
Program logics, fifth lecture

Some extensions of separation logic

Xavier Leroy
2021-04-01

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr



Waving the magic wand



An adaptation problem

Often, in a verification step, we want to apply

• a “small rule” { ` 7→ } set(`, v) {λ . ` 7→ v }
• or a “small specification” for a function
{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

in a bigger context, such as

list(p,w) V list(q,w′) V 〈x > 0〉 V t 7→ x V t + 1 7→ q

In general, we need to 1- unroll representation predicates,
2- find a framing, 3- apply the consequence rule.

2



The framed consequence rule

(Derived from the frame rule + the consequence rule.)

A general ways to adapt what we already know { P′ } c {Q′ } to
what we need to prove { P } c {Q }.

{ P′ } c {Q′ } P⇒ P′ V R ∀v,Q′ v V R⇒ Q v

{ P } c {Q }

Automated or semi-automated theorem proving works well to
show the implications P⇒ P′ V R and Q′ v V R⇒ Q v.

The di�culty is to find assertion R.

3



Abduction and magic wand

The abduction problem
Given P and Q, find a minimal X such that P V X ⇒ Q.

(In other words: what does P lack in order to ensure Q?)

In general we cannot calculate a simple form for the solution X.
But we can characterize it as follows:

X h = ∀h′, h′ ⊥ h ∧ P h′ ⇒ Q(h′ ] h)

This operation is written P —V Q, pronounced magic wand:

P —V Q def
= λh. ∀h′ ⊥ h, P h′ ⇒ Q(h′ ] h)

4



Magic wand = separating implication

Separating implication —V is to separating conjunction V what
plain implication⇒ is to plain conjunction ∧.

Adjunction property:

H⇒ (P —V Q) ⇐⇒ H V P⇒ Q

Some other properties:

P V (P —V Q) ⇒ Q (elimination)
emp ⇒ P —V P (idempotence)

(P —V Q) V (Q —V R) ⇒ P —V R (transitivity)
(P V Q) —V R = P —V Q —V R (currying)
(P —V Q) V R ⇒ P —V (Q V R) (distribution)

5



The ramified consequence rule

{ P′ } c {Q′ } P⇒ (P′ V (∀v,Q′ v —V Q v))

{ P } c {Q }

Like the framed consequence rule, but with a canonical choice for
the “frame”: R = ∀v,Q′ v —V Q v

Replaces the problem of finding R with the problem of reasoning
with formulas that use —V and V.

6



Weakest preconditions

In separation logic, just like in Hoare logic, a command c with
postcondition Q has a weakest precondition wp c Q,
characterized by:

• It’s a precondition: {wp c Q } c {Q }
• It’s the weakest: if { P } c {Q } then P⇒ wp c Q

We can define wp c Q in two ways:

from the operational semantics: wp c Q = λh. Term c h Q (or Safe)

from the triples: wp c Q = ∃P. P V 〈 { P } c {Q } 〉

7



Weakest preconditions

An equivalence with triples:

{ P } c {Q } if and only if P⇒ wp c Q

A view of deductive verification as a calculation, directed by the
syntax of the command c:

“Given a command c and the specification Q of its results,
what precondition should the initial state satisfy
so that c executes without errors and the final state satisfies Q?”

8



A weakest precondition calculus

The rules of separation logic can be rephrased using wp:

Q [[a]] ⇒ wp a Q

wp c (λv. wp c′[x← v] Q) ⇒ wp (let x = c in c′) Q

(if [[b]] then wp c1 Q else wp c2 Q) ⇒ wp (if b then c1 else c2) Q

9



A weakest precondition calculus

For the imperative constructs, the “small rules” lead to wp
equations that are unusable, because they work only for
postconditions Q of a very specific shape.

emp ⇒ wp (alloc(N)) (λ`. ` 7→ V · · · V `+ N− 1 7→ )

[[a]] 7→ x ⇒ wp (get(a)) (λv. 〈v = x〉 V [[a]] 7→ x)

[[a]] 7→ ⇒ wp (set(a, a′)) (λv. [[a]] 7→ [[a′]])

[[a]] 7→ ⇒ wp (free(a)) (λv. emp)

Time to wave the magic wand. . .

