
A Mechanized Semantics
for C++ Object Construction and Destruction
with Applications to Resource Management

Tahina Ramananandro1 Gabriel Dos Reis2 Xavier Leroy1

1INRIA Paris-Rocquencourt 2Texas A&M University

January 27th, 2012

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 1 / 25

Construction and destruction

In most object-oriented languages: constructors attached to classes for
object initialization

I Turn �raw memory� into an object
I Establish invariants required to manipulate the object, e.g. acquire

necessary resources

Symmetrically to constructors, C++ introduces destructors:
I Turn the object back to �raw memory�
I Resource management: release acquired resources

→ Resource acquisition is initialization (RAII)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 1 / 25

Construction and destruction

In most object-oriented languages: constructors attached to classes for
object initialization

I Turn �raw memory� into an object
I Establish invariants required to manipulate the object, e.g. acquire

necessary resources

Symmetrically to constructors, C++ introduces destructors:
I Turn the object back to �raw memory�
I Resource management: release acquired resources

→ Resource acquisition is initialization (RAII)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 1 / 25

Construction and destruction in C++

struct File {

FILE* handle;

void write(char* string) { ... }

// Constructor
File(char* name): handle(fopen(name, "w")) {}

// Destructor
˜ File() { fclose(handle); }

};

int main(int argc, char* argv[]) {

File f("toto.txt");

f.write("Hello world!");

// automatic destructor call on scope exit
// Resource acquisition is initialization (RAII)
return 0;

}

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 2 / 25

Construction and destruction in C++

struct File {

FILE* handle;

void write(char* string) { ... }

// Constructor
File(char* name): handle(fopen(name, "w")) {}

// Destructor
˜ File() { fclose(handle); }

};

int main(int argc, char* argv[]) {

File f("toto.txt");

f.write("Hello world!");

// automatic destructor call on scope exit
// Resource acquisition is initialization (RAII)
return 0;

}

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 2 / 25

Construction and destruction in C++

struct File {

FILE* handle;

void write(char* string) { ... }

// Constructor
File(char* name): handle(fopen(name, "w")) {}

// Destructor
˜ File() { fclose(handle); }

};

int main(int argc, char* argv[]) {

File f("toto.txt");

f.write("Hello world!");

// automatic destructor call on scope exit
// Resource acquisition is initialization (RAII)
return 0;

}

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 2 / 25

Resource management and embedded objects

struct TapeAccess {

Lock lock;

File file;

TapeAccess (char* name):

lock(),

file(name)

{}

};

C++ guarantees that two subobjects of the same object be destructed in
the reverse order of their construction.

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 3 / 25

C++ construction/destruction principles

Subobjects must be constructed and destructed only once

Subobjects of an object must be destructed in the reverse order of
their construction

Operations must not rely on object parts that are not yet constructed
(or already destructed)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 4 / 25

C++ in critical software

Those aspects commonly arise in critical C++ software:

Joint Strike Fighter Large Hadron Collider Mars Rover

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 5 / 25

Our contribution

A formal operational semantics for C++ object construction and
destruction

Captures and clari�es a number of delicate points, such as interaction
with multiple (including virtual) inheritance

Allows to state and prove high-level properties expected by the
programmers, such as RAII

Mechanized in Coq

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 6 / 25

Outline

1 Construction and destruction within the C++ object model

2 Formal semantics

3 Reasoning about the semantics

4 Assessment

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 6 / 25

C++ multiple inheritance

D

B

A

Single inheritance

D

B1

A

B2

A

Non-virtual multiple
inheritance

D

B1

A

B2

A

V

Virtual multiple
inheritance

Subobjects must be constructed only once

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 7 / 25

C++ multiple inheritance

D

B

A

Single inheritance

D

B1

A

B2

A

Non-virtual multiple
inheritance

D

B1

A

B2

A

V

Virtual multiple
inheritance

Subobjects must be constructed only once

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 7 / 25

C++ multiple inheritance

D

B

A

Single inheritance

D

B1

A

B2

A

Non-virtual multiple
inheritance

D

B1

A

B2

A

V

Virtual multiple
inheritance

Subobjects must be constructed only once

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 7 / 25

Subobject construction order

D

X

B1

A

B2

A

V

Class hierarchy

Construction in depth-�rst post�x left-to-right traversal of
construction tree

Destruction in reverse order of construction: depth-�rst pre�x
right-to-left

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 8 / 25

Subobject construction order

D

X

B1

A

B2

A

V

D

V B1 B2 X

A A

Class hierarchy Construction tree

Construction in depth-�rst post�x left-to-right traversal of
construction tree

Destruction in reverse order of construction: depth-�rst pre�x
right-to-left

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 8 / 25

Subobject construction order

D

X

B1

A

B2

A

V

D

V B1 B2 X

A A

Class hierarchy Construction tree

Construction in depth-�rst post�x left-to-right traversal of
construction tree

Destruction in reverse order of construction: depth-�rst pre�x
right-to-left

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 8 / 25

Outline

1 Construction and destruction within the C++ object model

2 Formal semantics

3 Reasoning about the semantics

4 Assessment

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 8 / 25

The C++ object construction protocol

type kind = MostDerived | Base

let rec construct kind obj =

obj.constrState ← StartedConstructing;

