Formal Verification of C++
Object Construction and Destruction

Tahina Ramananandro?

LINRIA Paris-Rocquencourt

November 18th, 2011

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 1/55

Outline

@ Introduction

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Outline
© Introduction

o Construction: object initialization

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Initializing objects

struct Point {
double x;
double y;

};

Ramananandro (INRIA)

Formal verif. of C++ object constr. and

Initializing objects

struct Point {
double x;

double y;
};
main () {
Point c;
c.x = 1.2;
c.y = 3.4;

}

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Initializing objects

struct Point {
double x;

double y;
}s

main () {
Point c
}

.2, 3.4%};

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Initializing objects using a constructor

struct Point {
double x;
double y;
Point (double x0, double y0) {
x = x0;
y = y0;
}
}s

main () {
Point ¢ = Point (1.2, 3.4);

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 5/ 55

Initializing objects using a constructor

struct Point {

double x;

double y;

Point (double x0, double y0): x(x0), y(y0) {}
}s

main () {
Point ¢ = Point (1.2, 3.4);

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 5/ 55

Initializing embedded objects

struct Segment {
Point p1l;
Point p2;
Segment (double x1, double yl, double x2, double y2):
pl (x1, y1), p2 (x2, y2) {}
}
main () {
Segment s = Segment (1.2, 3.4, 18.42, 17.29);

3

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 6 / 55

Initializing inherited subobjects

struct ColoredPoint: Point {
int color;
ColoredPoint (double x0, double y0, int color0):
Point (x0, y0), color(color0) {}
}
main () {
ColoredPoint ¢ = ColoredPoint (1.2, 3.4, 256);

}

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 7 /55

Outline

© Introduction

@ Destruction: resource management

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Object destruction

main () {
File f =

3

File ("toto.txt");
f.write ("Hello world!'");

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Object destruction

struct File {
FILE* handle;
File (char* name): handle (fopen (name, "w")) {}
virtual void write (char* string) {
fputs (handle, string);
}
“File O {
fclose (handle);
}

main () {
File f = File ("toto.txt");
f.write ("Hello world!'");

}

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 9/ 55

Destructing embedded objects

struct LockFile {
Lock 1lock;
File file;
LockFile (char* name): lock (), file (name) {}

}s
Two subobjects of the same object must be destructed in the reverse order
of their destruction.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 10 / 55

Destructing inherited objects

Java and Cf are buggy:

class File implements Closeable {
public void close () {...}

X
class BuggyFile extends File {

public void close () {}
}

try (File f = new BuggyFile("toto.txt")) {

}

File is not closed properly. By contrast, C++ guarantees that destructors
for base classes are called.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 11 / 55

Focus of our work

A study of object construction and destruction for C++ objects.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 12 / 55

Outline

© Introduction

@ A brief overview of C++ multiple inheritance

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 13 / 55

Single inheritance

struct PluggedDevice {
int plug;

Plugged- Plugged- ¥

Device Device
struct Component: PluggedDevice {

int switch;

(ﬂomponent Component ’

struct Clock: Component {}
lock Radio struct Radio: Component {

int volume;

}

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 14 / 55

Two kinds of multiple inheritance

struct PluggedDevice {
int plug;
}
PluggedDevice

struct Component :
////(\\\\\ virtual PluggedDevice {
int switch;
Component Component X

struct Clock: Component {

lock Radio 3 int time;

struct Radio: Component {
int volume;
}

Alarm
struct Alarm: Clock, Radio {
int alarmTime;

}

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 15 / 55

The algebra of subobjects

P]uggedDevjce @ Previous works :
» Rossie & Friedman
(OOPSLA'95)
» Wasserrab, Nipkow & al.
Component Component (OOPSLA'06)
@ Path from the full class or a
) virtual base, to the dynamic
lock Radio type of the pointer, only through
non-virtual inheritance.
\ o If D derives from B, then every
Alarm virtual base of D is a virtual
base of B.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 16 / 55

The algebra of subobjects

PluggedDevice

@ From Alarm to Component :

> Al i Clock :: C t
Component Component arm oc omponen

2 nil
» Alarm :: Radio :: Component
2 il
lock Radio > Alarm :: Component :: nil
@ From Alarm to PluggedDevice :
» PluggedDevice :: nil

