GADTs meet Subtyping

Gabriel Scherer, Didier Rémy

Gallium - INRIA

Motivation

GADTs were just added to OCaml.

OCaml also has limited, but useful, support for subtyping. Type parameters have a variance.

How can we check the variances of GADT definitions?

Introduction to GADTs

With algebraic datatypes we often write things like:

```
type expr =
    | Int of int
    | Bool of bool
let get_int : expr -> int = function
    | Int n -> n
    | Bool _ -> failwith "int excepted"
```

GADTs allow a more fine-grained typing

```
type \alpha expr =
    | Int : int -> int expr
    | Bool : bool -> bool expr
```

 let get_int : int expr \(\rightarrow\) int \(=\) function
 | Int n -> n
 Internally, GADTs are data types that may carry type equalities (and existentials).

```
type \alpha expr =
    | Int of int with \alpha = int
    | Bool of bool with \alpha = bool
```

Equalities are used during pattern-matching: refinement and dead cases.

```
let eval : }\forall\alpha.\alpha\operatorname{expr}->\alpha=\mp@code{function
    | Int n -> n (* \alpha = int *)
    | Bool b -> b (* \alpha= bool *)
let get_int : int expr }->\mathrm{ int = function
    | Int n -> n
    (* case Bool is dead: (bool = int) unsatisfiable *)
```


Variance of type parameters

Subtyping: $\sigma \leq \tau$ means "all values of σ are also values of τ ". Equality $(\sigma=\tau)$ defined as $(\sigma \leq \tau) \wedge(\sigma \geq \tau)$.

$$
\frac{\sigma_{1} \geq \sigma_{1}^{\prime} \quad \sigma_{2} \leq \sigma_{2}^{\prime}}{\left(\sigma_{1} \rightarrow \sigma_{2}\right) \leq\left(\sigma_{1}^{\prime} \rightarrow \sigma_{2}^{\prime}\right)}
$$

Variance describes subtyping on a type from subtyping on its parametrs.

$$
\begin{gathered}
\text { type }(\alpha, \beta, \gamma) \mathrm{t}=(\alpha * \gamma) \rightarrow(\beta * \gamma) \quad: \quad \text { type }(-\alpha,+\beta,=\gamma) \mathrm{t} \\
\\
\frac{\alpha \geq \alpha^{\prime} \quad \beta \leq \beta^{\prime} \quad \gamma=\gamma^{\prime}}{(\alpha, \beta, \gamma) \mathrm{t} \leq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) \mathrm{t}}
\end{gathered}
$$

For simple types, this is easy to check. For GADTs?

- Vincent Simonet and François Pottier.

A constraint-based approach to guarded algebraic data types. ACM Transactions on Programming Languages and Systems, 29(1), January 2007.

General framework with arbitrary constraints.
Generic semantic soundness criterion (hairy first-order formula).

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Variance and generalized constraints for C\# generics.
In Proceedings of the 20th European conference on Object-Oriented Programming, ECOOP'06, 2006.

Distinct setting of subtyping constraints.
Simple syntactic soundness criterion.

- Vincent Simonet and François Pottier.

A constraint-based approach to guarded algebraic data types. ACM Transactions on Programming Languages and Systems, 29(1), January 2007.

General framework with arbitrary constraints.
Generic semantic soundness criterion (hairy first-order formula).

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Variance and generalized constraints for C\# generics.
In Proceedings of the 20th European conference on Object-Oriented Programming, ECOOP'06, 2006.

Distinct setting of subtyping constraints.
Simple syntactic soundness criterion.
We need : a syntactic criterion for equality constraints. New, hard.

Variance for GADT: harder than it seems

Is this definition correct?

```
type \(+\alpha\) expr \(=\)
    | Val : \(\forall \alpha . \alpha \rightarrow \alpha\) expr
    | Prod : \(\forall \beta \gamma . \beta\) expr \(* \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}\)
```

The constructor Val could appear in a simple ADT:
| Val of α

What about Prod?

