
A formal operational semantics for C++ object

construction and destruction

Tahina Ramananandro

http://gallium.inria.fr/~tramanan/cpp

July 13, 2011

Notations and conventions

We adopt the usual Coq list notations:

• list(A) is the set of all lists having their elements in A

• nil is the empty list

• a :: q is the list starting with an element a and continuing with the tail list q

• q− is the append (list concatenation) operator: for any list l, we have nil q−l
def.

l and (a ::
q) q−l

def.
a :: (q q−l).

• �lterf (l) is the �lter operator, recursively de�ned as follows: �lterf (ε) = ε and �lterf (a :: q) ={
a :: �lterf (q) if f(a) = true

�lterf (q) otherwise

• rev(l) is the reverse of the list l, i.e. the list of elements of l given in the reverse order of l.
That is, rev(ε) = ε and rev(a :: q) = rev(q) q−a :: ε.

• length(l) is the length of a list l: length(nil)
def.

0 and length(a :: l′)
def.

1 + length(l′)

We also adopt the following additional notations:

• q−′ is the operator "append without duplicate", de�ned as l1 q−′l2 = l1 q−�lterx 7→x 6∈l1(l2)

• �rst is a function de�ned on non-empty lists, such that �rst(a :: l′)
def.

a for all a, l′.

• last is a function de�ned on non-empty lists, computing their last elements: last(a :: nil)
def.

a
and last(a :: b :: l′)

def.
last(b :: l′) for all a, b, l′.

• for any set S, we pose
option S

def.
{∅} ∪ {{S} | S ∈ S}

which is the set of all subsets of S with cardinality 0 or 1.

1

http://gallium.inria.fr/~tramanan/cpp

Contents

1 Goal 3

2 Class hierarchy (reminder) 3

3 Overview of the construction and destruction process 6
3.1 Construction . 6

3.1.1 Non-virtual inheritance only . 6
3.1.2 Virtual inheritance . 7

3.2 Destruction . 9

4 Syntax of κ+ + 9

5 Operational semantics 11
5.1 Construction states . 11
5.2 Values . 14
5.3 Execution state . 14

5.3.1 Kind . 16
5.3.2 Continuation stack . 16

5.4 Initial and �nal states . 17
5.5 Semantic rules . 20

5.5.1 Statements . 20
5.5.2 Construction . 26
5.5.3 Destruction . 29

6 Run-Time invariant 32
6.1 Contextual invariants . 33

6.1.1 Kind invariant . 33
6.1.2 Invariant for stack frames . 35
6.1.3 Stackframe chaining . 37
6.1.4 Stack well-foundedness . 39

6.2 Stack objects and constructed stack objects . 40
6.3 General relations between construction states . 42

6.3.1 Vertical relations . 42
6.3.2 Horizontal invariant . 43

7 Properties of construction and destruction 44
7.1 Progress . 45
7.2 Increase . 46
7.3 Construction order . 46

7.3.1 Two subobjects of the same complete object 47
7.3.2 Subobjects of di�erent complete objects . 50

7.4 RAII: Resource Acquisition is Initialization . 51
7.5 Scalar �eld access . 51
7.6 The dynamic type of a subobject . 51

8 Conclusion and future work 55

2

1 Goal

Our work aims at formalizing an operational semantics for C++ object construction and destruc-
tion, and investigating some of its properties.
Our work is machine-checked with the Coq proof assistant.
We reuse the semantics of C++ subobjects de�ned in our POPL 2011 �object layout� paper.
However, now the sets of the direct bases of a class are totally ordered. We denote DC =
{Repeated} × DNVC ∪ {Shared} × DVC the set of all direct bases of C. We denote ≺DC the
total order on the set of the direct bases of C (this order models the declaration order). In the
same way, ≺FC models the declaration order of the �elds of a class.

2 Class hierarchy (reminder)

Notation 1. Let A be the set of builtin types (int, �oat, short, . . .).

We make no further assumption on builtin types or values: our formalization is a Coq functorial
module taking them as parameters.
Contrary to our POPL'11 "Object layout" paper, we pay attention to the declaration order of the
�elds and direct bases of a class.

De�nition 1. A class hierarchy is a tuple (C, I,F ,D), where:

• C is the set of classes. We assume C ∩ A = ∅.

• I is the set of identi�ers

• F : C → list(I × (({Sc}× C ∪A)∪ ({St}× StructField))) gives, for each class, the list of its
non-static data members, a.k.a. �elds, in declaration order:

� a scalar (Sc) �eld is either a value of a builtin type, or a pointer to an object of some
class type C

� a structure array �eld (St) (f, C, n) (where StructField
def.
FI ×C ×N∗)1 is considered

to be an array of n structures of type C. In fact, structure �elds are structure array
�elds where n = 1.

• D : C → list({Repeated, Shared} × C) gives, for each class, the list of its direct bases, either
virtual (Shared) or non-virtual (Repeated), in declaration order.

For instance, the following code:

s t ruct A { i n t i ; } ;
s t ruct B: v i r t u a l A { C ∗ c ; } ;
s t ruct C : A, B { f l o a t j ; A a [2] ; B b ; } ;

would give the following hierarchy:

1The Standard forbids arrays with zero cells.

3

C = {A,B,C}
I = {i, j, a, b, c}

F :
A 7→ (i, (Sc, int)) :: ε
B 7→ (c, (Sc, C)) :: ε
C 7→ (j, (Sc, �oat)) :: (a, (St, (A, 2))) :: (b, (St, (B, 1))) :: ε

D :
A 7→ ∅
B 7→ (Shared, A) :: ε
C 7→ (Repeated, A) :: (Repeated, B) :: ε

Notation 2. We denote T = A ∪ C the set of scalar types, i.e. builtin types or �pointer to C�
for any class C.

De�nition 2. A list l is a non-virtual path from C to A if, and only if:

• either C = A and l = A :: nil. This path is called the trivial path.

• or there exists a non-virtual direct base B of C and a non-virtual path l′ from B to A, such
that l = C :: l′.

A is a non-virtual base of C if, and only if, A is reachable through a non-trivial non-virtual path
from C.

De�nition 3. A class A is a virtual base of C if, and only if:

• either A is a direct virtual base of C

• or there is a direct (virtual or non-virtual) base B of C such that A is a virtual base of B.

De�nition 4. A path, inheritance path, or base class subobject, from a class C to a class A is
a couple σ = (h, l) such that:

• either h = Repeated and l is a non-virtual path from C to A

• or h = Shared and there exists a virtual base B of C such that l is a non-virtual path from
B to A.

The set of all paths shall be denoted Path. We denote:

C −〈σ〉I→ A

the relation �σ is an inheritance path from C to A� inductively de�ned by the following rules:

C −〈(Repeated, C :: ε)〉I→ C

B direct non-virtual base of C B −〈(Repeated, l)〉I→ A

C −〈(Repeated, C :: l)〉I→ A

B virtual base of C B −〈(h, l)〉I→ A

C −〈(Shared, l)〉I→ A

4

De�nition 5. Let C,C ′ ∈ C, n, n′ ∈ N and α be a list of elements of the set N×Path×StructField.
We say that α is an array path from C[n] to C ′[n′] if, and only if, one of these conditions holds:

• C = C ′ and n′ ≤ n and α = nil

• or all the following conditions hold:

� there exists i ∈ N such that i < n

� there is a class A ∈ C and a path σ ∈ Path from C to A

� there is a structure array �eld F = (f, (St, (D, s))) ∈ F(A)

� there is a list α′ such that α′ is an array path from D[s] to C ′[n′]

� and α = (i, σ, F) :: l′

We denote:
C[n] −〈α〉A→ C ′[n′]

de�ned more formally as:

n′ ≤ n

C[n] −〈ε〉A→ C[n′]

0 ≤ i < n C −〈σ〉I→ A F = (f, (St, (D, s))) ∈ F(A) D[s] −〈α′〉A→ C ′[n′]

C[n] −〈(i, σ, F) :: α′〉A→ C ′[n′]

De�nition 6. A generalized subobject (or simply subobject), or relative pointer p of static type
A relatively to an array of type C[n] (or a relative pointer from C[n] to A) is a triple (α, i, σ)
where:

• α is an array path from C[n] to some C ′[n′]

• i is an index in the array of type C ′[n′], such that 0 ≤ i < n′

• and σ is an inheritance path from C ′ to A

Then we denote:
C[n] −〈p〉→ A

and we have, more formally:

0 ≤ i < n′ C ′ −〈σ〉I→ A

C ′ −〈(i, σ)〉CI→ A

C[n] −〈α〉A→ C ′[n′] −〈(i, σ)〉CI→ A

C[n] −〈(α, i, σ)〉→ A

De�nition 7. A generalized subobject p = (α, i, σ) of static type A relatively to an array of type
C[n] is a most-derived object if, and only if, it cannot be further cast to a derived class. That is,
i� σ = (Repeated, A :: ε).

De�nition 8. A run-time pointer π of static type A is a couple (λ, p) where:

• λ is the initial structure array, either statically declared, or dynamically created, of some type
C[n] (λ is then called a complete object)

• p is a relative pointer from C[n] to A

5

3 Overview of the construction and destruction process

3.1 Construction

Construction of an object starts when the constructor is called with its arguments. An object is
constructed when the body of the constructor exits: at this moment starts its lifetime.
Construction must follow these two basic principles:

• An object requires prior construction of all of its subobjects

• An object must not be constructed more than once

3.1.1 Non-virtual inheritance only

If a class has no virtual base, then the construction of an instance is straightforward:

• Construct the direct non-virtual bases, in declaration order

• Then construct the �elds, in declaration order

• Then run the constructor body

To construct a direct non-virtual base, the constructor of the object �rst has to compute the
arguments to pass to the constructor of the direct non-virtual base. This step corresponds to
running the initializer for the direct non-virtual base. The construction only starts when the
arguments are passed to the constructor.
However, even though arguments are passed, the body of the constructor is not immediately run:
the construction of non-virtual bases, and of �elds, must �rst occur.
For instance, consider the following class hierarchy:

struct B1 { B1 (int i) {} };
struct B2 { B2 (int j) {} };
struct C: B1, B2 { C (int i1, int i2) : B1 (i1 - i2), B2(i2 - i1) {} }

Suppose that an instance of C is requested to be constructed using C(18, 42). Then:

1. Arguments 18 and 42 are passed as i1 and i2 to the constructor C(int, int)

2. The construction of the non-virtual base B1 is requested using B1(18− 42)

3. The value of the argument 18− 42 is computed (initializer phase)

4. The computed value −24 is passed as i to the constructor B1(int)

5. B1 has no bases or �elds, so the body of its constructor is run

6. Then, back to C, the construction of the non-virtual base B2 is requested using B2(42− 18)

7. The value of the argument 42− 18 is computed (initializer phase)

8. The computed value 24 is passed as j to the constructor B2(int)

6

9. B2 has no bases or �elds, so the body of its constructor is run

10. Then, back to C, there are no more bases or �elds to construct, so the body of the cosnstructor
C is run

To construct a structure array �eld requires the construction of the object of each array cell, in
increasing index order.

3.1.2 Virtual inheritance

Consider the following class hierarchy:

struct A {};
struct B0 {};
struct B1: virtual A {};
struct B2: virtual A {};
struct C: B0, B1, B2 {}

If A were to be constructed as if it were a non-virtual base, following the above protocol, then A
would have been constructed twice. This is prevented by the C++ standard.
In fact, any virtual bases are constructed independently before any non-virtual part of the most-
derived object. For instance, in the hierarchy above, the A subobject within C is constructed even
before B0, even though B0 has no virtual base.
However, this is not precise enough. Indeed, consider the following hierarchy:

struct A {};
struct B0 {};
struct B1: virtual A {};
struct B2: virtual A {};
struct C: B0, virtual B1, virtual B2 {}

Then, A still has to be prevented from being constructed twice. However, A must be constructed
before B1 and B2 because A is a base of B1 and B2.
In fact, when constructing a most-derived object, all its virtual bases are listed in a certain order
≺VC guaranteeing that if a virtual base A of C is actually a virtual base of B, then A ≺VC B and A
is constructed before B.2

Then, to construct a most-derived object of type C, the standard mandates the following process:

• Construct the non-virtual parts of the virtual bases of C, following the order ≺VC

• Then construct the non-virtual part of the most-derived object

Then, constructing the non-virtual part of a subobject follows the protocol mentioned before as if
there were no virtual bases.
The order of construction of subobjects is summarized on Figure 1.

2The Standard prescribes such an order, called inheritance graph order. We shall see further down (48) that we
have modeled this order and we have proved that it meets this constraint.

7

D

V1 · · · VnV B1 · · ·BnDNV
f1[0]
: A1
· · ·f1[s1]

: A1

f2[0]
: A2

· · ·fnF [snF]
: AnF

direct
or indirect
virtual bases

direct
non-virtual

bases

data members
(�elds)

NV NV NV NV

full full
NV

Figure 1: A tree representation of the subobjects of a class, such that a depth-�rst left-to-right
traversal exactly yields the subobject construction order. Class D is assumed to have (direct or
indirect) virtual bases V1, . . . , VnV , direct non-virtual bases B1, . . . , BnDNV and structure array �elds
f1 : A1[s1], . . . fnF : AnF [snF]. The tree represented here is the �full� tree of all the subobjects of a
most-derived object of type D. The subtree inside the thick NV triangle represents the non-virtual
part of D, the only part considered for a D object that is a base-class subobject of another object,
thus excluding the virtual bases of D.

8

3.2 Destruction

Destruction of an object follows the only one principle: if two subobjects constructed in order,
then they are destructed in the exact reverse order. In more detail:

• the cells of an array of size n are destructed from cell n− 1 down to cell 0

• a most-derived object has its non-virtual part destructed �rst, before its virtual bases fol-
lowing the order �VC (reverse of ≺VC)

• to destruct the non-virtual part of an inheritance subobject: the destructor is run �rst, then
the �elds are destructed in the reverse declaration order, then the direct non-virtual bases
in the reverse declaration order.