10



Structural rules for weakest preconditions

The frame rule:

(wp c Q) V R⇒ wp c (λv. Q v V R)

The consequence rule:

∀v, Q v ⇒ Q′ v

wp c Q⇒ wp c Q′

The ramified consequence rule:

wp c Q V (∀v, Q v —V Q′ v)⇒ wp c Q′

11



A weakest precondition calculus

Applying ramification to the wp calculation for imperative
constructs, we obtain wp equations usable for any postcondition
Q.

∀`, (` 7→ V · · · V `+ N− 1 7→ ) —V Q ` ⇒ wp (alloc(N)) Q

∃x, [[a]] 7→ x V ([[a]] 7→ x —V Q x) ⇒ wp (get(a)) Q

[[a]] 7→ V (∀v, [[a]] 7→ [[a′]] —V Q v) ⇒ wp (set(a, a′)) Q

([[a]] 7→ ) V (∀v,Q v) ⇒ wp (free(a)) Q

12



A taste of the “Iris proof mode”

In proof assistants such as Coq, we prefer to work with proof
contexts

x1 . . . xn H1 . . .Hm

P

instead of formulas ∀x1, . . . xn,H1 ∧ · · · ∧ Hm ⇒ P.

A proof context in separation logic is:

x1 . . . xn H1 . . .Hm (standard hypotheses)

P1 . . . Pk (spatial hypotheses)

Q (goal)

It stands for ∀xi,H1 ∧ · · · ∧ Hm ⇒ P1 V · · · V Pk ⇒ Q.

13



A taste of the “Iris proof mode”

In proof assistants such as Coq, we prefer to work with proof
contexts

x1 . . . xn H1 . . .Hm

P

instead of formulas ∀x1, . . . xn,H1 ∧ · · · ∧ Hm ⇒ P.

A proof context in separation logic is:

x1 . . . xn H1 . . .Hm (standard hypotheses)

P1 . . . Pk (spatial hypotheses)

Q (goal)

It stands for ∀xi,H1 ∧ · · · ∧ Hm ⇒ P1 V · · · V Pk ⇒ Q.

13



Some introduction rules

. . .

. . .

P1 V · · · V Pn —V Q

 
. . .

. . . P1 . . . Pn

Q

. . .

. . . 〈H〉

. . .

 
. . . H

. . .

. . .

. . .

. . . ∃x, P x

. . .

 
. . . x

. . . P x

. . .
14



Weakest preconditions≈ symbolic execution

wp c Q ≈ “we do c, then we will have Q”.

The postcondition Q plays the role of a continuation, memorizing
what comes next during execution.

. . .

. . .

wp (let x = c1 in c2) Q

 
. . .

. . .

wp c1 (λv. wp c2[x← v] Q)

 · · · 
. . .

. . .

wp a (λv. wp c2[x← v] Q)

 
. . .

. . .

wp c2[x← a] Q

15



Symbolic execution of memory operations

The wp rules for the memory operations become clearer:

∃x, [[a]] 7→ x V ([[a]] 7→ x —V Q x)⇒ wp (get(a)) Q

. . .

[[a]] 7→ x . . .

wp (get(a)) Q

 
. . .

[[a]] 7→ x . . .

Q x

[[a]] 7→ V (∀v, [[a]] 7→ [[a′]] —V Q v)⇒ wp (set(a, a′)) Q

. . .

[[a]] 7→ . . .

wp (set(a, a′)) Q

 
. . . v

[[a]] 7→ [[a′]] . . .

Q v

16



Symbolic execution of memory operations

∀`, (` 7→ V · · · V `+ N− 1 7→ ) —V Q `⇒ wp (alloc(N)) Q

. . .

. . .

wp (alloc(N)) Q

 
. . . `

. . . ` 7→ . . . `+ N− 1 7→

Q `

([[a]] 7→ ) V (∀v,Q v)⇒ wp (free(a)) Q

. . .

[[a]] 7→ . . .

wp (free(a)) Q

 
. . . v

. . .

Q v

17



Partial permissions



Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This is safe:
• No race conditions (two simultaneous reads from the same

location produce a well-defined result).
• Cf. the Rust motto: “shared xor mutable”.

18



Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This is e�cient:
• No need to copy the data structure in each process.

( 6= distributed-memory parallelism).

18



Read-only sharing

Several processes access a shared data structure without
synchronization, but do not modify the data structure.

x := . . . T[i] . . . y := . . . T[i] . . . z := . . . T[i] . . .

This cannot be expressed in basic separation logic!
• Outside a critical section or atomic section, a memory

location is accessible (for reads and for writes) by only one
process.