Variance for GADT: harder than it seems (2)

And this one?

```
type file_descr = private int (* file_descr \leq int *)
```

val stdin : file_descr
type $+\alpha \mathrm{t}=$
| File : file_descr -> file_descr t

Variance for GADT: harder than it seems (2)

And this one?

```
type file_descr = private int (* file_descr \leq int *)
val stdin : file_descr
type +\alpha t =
    | File : file_descr -> file_descr t
```

Breaks abstraction!

```
let o = File stdin in
let o' = (o : file_descr t :> int t)
let project : }\forall\alpha.\alphat->(\alpha->\mathrm{ file_descr) = function
    | File _ -> (fun x -> x)
project o' : int -> file_descr
```

(Using polymorphic variants or object types, you could break soundness)

Proving an example correct

```
type \(+\alpha\) expr =
    | Val : \(\forall \alpha . \alpha \rightarrow \alpha\) expr
    \(\mid \operatorname{Prod}: \forall \beta \gamma \cdot \beta\) expr \(* \gamma \operatorname{expr} \rightarrow(\beta * \gamma)\) expr
```

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

Proving an example correct

type $+\alpha$ expr $=$

$$
\begin{aligned}
& \text { | Val : } \forall \alpha . \alpha \rightarrow \alpha \text { expr } \\
& \text { I Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \text { expr } \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.
let rec coerce $\left(\alpha \leq \alpha^{\prime}\right): \alpha$ expr $\leq \alpha^{\prime} \operatorname{expr}=$ function

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

```
let rec coerce ( }\alpha\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ ) : }\alpha\mathrm{ expr }\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ expr = function
    | Val (v : \alpha) -> Val (v :> \alpha')
```


Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val } \left.(\mathrm{v}: \alpha)->\text { Val (v :> } \alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr }) \rightarrow> \\
& \alpha=(\beta * \gamma), \quad \alpha \leq \alpha^{\prime}
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

```
let rec coerce ( }\alpha\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ ) : }\alpha\mathrm{ expr }\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ expr = function
    | Val (v : \alpha) -> Val (v :> \alpha')
    | Prod \beta \gamma ((b, c) : \beta expr*\gamma expr) ->
    Prod ?
\alpha=(\beta*\gamma),\quad\alpha\leq\mp@subsup{\alpha}{}{\prime}
```


Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

```
let rec coerce ( }\alpha\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ ) : 人 expr }\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ expr = function
    | Val (v : \alpha) -> Val (v :> \alpha')
    | Prod \beta\gamma ((b, c) : \beta expr * \gamma expr) ->
    Prod ?
\alpha=(\beta*\gamma), \alpha
```


Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

```
let rec coerce ( }\alpha\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ ) : }\alpha\mathrm{ expr }\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ expr = function
    | Val (v : \alpha) -> Val (v :> \alpha')
    | Prod \beta \gamma ((b, c) : \beta expr*\gamma expr) ->
    Prod ?
\alpha=(\beta*\gamma),\quad(\beta*\gamma)\leq\mp@subsup{\alpha}{}{\prime}
```


Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

```
let rec coerce ( }\alpha\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ ) : }\alpha\mathrm{ expr }\leq\mp@subsup{\alpha}{}{\prime}\mathrm{ expr = function
    | Val (v : \alpha) -> Val (v :> \alpha')
    | Prod \beta \gamma ((b, c) : \beta expr*\gamma expr) ->
    Prod ?
\alpha=(\beta*\gamma),\quad(\beta*\gamma)\leq\mp@subsup{\alpha}{}{\prime}
```


Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \operatorname{expr} \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val }(\mathrm{v}: \alpha)->\operatorname{Val}\left(\mathrm{v}:>\alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr }) \rightarrow \\
& \\
& \quad \text { Prod ? } \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | } \operatorname{Val}(\mathrm{v}: \alpha)->\mathrm{Val}\left(\mathrm{v}:>\alpha^{\prime}\right) \\
& \text { | } \operatorname{Prod} \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr })-> \\
& \\
& \quad \operatorname{Prod} \beta^{\prime} \gamma^{\prime}(?, ?) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val }(\mathrm{v}: \alpha)->\operatorname{Val}\left(\mathrm{v}:>\alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr }) \rightarrow \\
& \\
& \quad \text { Prod } \beta^{\prime} \gamma^{\prime}(\mathrm{?}, \mathrm{?}) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \operatorname{expr} \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val (v : } \left.\alpha \text {) }->\text { Val (v :> } \alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr) -> } \\
& \quad \text { Prod } \beta^{\prime} \gamma^{\prime}(?, ?) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right) \\
& \\
& \quad(\beta * \gamma) \leq\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val (v : } \alpha \text {) -> Val (v :> } \alpha^{\prime} \text {) } \\
& \text { | Prod } \beta \gamma \text { ((b, c) : } \beta \text { expr } * \gamma \text { expr) -> } \\
& \text { Prod } \beta^{\prime} \gamma^{\prime} \text { (?, ?) } \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \quad \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right) \\
& (\beta * \gamma) \leq\left(\beta^{\prime} * \gamma^{\prime}\right) \quad \Longrightarrow \quad \beta \leq \beta^{\prime}, \gamma \leq \gamma^{\prime}
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val } \left.(\mathrm{v}: \alpha) \text {-> Val (v :> } \alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \operatorname{expr}) \text {-> } \\
& \\
& \quad \text { Prod } \beta^{\prime} \gamma^{\prime}\left(\operatorname{coerce}\left(\beta \leq \beta^{\prime}\right) \mathrm{b}, \text { coerce }\left(\gamma \leq \gamma^{\prime}\right) \mathrm{c}\right) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right) \\
& \\
& \\
& \quad(\beta * \gamma) \leq\left(\beta^{\prime} * \gamma^{\prime}\right) \Longrightarrow \beta \leq \beta^{\prime}, \gamma \leq \gamma^{\prime}
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \text { expr } * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val (v : } \left.\alpha \text {) -> Val (v :> } \alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr }) \text {-> } \\
& \\
& \quad \text { Prod } \beta^{\prime} \gamma^{\prime}\left(\text { coerce }\left(\beta \leq \beta^{\prime}\right) \mathrm{b}, \text { coerce }\left(\gamma \leq \gamma^{\prime}\right) \mathrm{c}\right) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right) \\
& \\
& \quad(\beta * \gamma) \leq\left(\beta^{\prime} * \gamma^{\prime}\right) \Longrightarrow \beta \leq \beta^{\prime}, \gamma \leq \gamma^{\prime}
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \operatorname{expr} \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | } \operatorname{Val}(\mathrm{v}: \alpha)->\operatorname{Val}\left(\mathrm{v}:>\alpha^{\prime}\right) \\
& \text { | } \operatorname{Prod} \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr })-> \\
& \\
& \quad \operatorname{Prod} \beta^{\prime} \gamma^{\prime}\left(\operatorname{coerce}\left(\beta \leq \beta^{\prime}\right) \mathrm{b}, \text { coerce }\left(\gamma \leq \gamma^{\prime}\right) \mathrm{c}\right) \\
& \alpha= \\
& (\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Proving an example correct

$$
\begin{aligned}
& \text { type }+\alpha \text { expr }= \\
& \quad \text { | Val : } \forall \alpha \cdot \alpha \rightarrow \alpha \text { expr } \\
& \text { | Prod : } \forall \beta \gamma \cdot \beta \operatorname{expr} * \gamma \operatorname{expr} \rightarrow(\beta * \gamma) \operatorname{expr}
\end{aligned}
$$

When $\sigma \leq \sigma^{\prime}$, I know it's safe to assume σ expr $\leq \sigma^{\prime}$ expr. Because I could almost write that conversion myself.