if kind = MostDerived then

for each direct or indirect virtual base V in inheritance graph order:
construct Base (subobjV obj)

end for

end if;
for each direct non-virtual base B:
construct Base (subobjB obj)

end for;

obj.constrState ← BasesConstructed;

for each �eld f:
construct MostDerived (�eldf obj)

end for;
execute constructor body

;

obj.constrState ← Constructed

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 9 / 25

The C++ object construction protocol

type kind = MostDerived | Base

let rec construct kind obj =
obj.constrState ← StartedConstructing;
if kind = MostDerived then

for each direct or indirect virtual base V in inheritance graph order:
construct Base (subobjV obj)

end for

end if;
for each direct non-virtual base B:
construct Base (subobjB obj)

end for;
obj.constrState ← BasesConstructed;
for each �eld f:
construct MostDerived (�eldf obj)

end for;
execute constructor body ;

obj.constrState ← Constructed

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 9 / 25

The construction states of a subobject

Each (inheritance and/or embedded structure) subobject is equipped at
run-time with a construction state:

Unconstructed

StartedConstructing

BasesConstructed

Constructed

StartedDestructing

DestructingBases

Destructed

The lifetime of a subobject is the set of all states where the construction
state of the object is Constructed.

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 10 / 25

Single-stepping the semantics

Reasoning about resource management needs comparing the
construction states of:

I two objects at one execution point
I one object at two execution points

Reference interpreter / big-step semantics not convenient
I Much information hidden in call stack

We use a small-step semantics with explicit continuations.

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 11 / 25

General shape of the semantics
Transitions

(P,K ,G)→ (P′,K ′,G′)

State

G,G′ ::= (subobject.�eld 7→ value)× (subobject 7→ constrstate)

Control point

β ::= Bases(Virtual) | Bases(DirectNonVirtual) | Fields
P,P′ ::= Codepoint(stmt, . . .) executing a statement

| ConstrMostDerived(this,D, . . .) Constructing most-derived objectthis
| Constr(this, β, L, . . .) Constructing subobjects of this
| DestrMostDerived(this,D) Destructing most-derived objectthis
| Destr(this, β, L) Destructing subobjects of this

Continuations: �what to do next�

K ,K ′ ::= Kreturn(stmt, . . . ,K ′) return from function

| KconstrMostDerived(this,D, . . . ,K ′) Construct most-derived object

once initializer is done

| Kconstr(this, β,B, L, . . . ,K ′) Construct subobject B once initializer is done

| Kconstrother(this, β,B, L, . . . ,K ′) Construct remaining subobjects

| Kdestr(this,K ′) Destruct all subobjects of this
once destructor body is done

| Kdestrother(this, β,B, L,K ′) Destruct remaining subobjects of this
| KdestrMostDerived(this,D,K ′) Remember to destruct virtual bases

of most-derived object

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 12 / 25

General shape of the semantics
Transitions

(P,K ,G)→ (P′,K ′,G′)
State

G,G′ ::= (subobject.�eld 7→ value)× (subobject 7→ constrstate)

Control point

β ::= Bases(Virtual) | Bases(DirectNonVirtual) | Fields
P,P′ ::= Codepoint(stmt, . . .) executing a statement

| ConstrMostDerived(this,D, . . .) Constructing most-derived objectthis
| Constr(this, β, L, . . .) Constructing subobjects of this
| DestrMostDerived(this,D) Destructing most-derived objectthis
| Destr(this, β, L) Destructing subobjects of this

Continuations: �what to do next�

K ,K ′ ::= Kreturn(stmt, . . . ,K ′) return from function

| KconstrMostDerived(this,D, . . . ,K ′) Construct most-derived object

once initializer is done

| Kconstr(this, β,B, L, . . . ,K ′) Construct subobject B once initializer is done

| Kconstrother(this, β,B, L, . . . ,K ′) Construct remaining subobjects

| Kdestr(this,K ′) Destruct all subobjects of this
once destructor body is done

| Kdestrother(this, β,B, L,K ′) Destruct remaining subobjects of this
| KdestrMostDerived(this,D,K ′) Remember to destruct virtual bases

of most-derived object

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 12 / 25

General shape of the semantics
Transitions

(P,K ,G)→ (P′,K ′,G′)
State

G,G′ ::= (subobject.�eld 7→ value)× (subobject 7→ constrstate)