Alarm

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 17 / 55

Outline

© Introduction

@ Overview of our work

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Overview of our work

A formalization of the semantics of C++ objects, with the main
interesting features:
» multiple inheritance
virtual inheritance
embedded structure fields
static and dynamic casts, virtual function calls

>
>
>
» object construction and destruction

Properties of object construction and destruction

A verified compiler to a Cminor-style 3-address language with low-level
memory accesses

All proofs done with the Coq proof assistant

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 19 / 55

Outline

@ Formal semantics of C++ object model

Ramananandro (INRIA) Formal verif. of C++ object constr. and

History of formal semantics of C++ subobjects

o First formalization: Rossie & Friedman, An algebraic semantics of
subobjects (OOPSLA'95)

@ First machine formalization: Wasserrab, Nipkow et al., An Operational
Semantics and Type Safety Proof for Multiple Inheritance in C++
(OOPSLA'06)

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 21 /55

Designating subobjects with paths

nvpg = D:u-.-uB Non-virtual inheritance path
ppe = (Repeated, nvpp) B is a non-virtual base of D
| (Shared, nvy g) V is a virtual base of D

and B is a non-virtual base of V

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 22 / 55

Designating subobjects with paths

We extended those works to embedded structures and arrays.

nvpg = D:u-.-uB Non-virtual inheritance path
pp.e = (Repeated,nvppg) B is a non-virtual base of D
| (Shared, nvy g) V is a virtual base of D

and B is a non-virtual base of V

subo = (idx,p,f)* (idx’,p’) path to a subobject inside an array
through embedded structure array fields

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 22 / 55

A core language

We defined a core language for C++ multiple inheritance, featuring the
most interesting object-oriented features:

Stmt = var:=var->cf Reading scalar field
or pointing to structure field
var->cf := var Writing scalar field
var := &var[var|c Pointing to array cell

var .= static_cast(A)c(var) Static cast

var .= dynamic_cast(A)c(var) Dynamic cast

{Cc[n] = {Initc,...}; Stmt} Block-scoped object
Structured control

|

|

|

|

| var :=var->cf(var,...) Virtual function call
|

= Stmt; C(var,...) Initializer

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 23 / 55

A core language

We defined a core language for C++ multiple inheritance, featuring the
most interesting object-oriented features:

Funct = wvirtual f(var,...){Stmt} Virtual function defi
Finitm == m{Inita} Structure data mem
for A m[n]
| m(Stmt, var) Scalar data member
Constrc == C(var,...): Initgy,...,Inityq,..., Constructor
Finitp, ... {Stmt}
Class = struct C:Bl,...,virtual V1,...{ Class definitions
Constre, . ..
Funct, ...

}

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 23 / 55

Outline

© Object construction and destruction

Ramananandro (INRIA) Formal verif. of C++ object constr. and

The semantics of object construction and destruction

We have designed a small-step operational semantics precisely modeling

the different steps of object construction and destruction. The semantics
has to tackle the following two issues:

@ In which order are subobjects constructed and destructed?

@ Which virtual functions are called within a constructor?

Ramananandro (INRIA) Formal verif. of C++ object constr. and

November 18th, 2011 25 / 55

The construction states of a subobject

Each (inheritance and/or embedded structure) subobject is equipped at
run-time with a construction state:

Unconstructed Destructed

| |

StartedConstructing ~ DestructingBases

S~

Constructed

The lifetime of a subobject is the set of all states where the construction
state of the object is Constructed.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 26 / 55

Evolution of the construction state during construction

struct C: B{
int i;
}C O: B()i(18) {..}

Unconstructed

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 27 / 55

Evolution of the construction state during construction

struct C: B{
int I;
}C (): B(),i(18) {...}

StartedConstructing

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 27 / 55

Evolution of the construction state during construction

struct C: B{
int i;
}C (O: B(),i(18) {...}

BasesConstructed, virtual functions allowed here

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 27 / 55

Evolution of the construction state during construction

struct C: B{
int i;
}C O: B()i(18) {..}

Constructed

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 27 / 55

1...\/ 1"'Ban

ISV

full
NY

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 28 / 55

Al0]Alsil R[0]) farlsnr]
DA s Ao :

Run-time invariant

To reason about the semantics, we have to specify and prove a run-time
invariant. (13000 kloc, 2 hours checking time)