{ P1 } c1 {λ . Q1 } { P2 } c2 {λ . Q2 }

{ P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

• Cf. the “no race conditions” theorem in lecture #4.
18



A permission model

The assertion ` 7→ v, “location ` contains value v”, can also be
read as a permission to access location ` for reading, writing, or
freeing.

Naive idea: distinguish two permissions

Full permission: `
17→ v (read, write, free)

Read-only permission: `
R7→ v (read)

19



A permission model

The “small rule” for get accepts both permissions. The other
small rules produce or require full permissions.

{ emp } alloc(N) {λ`. ` 17→ V · · · V `+ N− 1 17→ }

{ [[a]]
π7→ x } get(a) {λv. 〈v = x〉 V [[a]]

π7→ x } (π ∈ {1,R})
{ [[a]]

17→ } set(a, a′) {λv. [[a]]
17→ [[a′]] }

{ [[a]]
17→ } free(a) {λv. emp }

A full permission can be weakened:

`
17→ v ⇒ `

R7→ v

A read-only permission can be duplicated:

`
R7→ v = `

R7→ v V `
R7→ v

20



Example of read-only sharing

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t R7→ f (x) } ⇒ { t R7→ f (x) V t R7→ f (x) }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q1 }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q2 }

{ t R7→ f (x) V t R7→ f (x) V Q1 V Q2 }

Problem: we cannot free t at the end of this code!

21



Example of read-only sharing

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t R7→ f (x) } ⇒ { t R7→ f (x) V t R7→ f (x) }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q1 }

{ t R7→ f (x) }
. . . get(t) . . .
. . .

{ t R7→ f (x) V Q2 }

{ t R7→ f (x) V t R7→ f (x) V Q1 V Q2 }

Problem: we cannot free t at the end of this code!

21



Fractional permissions

1
2 +

1
2 = 1

Boyland (2003): permissions π are rational numbers in (0, 1].

• π = 1: full permission.
• 0 < π < 1: read-only permission.

The law for splitting and recombining permissions:

`
π+π′
7−→ v = `

π7→ v V `
π′
7→ v if π + π′ ∈ (0, 1]

22



Read-only sharing using fractional permissions

let t = alloc(1) in

set(t, f (x));

{ t 17→ f (x) } ⇒ { t 1/27→ f (x) V t
1/27→ f (x) }

{ t 1/27→ f (x) }
. . . get(t) . . .
. . .

{ t 1/27→ f (x) V Q1 }

{ t 1/27→ f (x) }
. . . get(t) . . .
. . .

{ t 1/27→ f (x) V Q2 }

{ t 1/27→ f (x) V t
1/27→ f (x) V Q1 V Q2 } ⇒ { t

17→ f (x) V Q1 V Q2 }
free(t)

{Q1 V Q2 }

23



Permission algebras

A set Π equipped with a partial operation ⊕ to combine two
permissions. The operation is

commutative π1 ⊕ π2 = π2 ⊕ π1

and associative (π1 ⊕ π2)⊕ π3 = π1 ⊕ (π2 ⊕ π3).

Note: read π1 ⊕ π2 = π as “the combination π1 ⊕ π2 is defined
and equal to π”.

24



Heaps with permissions

A heap h is a finite function from locations to pairs (π, v) of a
permission and a value.

We define the combination of two such pairs as:

(π1, v1)⊕ (π2, v2) = (π1 ⊕ π2, v1) if v1 = v2 and π1 ⊕ π2 is defined

25



Heaps with permissions

The combination h1 ⊕ h2 of two heaps is defined if

h1 ⊥ h2
def
= ∀` ∈ Dom(h1) ∩ Dom(h2), h1(`)⊕ h2(`) is defined

The combination is defined by

Dom(h1 ⊕ h2) = Dom(h1) ∪ Dom(h2)

(h1 ⊕ h2)(`) =


h1(`)⊕ h2(`) if ` ∈ Dom(h1) ∩ Dom(h2)

h1(`) if ` ∈ Dom(h1) \ Dom(h2)

h2(`) if ` ∈ Dom(h2) \ Dom(h1)

Generalizes the notion of disjoint union h1 ] h2.

26



Separating conjunction, separating implication

The usual definitions, using heap combination ⊕ instead of
disjoint union ].