Control point

β ::= Bases(Virtual) | Bases(DirectNonVirtual) | Fields
P,P′ ::= Codepoint(stmt, . . .) executing a statement

| ConstrMostDerived(this,D, . . .) Constructing most-derived objectthis
| Constr(this, β, L, . . .) Constructing subobjects of this
| DestrMostDerived(this,D) Destructing most-derived objectthis
| Destr(this, β, L) Destructing subobjects of this

Continuations: �what to do next�

K ,K ′ ::= Kreturn(stmt, . . . ,K ′) return from function

| KconstrMostDerived(this,D, . . . ,K ′) Construct most-derived object

once initializer is done

| Kconstr(this, β,B, L, . . . ,K ′) Construct subobject B once initializer is done

| Kconstrother(this, β,B, L, . . . ,K ′) Construct remaining subobjects

| Kdestr(this,K ′) Destruct all subobjects of this
once destructor body is done

| Kdestrother(this, β,B, L,K ′) Destruct remaining subobjects of this
| KdestrMostDerived(this,D,K ′) Remember to destruct virtual bases

of most-derived object

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 12 / 25

General shape of the semantics
Transitions

(P,K ,G)→ (P′,K ′,G′)
State

G,G′ ::= (subobject.�eld 7→ value)× (subobject 7→ constrstate)

Control point

β ::= Bases(Virtual) | Bases(DirectNonVirtual) | Fields
P,P′ ::= Codepoint(stmt, . . .) executing a statement

| ConstrMostDerived(this,D, . . .) Constructing most-derived objectthis
| Constr(this, β, L, . . .) Constructing subobjects of this
| DestrMostDerived(this,D) Destructing most-derived objectthis
| Destr(this, β, L) Destructing subobjects of this

Continuations: �what to do next�

K ,K ′ ::= Kreturn(stmt, . . . ,K ′) return from function

| KconstrMostDerived(this,D, . . . ,K ′) Construct most-derived object

once initializer is done

| Kconstr(this, β,B, L, . . . ,K ′) Construct subobject B once initializer is done

| Kconstrother(this, β,B, L, . . . ,K ′) Construct remaining subobjects

| Kdestr(this,K ′) Destruct all subobjects of this
once destructor body is done

| Kdestrother(this, β,B, L,K ′) Destruct remaining subobjects of this
| KdestrMostDerived(this,D,K ′) Remember to destruct virtual bases

of most-derived object

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 12 / 25

Some destruction rules

D

V B1 B2 X

A A

D

∼ D(){stmt}
Env = ∅[this← π] G′ = G[ConstrState(π)← StartedDestructing]

(DestrMostDerived(π,D),K,G)
→ (Codepoint(stmt, ε,Env , ε),

Kdestr(π) :: KdestrMostDerived(π,D) :: K,G′)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

L = X :: ε

π : D L = rev(F(D))

(Codepoint(return, Stmt∗,Env , ε),Kdestr(π,K),G)
→ (Destr(π,Fields, L),K ,G)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

X L = ε

π′ = π.X

(Destr(π,Fields,X :: L),K,G)
→ (DestrMostDerived(π′),

Kdestrother(π,Fields,X , L) :: K,G)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

L = B2 :: B1 :: ε

π : D
L = rev(DNV(D)) G′ = G[ConstrState(π)← DestructingBases]

(Destr(π,Fields, ε),K,G)
→ (Destr(π,Bases(DirectNonVirtual), L),K,G′)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

L = B1 :: ε;β = DirectNonVirtualB2

∼ B2(){stmt} π′ = AddBase(π, β,B2)
Env = ∅[this← π′] G′ = G[ConstrState(π′)← StartedDestructing]

(Destr(π,Bases(β),B2 :: L),K,G)
→ (Codepoint(stmt, ε,Env , ε),

Kdestr(π′) :: Kdestrother(π,Bases(β),B2, L) :: K,G′)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

L = B1 :: ε;β = DirectNonVirtual

A

G′ = G[ConstrState(π)← Destructed]

(Destr(π,Bases(DirectNonVirtual), ε),
Kdestrother(π′,Bases(β),B2, L) :: K,G)

→ (Destr(π′,Bases(β), L),K,G′)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Some destruction rules

D

V B1 B2 X

A A

L = V :: ε

L = rev(VO(D))

(Destr(π,Bases(DirectNonVirtual), ε),
KdestrMostDerived(π,D) :: K,G)

→ (Destr(π,Bases(Virtual), L),K,G)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Outline

1 Construction and destruction within the C++ object model

2 Formal semantics

3 Reasoning about the semantics

4 Assessment

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 13 / 25

Low-level properties

Lemma (Parent and child construction states)
If p is a child of p′ in the construction tree, then the following table relates their construction states:

If p′ is... Then p is...

