q of a very specific shape.

emp ⇒ wp (alloc(N)) (λ`. ` 7→ V · · · V `+ N− 1 7→ )

[[a]] 7→ x ⇒ wp (get(a)) (λv. 〈v = x〉 V [[a]] 7→ x)

[[a]] 7→ ⇒ wp (set(a, a′)) (λv. [[a]] 7→ [[a′]])

[[a]] 7→ ⇒ wp (free(a)) (λv. emp)

Time to wave the magic wand. . .
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Structural rules for weakest preconditions

The frame rule:

(wp c Q) V R⇒ wp c (λv. Q v V R)

The consequence rule:

∀v, Q v ⇒ Q′ v

wp c Q⇒ wp c Q′

The ramified consequence rule:

wp c Q V (∀v, Q v —V Q′ v)⇒ wp c Q′
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A weakest precondition calculus

Applying ramification to the wp calculation for imperative
constructs, we obtain wp equations usable for any postcondition
Q.

∀`, (` 7→ V · · · V `+ N− 1 7→ ) —V Q ` ⇒ wp (alloc(N)) Q

∃x, [[a]] 7→ x V ([[a]] 7→ x —V Q x) ⇒ wp (get(a)) Q

[[a]] 7→ V (∀v, [[a]] 7→ [[a′]] —V Q v) ⇒ wp (set(a, a′)) Q

([[a]] 7→ ) V (∀v,Q v) ⇒ wp (free(a)) Q
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A taste of the “Iris proof mode”

In proof assistants such as Coq, we prefer to work with proof
contexts

x1 . . . xn H1 . . .Hm

P

instead of formulas ∀x1, . . . xn,H1 ∧ · · · ∧ Hm ⇒ P.

A proof context in separation logic is:

x1 . . . xn H1 . . .Hm (standard hypotheses)

P1 . . . Pk (spatial hypotheses)

Q (goal)

It stands for ∀xi,H1 ∧ · · · ∧ Hm ⇒ P1 V · · · V Pk ⇒ Q.
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Some introduction rules

. . .

. . .

P1 V · · · V Pn —V Q

 
. . .

. . . P1 . . . Pn

Q

. . .

. . . 〈H〉

. . .

 
. . . H

. . .

. . .

. . .

. . . ∃x, P x

. . .

 
. . . x

. . . P x

. . .
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Weakest preconditions≈ symbolic execution

wp c Q ≈ “we do c, then we will have Q”.

The postcondition Q plays the role of a continuation, memorizing
what comes next during execution.

. . .

. . .

wp (let x = c1 in c2) Q

 
. . .

. . .

wp c1 (λv. wp c2[x← v] Q)

 · · · 
. . .

. . .

wp a (λv. wp c2[x← v] Q)

 
. . .

. . .

wp c2[x← a] Q
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Symbolic execution of memory operations

The wp rules for the memory operations become clearer:

∃x, [[a]] 7→ x V ([[a]] 7→ x —V Q x)⇒ wp (get(a)) Q

. . .

[[a]] 7→ x . . .

wp (get(a)) Q

 
. . .

[[a]] 7→ x . . .

Q x

[[a]] 7→ V (∀v, [[a]] 7→ [[a′]] —V Q v)⇒ wp (set(a, a′)) Q

. . .

[[a]] 7→ . . .

wp (set(a, a′)) Q

 
. . . v

[[a]] 7→ [[a′]] . . .

Q v
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Symbolic execution of memory operations

∀`, (` 7→ V · · · V `+ N− 1 7→ ) —V Q `⇒ wp (alloc(N)) Q

. . .

. . .

wp (alloc(N)) Q

 
. . . `

. . . ` 7→ . . . `+ N− 1 7→

Q `

([[a]] 7→ ) V (∀v,Q v)⇒ wp (free(a)) Q

. . .

[[a]] 7→ . . .

wp (free(a)) Q

 
. . . v

. . .

Q v
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Partial permissions



Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This is safe:
• No race conditions (two simultaneous reads from the same

location produce a well-defined result).
• Cf. the Rust motto: “shared xor mutable”.
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Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This is e�cient:
• No need to copy the data structure in each process.

( 6= distributed-memory parallelism).
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Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This cannot be expressed in basic separation logic!
• Outside a critical section or atomic section, a memory

location is accessible (for reads and for writes) by only one
process.

{ P1 } c1 {λ . Q1 } { P2 } c2 {λ . Q2 }

{ P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

• Cf. the “no race conditions” theorem in lecture #4.
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A permission model

The assertion ` 7→ v, “location ` contains value v”, can also be
read as a permission to access location ` for reading, writing, or
freeing.

Naive idea: distinguish two permissions

Full permission: `
17→ v (read, write, free)

Read-only permission: `
R7→ v (read)
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A permission model

The “small rule” for get accepts both permissions. The other
small rules produce or require full permissions.