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 29 / 55

Lemma
If p is a direct subobject of p’:
@ direct non-virtual base subobject
@ direct or indirect virtual base (if p’ is a most-derived object)
@ array cell of a structure field
Then the following table relates their construction states:
Ifp’ is... Then p is...
Unconstructed Unconstructed
Unconstructed
g if p is a field subobject of p’
StartedConstructin !
& between Unconstructed and Constructed
otherwise
Constructed
if p is a base subobject of p’
BasesConstructed L o P
asest-onstructe between Unconstructed and Constructed
otherwise
Constructed Constructed
Constructed
q if p is a base subobject of p’
tartedDestruct !
S Py between Constructed and Destructed
otherwise
DestructingBases q . IE)estructed' ’
if p is a field subobject of p
between Constructed and Destructed
otherwise
Destructed Destructed
y

Formal verif. of C++ object constr. and November 18th, 2011 30 / 55

Lemma

Let p1, p2 two sibling subobjects such that py appears before py in the construction tree. Then, the following table
relates their construction states:

If py is... Then p3 is...
Unconstructed
StartedConstructing Unconstructed
BasesConstructed
Constructed in an arbitrary state
StartedDestructing
DestructingBases Destructed
Destructed

Formal verif. of C++ object constr. and November 18th, 2011 31 /55

RAII

Theorem

Each object is constructed and destructed exactly once, in this order.

Theorem
If an object is constructed, then all its subobjects are constructed.

Theorem

If an object is deallocated, then it and all its subobjects are previously
constructed, then destructed, in this order.

Theorem

Two subobjects of the same allocated object are destructed in the reverse
order of their construction.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 32 /55

The generalized dynamic type of a subobject

A subobject o has a generalized dynamic type o, if, and only if:
e either o, is the most-derived object, and it is Constructed (i.e. whole
construction has ended and destruction has not started yet)
@ or o, is BasesConstructed or StartedDestructing and o is an
inheritance subobject of o,
0, is then considered as the most-derived object for polymorphic operations
(dynamic cast, virtual function call). In practice, o, corresponds to the
object whose body of constructor/destructor is running.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 33 /55

A B1 B2 C B2 B1 A

BasesC Constr B1 C B1 StartedDestrBases
B1: [I \ [—
BasesC Constr B9 C B2 StartedDestrBases
B2: | I | [
BasesC Constr C StartedDestrBases
| |
StartedConstructing BasesC Constr StartedDestrBases Destructed

Thick transitions show the times when the compiler must update the
pointers to virtual tables.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 34 / 55

Outline

@ Application to Verified compilation

Ramananandro (INRIA) Formal verif. of C++ object constr. and

Outline

@ Application to Verified compilation
@ Compiling core C++ object-oriented features

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 36 / 55

Compilation of object-oriented operations

[x := x'->cF] = x := load(scsize;, x’ + foffc(F))
(if F = (f,t) is a scalar field of C)

[x->cF := x'] = store(scsize, x + foffc(F), x")
(if F = (f,t) is a scalar field of C)

[x := x'->cF] = x := x’ + foffc(F)
(if F is a structure array field of C)

|[X — &Xl[x2]C]] =X =X —|—sizeC X Xp

[x =x1==x]=x:=x == x

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 37 / 55

Compilation of casts
@ For static casts, there are two cases:
» For a non-virtual subobject pp g = (Repeated, /):

[x := static_cast(B)p(x")] = x := x’ + nvsoff(/)
[x := static_cast(D)g(x")] = x := x’ — nvsoff(/)

» For a subobject through virtual inheritance pp g = (Shared, V :: /), the
offset of the virtual base V of C must be looked up in the dynamic

type data:

[x := static_cast{A)c(x')] =
t ;= load(dtdatasize, x'); x := x’ + read vboff(t, V) + nvsoff(/)

(reads through dynamic type data are left abstract)

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 38 / 55

Compilation of casts

@ For static casts, there are two cases:
» For a non-virtual subobject pp g = (Repeated, /):
[x := static_cast(B)p(x")] = x := x’ + nvsoff(/)
[x := static_cast(D)g(x")] = x := x’ — nvsoff(/)
» For a subobject through virtual inheritance pp g = (Shared, V :: /), the

offset of the virtual base V of C must be looked up in the dynamic
type data:

[x := static_cast{A)c(x')] =
t ;= load(dtdatasize, x'); x := x’ + read vboff(t, V) + nvsoff(/)