Unconstructed Unconstructed

StartedConstructing

Unconstructed

if p is a �eld subobject of p′

between Unconstructed and Constructed
otherwise

BasesConstructed

Constructed

if p is a base subobject of p′

between Unconstructed and Constructed
otherwise

Constructed Constructed

StartedDestructing

Constructed

if p is a base subobject of p′

between Constructed and Destructed
otherwise

DestructingBases
Destructed

if p is a �eld subobject of p′

between Constructed and Destructed
otherwise

Destructed Destructed

D

V B1 B2 X

A A

p′

p

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 14 / 25

Low-level properties

Lemma (Sibling construction states)
Let p1, p2 two sibling subobjects such that p1 appears before p2 in the construction tree. Then, the following table

relates their construction states:

If p1 is... Then p2 is...

Unconstructed
UnconstructedStartedConstructing

BasesConstructed

Constructed in an arbitrary state

StartedDestructing
DestructedDestructingBases

Destructed

D

V B1 B2 X

A A

p1 p2

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 15 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc Dealloc

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc Dealloc

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc Dealloc

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc DeallocConstruction Lifetime Destruction

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc DeallocConstruction Lifetime Destruction

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

High-level properties

Theorem (Resource Acquisition is Initialization)

Consider a block { C x; ... } . When it exits, x and all its subobjects

were constructed exactly once, then destructed exactly once.

Unconstructed

StartedConstr

BasesConstr

Constructed

StartedDestr

DestrBases

Destructed

Alloc DeallocConstruction Lifetime Destruction

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 16 / 25

More high-level properties

Theorem

The lifetime of an object is included in the lifetimes of all its subobjects. In

other words, if an object is constructed, then all its subobjects are

constructed.

Theorem

Two subobjects of the same allocated object are destructed in the reverse

order of their construction.

Theorem (Progress)

If constructors (resp. destructors) are trivial, then the construction (resp.

destruction) process always succeeds (the semantics is well-de�ned).

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 17 / 25

Virtual functions during construction and destruction

struct B {

virtual void f () {...}

B () {

this ->f (); // always calls B::f()

}

};

struct C : B {

virtual void f () {...}

C () : B () {

this ->f (); // always calls C::f()

}

};

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 18 / 25

The generalized dynamic type of a subobject

struct C : B { ... };

B:

B C B

C:

CBasesC Constr

StartedConstructing BasesC Constr StartedDDestrBases

StartedDDestrBases

Destructed

De�nition

A subobject σ has a generalized dynamic type σ◦ if, and only if:

either σ◦ is the most-derived object, and it is Constructed (i.e. whole

construction has ended and destruction has not started yet)

or σ◦ is BasesConstructed or StartedDestructing and σ is an

inheritance subobject of σ◦

Considered as the most-derived object for polymorphic operations (dynamic
cast, virtual function call)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 19 / 25

The generalized dynamic type of a subobject

struct C : B { ... };

B:

B C B

C:

CBasesC Constr

StartedConstructing BasesC Constr StartedDDestrBases

StartedDDestrBases

Destructed

De�nition

A subobject σ has a generalized dynamic type σ◦ if, and only if:

either σ◦ is the most-derived object, and it is Constructed (i.e. whole

construction has ended and destruction has not started yet)

or σ◦ is BasesConstructed or StartedDestructing and σ is an

inheritance subobject of σ◦

Considered as the most-derived object for polymorphic operations (dynamic
cast, virtual function call)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 19 / 25

The generalized dynamic type of a subobject

struct A { };

struct B1: virtual A { };

struct B2: virtual A { };

struct C: B1, B2 { };

A:

A B1 B2 C B2 B1 A

B1:

B1 C B1

B2:

B2 C B2

C:

C

BasesC Constr

BasesC Constr

BasesC Constr

StartedConstructing BasesC Constr StartedDDestrBases

StartedDDestrBases

StartedDDestrBases

StartedDDestrBases

Destructed

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 20 / 25

Application: A veri�ed compiler

Our language
(Constructors
Destructors)