4 Syntax of κ + +

The formal model presented in this paper aims at the essence of object construction and destruction
semantics. The language we consider features multiple inheritance (both shared and repeated),
virtual functions (a.k.a �methods�), nonstatic data members (a.k.a ��elds�) of any complete non-
abstract object type. For the sake of generality and simplicity, a nonstatic data member of type
"T" is modeled as a subobject of type "T[1]", e.g. an array of length 1. The expression language is
essentially a 3-address language. It supports objects with automatic storage duration, i.e. �stack
objects�. However, our semantics prohibits any explicit (or manual) object lifetime management.
In particular, no form of "new" or "delete" expressions is supported. These restrictions are not
as severe as they might sound. Indeed, by and large, the �resource acquisition is initialization�
technique involves essentially objects with automatic storage which follow a �stack discipline�.
Moreover, a large amount of high-level system programs written in C++ do not use "new" or
"delete".
Along with a class hierarchy, a program de�nes virtual functions (or methods), constructors and a
destructor for each class, each provided with some piece of code.
A virtual function comes with its argument types and its statement body. For the sake of simplicity,
virtual function calls return no value.
Function arguments and return values can be either values of builtin types (integers, �oats) or
pointers to objects: temporary objects for function arguments must be made explicit in our lan-
guage, and only pointers to structures may be passed. By the way, this allows for �xing the order
of construction of temporaries. However, functions returning structures are not allowed.
Each constructor comes with:

• the variable names of its arguments

• the initializers for direct non-virtual bases

• the initializers for �elds

• the initializers for all (direct or indirect) virtual bases, used only for the construction of a
most-derived object

For any class B, an initializer of a subobject of type B is a statement containing a call to a con-
structor of B with variables given as arguments. Such a statement allows for initializing variables

9

n ∈ N
op, . . . : Op Atomic operations
var , . . . : Var Variables
B,C, . . . : Class Classes
fname : Field Field names
mname : Method Method names

Stmt ::= var ′ := op(Var ∗) Atomic operation
| var ′ := var->Cfname Field read
| var->Cfname := var ′ Scalar �eld write
| var ′ := &var [var index]C Array cell access
| var ′ :=
dynamic_cast〈B〉C(var) Dynamic cast
| var ′ := var->Cmname(var ∗) Virtual function call
| var ′ :=
static_cast〈B〉C(var) Static cast
| Stmt1; Stmt2 Statement sequence
| if (var) Stmt> else Stmt⊥ Conditional
| loop Stmt Loop
| {Stmt} Statement block
| exit n Exit from n blocks
| return var ? Return from virtual function
| skip Do nothing
| {C var [size] = Complete object
{ObjInit∗}; Stmt} lifetime
| C(var ∗) Constructor call

(class initializer only)
| initScalar(var) Scalar �eld initialization

Figure 2: Syntax of the core language: statements

for constructor arguments, before handing over to the constructor. A scalar �eld of a class may
also have an initializer, then this initializer exits by giving, through the initScalar statement, the
variable used to initialize the �eld.
Our language only features stack objects declared in scope blocks. It allows no manual memory
management: no kind of new (neither for dynamic memory allocation, nor for construction at
an explicit memory location) or delete is provided. Indeed, the lifetime of such objects is more
di�cult to �t in a RAII (resource acquisition is initialization) model, as it does not necessarily
follow a stack discipline. Likewise, our language does not support explicit destructor calls.3

In our semantics, an initializer ends by handing over to a constructor. In this last step, it cannot
pass a reference to a temporary object. Indeed, such a temporary would have to be destructed
after returning from the constructor. Our semantics does not allow initializers to perform any
additional steps after calling the constructor.

3Thus, our formalization is agnostic on whether destructors should be virtual or not

10

ObjInit ::= C{Stmt} Class object initializer
FieldInit ::= fname{Stmt} Scalar �eld initializer

| fname{ObjInit∗} Structure �eld
initializers (one for
each array cell)

Init ::= ObjInit | FieldInit
Constr ::= C(var ∗) : Init∗{Stmt} Constructor
Destr ::= ∼ C(){Stmt} Destructor
MethodDef ::= virtual Virtual function

mname(var ∗){Stmt} (method)
FieldDef ::= scalar fname; Data member

| struct C[size] fname; (�eld)
Base ::= B | virtual B
ClassDef ::= struct C : Base∗

{FieldDef ∗ MethodDef ∗

Constr ∗ Destr} Class de�nition
Program ::= ClassDef ∗;

main(){Stmt} Program

Figure 3: Syntax of the core language: program

In Standard C++, there are only two cases for the initializers of a structure array �eld f :

• either f has only one cell

• or f has at least two cells, in which case the initializers only call the default constructor
(with no argument)

Our semantics widens the Standard C++ by allowing di�erent constructors to be called for each
cell.

5 Operational semantics

We formalized a small-step style semantics for C++ object construction and destruction, with a
continuation stack to precisely model each step of computation.

5.1 Construction states

Subobjects A constructor body (resp. a destructor) may use virtual functions of its class
or one of its bases, under the following principle: As long as the body of the constructor (resp.
destructor) is still running, the overriding of its virtual functions behaves as if the object being
constructed were the most-derived object.
In fact, initializers for �elds may also use the virtual functions of the object being constructed, as
well as their constructors (indirectly, when a pointer or a reference to the object being constructed

11

is used within the �eld constructor). Then, the virtual function overriding mechanism happens
�as if� �elds were constructed within the body of the constructor. However, virtual functions are
prevented from use as long as bases have not been constructed.
To formalize this ability, we introduce the notion of the construction state of a subobject. However,
this notion has to be interpreted in two di�erent ways, depending on whether the considered object
is a most-derived object or an inheritance subobject.
For a most-derived object:

• Unconstructed: Construction has not started yet

• StartedConstructing: The construction of inheritance bases has started, but not the �elds

• BasesConstructed: The bases are wholly constructed. Now starting the construction of �elds,
and the constructor body.

• Constructed: The constructor body has left, and the destruction body has not yet entered

• StartedDestructing: The destructor body has entered, and the �elds are being destructed

• DestructingBases: The �elds have been wholly destructed. Bases are being destructed

• Destructed: All bases and �elds have been destructed

For other inheritance subobjects:

• Unconstructed: Construction of the non-virtual part has not started yet (virtual bases may
have been already constructed)

• StartedConstructing: The construction of non-virtual inheritance bases has started, but not
the �elds

• BasesConstructed: The bases are wholly constructed. Now starting the construction of �elds,
and the constructor body.

• Constructed: The constructor body has left, and the destruction body has not yet entered

• StartedDestructing: The destructor body has entered, and the �elds are being destructed

• DestructingBases: The �elds have been wholly destructed. Non-virtual bases are being de-
structed

• Destructed: All �elds and non-virtual bases have been destructed

In other words, for an inheritance subobject di�erent from the most-derived object, the construc-
tion state is only relative to its non-virtual part. This is due to the fact that virtual bases are
constructed separately from non-virtual bases: a (virtual or non-virtual) base may have been
destructed before its virtual bases.
Then, the lifetime of an object can be de�ned as the time interval when its construction state
is exactly Constructed. However, virtual functions may already be used as soon as the construc-
tion state is at least BasesConstructed, and strictly before DestructingBases. In that case, for the
purpose of function overriding, the object is considered as the most-derived object as long as the
construction state is not Constructed.
Consider the following example:

12

struct A {virtual void f ();};
struct B1: virtual A {};
struct B2: virtual A {virtual void f ();};
struct C: B1, B2 {}

Consider an instance of C. Then, during the execution of the constructor body of its base B2, the
corresponding B2 subobject is BasesConstructed, and the virtual function f can be executed from
within the constructor body of B2.

De�nition 9. We de�ne a successor function4 S on construction states, such that:

Unconstructed
S7→ StartedConstructing

S7→ BasesConstructed
S7→ Constructed

S7→ StartedDestructing
S7→ DestructingBases

S7→ Destructed

Then, we de�ne an order < on construction states, namely the smallest transitive relation such
that c < S(c) .

Fields Similarly, a �eld can be accessed only if it has been constructed.
We also de�ne the construction state of a scalar �eld to be one of the following:

• Unconstructed: the �eld has not yet been constructed, it cannot be accessed yet

• Constructed: the �eld has been constructed, its value initialized

• Destructed: the �eld has been destructed, it can no longer be accessed

Similarly, for a structure �eld:

• Unconstructed: the �eld has not yet been constructed, it cannot be accessed yet

• StartedConstructing: the cells of the array are under construction

• Constructed: all cells of the array are constructed

• StartedDestructing: the cells of the array are under destruction

• Destructed: all cells of the array are destructed

The di�erences are that:

• when executing the initializer for a scalar �eld, it cannot be accessed until given its �nal
value, so it is still considered Unconstructed; however, for a structure array �eld, as di�er-
ent initializers are used for the di�erent cells of the array, the �rst cell may be accessed
from within the initializer of subsequent cells, so there is an observational di�erence with
Unconstructed which really intends that no subobject of the �eld has started its construction.

• when destructing a scalar �eld, the semantics allows no speci�c code to run (a scalar type
has no destructor).

4This function is partial, as it is unde�ned for Destructed

13

5.2 Values

Notation 3. We denote ValA the set of values of builtin types (integers, �oating-point numbers,
booleans, etc.) We denote Loc the set of the locations of complete objects, and Ptr the set of
generalized subobjects. Then,

Val = ValA ∪ Ptr

is the set of values.

5.3 Execution state

An execution state of the small-step semantics is the combination of the following parts:

• the kind of the state : code point, or list of objects about to be constructed or destructed

• the continuation stack modeling the resumption points on the return from a function, or on
the completion of the construction or destruction of a subobject

• the store, giving, for each location of a complete object, its class type and array size

• the scalar �eld values

• the construction states of subobjects and �elds

• the list of deallocated objects

For presentation convenience, the store, the scalar �eld values, the construction states and the list
of deallocated objects are grouped into a common global state, so that a state is written as a triple
(S,K,G) where S is the kind, K the continuation stack, and G the global state grouping the store,
the scalar �eld values, and the construction states.

14

Read Write

Complete object λ is
not allocated yet

⊥ = G.Store N/A

Class type C and ar-
ray size n of a com-
plete object λ

(C, n) = G.Store(λ) G[Store(λ)← (C, n)]

Value v of the scalar
�eld f of subobject π

v = G.FieldValue(π, f) G[FieldValue(π, f)← v]

Scalar �eld f of sub-
object π is not as-
signed

⊥ = G.FieldValue(π, f) G[FieldValue(π, f)← ⊥]

Construction state c
of a subobject π

c = G.ConstrState(π) G[ConstrState(π)← c]

Construction state c
of the �eld f of a sub-
object π

c = G.ConstrStateF(π, f) G[ConstrStateF(π, f)← c]

List of deallocated ob-
jects

l = G.dealloc G[dealloc← l]

Notation 4. Throughout this document, we may also use an alternate notation to read a com-
ponent of a state s = (S,K,G): we denote ConstrStates(π) = G.ConstrState(π), and similarly for
other components of G.

Once a complete object is given its class type and array size, such data remains in the store forever,
to allow reasoning about the construction states of the subobjects even when they are destructed.
Thus, the store alone does not say anything about deallocated objects. This is the purpose of
providing the state with the list of deallocated objects, so that an object λ is allocated if, and only
if, its location λ is de�ned in the store, and is not in the list of deallocated objects.

De�nition 10. (Object lifetime) The lifetime of an object (λ, p) is the set of all states (S,K,G)
such that G.ConstrState(λ, p) = Constructed.

This notion of lifetime is consistent with the Standard, except for arrays: the (C++03) Standard
considers the lifetime of an array to start at allocation and end at deallocation, regardless of
the construction and destruction process. Actually, our notion of construction state only covers
subobjects with a certain static type, not whole arrays. However, this notion may be �xed in an
upcoming C++ Standard to match the array lifetime with the lifetime of its last cell.

Notation 5. We denote:
G ` (λ, p) : B

to mean that p is a generalized subobject of the complete object λ, and the static type of p is B.
More formally:

G.Store(λ) = (C, n) C[n] −〈p〉→ B

G ` (λ, p) : B

15

S ::= Codepoint(Stmt1, Stmt∗,Env ,Block ∗)
Executing statement Stmt1 followed by the list of state-
ments stmt∗, under variable environment Env . Block ∗

is the list of all blocks enclosing the current statement
(cf. infra)

| Constr(π, ItemKind , κ, L,Env)
About to construct the list L of the bases or �elds of
the subobject π. Initializers are to be looked for using
constructor κ, and they operate on the variable environ-
ment Env to pass arguments to their constructors.

| ConstrArray(λ, α, n, i, C,ObjInit∗,Env)
About to construct cells i to n − 1 of type C, of the
array α from the complete object λ, using the initializ-
ers ObjInit∗ to initialize the cells, and Env as variable
environment to execute the initializers.

| Destr(π, ItemKind , L)
About to destruct the list L of bases or �elds of the
subobject π.

| DestrArray(λ, α, i, C)
About to destruct cells i down to 0 of type C, of the
array α from the complete object λ

.

Figure 4: Execution state kind. Cf. auxiliaries Figure 5

5.3.1 Kind

The kind of a state can be of one of the following (Figure 4):

• Executing a statement. This kind also indicates whether the statement is included in a
statement block.

• About to construct a list of (virtual or direct non-virtual) bases, or �elds

• About to construct an array cell and all its next neighbors

• About to destruct a list of (virtual or direct non-virtual) bases, or �elds

• About to destruct an array cell and all its previous neighbors

5.3.2 Continuation stack

A state features a continuation stack to model the pending operations that are to be resumed on
the return from a function, or on the completion of the construction or destruction of a subobject.
Each element of this stack, or stack frame (Figure 6), represents a resumption point. Such a frame
can be:

16

ItemKind ::= Bases(BaseKind) Construct (or destruct) bases
| Fields Construct (or destruct) �elds

BaseKind ::= DirectNonVirtual Construct (or destruct) direct
non-virtual bases

| Virtual Construct (or destruct) virtual
bases

Block ::= (λ?, Stmt∗)

A block: the automatic object to
destruct at block exit, if any, and
the remaining statements to exe-
cute after exiting from the block

Figure 5: Execution state kind: auxiliaries

• remaining statements to execute after returning from a function call

• remaining subobjects to construct/destruct

• pending constructor call after returning from the initializer

5.4 Initial and �nal states

Consider a program of the form

ClassDef ∗; main(){Stmt}

Then:

De�nition 11. The initial state is:

(Codepoint(Stmt , ε,∅, ε), ε,G◦)

where:

∀λ : G◦.Store(λ) = ⊥

∀π : G◦.ConstrState(π) = Unconstructed

∀π, f : G◦.ConstrStateF(π, f) = Unconstructed

∀π, f : G◦.FieldValues(π, f) = ⊥

G◦.dealloc = ε

That is, running the main statement with no allocated object at all.