$$
\begin{aligned}
& \text { let rec coerce }\left(\alpha \leq \alpha^{\prime}\right): \alpha \text { expr } \leq \alpha^{\prime} \text { expr }=\text { function } \\
& \text { | Val }(\mathrm{v}: \alpha)->\operatorname{Val}\left(\mathrm{v}:>\alpha^{\prime}\right) \\
& \text { | Prod } \beta \gamma((\mathrm{b}, \mathrm{c}): \beta \text { expr } * \gamma \text { expr }) \text {-> } \\
& \\
& \quad \text { Prod } \beta^{\prime} \gamma^{\prime}\left(\text { coerce }\left(\beta \leq \beta^{\prime}\right) \mathrm{b}, \text { coerce }\left(\gamma \leq \gamma^{\prime}\right) \mathrm{c}\right) \\
& \alpha=(\beta * \gamma), \quad(\beta * \gamma) \leq \alpha^{\prime} \quad \Longrightarrow \quad \exists \beta^{\prime}, \gamma^{\prime}, \alpha^{\prime}=\left(\beta^{\prime} * \gamma^{\prime}\right)
\end{aligned}
$$

Upward closure for $\tau[\bar{\alpha}]$:
If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then τ^{\prime} is also of the form $\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$. Holds for $\beta * \gamma$, but fails for file_descr = private int.

In a more general case

```
type +\alpha t =
    | K of }\exists\overline{\beta}[\alpha=E[\overline{\beta}]].A[\overline{\beta}
```

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$?

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { । } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$? match $v: \sigma$ t with | ...
| K arg -> K arg
We can type-check this partial coercion term if and only if:

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \text { । } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$? match $v: \sigma$ t with | ...
| K arg -> K arg
We can type-check this partial coercion term if and only if:

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$?

```
match v: \sigma t with
```

 | ...
 I K arg $->$ K ($\arg : A[\bar{\rho}] \quad)$

We can type-check this partial coercion term if and only if:

$$
\sigma=E[\bar{\rho}] \Longrightarrow
$$

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$? match $v: \sigma$ t with \| ... । K arg $\rightarrow \mathrm{K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right)$

We can type-check this partial coercion term if and only if:

$$
\sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime},
$$

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$? match $v: \sigma$ t with | ...
। K arg $\rightarrow \mathrm{K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right)$
We can type-check this partial coercion term if and only if:

$$
\sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad A[\bar{\rho}] \leq A\left[\bar{\rho}^{\prime}\right]
$$

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$?

$$
\text { match } v: \sigma \text { t with }
$$

I ...

$$
\mathrm{I} \mathrm{~K} \arg \rightarrow \mathrm{~K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right): \sigma^{\prime} \mathrm{t}
$$

We can type-check this partial coercion term if and only if:

$$
\sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad A[\bar{\rho}] \leq A\left[\bar{\rho}^{\prime}\right] \wedge \sigma^{\prime}=E\left[\bar{\rho}^{\prime}\right]
$$

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma$ t into a $\sigma^{\prime} \mathrm{t}$? match $v: \sigma$ t with \| ...
। K arg $\rightarrow \mathrm{K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right)$
We can type-check this complete coercion term if and only if:

$$
\forall \bar{\rho}, \quad \sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad A[\bar{\rho}] \leq A\left[\bar{\rho}^{\prime}\right] \wedge \sigma^{\prime}=E\left[\bar{\rho}^{\prime}\right]
$$

This semantic criterion (also found in [SP07]) extends both upward-closure and the usual variance check on A.

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$?

```
match v: \sigma t with
```

\| ...
। $\mathrm{K} \arg \rightarrow \mathrm{K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right)$

We can type-check this complete coercion term if and only if:

$$
\forall \bar{\rho}, \quad \sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad A[\bar{\rho}] \leq A\left[\bar{\rho}^{\prime}\right] \wedge \sigma^{\prime}=E\left[\bar{\rho}^{\prime}\right]
$$

This semantic criterion (also found in [SP07]) extends both upward-closure and the usual variance check on A.