{ emp } alloc(N) {λ`. ` 17→ V · · · V `+ N− 1 17→ }

{ [[a]]
π7→ x } get(a) {λv. 〈v = x〉 V [[a]]

π7→ x } (π ∈ {1,R})
{ [[a]]

17→ } set(a, a′) {λv. [[a]]
17→ [[a′]] }

{ [[a]]
17→ } free(a) {λv. emp }

A full permission can be weakened:

`
17→ v ⇒ `

R7→ v

A read-only permission can be duplicated:

`
R7→ v = `

R7→ v V `
R7→ v
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Example of read-only sharing

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t R7→ f (x) } ⇒ { t R7→ f (x) V t R7→ f (x) }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q1 }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q2 }

{ t R7→ f (x) V t R7→ f (x) V Q1 V Q2 }

Problem: we cannot free t at the end of this code!

21



Example of read-only sharing

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t R7→ f (x) } ⇒ { t R7→ f (x) V t R7→ f (x) }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q1 }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q2 }

{ t R7→ f (x) V t R7→ f (x) V Q1 V Q2 }

Problem: we cannot free t at the end of this code!

21



Fractional permissions

1
2 +

1
2 = 1

Boyland (2003): permissions π are rational numbers in (0, 1].

• π = 1: full permission.
• 0 < π < 1: read-only permission.

The law for splitting and recombining permissions:

`
π+π′
7−→ v = `

π7→ v V `
π′
7→ v if π + π′ ∈ (0, 1]
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Read-only sharing using fractional permissions

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t 1/27→ f (x) V t
1/27→ f (x) }

{ t 1/27→ f (x) }
. . . get(t) . . .
. . .

{ t 1/27→ f (x) V Q1 }

{ t 1/27→ f (x) }
. . . get(t) . . .
. . .

{ t 1/27→ f (x) V Q2 }

{ t 1/27→ f (x) V t
1/27→ f (x) V Q1 V Q2 } ⇒ { t

17→ f (x) V Q1 V Q2 }
free(t)

{Q1 V Q2 }
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Permission algebras

A set Π equipped with a partial operation ⊕ to combine two
permissions. The operation is

commutative π1 ⊕ π2 = π2 ⊕ π1

and associative (π1 ⊕ π2)⊕ π3 = π1 ⊕ (π2 ⊕ π3).

Note: read π1 ⊕ π2 = π as “the combination π1 ⊕ π2 is defined
and equal to π”.
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Heaps with permissions

A heap h is a finite function from locations to pairs (π, v) of a
permission and a value.

We define the combination of two such pairs as:

(π1, v1)⊕ (π2, v2) = (π1 ⊕ π2, v1) if v1 = v2 and π1 ⊕ π2 is defined
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Heaps with permissions

The combination h1 ⊕ h2 of two heaps is defined if

h1 ⊥ h2
def
= ∀` ∈ Dom(h1) ∩ Dom(h2), h1(`)⊕ h2(`) is defined

The combination is defined by

Dom(h1 ⊕ h2) = Dom(h1) ∪ Dom(h2)

(h1 ⊕ h2)(`) =


h1(`)⊕ h2(`) if ` ∈ Dom(h1) ∩ Dom(h2)

h1(`) if ` ∈ Dom(h1) \ Dom(h2)

h2(`) if ` ∈ Dom(h2) \ Dom(h1)

Generalizes the notion of disjoint union h1 ] h2.
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Separating conjunction, separating implication

The usual definitions, using heap combination ⊕ instead of
disjoint union ].

P V Q = λh. ∃h1, h2, h = h1 ⊕ h2 ∧ P h1 ∧ Q h2

P —V Q = λh. ∃h1, h2, h2 = h⊕ h1 ∧ P h1 ∧ Q h2

In particular, ` π17→ v1 V `
π27→ v2 holds if and only if

π1 ⊕ π2 is defined, v1 = v2, and ` π1⊕π27−→ v1.
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Passivity (Bornat, Calcagno, O’Hearn, Parkinson 2005)

An interesting property: every command c provable with a
precondition “read-only permission on location `” cannot
modify `.

Proof sketch in the sequential case:

By way of contradiction, assume { ` 1/27→ v } c {λ . ` 1/27→ v′ } with
v′ 6= v.

By framing with ` 1/27→ v, we get

{ ` 17→ v } c {λ . ` 1/27→ v′ V `
1/27→ v }

The precondition is true, but the postcondition is always false,
since location ` cannot contain both v and v′.
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Passivity and atomic sections

In the presence of atomic sections or critical sections, the
passivity property is less clear-cut.

Indeed, if the shared-memory invariant gives us the missing
permission ` 1/27→ , we can derive

`
1/27→ ` { ` 1/27→ v } atomic(set(`, v′)) {λ . ` 1/27→ v′ }

even if v′ 6= v.
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Read-only sharing with counting permissions

Another permission schema, better suited to programs using
readers-writer locks.