17

K ::= Kcode
| Kconstruction

(cf. Figure 7)
| Kdestruction

(cf. Figure 8)

Kcode ::= Kcontinue(λ, Stmt1,Env , Stmt∗2,Block ∗)
After the construction of a complete object λ, enter the
block and execute statement Stmt1, then, after exiting
the block, execute statements Stmt∗2 enclosed by other
blocks Blocks∗, under variable environment Env . Also
used when destructing λ on block exit, with Stmt1 the
corresponding exit statement, and Stmt∗2 the pending
statements of the enclosing block, once the block is ex-
ited.

| Kretcall(res?,Env , Stmt∗,Block ∗)
On returning from a virtual function call, update the en-
vironment Env by storing the result (if any) in variable
res?, then continue the caller execution with the further
statements Stmt∗ enclosed by other blocks Blocks∗.

Figure 6: Continuation stack frames for small-step semantics: code (see also Figure 7, Figure 8)

18

Kconstruction ::= Kconstr(π, ItemKind , B, L, κ)
Used during the execution of a base or scalar �eld ini-
tializer. When it returns, it will give the constructor
to construct the base B of subobject π, then the other
items L of π will have to be constructed, using construc-
tor κ to retrieve their initializers.

| Kconstrother(π, ItemKind , B, L, κ,Env)
Used during the construction of the base or �eld B of
subobject π. When the constructor body returns, then
the other bases or �elds L of π will have to be con-
structed, using constructor κ to retrieve their initializ-
ers.

| Kconstrarray(λ, α, n, i, C,ObjInit∗)
Used during the execution of an initializer for a most-
derived object of class type C. When it returns, it will
give the constructor to construct the most-derived ob-
ject at the cell i of the array α of the complete object λ.
Then, the other cells from i+1 to n−1 will remain to be
constructed, ObjInit∗ giving the corresponding initializ-
ers.

| Kconstrothercells(λ, α, n, i, C,ObjInit∗,Env)
Used during the construction of the most-derived object
of class type C at the cell i of the array α of the com-
plete object λ. When the constructor body returns, the
other cells from i + 1 to n − 1 will remain to be con-
structed, ObjInit∗ giving the corresponding initializers
to run under the variable environment Env .

Figure 7: Continuation stack frames for small-step semantics: construction

Kdestruction ::= Kdestr(π)
The body of the destructor for subobject π is running.
When it returns, the destruction of the �elds and direct
non-virtual bases of π will start.

| Kdestrother(π, ItemKind , f, L)
Used during the destruction of a base or �eld B of π.
When destruction of B is complete, then the other bases
or �elds L will have to be destructed

| Kdestrcell(λ, α, i, C)
Used during the destruction of the non-virtual part of
the most-derived object of class type C at the cell i of the
array α of the complete object λ. When the destruction
is complete, the virtual bases of this most-derived object
will have to be destructed, before the other cells from
i− 1 down to 0.

Figure 8: Continuation stack frames for small-step semantics: destruction

19

De�nition 12. A state (S,K,G) is �nal with return value i if, and only if, all the following
conditions hold:

S = Codepoint(return var , L,Env , ε)

Env(var) = i ∈ Z

K = ε

That is, the main statement returns with an integer, after having exited from all blocks.

Note that this de�nition does not a priori prevent from having some undestructed objects in the
global state G of a �nal state. However, we shall prove that this is not possible (if there is no free
store): such a state would not be reachable from an initial state.

5.5 Semantic rules

The small-step semantics of κ + + is given by the transition relation → between two transition
states, de�ned in this section.

5.5.1 Statements

Hypothesis 1. The set of values of builtin types V alA is assumed to contain:

• a subset of Z to model array cell indexes

• the Boolean values true and false

In an execution state of kind Codepoint(stmt , L,Env ,B), stmt is the statement to run, and L is
a pipeline of pending statements within the same block (while B represents the list of pending
enclosing blocks). However, the pipeline is not guaranteed to be executed, in particular if the
statement is exit or return.

Structured control The semantics of conditionals depends on the value of its condition variable:

Env(var) = b ∈ {true, false}
(Codepoint(if(var) stmttrue else stmtfalse , L,Env ,B), K, G)

→ (Codepoint(stmtb , L,Env ,B) , K, G)

(RULE-if)

The sequence stmt1; stmt2 runs stmt1, feeding stmt2 into the pipeline.

(Codepoint(stmt1; stmt2 , L,Env ,B) , K, G)
→ (Codepoint(stmt1 , stmt2 :: L,Env ,B), K, G)

(RULE-seq)

The pipeline can be forced by skip:

(Codepoint(skip , stmt :: L,Env ,B), K, G)
→ (Codepoint(stmt , L,Env ,B) , K, G)

(RULE-skip-cons)

The semantics of a loop is de�ned by a duplication:

20

(Codepoint(loop stmt , L,Env ,B) , K, G)
→ (Codepoint(stmt , loop stmt :: L,Env ,B), K, G)

(RULE-loop)

The loop is in�nite. To break a loop, it is necessary to enclose it in a block. In this section, we
�rst de�ne the semantics of the blocks that do not de�ne stack objects. Entering such a block
embeds the pipeline into a new enclosing block added to B with no stack object.

(Codepoint({stmt} , L,Env ,B) , K, G)
→ (Codepoint(stmt , ε,Env , (∅, L) :: B), K, G)

(RULE-block-no-obj)

exit n exits from n blocks. We �rst de�ne the semantics of exiting from blocks with no stack
objects.

(Codepoint(exit 0 , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ,B) , K, G)

(RULE-exit-0)

(Codepoint(exit (S n) , L,Env , (∅, L′) :: B), K, G)
→ (Codepoint(exit n, L′,Env ,B) , K, G)

(RULE-exit-S)

If there are no more instructions to execute in the block, then the following rule requests automatic
exit from the block:

(Codepoint(skip , ε,Env ,B) , K, G)
→ (Codepoint(exit 1 , ε,Env ,B), K, G)

(RULE-skip-nil)

This rule implies that if there are no more instructions to execute at the highest level of the
function, i.e. B = ε, then the semantics gets stuck. So, in such cases, the user is mandated to
explicitly provide a return statement.
We shall see blocks with stack objects in the next section.

Operations on values of builtin types

Notation 6. For each atomic operation op ∈ Op, we assume there exists a set Φop ⊆ list(V alA)×
V alA relating operation arguments with the result (which need not exist, nor be unique)

Then, the atomic operation is modeled as follows:

∀i,Env(vari) = vi Φop(v1 :: · · · :: vn :: ε, res) Env ′ = Env [var ′ ← res]

(Codepoint(var′ := op(var1, . . . , varn) , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-atom)

21

Field and array accesses Reading a scalar �eld is modelled as follows:

Env(var) = π G ` π : C
f = (fid , (Sc, t)) ∈ F(C) G.FieldValues(π, f) = res Env ′ = Env [var ′ ← res]

(Codepoint(var′ := var->Cf , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-�eld-scalar-read)
Likewise, writing to a scalar �eld is modelled as follows:

Env(var) = π G ` π : C f = (fid , (Sc, t)) ∈ F(C)
G.ConstrStateF(π, f) = Constructed Env(var ′) = res G ′ = G[FieldValues(π, f)← res]

(Codepoint(var->Cf := var′ , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ,B) , K, G ′)

(RULE-�eld-scalar-write)
Conformingly to the C++ Standard, our formalization forbids writing data to a scalar �eld that
is not Constructed. However, such restrictions are not needed when reading: we can prove that if
a �eld has a value, then it is necessarily Constructed.
Accessing a structure �eld actually makes a pointer to its �rst cell, so it is only "pointer adjustment"
without actually reading any value. So, as there is no �dereferencing�, no constraint on construction
states is needed. However, the complete object must not be deallocated.

Env(var) = π = (λ, (α, i, σ)) λ 6∈ G.dealloc G ` π : C f = (fid , (St, B, n)) ∈ F(C)
Env ′ = Env [var ′ ← (λ, (α q−(i, σ, f) :: ε, 0, (Repeated, B :: ε)))]

(Codepoint(var′ := var->Cf , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-�eld-struct-point)
Accessing an array cell is only valid on a reference to a most-derived object. Then, again, it is a
mere �pointer adjustment� without actually reading any value, so no constraint on construction
states is needed. However, the complete object must not be deallocated.

Env(var) = π = (λ, (α, j, (Repeated, C :: ε))) λ 6∈ G.dealloc
G.Store(λ) = (C ′, n′) C ′[n′] −〈α〉A→ C[n] 0 ≤ j < n Env(vari) = i ∈ Z

0 ≤ j + i < n Env ′ = Env [var ′ ← (λ, (α, j + i, (Repeated, C :: ε)))]

(Codepoint(var′ := var[vari]C , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-array-point)

Static cast First, we recall the rules of static cast from B to B′ (cf. Wasserrab, Nipkow et al.),
denoting StatCast(σ, σ′) when the cast on inheritance subobject σ succeeds with σ′ as the result.

B −〈σ′′〉I→ B′ σ′′ unique

StatCast(σ,B,B′, σ@σ′′)
(RULE-statcast-derived-to-base)

B′ −〈(Repeated, B′ :: l)〉I→ B (Repeated, B′ :: l) unique

StatCast((h, l′ q−l), B,B′, (h, l′))
(RULE-statcast-base-to-derived-non-virtual)

22

Then, to reach a base through static cast, the class must have all its bases constructed (construction
state between BasesConstructed, and StartedDestructing). From the implementation point of view,
it is necessary for the class to know where its bases, in particular its virtual bases, are located,
which justi�es the requirement on the bases being constructed.

Env(var) = π = (λ, (α, i, σ))
BasesConstructed ≤ G.ConstrState(π) ≤ StartedDestructing G.Heap(λ) = (D,n)

D[n] −〈(λ, i, σ)〉→ B StatCast(σ,B,B′, σ′) Env ′ = Env [var ′ ← σ′]

(Codepoint(var′ := static_cast〈B′〉B(var) , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-statcast)

Virtual function call: the dynamic type of a subobject A program is allowed to use
virtual functions on a subobject π and all of its bases, in two cases:

• during the lifetime of its most-derived object

• during the execution of the constructor body (or �eld initializers), or the destructor of π.

But the behaviour of virtual function resolution is not the same in the two cases. Indeed, during
construction, the subobject for which the constructor body is running is considered as if it were
the most-derived object for the purpose of virtual function resolution. This leads us to de�ne the
notion of generalized dynamic type, to designate such a subobject, as an extension to the Standard
notion of dynamic type (which designates the most-derived object for any subobject, during the
lifetime of the most-derived object).
In our formalization, a subobject is running its constructor (resp. destructor) body if its con-
struction state is BasesConstructed (resp. StartedDestructing). So, more formally, we introduce
the predicate G ` gDynType(λ, α, i, σ, C◦, σ◦, σ

′) to denote that the generalized dynamic type of
(λ, (α, i, σ)) is σ◦, which is of static type C◦, and σ

′ is an inheritance subobject of C◦ such that
σ = σ◦@σ

′.

G.Heap(λ) = (D,n)

D[n] −〈α〉A→ C[m] −〈(i, σ)〉CI→ B G.ConstrState(λ, (α, i, (Repeated, C :: ε))) = Constructed

G ` gDynType(λ, α, i, σ, C, (Repeated, C :: ε), σ)
(RULE-dyntype-constructed)

G.Heap(λ) = (D,n) D[n] −〈α〉A→ C[m] −〈(i, σ◦)〉
CI→ C◦ G.ConstrState(λ, (α, i, σ◦)) = c

c = BasesConstructed ∨ c = StartedDestructing C◦ −〈σ′〉
I→ B σ = σ◦@σ

′

G ` gDynType(λ, α, i, σ, C◦, σ◦, σ′)
(RULE-dyntype-pending)

Then, following Wasserrab et al., we denote VFDispatch(C◦, σ
′, f, B′′, σ′′) to say that, if the most-

derived object is considered to be of type C◦, then selecting the dispatch subobject for method f
from an inheritance subobject σ′ of C◦ yields the actual subobject σ

′′ of C◦, as follows (Figure 9):

• statically choose the static resolving subobject σf declaring f (from the static type of σ′)

• then choose the �nal overrider for the method. The �nal overrider is the inheritance subob-
ject σ′′ of C◦ nearest to C◦ along the path σ′@σf .

23

B −〈σf〉
I→ Bf 3method f ∀σ2, B2 :

B −〈σ2〉
I→ B2 3method f ⇒

∃σ4 : Bf −〈σ4〉
I→ σ2 ∧ σ2 = σf@σ4

staticDispatch(B, f,Bf , σf)
(RULE-static-dispatch)

C◦ −〈σ′〉
I→ B staticDispatch(B, f,Bf , σf) C◦ −〈σ′′〉

I→ B′′ 3method f B′′ −〈σ′′f 〉
I→ Bf

σ′@σf = σ′′@σ′′f ∀σ2, σ4, B2 : C◦ −〈σ2〉
I→ B2 −〈σ4〉

I→ B′′ ∧B2 3method f ⇒
B′′ = B2

�nalOverrider(C◦, σ
′, f, B′′, σ′′)

(RULE-�nal-overrider)

�nalOverrider(C◦, σ
′, f, B′′, σ′′) (B′′, σ′′) unique

VFDispatch(C◦, σ
′, f, B′′, σ′′)

(RULE-virtual-dispatch)

Figure 9: Semantics of virtual function call a la Wasserrab, starting from an inheritance subobject
σ′ of a most-derived object of type C◦. We denote B 3method f the fact that B declares the virtual
function f .