In a more general case

$$
\begin{aligned}
& \text { type }+\alpha \mathrm{t}= \\
& \quad \text { | } \ldots \\
& \text { | K of } \exists \bar{\beta}[\alpha=E[\bar{\beta}]] . A[\bar{\beta}]
\end{aligned}
$$

Assume that $\sigma \leq \sigma^{\prime}$. Can I convert any value $v: \sigma \mathrm{t}$ into a $\sigma^{\prime} \mathrm{t}$?

```
match v: \sigma t with
```

\| ...
। $\mathrm{K} \arg \rightarrow \mathrm{K}\left(\arg : A[\bar{\rho}]:>A\left[\bar{\rho}^{\prime}\right]\right)$

We can type-check this complete coercion term if and only if:

$$
\forall \bar{\rho}, \quad \sigma=E[\bar{\rho}] \Longrightarrow \exists \bar{\rho}^{\prime}, \quad A[\bar{\rho}] \leq A\left[\bar{\rho}^{\prime}\right] \wedge \sigma^{\prime}=E\left[\bar{\rho}^{\prime}\right]
$$

This semantic criterion (also found in [SP07]) extends both upward-closure and the usual variance check on A.

From semantics to syntax

The semantic criterion is a logic property (constraint entailment problem).

$$
\forall \bar{\rho}, \quad\left(\forall i, \sigma_{i}=E_{i}[\bar{\rho}]\right) \Longrightarrow \exists \bar{\rho}^{\prime}, \tau[\bar{\rho}] \leq \tau\left[\bar{\rho}^{\prime}\right] \wedge\left(\forall i, \sigma_{i}^{\prime}=E_{i}\left[\bar{\rho}^{\prime}\right]\right)
$$

Our contribution: equivalent syntactic judgments.
Easier to implement and explain to users.
(1) $\Gamma \vdash \tau: v$
(2) $\Gamma \vdash \tau: v \Rightarrow(=)$
(3) $\Gamma_{1} \uparrow \Gamma_{2}$
a variance check (well-known)
a v-closure check (new!)
an interference check (see the paper!)

Correctness (syntax implies semantics) : easy with the right definitions. Completeness (semantics implies syntax) : quite challenging.

From semantics to syntax: Some subtleties

Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \gamma$ is upward-closed. What about $\beta * \beta$?
Repeating a variable twice is dangerous.

From semantics to syntax: Some subtleties

Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \gamma$ is upward-closed. What about $\beta * \beta$?
Repeating a variable twice is dangerous.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$.

From semantics to syntax: Some subtleties

Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \gamma$ is upward-closed. What about $\beta * \beta$?
Repeating a variable twice is dangerous.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$.

Yet, $(\beta$ ref $) *(\beta$ ref $)$ is closed
Repeated variables are ok when all occurences are invariant.

From semantics to syntax: Some subtleties

Upward closure: If $\tau[\bar{\sigma}] \leq \tau^{\prime}$, then $\tau^{\prime}=\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.
$\beta * \gamma$ is upward-closed. What about $\beta * \beta$?
Repeating a variable twice is dangerous.
$\beta * \beta$ is not closed : (file_descr $*$ file_descr $) \leq\left(f i l e _d e s c r * i n t\right)$.

Yet, $(\beta$ ref $) *(\beta$ ref $)$ is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator $v_{1} \curlywedge v_{2}$ defined when repeating a variable at variances v_{1} and v_{2} is ok.

Interesting design implications

This was the technical part of our work.

The closure conditions also raise interesting design questions.

Are GADT contravariance and private types incompatible?

We have discussed upward-closed types, but checking contravariant parameters naturally requires downward-closed types $\tau[\bar{\sigma}]$:

If $\tau^{\prime} \leq \tau[\bar{\sigma}]$, then τ^{\prime} is also of the form $\tau\left[\bar{\sigma}^{\prime}\right]$ for some $\bar{\sigma}^{\prime}$.

This never works in presence of private types: for any τ we can define a distinct type ($\tau^{\prime}:=$ private τ) with $\tau^{\prime} \leq \tau$.

Closed-world vs. open-world

A subtyping fact $\sigma \leq \tau$ is knowledge about the world (of types).

Closure criterions make a closed world assumption. However, introducing a private type adds a new subtyping fact.