(reads through dynamic type data are left abstract)

@ Dynamic cast is compiled as a read through the pointer to dynamic
type data

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 38 / 55

Outline

@ Application to Verified compilation

@ Compiling object constructors and destructors

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 39 /55

void _constr_C(bool isMostDerived, C* this, ...) {

¥

if (isMostDerived) {
for each V direct or indirect virtual base of C {
execute the initializer for V, ending with
_constr_V(false, (V*) this, ...);

}
for each B direct non-virtual base of C {
execute the initializer for B, ending with
_constr_B(false, (B*) this, ...);
}
set dynamic type to C;
for each m data member of C {
if m is a scalar {
execute the initializer for m, ending with
this->m = value;
} else, m is a structure A[n] {
for(i = 0, i < n, ++i) {
execute the initializer for m[i], ending with

_constr_A(true, &(this->m[il), ...);
}
¥
};
execute the constructor body;
return;

Formal verif. of C++ object constr. and

November 18th, 2011

40 / 55

Outline

@ Application to Verified compilation

@ Semantics preservation

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Semantics preservation

Theorem

The compilation scheme preserves the semantics of programs through
forward simulation:

> €
j—SZO 51?%2 Sf ——m— 5§,
> > > >
E) !) '+ Y] VR VA < /
J S, > 51 St 2T S99 > S¢ S

Ramananandro (INRIA) Formal verif. of C++ object constr. and

November 18th, 2011 42 / 55

Semantics preservation

Theorem
Je
The compilation scheme preserves the semantics of programs t p(o
. €98
forward simulation:
> €
3J So > Sf—— 3,
: ¢’ :
> > > >
P / '+ 7 ;) 'x g € /

November 18th, 2011 42 / 55

Outline

@ Application to Verified compilation

@ A brief overview of C++ object layout

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 43 / 55

C++ multiple inheritance issues on data layout

Usual layout problems:
@ alignment padding
e embedded structures: possibility of reusing padding?

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 44 / 55

C++ multiple inheritance issues on data layout

Usual layout problems:
@ alignment padding
e embedded structures: possibility of reusing padding?

Issues raised by multiple inheritance:
e Dynamic type data (e.g. pointers to virtual tables)

» needed for dynamic cast, virtual function dispatch
» even field accesses through virtual inheritance
» not ordinary fields, may be shared between subobjects

@ Object identity: two pointers to different subobjects of the same type
must compare different, even in the presence of empty bases.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 44 / 55

Common vendor ABI layout algorithm

@ Application Binary Interface: agreement on data layout for programs
compiled by different compilers for the same platform

@ Common vendor ABI designed by a consortium of compiler designers,
http://www.codesourcery.com/public/cxx-abi/

o Initially for Itanium, then adopted by GNU GCC and almost all
compiler builders and platforms (except Microsoft)

e A fairly complicated algorithm, difficult to implement

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 45 / 55

http://www.codesourcery.com/public/cxx-abi/

Common vendor ABI layout algorithm

tanium G+ ABI hitp://www.codesourcery.com/publicicxx-abilabi.html

 [C++FDIS] The Final Draft International Standard, Programming Language Csx, ISO/IEC FOIS
14882:1998(E). Relerences herein 10 the "Cv+ Standard,” or 1o ust the "Standard," are t0 this document.

Chapter 2: Data Layout

2.1 General

In what follows, we define the memary layout vm G+ data objects. Specifcaly, for each type, we specily the.
following information about an object O of that ty

« the size of an object, size0f(O);
« the algnment of an object, align(O); and
« the offse within O, offset(C), of each data component C, ie. base or member.
For purposos intornal to tho spacification, we also spocify:
 dsize(O): the data size of an object, which is the size of O without tal padding.
 nusize(O): the non-virtual size of an object, which is the size of O without virtual bases.

 nvallgn(O): the non-virtual algnment of an object, which is the alignment of O without virtual bases.

22 POD Data Types.

The sze ard skgamant o 1po whichs PO o he puncte o st 8 pecac b te base () AB
“Type bool has sizo and alignment 1. Al of thoso types have data sizo and non- 0 their sizo.
(W ignore tail padding for PODS because the Standard doos not allow us 10 use v g 4y)

2.3 Member Pointers

A pointer to data membor fs an offse from tho base address of tho class abject containing i, roprosentod as a
Ptrdiff_t. i has the size and aligament attibulos of a ptrdiff_t A NULL pointer is represented as -1.