Env(var) = (λ, (α, i, σ)) G ` gDynType(λ, α, i, σ, C◦, σ◦, σ′)
VFDispatch(C◦, σ

′, f, B′′, σ′′) B′′.f = f(varg1, . . . , vargn){body}
∀j,Env(var j) = vj Env ′ = ∅[varg1 ← v1] . . . [vargn ← vn][this← (λ, (α, i, σ◦@σ

′′))]

(Codepoint(var->Bf(var 1 . . . varn), L,Env ,B), K, G)
→ (Codepoint(body , ε,Env ′, ε) , Kretcall(var , L,Env ,B) :: K, G)

(RULE-virtual-funcall)

Figure 10: Virtual function call

Finally, we combine our notion of generalized dynamic type with the virtual function dispatch by
Wasserrab et al. to obtain our rule for virtual function call:

1. determine the generalized dynamic type σ◦ of (λ, (α, i, σ)) ; denote C◦ the type of σ◦, and
let σ′ such that σ = σ◦@σ

′

2. dispatch the virtual function assuming that the most-derived object is of type C◦ ; denote
σ′′ the resulting inheritance subobject of C◦

3. �nally the selected subobject is (λ, (α, i, σ◦@σ
′′)), adjust the this pointer to this subobject

and call f on it.

We currently do not handle pure virtual functions, or unimplemented virtual functions.
Then, once all blocks have been exited, returning from a virtual function call is modelled as
follows:

Env(var) = v Env ′′ = Env ′[res ← v]

(Codepoint(return var , L,Env , ε), Kretcall(res ,Env ′, L′,B) :: K, G)
→ (Codepoint(skip, L′,Env ′′,B) , K, G)

(RULE-return-arg)

24

(Codepoint(return, L,Env , ε), Kretcall(∅,Env ′, L′,B) :: K, G)
→ (Codepoint(skip, L′,Env ′,B) , K, G)

(RULE-return-no-arg)

returning from within a block with no stack objects �rst dismisses this block:

(Codepoint(return var ?, L,Env , (∅, L′) :: B), K, G)
→ (Codepoint(return var ?, L′,Env ,B) , K, G)

(RULE-return-block-no-obj)

Dynamic cast The behaviour of dynamic cast also makes such a distinction on the object that
is considered as the most-derived object, "origin" of dynamic cast. So its semantics also makes
use of the generalized dynamic type of the subobject.
First, we recall the rules of dynamic cast from B to B′ (inspired fromWasserrab et Nipkow) applied
to an inheritance subobject σ of C of static type B, considering that the most-derived object is of
type C. We denote DynCast(C, σ,B,B′) = σ′ if dynamic cast succeeds, and NULL if it fails. There
are four rules:

C −〈σ〉I→ B −〈σ′′〉I→ B′ σ′′ unique

DynCast(C, σ,B,B′) = σ@σ′′
(RULE-dyncast-derived-to-base)

C −〈(h, l′)〉I→ B′ −〈(Repeated, B′ :: l)〉I→ B

DynCast(C, (h, l′ q−l), B,B′) = (h, l′)
(RULE-dyncast-base-to-derived-non-virtual)

C −〈σ〉I→ B C −〈σ′〉I→ B′ σ′ unique

DynCast(C, σ,B,B′) = σ′
(RULE-dyncast-crosscast)

C −〈σ〉I→ B 6 ∃!σ′′ : B −〈σ′′〉I→ B′

6 ∃!σ′ : C −〈σ′〉I→ B′ 6 ∃h, l′, l :

{
σ = (h, l′ q−l)
C −〈(h, l′)〉I→ B′ −〈(Repeated, B′ :: l)〉I→ B

DynCast(C, σ,B,B′) = NULL
(RULE-dyncast-fail)

Then, the dynamic cast language operation �rst obtains the generalized dynamic type of the
subobject, then performs the cast under this object considered as a most-derived object.

Env(var) = (λ, (α, i, σ1)) G.Heap(λ) = (D,n)
D[n] −〈(λ, i, σ1)〉→ B G ` gDynType(λ, α, i, σ1, C, σ◦, σ) DynCast(C, σ,B,B′) = s
s′ = match s with σ′ 7→ (λ, (α, i, σ◦@σ

′)) | NULL 7→ NULL end Env ′ = Env [var ′ ← s′]

(Codepoint(var′ := dynamic_cast〈B′〉B(var) , L,Env ,B), K, G)
→ (Codepoint(skip , L,Env ′,B) , K, G)

(RULE-dyncast)

25

5.5.2 Construction

De�nition 13. Let C be a class, and n ∈ N∗. A complete object of type C is an array of structures
explicitly declared in a program block, by a C++ language construct of the form:

{C c[n] = {ObjInit∗}; Stmt1}

The notion of complete object must not be confused with that of most-derived object. Indeed, a
most-derived object is an object that cannot be cast to a derived class, but it can be a cell of an
array �eld contained in another object. Actually, any most-derived object is a cell of an array �eld
corresponding either to a complete object, or to an object �eld.
We shall see that, even though stmt may return, the destruction of the created block-scoped object
is still ensured.
Consider entering a block de�ning a complete object:

{C var[n] = {inits}; stmt}
Then, a new object is allocated in the store, and the construction of the array path ε starts.
The current code point is not yet saved into the list of enclosing blocks, but is still pending in a
continuation frame specifying that a block is to be entered.

λ 6∈ dom(G.Store)
G ′ = G[Store(λ)← (C, n)] Env ′ = Env [c← Ptr(λ, ε, (Repeated, C :: ε))]

(Codepoint({C c[n] = {ι}; st}, St ,Env ,Bl), K, G)
→ (ConstrArray(λ, ε, n, 0, C, ι,Env ′) , Kcontinue(st ,Env ′, St ,Bl) :: K, G ′)

(RULE-block-obj)
So, when the last cell has been constructed, then the execution resumes, entering a new block (with
the detail that the variable environment during array construction supersedes the environment in
continuation, as cell initializers may have modi�ed some variables):

(ConstrArray(λ, ε, n, n, C, ι,Env ′) , Kcontinue(st ,Env , St ,Bl) :: K, G)
→ (Codepoint(st , ε,Env ′, ({λ}, St) :: Bl), K, G)

(RULE-constr-array-nil-kcontinue)

Most-derived object Consider a cell i < n of class type C of array α of size n from a complete
object λ. Then, the corresponding initializer is being run, to choose the right constructor for the
cell, which is put in a pending state:

i < n st = ι(i)

(ConstrArray(λ, α, n, i, C, ι,Env), K, G)
→ (Codepoint(st , ε,Env , ε) , Kconstrarray(λ, α, n, i, C, ι) :: K, G)

(RULE-constr-array-cons)
Then, the initializer hands over to a constructor when there are no pending blocks while run-
ning the initializer. In particular, any object created within the initializer has to be destructed
before handing over to the constructor. Thus, no reference to a temporary object can be passed to
the constructor. Indeed, such a temporary would have to be destructed after returning from the
constructor. Our language does not allow initializers to perform any additional steps after calling
the constructor.

26

So, when the initializer hands over to a constructor to construct an array cell, the arguments
are passed to the constructor, forming a new variable environment. Then the construction of a
most-derived object starts with the (direct or indirect) virtual bases (assuming the existence of a
list VO(C) of all the virtual bases of a class C, such that, if A and B are virtual bases of C such
that A is a virtual base of B, then A appears before B in VO(C)):

π = (λ, (α, i, (Repeated, C :: ε)))
L = VO(C) G ′ = G[ConstrState(π)← StartedConstructing]

vars = var 0, . . . , var j κ = C(arg0, . . . , arg j) : . . . {. . . }
∀i,Env(var i) = vi Env ′ = ∅[arg0 ← v0] . . . [arg j ← vj][this← Ptr(π)]

(Codepoint(Cκ(vars), l ,Env , ε) , Kconstrarray(λ, α, n, i, C, ι) :: K, G)
→ (Constr(π,Bases(Virtual), L, κ,Env ′), Kconstrothercells(λ, α, n, i, C, ι,Env) :: K, G ′)

(RULE-constructor-kconstrarray)
Then, when all virtual bases are done constructing, the construction of the non-virtual part of the
object starts, beginning with direct non-virtual bases.

π = (λ, (α, i, (h, l))) last(l) = C L = DNV(C)

(Constr(π,Bases(Virtual), ε, κ,Env) , K, G)
→ (Constr(π,Bases(DirectNonVirtual), L, κ,Env), K, G)

(RULE-constr-bases-virtual-nil)

For the above rule, the semantics does not a priori require that π be a most-derived object when
constructing the virtual bases. But in fact, we prove it as a run-time invariant.

Non-virtual part of a subobject For any subobject (that is, not necessarily a most-derived
object), after constructing all its direct non-virtual bases, then its �elds are being constructed,
marking the subobject as BasesConstructed to allow using virtual functions:

π = (λ, (α, i, (h, l)))
last(l) = C L = F(C) G ′ = G[ConstrState(π)← BasesConstructed]

(Constr(π,Bases(DirectNonVirtual), ε, κ,Env), K, G)
→ (Constr(π,Fields, L, κ,Env) , K, G ′)

(RULE-constr-bases-direct-non-virtual-nil)
Finally, when all �elds have been constructed, the body of the constructor is entered:

κ = C(. . .){body}
(Constr(π,Fields, ε, κ,Env), K, G)

→ (Codepoint(body , ε,Env , ε) , K, G)

(RULE-constr-�elds-nil)

What happens on constructor exit (at a return) depends on the �rst continuation stack frame, and
shall be discussed later.
Now let us see in more detail what happens when constructing a virtual base, a direct (or indirect)
non-virtual base, or a �eld.

Base or scalar �eld For all cases except structure �elds, starting the construction of such a
component c �rst runs the corresponding initializer:

27

β = Fields⇒ scalar c κ = C(. . .) : . . . , c{init}, . . . {. . . }
(Constr(π, β, c :: L, κ,Env), K, G)

→ (Codepoint(init , ε,Env , ε) , Kconstr(π, β, c, L, κ) :: K, G)

(RULE-constr-cons)

Then, there are two cases.
First, if c is a scalar �eld, then the initializer returns by giving, through init(var), the variable
var to be used as the initial value of the �eld. But again, all blocks must have been exited
before, no temporaries are allowed to survive to the handover. The given value constructs the
�eld, then other �elds are to be constructed.

scalar f Env(var) = v G ′ = G[FieldValue(π, f)← v][ConstrStateF(π, f)← Constructed]

(Codepoint(init(var), sl ,Env , ε), Kconstr(π,Fields, f, L, κ) :: K, G)
→ (Constr(π′,Fields, L′,Env) , K, G ′)

(RULE-initscalar)
The second case is if c is a base, that is a (direct or indirect) virtual base, or a direct non-
virtual base, then the initializer shall exit through handing over to a constructor, again only with
no pending blocks (any temporary object has to be destructed before handing over to the
constructor). On such an exit, arguments are passed to the constructor (marking the actual start
of the construction of the base, thus its construction state changes), then the construction of the
non-virtual part of the base starts, beginning with its direct non-virtual bases.
The rule below applies for both virtual and direct non-virtual bases, the only di�erence between
the two is the computation of the path of the base.

AddBase((λ, (α, i, (h, l))), β, B) = match β with

| DirectNonVirtual ⇒ (λ, (α, i, (h, l q−B :: ε)))
| Virtual ⇒ (λ, (α, i, (Shared, B :: ε)))
end

(RULE-addbase)
π′ = AddBase(π, β,B) κ′ = B(arg0, . . . , arg j) : . . . {. . . } vars = var 0, . . . , var j

∀i,Env(var i) = vi Env ′ = ∅[arg0 ← v0] . . . [arg j ← vj][this← Ptr(π′)]
G ′ = G[ConstrState(π′)← StartedConstructing]

(Codepoint(Bκ′(vars), sl ,Env , ε) , Kconstr(π,Bases(β), B, L, κ) :: K, G)
→ (Constr(π′,Bases(DirectNonVirtual), L′,Env ′), Kconstrother(π,Bases(β), B, L, κ,Env) :: K, G ′)

(RULE-constructor-kconstr-base)
Again, for a virtual base, the rule does not explicitly require that the object π be most-derived:
we prove it as a run-time invariant.
Then, the construction of the bases goes on, until the constructor body exits through a return():
in that case, the base becomes wholly Constructed, and the construction of other sibling bases goes
on.

π′ = AddBase(π, β,B) G ′ = G[ConstrState(π′)← Constructed]

(Codepoint(return(), ε,Env , ε) , Kconstrother(π,Bases(β), B, L, κ,Env) :: K, G)
→ (Constr(π,Bases(β), L, κ,Env), K, G ′)

(RULE-return-kconstrother-bases)

28

A particular case: scalar �elds with no initializer In real-world C++, a scalar �eld may
be left uninitialized though declared constructed, if no initializer is speci�ed in the constructor.
The following rule allows such a behaviour.

κ has no initializer for c c is scalar G ′ = G[ConstrStatesF(π, f)← Constructed]

(Constr(π,Fields, c :: L, κ,Env), K, G)
→ (Constr(π,Fields, L, κ,Env) , K, G ′)

(RULE-constr-cons-�eld-scalar-no-init)

Structure �elds The construction of a structure �eld is equivalent to the construction of its
array. Contrary to bases, running initializers is part of the construction of the �eld, so that the
construction state of the �eld changes before the �rst initializer starts running.

π = (λ, (α, i, σ)) struct B[n] f
κ = C(. . .) : . . . , f{inits}, . . . {. . . } G ′ = G[ConstrStateF(π, f)← StartedConstructing]

(Constr(π,Fields, f :: L, κ,Env) , K, G)
→ (ConstrArray(λ, α q−(i, σ, f) :: ε, n, 0, B, inits ,Env), Kconstrother(π,Fields, f, L, κ,Env) :: K, G ′)

(RULE-constr-cons-�eld-struct)
Then, when the last cell of the array is constructed, then the �eld is considered wholly Constructed,
and the construction of other remaining �elds goes on, with the variable environment at the end
of structure array construction superseding the old one.

G ′ = G[ConstrStateF(π, f)← Constructed]

(ConstrArray(λ′, α′, n, n,B, inits ,Env ′), Kconstrother(π,Fields, f, L, κ,Env) :: K, G)
→ (Constr(π,Fields, L, κ,Env ′) , K, G ′)

(RULE-constr-array-nil-kconstrother)

End of the construction of a most-derived object When the body of a most-derived object
returns, the �rst continuation stack frame requests the construction of the further remaining sibling
cells of this most-derived object. At that point, the most-derived object becomes Constructed.