P V Q = λh. ∃h1, h2, h = h1 ⊕ h2 ∧ P h1 ∧ Q h2

P —V Q = λh. ∃h1, h2, h2 = h⊕ h1 ∧ P h1 ∧ Q h2

In particular, ` π17→ v1 V `
π27→ v2 holds if and only if

π1 ⊕ π2 is defined, v1 = v2, and ` π1⊕π27−→ v1.

27



Passivity (Bornat, Calcagno, O’Hearn, Parkinson 2005)

An interesting property: every command c provable with a
precondition “read-only permission on location `” cannot
modify `.

Proof sketch in the sequential case:

By way of contradiction, assume { ` 1/27→ v } c {λ . ` 1/27→ v′ } with
v′ 6= v.

By framing with ` 1/27→ v, we get

{ ` 17→ v } c {λ . ` 1/27→ v′ V `
1/27→ v }

The precondition is true, but the postcondition is always false,
since location ` cannot contain both v and v′.

28



Passivity and atomic sections

In the presence of atomic sections or critical sections, the
passivity property is less clear-cut.

Indeed, if the shared-memory invariant gives us the missing
permission ` 1/27→ , we can derive

`
1/27→ ` { ` 1/27→ v } atomic(set(`, v′)) {λ . ` 1/27→ v′ }

even if v′ 6= v.

29



Read-only sharing with counting permissions

Another permission schema, better suited to programs using
readers-writer locks.

Permissions π are integers ≥ −1:

• 0: full permission (get, set, alloc, free)
• -1: read-only permission (get)
• n > 0: number of read-only permissions that were granted.

We have:

`
n7→ v = `

n+17−→ v V `
−17−→ v if n ≥ 0

30



One writer, several readers (Courtois, Heymans, Parnas, 1972)

Readers Writer
{ emp }

P(read);

count := count + 1;

if count = 1 then P(write); { emp }
V(read); P(write);

{ b −17→ } { b 07→ }
read b write b

{ b −17→ } { b 07→ }
P(read); V(write);

count := count− 1; { emp }
if count = 0 then V(write);

V(read);
{ emp }

Invariant for write: b 07→
Invariant for read: ∃n, count 07→ n V (〈n = 0〉 ∨ 〈n > 0〉 V b n7→ )

31



Ghost code



Auxiliary variables, ghost variables (reminder from lecture #2)

Two ways to facilitate writing specifications as Hoare triples.

Auxiliary variables: mathematical variables α, β, . . . universally
quantified before the triple.

∀α, β, { x = α ∧ y = β } if x < y then x := y { x = max(α, β) }

Ghost variables: variables from the programming language that
do not appear in the program.

{ z = x } if x < y then x := y { x = max(z, y) }

32



Ghost code

To make verification easier, we can add ghost code: commands
that modify ghost variables but have no e�ects on program
variables.

This ghost code can be removed before execution, since normal
(non-ghost) code does not depend on ghost variables.

33



Example: remainder of Euclidean division

{ a ≥ 0 }
r := a;

while r ≥ b do
{ r ≥ 0 ∧ ∃q, a = b · q + r }

r := r − b
done

{ r = a mod b }

Automated theorem provers sometimes have a hard time with
existential quantification. . .

34



Example: remainder of Euclidean division

{ a ≥ 0 }
r := a;

q := 0;

while r ≥ b do
{ r ≥ 0 ∧ a = b · q + r }

q := q + 1;

r := r − b
done

{ r = a mod b }

The ghost code computes the appropriate value for q.
The theorem prover only has to check this value.

34



Example: a recursive graph traversal

Like in lecture #3: mark all nodes reachable from the root r.

def DFS r =

if MARK[r] = 0 then begin

MARK[r] := 1;

for i = 0 to ARITY[r]− 1 do DFS(CHILD[r][i]) done
end

It is surprisingly hard to prove this code correct!

35



Example: a recursive graph traversal

We reintroduce the worklist W as a ghost variable.
(W ≈ the nodes that remain to be traversed)

def DFSREC p =

W := W \ {p};
if MARK[p] = 0 then begin

MARK[p] := 1;

W := W ∪ {CHILD[p][i] | 0 ≤ i < ARITY[p]};
for i = 0 to ARITY[p]− 1 do DFS (CHILD[p][i]) done

end

def DFS r =

W := {r};
DFSREC r

36



Example: a recursive graph traversal

We can then show the invariant

∀x, path(r, x)⇐⇒ MARK[x] = 1 ∨ ∃p ∈ W, path(p, x)

and conclude

{ ∀x, MARK[x] = 0 } DFS r { ∀x, path(r, x)⇐⇒ MARK[x] = 1 }

Note: ghost code is not always executable, and ghost variables
can be of a type that is not expressible in the programming
language! Here, we used mathematical sets for W.

