
Ornaments in Practice

Thomas Williams
Encadré par: Pierre-Évariste Dagand, Didier Rémy

INRIA - Gallium

September 8, 2014

1/21

Motivation

Two very similar functions
let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

Coherent
add (length ml) (length nl) = length (append ml nl)

2/21

Motivation

Two very similar functions
let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

Coherent
add (length ml) (length nl) = length (append ml nl)

2/21

Naturals and lists

Similar types
type nat = Z | S of nat
type α list = Nil | Cons of α × α list

S (S (S (Z)))
Cons(1, Cons(2, Cons(3, Nil)))

Projection function
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

3/21

Motivation
Trees

type tree =
| LLeaf
| LNode of ltree × ltree

type α ntree =
| NLeaf
| NNode of α ntree × α

× α ntree

GADTs

type α list =
| Nil
| Cons of α × α list

type zero = Zero type _ succ = Succ

type (_,α) vec =
| VNil : (zero, α) vec
| VCons : α × (n, α) vec
→ (n succ, α) vec

Ornaments (McBride,2010; Dagand,2012)

4/21

Ornaments in ML

Ornaments were developed in type theory. Can they be adapted to
ML?

Toy implementation: a preprocessor for a small System F-like
language with GADTs. It adapts easily to ML: we will assume this
in the examples.

5/21

Contents

1. Ornaments in ML
2. Applications
3. Theory

6/21

A syntax for ornaments

An ornament is defined by a projection function from the
ornamented type to the bare type.
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

The function is subject to some syntactic restrictions to ensure it
preserves the recursive structure. They are checked by the system
when declaring an ornament:
ornament from length : α list→ nat

7/21

Lifting functions

Coherence
length (append ml nl) = add (length ml) (length nl)

project (f_lifted x y) = f (project x) (project y)

The function f_lifted is a lifting of f.

8/21

Lifting functions

Coherence
length (append ml nl) = add (length ml) (length nl)

project (f_lifted x y) = f (project x) (project y)

The function f_lifted is a lifting of f.

8/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl =

match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl =

match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match

ml

with

| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match

ml

with

| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with

| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with

| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with

| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→

nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→

nl

| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→

nl

| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(

?

,

append ml’ nl

)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(

?

,

append ml’ nl

)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(

?

, append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Syntactic lifting

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{ length}→ { length}→ { length}

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→

Cons(? , append ml’ nl)

m’
length←−−−− ml’

n
length←−−−− nl

add m’ n
length←−−−− append ml’ nl

Z
length←−−−− Nil

n
length←−−−− nl

S(n)
length←−−−− Cons(x,nl)

m
length←−−−− ml

n
length←−−−− nl

m’
length←−−−− ml’

9/21

Two phases

Syntactic lifting
let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(? , append ml’ nl)

The creative part

I Manually, by intervention of the programmer
I With a patch specifying what should be added where

let append from add
with { length}→ { length}→ { length}
patch fun _→ match _ with Cons(x, _)→ Cons({x}, _)

I Code inference: x makes the most sense here

10/21

Coherence is not enough

let rec rev_append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ rev_append ml’ (Cons(x,nl))

length (rev_append ml nl) = add (length ml) (length nl)

The coherence condition is not strong enough to guide the
automatic lifting process.

11/21

Contents

1. Ornaments in ML
2. Applications
3. Theory

12/21

Ornaments for refactoring

type expr =
| Const of int
| Add of expr × expr
| Mul of expr × expr

type binop = Add’ | Mul’
type expr’ =
| Const’ of int
| BinOp’ of binop
× expr’ × expr’

let rec eval = function
| Const(i)→ i
| Add(u, v)→ eval u + eval v
| Mul(u, v)→ eval u × eval v

13/21

Ornaments for refactoring (2)

let rec conv : expr’→ expr = function
| Const’(i)→ Const(i)
| BinOp(Add’, u, v)→ Add(conv u, conv v)
| BinOp(Mul’, u, v)→ Mul(conv u, conv v)

ornament from conv : expr’→ expr

let lifting eval’ from eval with {conv}→ _

let rec eval’ : expr’→ int = function
| Const’(i)→ i
| BinOp’(Add’, u, v)→ eval’ u + eval’ v
| BinOp’(Mul’, u, v)→ eval’ u × eval’ v

The lifting is unique, because conv is bijective.

14/21

Other applications

Large-scale lifting of data structures

I Ocaml’s Set library to maps (sets with values)
I Including higher-order functions
I Only the values need to be propagated

GADTs
I A GADT is an ornament: constraints are added
I Lifting unique: the contents are the same
I In practice, works for what the typechecker could have proved

15/21

Contents

1. What are ornaments?
2. Applications
3. Theory

16/21

Syntactic ornament, binary term

let rec add m n = match m with
| Z→ n
| S(m’)→ S(add m’ n)

let rec add

&append

m

&ml

n

&nl

= match m

&ml

with
| Z

&Nil

→ n

&nl

| S

&Cons

(

{x},

m’

&ml’

)→ S

&Cons

(

{x},

add

&append

m’

&ml’

n

&nl

)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

17/21

Syntactic ornament, binary term

let rec add m n = match m with
| Z→ n
| S(m’)→ S(add m’ n)

let rec

add&

append

m&

ml

n&

nl = match

m&

ml with
|

Z&

Nil→

n&

nl
|

S&

Cons({x},

m’&

ml’)→

S&

Cons({x},

add&

append

m’&

ml’

n&

nl)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

17/21

Syntactic ornament, binary term

let rec add m n = match m with
| Z→ n
| S(m’)→ S(add m’ n)

let rec add&append m&ml n&nl = match m&ml with
| Z&Nil→ n&nl
| S&Cons({x},m’&ml’)→ S&Cons({x},add&append m’&ml’ n&nl)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

17/21

Typing of ornaments

The & in names is only a notation, it has no meaning in the binary
language.