Permissions π are integers ≥ −1:

• 0: full permission (get, set, alloc, free)
• -1: read-only permission (get)
• n > 0: number of read-only permissions that were granted.

We have:

`
n7→ v = `

n+17−→ v V `
−17−→ v if n ≥ 0
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One writer, several readers (Courtois, Heymans, Parnas, 1972)

Readers Writer
{ emp }

P(read);

count := count + 1;

if count = 1 then P(write); { emp }
V(read); P(write);

{ b −17→ } { b 07→ }
read b write b

{ b −17→ } { b 07→ }
P(read); V(write);

count := count− 1; { emp }
if count = 0 then V(write);

V(read);
{ emp }

Invariant for write: b 07→
Invariant for read: ∃n, count 07→ n V (〈n = 0〉 ∨ 〈n > 0〉 V b n7→ )
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Ghost code



Auxiliary variables, ghost variables (reminder from lecture #2)

Two ways to facilitate writing specifications as Hoare triples.

Auxiliary variables: mathematical variables α, β, . . . universally
quantified before the triple.

∀α, β, { x = α ∧ y = β } if x < y then x := y { x = max(α, β) }

Ghost variables: variables from the programming language that
do not appear in the program.

{ z = x } if x < y then x := y { x = max(z, y) }
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Ghost code

To make verification easier, we can add ghost code: commands
that modify ghost variables but have no e�ects on program
variables.

This ghost code can be removed before execution, since normal
(non-ghost) code does not depend on ghost variables.
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Example: remainder of Euclidean division

{ a ≥ 0 }
r := a;

while r ≥ b do
{ r ≥ 0 ∧ ∃q, a = b · q + r }

r := r − b
done

{ r = a mod b }

Automated theorem provers sometimes have a hard time with
existential quantification. . .
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Example: remainder of Euclidean division

{ a ≥ 0 }
r := a;

q := 0;

while r ≥ b do
{ r ≥ 0 ∧ a = b · q + r }

q := q + 1;

r := r − b
done

{ r = a mod b }

The ghost code computes the appropriate value for q.
The theorem prover only has to check this value.
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Example: a recursive graph traversal

Like in lecture #3: mark all nodes reachable from the root r.

def DFS r =

if MARK[r] = 0 then begin

MARK[r] := 1;

for i = 0 to ARITY[r]− 1 do DFS(CHILD[r][i]) done
end

It is surprisingly hard to prove this code correct!
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Example: a recursive graph traversal

We reintroduce the worklist W as a ghost variable.
(W ≈ the nodes that remain to be traversed)

def DFSREC p =

W := W \ {p};
if MARK[p] = 0 then begin

MARK[p] := 1;

W := W ∪ {CHILD[p][i] | 0 ≤ i < ARITY[p]};
for i = 0 to ARITY[p]− 1 do DFS (CHILD[p][i]) done

end

def DFS r =

W := {r};
DFSREC r
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Example: a recursive graph traversal

We can then show the invariant

∀x, path(r, x)⇐⇒ MARK[x] = 1 ∨ ∃p ∈ W, path(p, x)

and conclude

{ ∀x, MARK[x] = 0 } DFS r { ∀x, path(r, x)⇐⇒ MARK[x] = 1 }

Note: ghost code is not always executable, and ghost variables
can be of a type that is not expressible in the programming
language! Here, we used mathematical sets for W.
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Ghost code and concurrency

In a concurrent program, we can use ghost code and ghost
variables to keep track of the actions of each process.

Example: producer/consumer.

PR := ε; CO := ε;

while true do

compute x;

PR := PR · x
produce(x);

done

while true do

let y = consume() in

CO := CO · y
use y

done

The ghost lists PR and CO keep track of the data produced or
consumed.
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The puzzle: 1 + 1 = 2 ?

set(n, 0);

atomic(incr(n)) atomic(incr(n))

With incr(p)
def
= let x = get(p) in set(p, x + 1).

In the previous lecture, we saw how to prove the safety of this
code and the fact that n ≥ 0 at the end, using the resource
invariant J = ∃x, n 7→ x V 〈x ≥ 0〉.

But how can we prove full correctness? that is, n = 2 at the end?
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Tracing processes with ghost code

set(n, 0);

set(a, 0); set(b, 0);

atomic(incr(n); incr(a)) atomic(incr(n); incr(b))

a represents the contribution of the left process to the sum n,
b represents that of the right process.

We would like to reflect this in the invariant:
∃x, y, a 7→ x V b 7→ y V n 7→ x + y.

But this requires a and b to belong to the shared state.

We would like to show a 7→ 1 and b 7→ 1 at the end.
But this requires that a belongs to the left process and b to the
right process.
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Fractional permissions to the rescue!