A pointer to membor function s a pair as follows:

ptr.
For a non-vitual function, this field is a simple function pointer. (Under curent base tanium psABI
‘conventions, that is a pointer to a GP/function address pair) For a virtual function, it s 1 plus the virtual
table offset (in bytes) of the function, represented as a ptrdiff_t. The value zero represents a NULL
pointer, independent of the adjustment fild value below.

adj

The required adjustment to this, represented as a ptrdif_t.

1t has the size, data size, and alignment of a class containing those two members, in that order. (For 64-bit
anium, that will be 16, 16, and 8 bytes respectively.)

2.4 Non-POD Class Types

Fora ks type O ich 1t POD o the s oyt st o componen 15
‘and non-static data member types) have been laid out, defining size, dat
Sgnmont and novwinual sigamont (&

sizo,
Fonno, ssme

the description of thoso torms in poos

6 sur62 18/01/201121:53

DA

Ramananandro (INRIA Formal ve

of C++ object constr

Correctness of the common vendor ABI layout algorithm

Theorem

This algorithm can be fed to the compiler to obtain a verified ¢
preserving the semantics of programs.

Object layout entirely proved except a controversial optimization on virtual
primary bases.

We developed and proved the correctness of an extension of this algorithm
to allow further reusing of the tail paddings of non-virtual bases and fields.

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 47 / 55

Outline

© Conclusion and perspectives

o = = E A
Ramananandro (INRIA) Formal verif. of C++ object constr. and

Summary

o A general formal model for C++ object-oriented features

@ First machine-checked formalization of RAII

First machine-checked correctness proof of verified compiler for C++
object construction and destruction

Positive feedback from C++ Standard Committee: some standard
issues corrected, some other pending

Quite a long formalization (80 kloc, 3 hours checking time), but the
semantics itself is tractable (900 lines).

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 49 / 55

Future work

Extending the semantics:
o Free store

e C++ copy semantics (passing constructor arguments by value, copy
constructor, functions returning structures)

o Exceptions? (Excluded by Lockheed Martin)
Templates (Siek et al., ECOOP'06)

Improving the compiler:

@ Concrete representation of virtual tables and VTT
@ Virtual primary bases
o Better object layout algorithms (bidirectional, etc.)

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 50 / 55

Thank you for your attention

e Coq development fully available on the Web:
http://gallium.inria.fr/“tramanan/cxx/compiler

@ For further information: Tahina.Ramananandro@inria.fr

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 51 / 55

http://gallium.inria.fr/~tramanan/cxx/compiler
Tahina.Ramananandro@inria.fr

Ramananandro (INRIA)

of C++ object constr. and

[m]

=

Virtual primary bases

struct A { virtual void f(); };
struct vV virtual A
struct C virtual A

virtual V
virtual V

struct B
struct B>

struct D C,B, B
C B B,
C By B>
Al C v B B,
C AV By B,
C Al B Vi B

Back

Ramananandro (INRIA) Formal verif. of C++ object constr. and

A
/l‘\ ~
STy
// /A\
C‘\B%VB2
D
AV
Ay}

November 18th, 2011

53 / 55

Ramananandro (INRIA)

of C++ object constr. and

[m]

=

Thank you for your attention

Tahina.Ramananandro@inria.fr

ttp: /égal_lium. inria.fr/"tramanan/cxx/object-layout
Introduction

@ Construction: object initialization
@ Destruction: resource management
@ A brief overview of C++ multiple inheritance
@ Overview of our work
@ Formal semantics of C++ object model
© Object construction and destruction
@ Application to Verified compilation
@ Compiling core C++ object-oriented features
@ Compiling object constructors and destructors
@ Semantics preservation
@ A brief overview of C++ object layout
© Conclusion and perspectives
@ Virtual primary bases
@ Thank you

Ramananandro (INRIA) Formal verif. of C++ object constr. and November 18th, 2011 55 / 55

Tahina.Ramananandro@inria.fr
http://gallium.inria.fr/~tramanan/cxx/object-layout

	Introduction
	Formal semantics of C++ object model
	Object construction and destruction
	Application to Verified compilation
	Conclusion and perspectives