G ′ = G[ConstrState(λ, (α, i, (Repeated, C :: ε)))← Constructed]

(Codepoint(return(), l ,E ′, ε) , Kconstrothercells(λ, α, n, i, C, ι,Env) :: K, G)
→ (ConstrArray(λ, α, n, i+ 1, C, ι,Env), K, G ′)

(RULE-return-kconstrothercells)

5.5.3 Destruction

Complete object We have seen the semantics of exit and return statements when run from
inside a block with no stack object.
To exit from a block with a stack object, this object must �rst be destructed, starting from the
destruction of its last cell.

ExitStmt ::= exit (S n) | return var ? (RULE-exitstmt)

29

G.Store(λ) = (C, n)

(Codepoint(ExitStmt , L,Env , (λ, L′) :: B), K, G)
→ (DestrArray(λ, ε, n− 1, C) , Kcontinue(λ,ExitStmt ,Env , L′,B) :: K, G)

(RULE-exit-block-obj)
Then, once the cell −1 is requested to be destructed (i.e. once all cells have been destructed), the
object is deallocated from the stack (i.e. it disappears from block de�nitions, and appears in the
list of deallocated objects) and the execution resumes after block exit.

ExitSucc(ExitStmt) = match ExitStmt with

| exit (S n) ⇒ exit n
| return var ? ⇒ return var ?

end

(RULE-exitsucc)

G ′ = G[dealloc← λ′ :: G.dealloc]
(DestrArray(λ, α,−1, C) , Kcontinue(λ′,ExitStmt ,Env , L′,B) :: K, G)

→ (Codepoint(ExitSucc(ExitStmt), L′,Env ,B), K, G ′)
(RULE-destr-array-nil-kcontinue)

Here, nothing enforces λ = λ′, nor the array path α = ε, this is to be shown as an invariant, as we
shall see further down.
However, note that G.Store(λ) is still de�ned, so as to allow reasoning on construction states even
after λ is deallocated. Another purpose of the list of deallocated objects is to prevent from reusing
λ for a later allocated object.

Most-derived object When the destruction of a most-derived object (i.e. a structure array
cell) is requested, then the destruction of the non-virtual part of this object starts: the destructor
body is entered, then the destruction of �elds and bases is requested through Kdestr. Kdestrcell

reminds, not only that other array cells have to be destructed, but also that a most-derived object
is being destructed, so as not to forget virtual bases once the non-virtual part is destructed.

0 ≤ i ∼ C(){stmt} π = (λ, (α, i, (Repeated, C :: ε)))
Env = ∅[this← π] G ′ = G[ConstrState(π)← StartedDestructing]

(DestrArray(λ, α, i, C) , K, G)
→ (Codepoint(stmt , ε,Env , ε), Kdestr(π) :: Kdestrcell(λ, α, i, C) :: K, G ′)

(RULE-destr-array-cons)

Non-virtual part of a subobject When a destructor returns, then the �elds of the corre-
sponding subobject have to be destructed, in the reverse declaration order.

π = (λ, (α, i, (h, l))) last(l) = C L = rev(F(C))

(Codepoint(return, Stmt∗,Env , ε), Kdestr(π,C) :: K, G)
→ (Destr(π,Fields, L) , K, G)

(RULE-return-kdestr)

Destructing a scalar �eld erases its value and changes its construction state. Then the destruction
of other �elds is requested.

30

f = (fid , (Sc, t)) G ′ = G[FieldValues(π, f)← ⊥][ConstrStatesF(π, f)← Destructed]

(Destr(π,Fields, f :: L), K, G)
→ (Destr(π,Fields, L) , K, G ′)

(RULE-destr-�elds-cons-scalar)
Destructing a structure �eld changes its construction state to StartedDestructing, then requests the
destruction of the corresponding array, starting from its last cell, and remembering about other
�elds through Kdestrother.

π = (λ, (α, i, σ)) f = (fid , (St, (C, n)))
α′ = α q−(i, σ, f) :: ε G ′ = G[ConstrStatesF(π, f)← StartedDestructing]

(Destr(π,Fields, f :: L) , K, G)
→ (DestrArray(λ, α′, n− 1, C), Kdestrother(π,Fields, f, L) :: K, G ′)

(RULE-destr-�elds-cons-struct)
Then, once all cells have been destructed, the �eld is Destructed, and the destruction of further
�elds can be proceeded.

G ′ = G[ConstrStatesF(π, f)← Destructed]

(DestrArray(λ′, α′,−1, C), Kdestrother(π,Fields, f, L) :: K, G)
→ (Destr(π,Fields, L) , K, G ′)

(RULE-destr-array-nil-kdestrother)
Then, once all �elds have been destructed, the subobject changes its construction state to De-

structingBases(at this point, no virtual function call may be used from this subobject) and the
destruction of the direct non-virtual bases can be proceeded, in their reverse declaration order.

π = (λ, (α, i, σ))
last(l) = C L = rev(DNV(C)) G ′ = G[ConstrState(π)← DestructingBases]

(Destr(π,Fields, ε) , K, G)
→ (Destr(π,Bases(DirectNonVirtual), L), K, G ′)

(RULE-destr-�elds-nil)
Destructing a (virtual or direct non-virtual) base B of π enters its destructor, remembering other
bases through Kdestrother.

∼ B(){stmt}
π′ = AddBase(π, β,B) Env = ∅[this← π′] G ′ = G[ConstrState(π′)← StartedDestructing]

(Destr(π,Bases(β), B :: L) , K, G)
→ (Codepoint(stmt , ε,Env , ε), Kdestr(π′) :: Kdestrother(π,Bases(β), B, L) :: K, G ′)

(RULE-destr-bases-cons)
Then, once all direct non-virtual bases of π have been destructed, there are two cases, depending
on the top of the continuation stack.
Either the continuation stack starts with a Kdestrother(π′,Bases(β)), then π′ is not a most-derived
object. So, only the non-virtual part of π had to be destructed, so it may become Destructed, and
the destruction of those other bases of π′ is requested.

31

G ′ = G[ConstrState(π)← StartedDestructing]

(Destr(π,Bases(DirectNonVirtual), ε), Kdestrother(π′,Bases(β), B, L) :: K, G)
→ (Destr(π′,Bases(β), L) , K, G ′)

(RULE-destr-bases-direct-non-virtual-nil-kdestrother)

End of the destruction of a most-derived object The second case is when the continuation
stack starts with a Kdestrcell. Then, π is a most-derived object (this is not constrained by the
rules, but must be proved as an invariant), and its virtual bases need to be destructed, in the
reverse order of their construction (given by the list VO(C)).

L = rev(VO(C))

(Destr(π,Bases(DirectNonVirtual), ε), Kdestrcell(λ, α, i, C) :: K, G)
→ (Destr(π,Bases(Virtual), L) , K, G)

(RULE-destr-bases-direct-non-virtual-nil-kdestrcell)
Finally, when all virtual bases have been destructed, then the object (which is actually the most-
derived object) is Destructed, and the destruction of further cells may be proceeded.

π = (λ, (α, i, (h, l))) last(l) = C G ′ = G[ConstrState(π)← Destructed]

(Destr(π,Bases(Virtual), ε), K, G)
→ (DestrArray(λ, α, i− 1, C) , K, G ′)

(RULE-destr-bases-virtual-nil)
Contrary to the construction semantics, one can see that Kdestrcell is not a strict counterpart to
Kconstrothercells, as it is not present in the continuation stack when destructing the virtual bases
(then, the object π in Destr(π,Bases(Virtual), . . .) or Kdestrother(π,Bases(Virtual), . . .) actually
refers to the most-derived object from which the next array cell may be deduced. It would have been
redundant to keep Kdestrcell under such circumstances; conversely, Kconstrothercells is required
during construction because of the variable environment, which changes between each cell due to
their initializers.

6 Run-Time invariant

On top of this operational semantics, we built a run-time invariant and we proved that this invariant
ever holds during program execution, and also holds for the initial state with no initially allocated
objects.
This invariant is built on several layers:

• Contextual invariants : states some properties about subobjects involved in the state kind
and the stack frames.

� Kind-level invariant : states that the subobject involved in the state kind during con-
struction and destruction are valid (i.e. it is consistent with the hierarchy and the object
heap), and sets their construction state with respect to the kind

� Stack-level invariant : states that the subobjects involved in the continuation stack
frames are during construction and destruction are valid (i.e. they are consistent with
the hierarchy and the object heap), and sets their construction state with respect to the
current construction step

32

� Stackframe chaining : states that the kind requires the presence of a speci�c frame on
top of the stack, and precises similar conditions allowing or not two stack frames to
immediately follow each other

� Stack well-foundedness : states that the stack is �sorted� following an order on the
subobjects involved in the construction and destruction stack frames

• Stack objects and constructed stack objects : shows how to compute the sets of allocated
objects and relates their construction states

• General relations between construction states :

� Vertical invariant : relates the construction states between an object and its direct
(inheritance or �eld) subobjects (vertical relations between construction states)

� Horizontal invariant : relates the construction states between two �sister� subobjects,
that is, two subobjects that have the same direct parent object (horizontal relations
between construction states).

All those invariants trivially hold on the initial state. But, proving their preservation along se-
mantic rules needs around 15000 lines of Coq and around two hours to compile on a Pentium Core
Duo 2GHz, consuming around 2Gb of RAM.
Virtually all invariants in this section need each other to hold.
In this whole section, we consider an execution state (S,K,G).

6.1 Contextual invariants

This section is very technical and allows one to understand how the more �high-level� properties
can be proved. It can be skipped at �rst reading.
The semantic rules are rather lax: they do not appear to constrain the subobject involved in
di�erent state kinds or stack frames. However, such conditions are essential to reason about the
construction and destruction process.

6.1.1 Kind invariant

To safely apply the semantic rules, some conditions must hold on the subobjects involved in state
kinds, and on their construction states.

• Whenever a list of items is requested to be constructed:

S = Constr(π, ItemKind , κ, L,Env)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ` π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as L′ q−L,
with any item A ∈ L′ being Constructed, and any item A ∈ L is Unconstructed.

� if ItemKind = Bases(β):

33

∗ the construction of π has started, but only concerning its bases:

G.ConstrState(π) = StartedConstructing

∗ if β = Virtual, then π is a most-derived object of static type B

� otherwise (ItemKind = Fields), the bases of π are already constructed:

G.ConstrState(π) = BasesConstructed

• Whenever an array cell is requested to be constructed:

S = Constrarray(λ, α, n, i, C, κ)

� λ is a valid location of an object in the store:

G.Store(λ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal

� 0 ≤ i ≤ n (we may have i = n, in this case rules (RULE-constr-array-nil-kcontinue, p. 26)
and (RULE-constr-array-nil-kconstrother, p. 29) may apply instead of (RULE-constr-array-
cons, p. 26))

� all cells j with 0 ≤ j < i are Constructed

� all cells j with i ≤ j < n are Unconstructed

• Whenever a list of items is requested to be destructed:

S = Destr(π, ItemKind , L)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ` π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as
rev(L′ q−L), with any item A ∈ L′ being Destructed, and any item A ∈ L is Constructed.

� if ItemKind = Bases(β):

∗ the destruction of π has started, already concerning its bases:

G.ConstrState(π) = DestructingBases

∗ if β = Virtual, then π is a most-derived object of static type B

� otherwise (ItemKind = Fields), the bases of π are still constructed:

G.ConstrState(π) = StartedDestructing

• Whenever an array cell is requested to be destructed:

S = Destrarray(λ, α, i, C, κ)

34

� λ is a valid location of an object in the store:

G.Store(λ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal

� −1 ≤ i < n (we may have i = −1, in this case rules (RULE-destr-array-nil-kcontinue,
p. 30) and (RULE-destr-array-nil-kdestrother, p. 31) may apply instead of (RULE-destr-
array-cons, p. 30))

� all cells j with 0 ≤ j ≤ i are Constructed

� all cells j with i < j < n are Destructed

The invariant for Codepoint depends on the �rst item on top of the stack, as we shall see in the
next sections.

6.1.2 Invariant for stack frames

To safely apply the semantic rules, some conditions must hold on the subobjects involved in each
stack frame, and on their construction states.

• Whenever a list of items is pending to be constructed, during the construction of B:

K 3 Kconstrother(π, ItemKind , κ, B, L,Env)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ` π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as L′ q−B :: L

� B is StartedConstructing(or maybe BasesConstructed, allowed only if ItemKind = Bases(β))

� if ItemKind = Bases(β):

∗ the construction of π has started, but only concerning its bases:

G.ConstrState(π) = StartedConstructing

∗ if β = Virtual, then π is a most-derived object of static type B

� otherwise (ItemKind = Fields), the bases of π are already constructed:

G.ConstrState(π) = BasesConstructed

• Whenever an array cell is requested to be constructed:

K 3 Kconstrothercells(λ, α, n, i, C, κ)

� λ is a valid location of an object in the store:

G.Store(λ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal

35

� 0 ≤ i < n

� cell i is StartedConstructing, or BasesConstructed

• Whenever a list of items is requested to be destructed:

K 3 Kdestrother(π, ItemKind , B, L)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ` π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as
rev(L′ q−B :: L)

� B is StartedDestructing(or maybe DestructingBases, allowed only if ItemKind = Bases(β))

� if ItemKind = Bases(β):

∗ the destruction of π has started, already concerning its bases:

G.ConstrState(π) = DestructingBases

∗ if β = Virtual, then π is a most-derived object of static type B

� otherwise (ItemKind = Fields), the bases of π are still constructed:

G.ConstrState(π) = StartedDestructing

• Whenever an array cell is requested to be destructed:

K 3 Kdestrcell(λ, α, i, C, κ)

� λ is a valid location of an object in the store:

G.Store(λ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal

� 0 ≤ i < n

� cell i is StartedDestructing, or DestructingBases

Those invariants are very close to the kind invariants, but they di�er in the construction state
of the object being constructed or destructed. The construction states of sibling objects are not
speci�ed here, but they may be deduced thanks to the horizontal invariants described further
down.
Other stack frames only appear in speci�c contexts: Kconstr (during the initializer for a base or
scalar �eld), Kconstrarray (during the initializer for a structure array cell), and Kdestr (during the
destructor). For this reason, they are not treated as �stand-alone� stack frames, but separately, in
the following section (chaining).