37



Ghost code and concurrency

In a concurrent program, we can use ghost code and ghost
variables to keep track of the actions of each process.

Example: producer/consumer.

PR := ε; CO := ε;

while true do

compute x;

PR := PR · x
produce(x);

done

while true do

let y = consume() in

CO := CO · y
use y

done

The ghost lists PR and CO keep track of the data produced or
consumed.

38



The puzzle: 1 + 1 = 2 ?

set(n, 0);

atomic(incr(n)) atomic(incr(n))

With incr(p)
def
= let x = get(p) in set(p, x + 1).

In the previous lecture, we saw how to prove the safety of this
code and the fact that n ≥ 0 at the end, using the resource
invariant J = ∃x, n 7→ x V 〈x ≥ 0〉.

But how can we prove full correctness? that is, n = 2 at the end?

39



Tracing processes with ghost code

set(n, 0);

set(a, 0); set(b, 0);

atomic(incr(n); incr(a)) atomic(incr(n); incr(b))

a represents the contribution of the left process to the sum n,
b represents that of the right process.

We would like to reflect this in the invariant:
∃x, y, a 7→ x V b 7→ y V n 7→ x + y.

But this requires a and b to belong to the shared state.

We would like to show a 7→ 1 and b 7→ 1 at the end.
But this requires that a belongs to the left process and b to the
right process.

40



Tracing processes with ghost code

set(n, 0);

set(a, 0); set(b, 0);

atomic(incr(n); incr(a)) atomic(incr(n); incr(b))

a represents the contribution of the left process to the sum n,
b represents that of the right process.

We would like to reflect this in the invariant:
∃x, y, a 7→ x V b 7→ y V n 7→ x + y.

But this requires a and b to belong to the shared state.

We would like to show a 7→ 1 and b 7→ 1 at the end.
But this requires that a belongs to the left process and b to the
right process.

40



Fractional permissions to the rescue!

Consider the resource invariant

J = ∃x, y, a 1/27→ x V b
1/27→ y V n 17→ x + y

We have:
{ J V a

1/27→ x } ⇒

{ a 17→ x V ∃y, b 1/27→ y V n 17→ x + y }
incr(n);

incr(a);

{ a 17→ x + 1 V ∃y, b 1/27→ y V n 17→ x + 1 + y }

⇒ { J V a
1/27→ x + 1 }

Therefore, J ` { a 1/27→ x } atomic(incr(n); incr(a)) { a 1/27→ x + 1 }

41



Fractional permissions to the rescue

We can then derive:
set(n, 0); set(a, 0); set(b, 0);

{ n 17→ 0 V a 17→ 0 V b 17→ 0 } ⇒ { J V a
1/27→ 0 V b

1/27→ 0 }

{ a 1/27→ 0 }
atomic(incr(n); incr(a))

{ a 1/27→ 1 }

{ b 1/27→ 0 }
atomic(incr(n); incr(b))

{ b 1/27→ 1 }

{ J V a
1/27→ 1 V b

1/27→ 1 } ⇒ { n 17→ 2 V a 17→ 1 V b 17→ 1 }

Therefore, n = 2 in the end!

This is an elementary example of a very general technique:
protocols governing the evolutions of ghost states

→ seminar #5 by J. H. Jourdan.

42



Fractional permissions to the rescue

We can then derive:
set(n, 0); set(a, 0); set(b, 0);

{ n 17→ 0 V a 17→ 0 V b 17→ 0 } ⇒ { J V a
1/27→ 0 V b

1/27→ 0 }

{ a 1/27→ 0 }
atomic(incr(n); incr(a))

{ a 1/27→ 1 }

{ b 1/27→ 0 }
atomic(incr(n); incr(b))

{ b 1/27→ 1 }

{ J V a
1/27→ 1 V b

1/27→ 1 } ⇒ { n 17→ 2 V a 17→ 1 V b 17→ 1 }

Therefore, n = 2 in the end!

This is an elementary example of a very general technique:
protocols governing the evolutions of ghost states

→ seminar #5 by J. H. Jourdan.

42



Storable locks



Fine-grained parallelism

Two kinds of mutual exclusion:

• Coarse-grained: a (global) lock protects the whole data
structure.