→ CoreC++ (Wasserrab & al.)
+ Set dynamic type

→
CompCert Cminor
(Leroy & al.)
(low-level memory)
+ virtual tables & VTT

Popular compilation scheme + one optimization: separated
constructors for most-derived object and inheritance subobject

Proof of semantic preservation (forward simulation)

s1 //

invariant

s2

invariant

s ′1
+ // s ′2

(cf. Ramananandro's Ph. D. thesis, Chapter 11)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 21 / 25

Outline

1 Construction and destruction within the C++ object model

2 Formal semantics

3 Reasoning about the semantics

4 Assessment

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 21 / 25

Conclusions

A general formal model for C++ construction and destruction

First to capture correctly interaction with virtual function dispatch

First machine-checked formalization of RAII

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 22 / 25

Practical impact

Positive feedback from C++ Standard Committee: uncovered 4
inconsistencies and omissions in the C++03 standard:

virtual functions during destruction: �xed in C++11

object lifetime and trivial destructors (pending)

lifetime of arrays (pending)

uni�cation of destruction model for built-in types (pending)

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 23 / 25

Perspectives

Extending the semantics:

Free store

C++ copy semantics and temporary objects (passing constructor
arguments by value, copy constructor, functions returning structures)

Exceptions

Templates

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 24 / 25

Thank you for your attention

Coq development fully available on the Web:
http://gallium.inria.fr/~tramanan/cxx/construction

For further information: ramanana@nsup.org

Ramananandro & al. (INRIA, TAMU) Mech. sem. of C++ constr. & res. mng.: . . . January 27th, 2012 25 / 25

http://gallium.inria.fr/~tramanan/cxx/construction
ramanana@nsup.org

Virtual functions during destruction

struct A {

virtual void f() { ... }

};

struct X {

A* a;

X(A* a0): a(a0) { a->f(); /* defined during

construction of C */ }

~X() { a->f(); /* UNDEFINED during

destruction of C */ }

};

struct C: A {

X x;

C(): x(this) {}

};

The generalized dynamic type is attached to the object
struct A {

virtual void f() { ... }

};

struct X {

A* a;

void g() { a->f(); }

X(A* a0): a(a0) { g(); /* B::f */ }

};

struct B: A {

X x;

B(): x(this) {}

};

struct D: B {

D(): B() {}

virtual void f() {...}

};

int main(int argc , char* argv []) {

D d;

d.x.g(); /* D::f */

}

Destructing inherited objects

Java and C] are buggy:

class File implements Closeable {

public void close () {...}

}

class BuggyFile extends File {

public void close () {}

}

try (File f = new BuggyFile("toto.txt")) {

...

}

File is not closed properly. By contrast, C++ guarantees that destructors
for base classes are called.

A core language

We de�ned a core language for C++ multiple inheritance, featuring the
most interesting object-oriented features:

Stmt ::= var := var->C f Reading scalar �eld
or pointing to structure �eld

| var->C f := var Writing scalar �eld

| var := &var [var]C Pointing to array cell

| var := static_cast〈A〉C (var) Static cast

| var := dynamic_cast〈A〉C (var) Dynamic cast

| var := var->C f (var , . . .) Virtual function call

| {Cvar [n] = {InitC , . . . }; Stmt} Block-scoped object

| . . . Structured control
InitC ::= Stmt;C (var , . . .) Initializer

A core language

Funct ::= virtual f (var , . . .){Stmt} Virtual function
Finitm ::= Data member

initializers
m{InitA . . . } Structure

| m(Stmt, var) Scalar

ConstrC ::= C (var , . . .) : InitB1, . . . , InitV 1, . . . , Constructor
DestrC ::= C̃ (){Stmt} Destructor

Finitm, . . . {Stmt}

Class ::= struct C : B1, . . . , virtual V 1, . . . Class de�nition
{ConstrC . . . ;Funct . . . ;DestrC}

Prog ::= Class . . . Program

The Coq development

47 semantic rules (incl. 15 constr., 12 destr.)

Theories Specs loc Proofs loc

Class hierarchies 996 1308
Well-formed hierarchies 283 1794

Core language 895 144
Invariant 693 81

Invariant preservation 324 13154
High-level properties 2296 6306

Total 5487 22787

Invariant preservation requires 214 hours for Coq to check.

Ctxt File Prin Crit Summ Inhe Ordr Prot Csta Step Shap Rulz Chld Sibl
Raii High Vfdc Gdyn Cpil Cncl Stan Futu Thnx

	Construction and destruction within the C++ object model
	Formal semantics
	Reasoning about the semantics
	Assessment