Consider the resource invariant

J = ∃x, y, a 1/27→ x V b
1/27→ y V n 17→ x + y

We have:
{ J V a

1/27→ x } ⇒

{ a 17→ x V ∃y, b 1/27→ y V n 17→ x + y }
incr(n);

incr(a);

{ a 17→ x + 1 V ∃y, b 1/27→ y V n 17→ x + 1 + y }

⇒ { J V a
1/27→ x + 1 }

Therefore, J ` { a 1/27→ x } atomic(incr(n); incr(a)) { a 1/27→ x + 1 }
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Fractional permissions to the rescue

We can then derive:
set(n, 0); set(a, 0); set(b, 0);

{ n 17→ 0 V a 17→ 0 V b 17→ 0 } ⇒ { J V a
1/27→ 0 V b

1/27→ 0 }

{ a 1/27→ 0 }
atomic(incr(n); incr(a))

{ a 1/27→ 1 }

{ b 1/27→ 0 }
atomic(incr(n); incr(b))

{ b 1/27→ 1 }

{ J V a
1/27→ 1 V b

1/27→ 1 } ⇒ { n 17→ 2 V a 17→ 1 V b 17→ 1 }

Therefore, n = 2 in the end!

This is an elementary example of a very general technique:
protocols governing the evolutions of ghost states

→ seminar #5 by J. H. Jourdan.
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Storable locks



Fine-grained parallelism

Two kinds of mutual exclusion:

• Coarse-grained: a (global) lock protects the whole data
structure.

Described well by the resource model of O’Hearn’s
concurrent separation logic.

• Fine-grained: one lock per memory block comprised in the
data structure.

Need to reason about locks that are stored in memory, inside
the block that they protect against simultaneous accesses.
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Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×
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Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

Locking one node at a time is not enough!
Example: one process removes “3”, the other removes “4”.
The result can be [1; 2; 4; 5; 6] instead of [1; 2; 5; 6].
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Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×
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Specification of stored locks

Two new assertions:

` •π→ RI “at location `, with permission π, there is a lock
that protects the resource described by RI”

` “the lock at location ` is locked
by the current process”

The “small rules” for locks:

{ ` •π→ RI } lock(`) { ` •π→ RI V ` V RI }

{ ` •π→ RI V ` V RI } unlock(`) { ` •π→ RI }

{ ` 17→ V RI } initlock(`) { ` • 1→ RI }

{ ` • 1→ RI } destroylock(`) { ` 17→ V RI }
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Representation predicate for sorted lists

(Following Gotsman, Berdine, Cook, Rinetzky and Sagiv, 2007.

See Jacobs and Piessens, 2011, for a more fine-grained specification.)

We add a sentinel −∞ at the beginning and another +∞ at end.

list(p, n) = (〈n = +∞〉 V p.val 17→ n V p.next 17→ NULL)

∨ (∃q, n′, 〈n < n′〉 V p.val 17→ n V p.next 17→ q

V p.lock • 1→ list(q, n′))

listhead(p, π) = ∃q, n, p.val π7→ −∞ V p.next π7→ q

V p.lock •π→ list(q, n)

The head of the list (the −∞ sentinel) is shared (π < 1). The
other list nodes are in exclusive access mode, protected by the
lock contained in the previous node.
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Summary

We have seen a few extensions to separation logic, both
sequential and concurrent.

Many other extensions have been studied in the last 20 years:

• “first-class X” for various values of X: functions, Hoare
triples, process ID, . . .

• Modular reasoning: for instance, interactions between an
arbitrary number of processes, not just 2.

• Verification of advanced concurrent algorithms: optimistic
locking, lock-free algorithms, etc.
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A proliferation of program logics

Iris 2.0 (2016) Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina 
(2011)

FSL++ 
(2017)

Disel (2018)
Aneris (2018)

Concurrent RGRefs (2017)

iGPS (2017)

(Diagram by Ilya Sergey)
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Assertions that talk about many di�erent things

• Purely logical facts 〈P〉
• Facts about variables x = α (in Hoare logic)
• Facts about the memory heap emp, ` 7→ v, ` 7→
• The same plus permissions ` π7→ v

• Facts about locks ` •π→ RI, `

• Facts about ghost states.
• Time credits (→ seminar by F. Pottier)
• Transition systems (→ seminar by J. H. Jourdan)
• What else?
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Iris: a consolidation around four notions

1– Resource algebras, previously called partial commutative
monoids.

(An operation ⊕ commutative, associative, partial,
representing the combination of two compatible “things”.)

2– Ghost transitions, generalizing ghost code.

3– Invariants, generalizing the various kinds of resource
invariants previously mentioned.

4– A systematic use of step indexing and the “later” modality (B)
to work around circular definitions of higher-order notions.
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