36

6.1.3 Stackframe chaining

Some stack frames necessarily require to be immediately followed (towards the bottom of the stack)
by speci�c stack frames. The same holds with some kinds, which require speci�c stack frames on
top of the stack. Moreover, depending on those stack frames, their involved subobjects are related
in some way.
In this section, we consider that K = K′ q−K1 :: K2 :: K′′, and we describe, depending on K1, which
frame K2 may follow. (In parallel, we mention those invariants that may also hold for some kinds
requiring that K = K2 :: K′′).

Construction/destruction kinds and stack frames

• During the construction of the virtual bases of an object π, i.e. any of the following cases:

� K1 = Kconstr(π,Bases(Virtual), . . .)

� K1 = Kconstrother(π,Bases(Virtual), . . .)

� or S = constr(π,Bases(Virtual), . . .) and K = K2 :: K′′

Then, necessarily, the frame (or kind) is immediately followed by pending cells:

K2 = Kconstrothercells(λ, α, n, i, C, . . .)

and their subobjects are related:

π = (λ, (α, i, (Repeated, C :: ε)))

• During the construction of an array cell, i.e. any of the following cases:

� K1 = Kconstrarray(λ, α, i, C, . . .)

� K1 = Kconstrothercells(λ, α, i, C, . . .)

� or S = constrarray(λ, α, i, C, . . .) and K = K2 :: K′′

Then, necessarily, the frame (or kind) is immediately followed by one of the two cases,
depending on α:

� either α = ε: then, the array being constructed is the whole complete object λ itself, so
the frame (or kind) must be followed by a code frame K2 = Kcontinue(λ, . . .) specifying
that the array in construction or destruction is actually the allocated stack object.

� otherwise, α = α′ q−(i′, σ′, f ′) :: ε is a structure array �eld, so the frame (or kind) must be
followed by the �eld construction frame K2 = Kconstrother(λ, (α′, i′, σ′),Fields, f ′, . . .).

• During the construction of the non-virtual bases, or the �elds, of an object π, i.e. any of the
following cases with β 6= Bases(Virtual):

� K1 = Kconstrother(π, β, . . .)

� K1 = Kconstr(π, β, . . .)

� or S = constr(π, β, . . .) and K = K2 :: K′′

37

Then, one of the following cases holds, depending on π:

� construction of the bases of some object π′:

K2 = Kconstrother(π′,Bases(β′), B, . . .)

Then, π is the base B being precisely constructed by K2:

π = AddBase(π′, β′, B)

� construction of array cells:

K2 = Kconstrothercells(λ, α, i, C)

Then, π is the cell being constructed:

π = (λ, (α, i, (Repeated, C :: ε)))

Similarly, for destruction:

• During the destruction of the virtual bases of an object π, i.e. any of the following cases:

� K1 = Kdestrother(π,Bases(Virtual), . . .)

� or S = Destr(π,Bases(Virtual), . . .) and K = K2 :: K′′

or, during the destruction of an array cell, i.e. any of the following cases:

� K1 = Kdestrcell(λ, α, i, C, . . .)

� or S = DestrArray(λ, α, i, C, . . .) and K = K2 :: K′′

Then, necessarily, in the �rst two cases, π = (λ, (α, i, (Repeated, C :: ε))) is a most-derived
object; and, in all cases, the frame (or kind) is immediately followed by one of the two cases,
depending on α:

� either α = ε: then, the array being destructed is the whole complete object λ itself, so
the frame (or kind) must be followed by a code frame K2 = Kcontinue(λ, . . .) specifying
that the array is the stack object.

� otherwise, α = α′ q−(i′, σ′, f ′) :: ε is a structure array �eld, so the frame (or kind) must
be followed by the �eld destruction frame K2 = Kdestrother(λ, (α′, i′, σ′),Fields, f ′, . . .).

• During the destruction of the non-virtual part of an object π, i.e. any of the following cases
with β 6= Bases(Virtual):

� K1 = Kdestrother(π, β, . . .)

� K1 = Kdestr(π) (running the destructor)

� or S = destr(π, β, . . .) and K = K2 :: K′′

Then, one of the following cases holds, depending on π:

38

� destruction of the bases of some object π′:

K2 = Kdestrother(π′,Bases(β′), B, . . .)

Then, π is the base B being precisely destructed by K2:

π = AddBase(π′, β′, B)

� destruction of array cells:
K2 = Kdestrcell(λ, α, i, C)

Then, π is the cell being destructed:

π = (λ, (α, i, (Repeated, C :: ε)))

Code points If K1 is a code frame, that is Kretcall or Kcontinue (or if S = Codepoint(. . .) and
K = K2 :: K′′), then K2 may be one of the following cases:

• another code point, Kcontinue(. . .) or Kretcall(. . .)

• while executing an initializer for a base or scalar �eld: Kconstr(π, ItemKind , B, L, . . .). Then,
the kind invariant of constr(π, ItemKind , B :: L) holds (the construction states do not change
when entering the initializer)

• while executing an initializer for an array cell: Kconstrarray(λ, α, i, C, . . .). Then, the kind
invariant of ConstrArray(λ, α, i, C, . . .) holds (the construction states do not change when
entering the initializer)

• while executing the constructor for a baseB of some object π: Kconstrother(π,Bases(β), B, L, . . .).
Then, the base B is BasesConstructed, but not yet Constructed(not before the constructor
has exited), so it must be made explicit that all its �elds are already Constructed.

• while executing the constructor for a most-derived object (i.e. a structure array cell):
Kconstrothercells(λ, α, n, i, C). Then, the cell i is BasesConstructed, but not yet Constructed(not
before the constructor has exited), so it must be made explicit that all its �elds are already
Constructed.

• symmetrically, while executing the destructor for an object: Kdestr(π). Then, π is Started-
Destructing, but no longer Constructed, as the destructor entered, so must be made explicit
that all �elds of π are still Constructed.

6.1.4 Stack well-foundedness

To make reasoning easier, we show an invariant on the stack frames, relating the subobjects of
two di�erent stack frames, but regarding the same complete object. Roughly speaking, if (λ, σ) is
the object being constructed/destructed by some stack frame, then it is a strict subobject of any
object (λ, σ′) being constructed/destructed by a stack frame deeper down in the stack.
More precisely:

De�nition 14. The subobject being constructed or destructed by a stack frame K is:

39

• π, if K is any of Kconstr(π, . . .), Kconstrother(π, . . .), Kdestr(π) or Kdestrother(π, . . .),

• unde�ned otherwise

Similarly, the subobject being constructed or destructed by a state kind S is:

• π, if S is any of Constr(π, . . .), Destr(π, . . .)

• unde�ned otherwise

De�nition 15. The array being constructed or destructed by a stack frame K is:

• (λ, α), if K is any of Kconstrarray(λ, α . . .), Kconstrothercells(λ, α, . . .) or Kdestrcell(λ, α, . . .)

• unde�ned otherwise

Similarly, the array being constructed or destructed by a state kind S is:

• (λ, α), if S is any of ConstrArray(λ, α, . . .), DestrArray(λ, α, . . .)

• unde�ned otherwise

Then, if K = K′ q−K1 :: K′′, and if K2 ∈ K′′ (or similarly, if S is a state kind and K2 ∈ K), then:

• if π1 = (λ, (α1, i1, σ1)) is the subobject being constructed or destructed by K1 or S, then:

� if π2 = (λ, (α2, i2, σ2)) is the subobject being constructed or destructed by K2, then:

∗ either α1 = α2 q−α for some α 6= ε

∗ or α1 = α2, i1 = i2, and σ1 is an inheritance subobject of σ2 distinct from σ2 itself

� otherwise, if (λ, α2) is the array being constructed or destructed by K2, then α1 = α2 q−α
for some α (maybe ε)

• otherwise, if (λ, α1) is the array being constructed or destructed by K1 or S, then, if
(λ, (α2, i, σ)) is the subobject, or if (λ, α2) is the array, being constructed or destructed
by K2, then α1 = α2 q−α for some α 6= ε

6.2 Stack objects and constructed stack objects

In this section, we investigate how to compute the list of stack objects, and stackframe objects,
looking at the code points.
When executing a statement block, the block may or may not de�ne a complete object. In this
case, this object is called the stack object associated to the block. However, when de�ning such an
object, the block receives this object only when it is wholly constructed, and it loses this object
once the object starts destruction.
More formally:

De�nition 16. (Stack object of a block) A block b : Block has at most one stack object, denoted
CΩ(b) :

• If the block is (∅, Stmt), then it has no stack object

• If the block is (λ, Stmt), then λ is its stack object

40

The list of constructed stack objects is computed by gathering all stack objects of all blocks of all
code points (code stack frames Kcontinue or Kretcall, and also the kind if it is Codepoint).

De�nition 17. The list of the constructed stack objects CΩ(K) of a stack frame K is:

• if K = Kretcall(res?,Env , Stmt∗,B) orK = Kcontinue(λ?, Stmt1,Env , Stmt∗2,B), then CΩ(K) =⋃
b∈B CΩ(b)

• otherwise, CΩ(K) = ε.

(The notation
⋃

is meant here to keep the order of collected objects following the order of blocks
in the block list).

De�nition 18. Similarly, the list of the constructed stack objects CΩ(S) of a state kind S is:

• if S = Codepoint(Stmt1, Stmt∗,Env ,B), then CΩ(S) =
⋃
b∈B CΩ(b)

• otherwise, CΩ(S) = ε.

Putting all together:

De�nition 19. The list of the constructed stack objects CΩ(S,K) of an execution state (S,K,G)
is computed as follows:

CΩ(S,K) = CΩ(S) ∪
⋃
K∈K

CΩ(K)

To collect all stack objects, we must also take into account the objects in construction or destruc-
tion, carried by corresponding Kcontinue frames:

De�nition 20. The list of the stack objects Ω(K) of a stack frame K are:

• if K = Kcontinue(∅, Stmt1,Env , Stmt∗2,B) or K = Kretcall(res?,Env , Stmt∗,B), then Ω(K) =⋃
b∈B CΩ(b)

• if K = Kcontinue(λ, Stmt1,Env , Stmt∗2,B), then Ω(K) = λ ::
⋃
b∈B CΩ(b)

• otherwise, Ω(K) = ε.

De�nition 21. The list of the stack objects Ω(S,K) of an execution state (S,K,G) is computed
as follows:

Ω(S,K) = CΩ(S) ∪
⋃
K∈K

Ω(K)

Lemma 1.
CΩ(S,K) ⊆ Ω(S,K)

41

Invariants

• If G.Store(λ) = ⊥ is unde�ned, then any construction state on λ is Unconstructed.

• Ω(S,K), and G.dealloc, have no duplicates.

• Ω(S,K) and G.dealloc are disjoint.

• G.Store(λ) is de�ned if, and only if, λ ∈ Ω(S,K) ∪ G.dealloc

• If λ ∈ CΩ(S,K) and if G.Store(λ) = (C, n), then all n cells of λ are Constructed.

• Similarly, if G.Store(λ) = (C, n) and λ ∈ G.dealloc, then all n cells of λ are Destructed.

The latter invariant is needed to show the kind invariant of DestrArray for rule (RULE-exit-block-obj,
p. 30)

6.3 General relations between construction states

This section is more high-level: it relates the construction states of objects depending on their
relative position in the �subobject ordering� tree of Figure 1.

6.3.1 Vertical relations

De�nition 22. Let p, p′ be two subobjects of the same complete object. We say that p is a direct
subobject of p′ if either of the following is true:

• p is a direct non-virtual base of p′

• p′ is a most-derived object and p is a virtual base of p′

• p is a cell of a structure array �eld of p′ (then, we say that p is a �eld subobject of p′).

In the �rst two cases, we say that p is a base subobject of p′.

By language abuse, we shortly say that p is a virtual base (resp. direct non-virtual base) of p′

when p designates the subobject corresponding to a virtual base (resp. direct non-virtual base) of
the class that is the static type of p′.

Lemma 2 (Middle-level invariant: vertical relations on construction states). If p is a direct sub-
object of p′, then the following table relates their construction states:

42

If p′ is... Then p is...
Unconstructed Unconstructed

StartedConstructing

Unconstructed

if p is a �eld subobject of p′

between Unconstructed and Constructed

otherwise

BasesConstructed

Constructed

if p is a base subobject of p′

between Unconstructed and Constructed

otherwise
Constructed Constructed

StartedDestructing

Constructed

if p is a base subobject of p′

between Constructed and Destructed

otherwise

DestructingBases
Destructed

if p is a �eld subobject of p′

between Constructed and Destructed

otherwise
Destructed Destructed

6.3.2 Horizontal invariant

De�nition 23. Let p1, p2 be two subobjects of a complete object of type C. We say that p1 occurs
before p2 (p1 ≺C p2) if, and only if, either of the following is true:

• there is a most-derived object p′ subobject of the complete object C such that p1, p2 are two
virtual bases of p′ in inheritance graph order

• there is a subobject p′ of the complete object C such that p1 and p2 are two direct non-virtual
bases of p′ in declaration order

• p1 and p2 are two cells of the same array �eld, in the order of their indexes within the array

• p1 and p2 are two cells of two di�erent �elds in declaration order

• there is a most-derived object p′ subobject of the complete object C such that p1 is a virtual
base, and p2 is a direct non-virtual base of p′ or a cell of an array �eld of p′

• there is a subobject p′ of the complete object C such that p1 is a direct non-virtual base of p′

and p2 is a cell of an array �eld of p′

43

Virtual base
Direct non-virtual base Structure array �eld

(if p most-derived)
p1, p2

inheritance
graph order

p1 p2
p1, p2

declaration order
p1 p2

p1, p2
�eld declaration order
or cell index order
of the same �eld

This de�nition is consistent insofar as it only depends on the type of the complete object.

Lemma 3 (High-level invariant: horizontal relations on construction states). Let p1, p2 two sub-
objects such that p1 ≺C p2. Then, the following table relates their construction states:

If p1 is... Then p2 is...
Unconstructed

UnconstructedStartedConstructing

BasesConstructed

Constructed ?
StartedDestructing

DestructedDestructingBases

Destructed
More concisely, for any state s:

ConstrStates(λ, p1) < Constructed⇒ ConstrStates(λ, p2) = Unconstructed

ConstrStates(λ, p1) > Constructed⇒ ConstrStates(λ, p2) = Destructed

Corollary 4. In particular, by contraposition, if two subobjects p1 ≺C p2, then the lifetime of p2
is included in the lifetime of p1:

ConstrStates(λ, p2) = Constructed⇒ ConstrStates(λ, p1) = Constructed

Lemmas 2 and 3 are proved as part of the run-time invariant.