Ornaments translate to binary type definitions.
type {α} nat&list =
| Z&Nil
| S&Cons of {α} ×{α} nat&list

The typing enforces ornamentation:
val add&append
: {α}. {α} nat&list→{α} nat&list→{α} nat&list

The braces guarantee that values don’t escape from the
ornamented code to the bare code.

18/21

Lifting with binary terms

Lifting: finding a binary term that projects to the base term and
has the right type.

1. The binary typing relation guarantees that we have a valid
lifting.

2. The projections of a well-typed term are well-typed.
3. The complexity is preserved: the additional complexity comes

only from the code added between brackets.
4. If the ornamented code terminates, the base code terminates

too.

19/21

What’s missing?

Semantic ornaments
We can recover a semantic definition using contextual equivalence.
All syntactic rules remain admissible (it is compatible), it is a
superset of syntactic equivalence (it is adequate), and equivalent to
the definition using coherence.

Higher-order and nested ornaments
We can use this to understand what is a higher-order ornament and
a nested ornament.

20/21

Conclusion

What we have learned
I Describing ornaments by projection is a good fit for ML
I Several classes of useful ornaments
I The syntactic lifting gives good, predictable results
I And can be well-explained by theory

Future work
I Better patches
I Integrating into ML: effects? inference?
I Combining ornaments: adding the invariants of two GADTs?

21/21

Questions ?

22/21

Ocaml integration

I Interaction with type inference: inferring the ornament
specification of let-bound values?
let rev xs =
let rec rev_append acc = function
| x: :xs→ rev_append (x: :acc) xs
| []→ acc

in
rev_append [] xs

I Lifting effectful libraries?

23/21

Lifting more complex data structures

Sets
type t
val compare : t→ t→ int
type set = Empty | Node of t × set × set

Maps
type α map =
| MEmpty
| MNode of t × α × α map × α map

Ornament
let rec keys = function
| MEmpty→ Empty
| MNode(k, v, l, r)→ Node(k, keys l, keys r)

ornament from keys : α map→ set

24/21

Lifting a higher-order function

let rec exists (p : t→ bool) (s : set) : bool =
match s with
| Empty→ false
| Node(l, k, r)→ p k || exists p l || exists p r

let lifting map_exists from exists
with (t→ +α→t)→ {keys}→ bool

let rec map_exists p m =
match m with
| Empty→ false
| Node(l, k, v, r)→ p k ? || map_exists p l

|| map_exists p r

25/21

Lifting a higher-order function

let rec exists (p : t→ bool) (s : set) : bool =
match s with
| Empty→ false
| Node(l, k, r)→ p k || exists p l || exists p r

let lifting map_exists from exists
with (t→ +α→t)→ {keys}→ bool

let rec map_exists p m =
match m with
| Empty→ false
| Node(l, k, v, r)→ p k ? || map_exists p l

|| map_exists p r

25/21

GADTs

Several data structures with the same contents but different
invariants, i.e. a constraint on the shape of the type.

Lists and vectors
type α list = Nil | Cons of α × α list
type zero = Zero type _ succ = Succ
type (_, α) vec =
| VNil : (zero, α) vec
| VCons : α × (n, α) vec→ (n succ, α) vec

let rec to_list : type n. (n, α) vec→ α list =
function
| VNil→ Nil
| VCons(x, xs)→ Cons(x, xs)

ornament from to_list : (γ, α) vec→ α list

The lifting should be unambiguous.

26/21

Lifting for GADTs
Automatic for some invariants, we only need to give the expected
type of the function:
let rec zip xs ys = match xs, ys with
| Nil, Nil→ Nil
| Cons(x, xs), Cons(y, ys)→ Cons((x, y), zip xs ys)
| _→ failwith "different length"

let lifting vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
from zip with {to_list}→ {to_list}→ {to_list}

let rec vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
= fun xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzip xs ys)
| _→ failwith "different length"

27/21

Lifting for GADTs
Automatic for some invariants, we only need to give the expected
type of the function:
let rec zip xs ys = match xs, ys with
| Nil, Nil→ Nil
| Cons(x, xs), Cons(y, ys)→ Cons((x, y), zip xs ys)
| _→ failwith "different length"

let lifting vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
from zip with {to_list}→ {to_list}→ {to_list}

let rec vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
= fun xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzip xs ys)
| _→ failwith "different length"

27/21

When lifting fails
type (_, _, _) min =
| MinS : (α, β, γ) min→ (α su, β su, γ su) min
| MinZl : (ze, α, ze) min
| MinZr : (α, ze, ze) min

let lifting vzipm :
type n1 n2 nmin.
(n1, n2, nmin) min→

(n1, α) vec→ (n2, β) vec→ (nmin, α × β) vec
from zipm
with +_→ {to_list}→ {to_list}→ {to_list}

let rec vzipm :
type n1 n2 nmin. (n1, n2, nmin) min
→ (n1, α) vec→ (n2, β) vec→ (nmin, α × β) vec
= fun m xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzipm ? xs ys)
| _, _→ failwith "different length"

28/21