Described well by the resource model of O’Hearn’s
concurrent separation logic.

• Fine-grained: one lock per memory block comprised in the
data structure.

Need to reason about locks that are stored in memory, inside
the block that they protect against simultaneous accesses.

43



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

Locking one node at a time is not enough!
Example: one process removes “3”, the other removes “4”.

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

Locking one node at a time is not enough!
Example: one process removes “3”, the other removes “4”.

44



Example: singly-linked lists

struct cell { lock lck; int val; struct cell * next; };

By locking nodes one after the other, we can operate over the list
in parallel.

Example: one process removes “2”, the other removes “5”.

1 2 3 4 5 6 ×

Locking one node at a time is not enough!
Example: one process removes “3”, the other removes “4”.
The result can be [1; 2; 4; 5; 6] instead of [1; 2; 5; 6].

44



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 4 5 6 ×

45



Hand-over-hand locking

To modify a node, we must have locked the node as well as the
node before.

Example: removal of “4”.

1 2 3 5 6 ×

45



Specification of stored locks

Two new assertions:

` •π→ RI “at location `, with permission π, there is a lock
that protects the resource described by RI”

` “the lock at location ` is locked
by the current process”

The “small rules” for locks:

{ ` •π→ RI } lock(`) { ` •π→ RI V ` V RI }

{ ` •π→ RI V ` V RI } unlock(`) { ` •π→ RI }

{ ` 17→ V RI } initlock(`) { ` • 1→ RI }

{ ` • 1→ RI } destroylock(`) { ` 17→ V RI }

46



Representation predicate for sorted lists

(Following Gotsman, Berdine, Cook, Rinetzky and Sagiv, 2007.

See Jacobs and Piessens, 2011, for a more fine-grained specification.)

We add a sentinel −∞ at the beginning and another +∞ at end.

list(p, n) = (〈n = +∞〉 V p.val 17→ n V p.next 17→ NULL)

∨ (∃q, n′, 〈n < n′〉 V p.val 17→ n V p.next 17→ q

V p.lock • 1→ list(q, n′))

listhead(p, π) = ∃q, n, p.val π7→ −∞ V p.next π7→ q

V p.lock •π→ list(q, n)

The head of the list (the −∞ sentinel) is shared (π < 1). The
other list nodes are in exclusive access mode, protected by the
lock contained in the previous node.

47



Summary



Summary

We have seen a few extensions to separation logic, both
sequential and concurrent.

Many other extensions have been studied in the last 20 years:

• “first-class X” for various values of X: functions, Hoare
triples, process ID, . . .

• Modular reasoning: for instance, interactions between an
arbitrary number of processes, not just 2.

• Verification of advanced concurrent algorithms: optimistic
locking, lock-free algorithms, etc.

48



A proliferation of program logics

Iris 2.0 (2016) Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina 
(2011)

FSL++ 
(2017)

Disel (2018)
Aneris (2018)

Concurrent RGRefs (2017)

iGPS (2017)

(Diagram by Ilya Sergey)

49



Assertions that talk about many di�erent things

• Purely logical facts 〈P〉
• Facts about variables x = α (in Hoare logic)
• Facts about the memory heap emp, ` 7→ v, ` 7→
• The same plus permissions ` π7→ v

• Facts about locks ` •π→ RI, `

• Facts about ghost states.
• Time credits (→ seminar by F. Pottier)
• Transition systems (→ seminar by J. H. Jourdan)
• What else?

50



Iris: a consolidation around four notions

1– Resource algebras, previously called partial commutative
monoids.

(An operation ⊕ commutative, associative, partial,
representing the combination of two compatible “things”.)

2– Ghost transitions, generalizing ghost code.

3– Invariants, generalizing the various kinds of resource
invariants previously mentioned.

4– A systematic use of step indexing and the “later” modality (B)
to work around circular definitions of higher-order notions.

51



References



References

All about Iris:

• J.-H. Jourdan’s seminar (#6).
• Papers, tutorials, Coq development:
https://iris-project.org/

Partial permissions:

• R. Bornat, C. Calcagno, P. O’Hearn, M. Parkinson, Permission
accounting in separation logic, POPL 2005.

Storable locks:

• A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, M. Sagiv, Local
reasoning for storable locks and threads, APLAS 2007.

52

https://iris-project.org/

	Magic wand
	Partial permissions
	Ghost code
	Storable locks
	Summary
	References