7 Properties of construction and destruction

Thanks to the invariant, we may show a wide range of interesting high-level properties on the
construction states of objects during program execution. We �rst summarize them below:

Theorem 1. 1. Construction and destruction rules are structurally sound: they may fail only
because of wrong user code in initializers or constructor/destructor bodies.

2. Construction states are monotonic; each object goes through each construction state following
S from Unconstructed to Destructed, and changes its construction state exactly once each.
Consequently, each object becomes constructed and destructed exactly once.

44

3. Subobjects of a complete object are destructed in the reverse order of their order. The lifetime
of an object is included in the lifetime of all of its subobjects. Moreover, in our semantics,
when an object is allocated, other objects allocated before do not change their construction
states until the object is deallocated.

4. When an object is deallocated, then all its subobjects have been destructed before.

5. If a scalar �eld has a value, then it is constructed.

6. The generalized dynamic type of each object and all of its bases changes at well-de�ned
execution points.

7.1 Progress

To show that our rules "make sense", i.e. that they do not forget any bases to construct, we
showed a "sanity-check" progress theorem: if a class C and all its children have no user-de�ned
constructors, then the construction and destruction of an instance of C always succeeds.

De�nition 24 (Nearly trivial constructor). We say that a class C has a nearly trivial constructor
if, and only if, all the following conditions hold:

• C has a default constructor (with no arguments), having only the following initializers:

� bases and structure array �elds are initialized through a call to their default constructor
(without arguments), without prior statement

� scalar �elds are initialized with constants5, without prior statement

• all virtual bases and direct non-virtual bases of C have nearly trivial constructors

• for each structure array �eld f of C, if f has type B, then B has a nearly trivial constructor

There is no exactly corresponding notion of the Standard: the latter de�nes a notion of trivial
constructor implying that the class C has no virtual bases. In practice, the Standard puts this
restriction to allow compilers to produce no code for such classes (e.g. PODs), which is not possible
in the presence of virtual bases, as they require additional data (e.g. pointer to virtual tables) to
be initialized (cf. our POPL 2011 "object layout" paper, for more accurate information).
However, the "trivial constructor" Standard notion is a particular case of nearly trivial construc-
tors: the conditions are exactly the same, with the further requirements that C have neither virtual
bases, nor virtual functions.
In other words, following the terminology of our POPL 2011 "object layout" paper, a class has a
trivial constructor if, and only if, it is a non-dynamic class (or, "has no polymorphic behaviour"
in the terms of the Standard) with a nearly trivial constructor.

Theorem 2 (Construction progress). If C is a class having a nearly trivial constructor, then the
allocation of a new array of C calling the default constructor for each cell always succeeds, with all
cells becoming Constructed.

The same theorem also holds for destruction. But here, we may directly take the Standard notion
of trivial destructor, as the destructor has no arguments:

5or a unique "system call" with constant arguments. The notion of "system call" is de�ned in CompCert, i.e.
an operation taking constant arguments and producing an execution trace, e.g. writing on screen

45

De�nition 25 (Trivial destructor). A class C has a trivial destructor if, and only if, all the
following conditions hold:

• its destructor immediately returns

• all virtual bases and direct non-virtual bases of C have trivial destructors

• for each structure array �eld f of C, if f has type B, then B has a trivial destructor

Theorem 3 (Destruction progress). If C is a class having a trivial destructor, then the deallocation
of a constructed array of C always succeeds, with all cells becoming Destructed.

7.2 Increase

Lemma 5. If s→ s′ is a transition step of the small-step semantics, and if the construction state
of (λ, p) goes from c to c′ 6= c, then c′ = S(c) and any other subobject p′ 6= p keeps its construction
state unchanged.

Proof. By case analysis on the small-step semantic rules.

Corollary 6. By transitivity, any subobject is never constructed more than once.

In particular, any virtual base subobject is constructed at most once.

Corollary 7. By contraposition, if s →∗ s′ and if ConstrStates(λ, p) = ConstrStates′(λ, p), then
the construction state of (λ, p) remains unchanged between s and s′: for any state s′′ such that
s→∗ s′′ →∗ s′, we have ConstrStates(λ, p) = ConstrStates′′(λ, p)

In particular, in a given execution sequence, the lifetime of any object is such a state interval.

Corollary 8 (Intermediate values theorem). If s→∗ s′, then, for any subobject (λ, p), and for any
construction state c′′ such that:

ConstrStates(λ, p) ≤ c′′ < S(c′′) ≤ ConstrStates′(λ, p)

there exist �changing states� s′′1, s
′′
2 such that:

s→∗ s′′1 → s′′2 →∗ s′

and ConstrStates′′1 (λ, p) = c′′ and ConstrStates′′2 (λ, p) = S(c′′).
In other words, if an object goes from one construction state to another, then it must go through
all construction states in between.

7.3 Construction order

Starting from the run-time invariant described above, we showed some properties about construc-
tion order to characterize the notion of RAII (Resource acquisition is initialization).
In particular, we aim at showing that destruction of any two subobjects is performed in the reverse
order of their construction.

46

7.3.1 Two subobjects of the same complete object

General theorem Assume that, for any class C and any n ∈ N∗, there exists a static relation
RC[n] (i.e. independent on the execution state) on generalized subobjects of a full object of type
C[n], such that for any generalized subobjects p1, p2 of C[n], the following conditions hold:

• p1RC[n]p2 ∨ p2RC[n]p1 (i.e. RC[n] is total)

• for any execution state s, and for any top-level object λ of type C[n], if p1RC[n]p2 and
ConstrStates(λ, p2) = Constructed, then ConstrStates(λ, p1) = Constructed

Then, we may show the following:

Theorem 4. Let λ be a top-level object of type C[n]. If p1 and p2 are two generalized subobjects
of top-level object λ, such that p1 was constructed before p2, then, if p1 is being destructed, then p2
was destructed before p1. In other words, if s1 is constructed before s2, then the lifetime of s2 is
included in the lifetime of s1 .

s0→s1→∗s2→s3 →∗ s4→s5
¬c1 c1 ¬c2 c2 c1 ¬c1

⇓
∃s′3, s′4

s3→∗s′3→s′4→∗s4
c2 ¬c2

(ci means �pi is Constructed at this state�)

Proof. First we show that p1 RC[n] p2. As RC[n] is total, we may reason by case analysis. Assume
p2 RC[n] p1. Then, at state s1, p1 is Constructed, so p2 is also Constructed at s1. But construction
states are increasing, so p2 is at least Constructed at s2. As it is Constructed at s3, it is necessarily
Constructed at s2, which is absurd. So, necessarily, as RC[n] is total, we have p1 RC[n] p2.
We immediately see that p1 6= p2. Indeed, if p1 = p2, then, as Constructed in s1 and also in s3, p2
would also be Constructed in s2, which is absurd.
Now we show that p2 is no longer Constructed at s4. As ≤ is total on construction states, we may
reason by case analysis. Assume p2 is at most Constructed at s4. Then, p2 is Constructed at s4
(increase from s3). But p1 6= p2 and s4 → s5 changes the construction state of p1. Then p2 is
Constructed also at s5. But p1 RC[n] p2, so p1 is also Constructed at s5, which is absurd.
To sum up, p2 is no longer Constructed at s4, but it is Constructed at s3. So, by the intermediate
values theorem, there exists s3 →∗ s′3 → s′4 →∗ s4 such that step s′3 → s′4 makes p2 from Constructed

to StartedDestructing, which concludes.

Application It only remains to �nd such a relation RC[n]. Here we show that the subobject
lifetime relation, the depth-�rst left-to-right traversal of the subobject tree of Figure 1, is suitable.
Let p1, p2 two generalized subobjects of C[n]. We say that p1 is included in p2 (denoted p1 ⊆C[n] p2)
if, and only if, either p1 = p2, or there exists a generalized subobject p of C[n] such that p1 is a
direct subobject of p and p is included in p2.
Roughly speaking, this inclusion relation ⊆C[n] is the �re�exive and transitive closure� of the �direct
subobject� relation. It expresses the notion of path in the subobject tree of Figure 1.
However, this notion is distinct from the notion of inheritance and array paths: if p is not a most-
derived object, then it does not include the subobjects corresponding to its virtual bases (only

47

paths within the non-virtual part of the subobject tree are to be considered). Nevertheless, if p is
a most-derived object, it does include its virtual bases, so all of its subobjects.
By transitivity, we may show the:

Lemma 9. If p1 ⊆C[n] p2, then the following table relates their construction states:

If p2 is... Then p1 is...
Unconstructed Unconstructed

Constructed Constructed

Destructed Destructed

Finally, we de�ne the subobject lifetime relation RC[n] as follows. Let p1, p2 be two subobjects of
C[n]. We say that p1 lays before p2, denoted p1 RC[n] p2, if, and only if, either condition holds:

• p1 ⊆C[n] p2

• there exist two sibling subobjects p′1 ≺DC[n] p
′
2 such that p1 ⊆C[n] p

′
1 and p2 ⊆C[n] p

′
2

In fact, this de�nition says that p1 lays before p2 if, and only if, p1 appears before p2 in a depth-�rst
left-to-right traversal of the subobject tree. However, we do not need to prove that it is an order.

Lemma 10 (RC[n] is total).

∀B1, B2, p1, p2 :
C[n] −〈p1〉→ B1

C[n] −〈p2〉→ B2

}
⇒
(

p1 RC[n] p2
∨ p2 RC[n] p1

Proof. Long and tedious case analysis.

Lemma 11. The subobject lifetime relation is compatible with subobject lifetimes: if p1 RC[n] p2,
then, for any execution state, and for any top-level object λ of type C[n], whenever (λ, p2) is
Constructed, then (λ, p1) is Constructed.

Proof. • If p1 ⊆C[n] p2, then the previous lemma directly applies.

• Otherwise, let p′1 ≺DC[n] p
′
2 be two subobjects such that p1 ⊆C[n] p

′
1 and p2 ⊆C[n] p

′
2. We �rst

show that p′1 is Constructed. Let c1 the construction state of p′1. As ≤ is total on construction
states, we have two cases:

� if c1 < Constructed, then p′2 is Unconstructed, so p2 is also Unconstructed, which is absurd.

� if c1 > Constructed, then p′2 is Destructed, so p2 is also Destructed, which is absurd.

So p′1 is Constructed. Thus, p1 is also Constructed, which concludes.

Subobject ordering and inheritance When constructing the virtual bases of a most-derived
object, the Standard prescribes an order called inheritance graph order, modelled as follows:

Lemma 12. If the class hierarchy is well-founded, then the following recursive function VO:

list({Repeated, Shared} × C) VO→ list(C)
VO(ε) = ε

VO((Repeated, B) :: q) = VO(D(B)) q−′VO(q)
VO((Shared, B) :: q) = VO(D(B)) q−′(B :: VO(q))

is well-de�ned.

48

VO actually performs a depth-�rst search of all virtual bases induced by l, including the classes
that are elements of l declared as "virtual bases", but quoting each virtual base only once. It is
called the virtual base ordering function.

Lemma 13. VO(D(C)) contains all the virtual bases of C exactly once each, and only them.

De�nition 26. Two virtual bases A and B of C are in inheritance graph order, if, and only if,
A occurs before B in VO(D(C)).

Lemma 14. If B is a virtual base of C, then for any virtual base A of B, A ≺VC B.

Proof. It su�ces to show that A occurs before B in VO(D(C)).

Consequently:

Theorem 5. Let p be a subobject of a complete object C[n]. Then, if p′ is an inheritance subobject
of p, then the lifetime of p is included in the lifetime of p′.

Proof. There are two cases:

• If p′ is a non-virtual base-class subobject of p, then p′ ⊆C[n] p, so a previous lemma applies.

• Otherwise, if p′ is a virtual base-class subobject of p, then there are two cases:

� If p is a most-derived object, then p′ ⊆C[n] p.

� Otherwise, we can show that p′RC[n]p. Let A be the static type of p. Then, p′ is a
non-virtual base-class subobject of some virtual base V of A. There are two cases:

∗ If p is a non-virtual base-class subobject of its most-derived object, then it is a
non-virtual base-class subobject of some base B; so let pV and pB represent the
direct subobjects of the (common) most-derived object of p and p′ for B and V , so
that p′ ⊆C[n] pV and p ⊆C[n] pB. As B is a non-virtual base and V is a virtual base,
then we have pV ≺C[n] pB, which concludes.

∗ Otherwise, p is a virtual base-class subobject of its most-derived object, then it is a
non-virtual base-class subobject of some virtual base B of the most-derived object.
By transitivity, V is a virtual base of B, so pV ≺C[n] pB by the above lemma, and
we can conclude similarly as the previous case.

Lemma 15. If p1 ⊆C[n] p2RC[n]p3, then p1RC[n]p3.

Proof. By de�nition of RC[n] and by transitivity of ⊆C[n].

Theorem 6. Let p be a subobject of a complete object C[n]. Then, if p′ is a subobject of p, then
the lifetime of p is included in the lifetime of p′.

Proof. There are two cases:

• If p′ is an inheritance subobject of p, then the previous lemma applies.

• Otherwise, p′ ⊆ pf ⊆ pB where pf is an array cell of some �eld f of some inheritance
subobject of pB of p, so we may conclude by the two lemmas above.

49

7.3.2 Subobjects of di�erent complete objects

In general, in a real-world C++ program (except for embedded systems, where dynamic memory
allocation is not necessarily permitted), there is no information about whether two complete objects
created by new have their lifetimes included, disjoint or overlapping.
However, in our model where all objects are in stack, we may prove some kind of stack discipline
for object lifetimes.

Lemma 16. Consider an object λ. If it is de�ned in the store:

G.Store(λ) = (C, n)

but outside the list Ω(S,K) of stack objects, then all n cells of λ are Destructed.

Proof. This can be proved as an additional run-time invariant. It needs, however, the run-time
invariant about the precise construction states of objects (kind invariants): for the particular step
(RULE-destr-array-nil-kcontinue, p. 30) when an object is about to be deallocated, this object must
be Destructed.