To solve this tension, add downward-closed to forbid future extensions.

$$
\begin{aligned}
& \text { type } t=\text { downward-closed } \\
& \text { | Foo ... } \\
& \text { | Bar ... }
\end{aligned}
$$

A private synonym of t would then be rejected.

Similar to final in object-oriented languages.

GADTs with subtyping constraints

```
type +\alpha expr =
    | Int of int with int }\leq
    | Bool of bool with bool }\leq
```

This definition is obviously covariant:
If int $\leq \alpha$ and $\alpha \leq \alpha^{\prime}$, then int $\leq \alpha^{\prime}$.
No upward-closure issues.

```
let eval : }\forall\alpha.\alpha expr ->\alpha = functio
| Int n -> (n : int :> \alpha)
(* int \leq \alpha *)
| Bool b -> (b : bool :> \alpha) (* bool \leq \alpha *)
```

But the following isn't obviously correct anymore:

```
let get_int : int expr -> int = function
```

| Int n -> n
(* bool \leq int ? *)

GADTs with subtyping constraints

Constraints of the form $\alpha \geq \tau$ are obviously correct for a covariant $+\alpha$. Constraints of the form $\alpha \leq \tau$ are hard for $+\alpha$: like type equalities, they need reasoning on closure conditions.

Closure conditions (our work) and subtyping constraints (from [EKRY06]) are of incomparable expressivity:

- For get_int you really need equalities.
- For file_descr, only subtyping constraints can give you covariance.

In the general case you want to have both.

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

We have a sound criterion that can be implemented easily in a type checker.

Raises deeper design questions: open and closed worlds, GADTs with subtyping constraints.

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

We have a sound criterion that can be implemented easily in a type checker.

Raises deeper design questions: open and closed worlds, GADTs with subtyping constraints.

Thank you!

$\Gamma \vdash \tau: v \Rightarrow v^{\prime}$

We want to say that $\Gamma \vdash \tau$ is v-closed if:

$$
\forall \tau^{\prime}, \bar{\sigma}, \tau[\bar{\sigma}] \prec_{v} \tau^{\prime} \Longrightarrow \exists \bar{\sigma}^{\prime}, \tau\left[\bar{\sigma}^{\prime}\right]=\tau^{\prime}
$$

We need a generalization:

$$
\forall \tau^{\prime}, \bar{\sigma}, \tau[\bar{\sigma}] \prec_{v} \tau^{\prime} \Longrightarrow \exists \bar{\sigma}^{\prime}, \tau\left[\bar{\sigma}^{\prime}\right] \prec_{v^{\prime}} \tau^{\prime}
$$

This is our $\Gamma \vdash \tau: v \Rightarrow v^{\prime}$ judgment.

Inference rules

VAR
$\frac{w \alpha \in \Gamma \quad w=v}{\Gamma \vdash \alpha: v \Rightarrow v^{\prime}}$

Constr
$\frac{\Gamma \vdash \overline{w \alpha} \mathrm{t}: v \text {-closed } \quad \forall i, \Gamma_{i} \vdash \sigma_{i}: v . w_{i} \Rightarrow v^{\prime} \cdot w_{i} \quad \Gamma=\lambda_{i} \Gamma_{i}}{\Gamma \vdash \bar{\sigma} \mathrm{t}: v \Rightarrow v^{\prime}}$

Bonus Slide: Variance and the value restriction

```
type (='a) ref = { mutable contents : 'a }
```

In a language with mutable data, generalizing any expression is unsafe (because you may generalize data locations):

$$
\begin{aligned}
& \text { \# let test = ref []; ; } \\
& \text { val test : , _a list ref }
\end{aligned}
$$

Solution (Wright, 1992): only generalize values (fun () -> ref [], or []).

Painful when manipulating polymorphic data structures:

$$
\text { let test }=\text { id [] (* not generalized? *) }
$$

OCaml relies on variance for the relaxed value restriction covariant data is immutable, so covariant type variables may be safely generalized. Very useful in practice (through module abstractions).

$$
\begin{aligned}
& \text { \# let test = id []; ; } \\
& \text { val test : 'a list = [] }
\end{aligned}
$$