Hypothesis 2. We assume a total order over object locations, such that the operation "retrieve a
new fresh location in the object store" be strictly increasing.

In practice, object locations may range over Z, for instance. This is the case in our Coq develop-
ment.

Lemma 17. If s → s′ is a step changing the construction state of a subobject (λ, p), then there
can be no object λ′ > λ in the set of allocated objects.

Proof. It su�ces to show that the set of allocated objects forms an ordered stack w.r.t. <. This
can be proved as an invariant along with the run-time invariant.
Then, operations over construction states only modify the top-most object of this stack, which is
maximal w.r.t. <.

Theorem 7. If s →∗ s′ and if λ is a complete object belonging to the set of allocated objects for
states s and s′, then, for any subobject (λ′, p′) such that λ′ < λ, the construction state of (λ′, p′)
does not change between s and s′.

Proof. Follows from the above lemma, by transitivity.

Lemma 18. If, between s and s′, an object in the allocation set of s is no longer in the allocation
set of s′, then it is deallocated between s and s′.

Proof. Trivial induction on the length of the execution path s→∗ s′.

Theorem 8. Let λ be an allocated object, and s0 → s be an allocation step of some object λ′ 6= λ.
Then, if s→∗ s′ and if (λ, p) changes its construction state between s and s′, then λ′ is deallocated
between s and s′.

Proof. The small-step semantic rule for object allocation s0 → s only allocates λ′, with λ already
allocated, so λ′ > λ.
Let c be the construction state of (λ, p) at s. Then, by the intermediate values theorem, there
exists s →∗ s1 → s2 →∗ s′ such that s1 → s2 makes (λ, p) from c to S(c). At this step, λ is
necessarily the top-most object on the allocation stack, so in particular, at s1, λ

′ is no longer
allocated. So, by the previous lemma, there exists a deallocation step for λ′ between s and s1.

50

7.4 RAII: Resource Acquisition is Initialization

Theorem 9. If an object is deallocated, then it has been constructed and destructed before, in this
order.

Proof. Let s → s′ be the deallocation step of an object λ. Then, by the low-level invariant, we
know that the construction state of λ is Destructed at s, so is it for any subobject p of λ. As
it is Unconstructed at the initial state of the program, then, by the intermediate values theorem,
(λ, p) passes through a step Constructed → StartedDestructing, which corresponds to entering the
destructor. Again, before this step, (λ, p) passes through a step BasesConstructed → Constructed,
which corresponds to leaving the constructor body.

Theorem 10. At the end of the program, all objects were destructed.

Proof. It su�ces to show that at the �nal step, there are no allocated objects. This can be shown
thanks to the structure of the �nal step. The result then follows from the above lemma.

Again, this theorem is not true in the presence of a free store (nothing guarantees that delete
has been called for each dynamically allocated object).

7.5 Scalar �eld access

Two properties about scalar �eld accesses may be easily shown as an invariant:

Lemma 19. If a scalar �eld has a value, then it is Constructed.

Proof. There are only three rules modifying the value of a �eld:

• (RULE-�eld-scalar-write, p. 22) explicitly requires the �eld being Constructed

• (RULE-initscalar, p. 28), giving the �eld its initial value, switches the �eld construction state
to Constructed

• (RULE-destr-�elds-cons-scalar, p. 31) erases the value of the �eld, so the hypothesis no longer
holds

However, the run-time invariant is needed to discriminate between a scalar and a structure �eld
when its construction state changes.

Analogously:

Lemma 20. If rule (RULE-constr-cons-�eld-scalar-no-init, p. 29) is disabled, then a �eld has a value
if, and only if, it is Constructed.

7.6 The dynamic type of a subobject

In fact, we aim at showing that, for any most-derived object, there is at most one inheritance
subobject that can play the role of generalized dynamic type for a given execution state.
So, tailoring rules (RULE-dyntype-constructed, p. 23) and (RULE-dyntype-pending, p. 23), we can
rede�ne the notion of generalized dynamic type only depending on the most-derived object. By
language abuse, we say that σ is the generalized dynamic type of the structure array cell (λ, α, i)
and we denote getGenDynType(λ, α, i, σ) :

51

G.Heap(λ) = (D,n)

D[n] −〈α〉A→ C[m] G.ConstrState(λ, (α, i, (Repeated, C :: ε))) = Constructed

G ` getGenDynType(λ, α, i, (Repeated, C :: ε))
(RULE-getdyntype-constructed)

G.Heap(λ) = (D,n) D[n] −〈α〉A→ C[m] −〈(i, σ′)〉CI→ B′

G.ConstrState(λ, (α, i, σ′)) = c c = BasesConstructed ∨ c = StartedDestructing

G ` gDynType(λ, α, i, σ′)
(RULE-getdyntype-pending)

Immediately, we then have that:

Lemma 21. Let λ be a complete object of type D[n], and α such that D[n] −〈α〉A→ C[m] and
0 ≤ i < m. Let σ′ be an inheritance subobject of C of static type B. Then, if σ′ is the generalized
dynamic type of the structure array cell (λ, α, i), then, for any inheritance subobject σ′′ of B, σ′ is
the generalized dynamic type of the subobject (λ, (α, i, σ′@σ′′)):

getGenDynType(λ, α, i, σ′)⇒ gDynType(λ, α, i, σ′@σ′′, B, σ′, σ′′)

Lemma 22. Conversely, for any inheritance subobject σ of C, if σ′ is the generalized dynamic
type of (λ, (α, i, σ)) such that gDynType(λ, α, i, σ, B, σ′, σ′′) for some B and σ′′, then σ′ is the
generalized dynamic type of the array cell (λ, α, i) and there is an inheritance subobject σ′′ of σ′

such that σ = σ′@σ′′.

gDynType(λ, α, i, σ, B, σ′, σ′′)⇒ getGenDynType(λ, α, i, σ′) ∧ σ = σ′@σ′′

In other words, the generalized dynamic type can be obtained using the getGenDynType predicate,
whereas gDynType can be used to determine whether a subobject has its generalized dynamic type
de�ned, and how the corresponding inheritance subobject of the generalized dynamic type can be
deduced.
Moreover, an inheritance subobject has its generalized dynamic type de�ned only if it is a base of
the generalized dynamic type of the array cell. Indeed, consider the following example:

struct A {virtual void f ();};
struct B1: virtual A {};
struct B2: virtual A {virtual void f ();};
struct C: B1, B2 {}

Consider an instance of C. Then, during the execution of the constructor body of its base B2, the
corresponding B2 subobject is BasesConstructed, so it is the generalized dynamic type of the array
cell. But, even though the subobject B1 is already Constructed, its generalized dynamic type is
unde�ned, as B1 is not a base of B2. So, calling f on B1 has unde�ned behaviour.
Now, we can reason about the generalized dynamic type of an array cell instead of considering the
generalized dynamic type of a subobject.

Lemma 23. Considering a most-derived object, there can be at most one inheritance subobject in
construction state BasesConstructed or StartedDestructing.

Proof. If there are two of them, say p1 and p2, then there are two cases:

52

• say p2 is a base of p1. Then, as p1 is BasesConstructed or StartedDestructing, all its bases are
Constructed, in particular p2, which is absurd.

• otherwise, there is a subobject p and two direct bases p′1, p
′
2, say in this order, such that each

pi is a base of p′i. Then, p
′
2 is Unconstructed or Destructed, so p2 as well, which is absurd.

Corollary 24. The generalized dynamic type of an array cell, if any, is unique.

Proof. If the most-derived object is Constructed, then the result is trivial. Otherwise, it follows
from the above lemma.

However, the generalized dynamic type of an array cell does not continuously exist: during the life-
time of the subobject, while the most-derived object is not yet Constructed, the generalized dynamic
type of the array cell does exist only if there is an inheritance subobject that is BasesConstructed
or StartedDestructing.
Indeed, in the above example, after exiting from the body of the constructor for B1, but before
entering the body of the constructor for B2, there is no constructor body in progress for the
instance of C, so there is no generalized dynamic type for the instance C.

Lemma 25. The following table summarizes the evolution of the dynamic type of an array cell
(λ, α, i) of type C (denoting σ◦ = (Repeated, C :: ε) the corresponding most-derived object)

When the subobject goes from to
then the dynamic type
of (λ, α, i) goes

from to

(λ, (α, i, σ)) Unconstructed StartedConstructing Unde�ned Unde�ned

(λ, (α, i, σ)) StartedConstructing BasesConstructed Unde�ned σ

(λ, (α, i, σ)) with
σ 6= σ◦

BasesConstructed Constructed σ Unde�ned

(λ, α, i, σ◦) BasesConstructed Constructed σ◦ σ◦

(λ, α, i, σ◦) Constructed StartedDestructing σ◦ σ◦

(λ, (α, i, σ)) with
σ 6= σ◦

Constructed StartedDestructing Unde�ned σ

(λ, α, i, σ) StartedDestructing DestructingBases σ Unde�ned

(λ, α, i, σ) DestructingBases Destructed Unde�ned Unde�ned

(λ′, (α′, i′, σ′))
with (λ, α, i) 6=
(λ′, α′, i′)

Any Any Does not change

Corollary 26. The following table summarizes the evolution of the dynamic types of a subobject

53

depending on the evolution of construction states.

When the subobject goes from to
then the dy-
namic type
of

goes from to

(λ, (α, i, σ)) Unconstructed StartedConstructing (λ, (α, i, σ′)) Undef. Undef.

(λ, (α, i, σ)) StartedConstructing BasesConstructed
(λ, (α, i, σ@σ′′)) Undef. σ

(λ, (α, i, σ′)) not
a base of σ

Undef. Undef.

(λ, (α, i, σ)) with
σ 6= σ◦

BasesConstructed Constructed
(λ, (α, i, σ@σ′′)) σ Undef.

(λ, (α, i, σ′)) not
a base of σ

Undef. Undef.

(λ, (α, i, σ◦)) BasesConstructed Constructed (λ, (α, i, σ′)) σ◦ σ◦

(λ, (α, i, σ◦)) Constructed StartedDestructing (λ, (α, i, σ′)) σ◦ σ◦

(λ, (α, i, σ)) with
σ 6= σ◦

Constructed StartedDestructing
(λ, (α, i, (σ@σ′′))) Undef. σ

(λ, (α, i, σ′)) not
a base of σ

Undef. Undef.

(λ, α, i, σ) StartedDestructing DestructingBases
(λ, ((α, i, (σ@σ′′))) σ Undef.

(λ, (α, i, σ′)) not
a base of σ

Undef. Undef.

(λ, (α, i, σ)) DestructingBases Destructed (λ, (α, i, σ′)) Undef. Undef.

(λ, (α, i, σ)) Any Any
(λ′, (α′, i′, σ′))
with (λ, α, i) 6=
(λ′, α′, i′)

Does not change

In more detail:

Lemma 27. When a subobject p becomes BasesConstructed or StartedDestructing:

• its dynamic type changes and becomes de�ned, as well as the dynamic type of all of its bases.

• the dynamic type of all other subobjects (which are not bases of p) cannot change to a de�ned
value.

Proof. • The �rst case is obvious, as the dynamic type cannot be p before it becomes BasesConstructed.

• In the second case, consider a subobject p′′ which is not a base of p. If its dynamic type is, say,
p′, then, necessarily, p′ is in state BasesConstructed or StartedDestructing (as the most-derived
object cannot be Constructed). By unicity, p′ = p, which is absurd.

Conversely:

Lemma 28. • If the most-derived object becomes Constructed, then nothing happens on the
dynamic types.

54

• Otherwise, if a subobject p becomes other than BasesConstructed or StartedDestructing, then
the dynamic type of an object cannot change to a de�ned value.

• Otherwise, if no subobject changes its construction state, then no dynamic type changes.

Proof. • In the �rst case, the construction state of the most-derived object passes from BasesConstructed

to Constructed. So, in both cases, the dynamic type of all bases has already switched to the
most-derived object.

• In the second case, consider a subobject p′′ whose dynamic type becomes de�ned as a sub-
object p′ in state BasesConstructed or StartedDestructing. Then, p′ 6= p (as p is no longer in
such a construction state). So, p′ was not a�ected by the construction state change, so it
was already BasesConstructed or StartedDestructing before the construction state change. So,
the dynamic type of p′′ was already p′, so it has not changed.

• The third case is trivial.

Those two theorems point out the precises times when a compiler implementation has to actually
change the dynamic type data to re�ect the dynamic type at the implementation level: when all
bases are constructed, and just before the construction of �elds, the pointers to virtual tables
change for the subobject and all of its bases, as well as entering the destructor.

8 Conclusion and future work

To the best of our knowledge, the major novelty of our work is a formal account on the metatheory
of C++ object construction and destruction for the whole C++ multiple inheritance object model,
including some RAII properties.
Our formalization led to proposed changes in the C++ Standard (most notably, CWG 1202 about
virtual functions during the destruction of the �elds of a class, has just been integrated into C++0x,
as voted in March 2011).
Our work points out the precise execution points when the generalized dynamic type of an object
changes. This information can help build a veri�ed compiler from our language to an intermediate
language with explicit concrete virtual tables. (Ongoing work.)
Restrictions on the semantics still keep a relatively realistic language, cf. Lockheed Martin and
Embedded C++. However, one may consider extending the formal semantics to include free store,
temporaries, functions returning structures.

55

	Goal
	Class hierarchy (reminder)
	Overview of the construction and destruction process
	Construction
	Non-virtual inheritance only
	Virtual inheritance

	Destruction

	Syntax of ++
	Operational semantics
	Construction states
	Values
	Execution state
	Kind
	Continuation stack

	Initial and final states
	Semantic rules
	Statements
	Construction
	Destruction

	Run-Time invariant
	Contextual invariants
	Kind invariant
	Invariant for stack frames
	Stackframe chaining
	Stack well-foundedness

	Stack objects and constructed stack objects
	General relations between construction states
	Vertical relations
	Horizontal invariant

	Properties of construction and destruction
	Progress
	Increase
	Construction order
	Two subobjects of the same complete object
	Subobjects of different complete objects

	RAII: Resource Acquisition is Initialization
	Scalar field access
	The dynamic type of a subobject

	Conclusion and future work

