
GADTs meet Subtyping

Gabriel Scherer, Didier Rémy

Gallium – INRIA

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 1 / 18

Motivation

GADTs were just added to OCaml.

OCaml also has limited, but useful, support for subtyping.
Type parameters have a variance.

How can we check the variances of GADT definitions?

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 2 / 18

Introduction to GADTs

With algebraic datatypes we often write things like:

type expr =

| Int of int

| Bool of bool

let get_int : expr -> int = function

| Int n -> n

| Bool _ -> failwith "int excepted"

GADTs allow a more fine-grained typing

type α expr =

| Int : int -> int expr

| Bool : bool -> bool expr

let get_int : int expr→ int = function

| Int n -> n

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 3 / 18

Internally, GADTs are data types that may carry type equalities (and
existentials).

type α expr =

| Int of int with α = int

| Bool of bool with α = bool

Equalities are used during pattern-matching: refinement and dead cases.

let eval : ∀α. α expr→ α = function

| Int n -> n (* α = int *)

| Bool b -> b (* α = bool *)

let get_int : int expr→ int = function

| Int n -> n

(* case Bool is dead: (bool = int) unsatisfiable *)

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 4 / 18

Variance of type parameters

Subtyping: σ ≤ τ means “all values of σ are also values of τ”.
Equality (σ = τ) defined as (σ ≤ τ) ∧ (σ ≥ τ).

σ1 ≥ σ′1 σ2 ≤ σ′2
(σ1 → σ2) ≤ (σ′1 → σ′2)

Variance describes subtyping on a type from subtyping on its parametrs.

type (α,β,γ) t = (α ∗ γ)→ (β ∗ γ) : type (-α, +β, =γ) t

α ≥ α′ β ≤ β′ γ = γ′

(α, β, γ) t ≤ (α′, β′, γ′) t

For simple types, this is easy to check. For GADTs?

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 5 / 18

Vincent Simonet and François Pottier.
A constraint-based approach to guarded algebraic data types.
ACM Transactions on Programming Languages and Systems, 29(1),
January 2007.

General framework with arbitrary constraints.
Generic semantic soundness criterion (hairy first-order formula).

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu.
Variance and generalized constraints for C# generics.
In Proceedings of the 20th European conference on Object-Oriented
Programming, ECOOP’06, 2006.

Distinct setting of subtyping constraints.
Simple syntactic soundness criterion.

We need : a syntactic criterion for equality constraints. New, hard.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 6 / 18

Vincent Simonet and François Pottier.
A constraint-based approach to guarded algebraic data types.
ACM Transactions on Programming Languages and Systems, 29(1),
January 2007.

General framework with arbitrary constraints.
Generic semantic soundness criterion (hairy first-order formula).

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu.
Variance and generalized constraints for C# generics.
In Proceedings of the 20th European conference on Object-Oriented
Programming, ECOOP’06, 2006.

Distinct setting of subtyping constraints.
Simple syntactic soundness criterion.

We need : a syntactic criterion for equality constraints. New, hard.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 6 / 18

Variance for GADT: harder than it seems

Is this definition correct?

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

The constructor Val could appear in a simple ADT:

| Val of α

What about Prod?

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 7 / 18

Variance for GADT: harder than it seems (2)

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

Breaks abstraction!

let o = File stdin in

let o’ = (o : file_descr t :> int t)

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

(Using polymorphic variants or object types, you could break soundness)

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 8 / 18

Variance for GADT: harder than it seems (2)

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

Breaks abstraction!

let o = File stdin in

let o’ = (o : file_descr t :> int t)

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

(Using polymorphic variants or object types, you could break soundness)

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 8 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)

| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , (β ∗ γ) ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒

∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (? , ?)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (? , ?)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (? , ?)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′)

=⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (? , ?)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (coerce (β ≤ β′) b, coerce (γ ≤ γ′) c)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (coerce (β ≤ β′) b, coerce (γ ≤ γ′) c)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (coerce (β ≤ β′) b, coerce (γ ≤ γ′) c)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod β′ γ′ (coerce (β ≤ β′) b, coerce (γ ≤ γ′) c)

α = (β ∗ γ) , (β ∗ γ) ≤ α′ =⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 9 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K

(

arg

: A[ρ]

:> A[ρ′]

) : σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K

(

arg

: A[ρ]

:> A[ρ′]

) : σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K

(

arg

: A[ρ]

:> A[ρ′]

) : σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ]

:> A[ρ′]

)

: σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒

∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′])

: σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ ,

A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′])

: σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′]

∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′]) : σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′])

: σ′ t

We can type-check this complete coercion term if and only if:

∀ρ, σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′])

: σ′ t

We can type-check this complete coercion term if and only if:

∀ρ, σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K (arg : A[ρ] :> A[ρ′])

: σ′ t

We can type-check this complete coercion term if and only if:

∀ρ, σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 10 / 18

From semantics to syntax

The semantic criterion is a logic property (constraint entailment problem).

∀ρ, (∀i , σi = Ei [ρ]) =⇒ ∃ρ′, τ [ρ] ≤ τ [ρ′] ∧ (∀i , σ′i = Ei [ρ
′])

Our contribution: equivalent syntactic judgments.
Easier to implement and explain to users.

1 Γ ` τ : v a variance check (well-known)

2 Γ ` τ : v ⇒ (=) a v -closure check (new!)

3 Γ1 & Γ2 an interference check (see the paper!)

Correctness (syntax implies semantics) : easy with the right definitions.
Completeness (semantics implies syntax) : quite challenging.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 11 / 18

From semantics to syntax: Some subtleties

Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ γ is upward-closed. What about β ∗ β?
Repeating a variable twice is dangerous.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).

Yet, (β ref) ∗ (β ref) is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator
v1 & v2 defined when repeating a variable at variances v1 and v2 is ok.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 12 / 18

From semantics to syntax: Some subtleties

Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ γ is upward-closed. What about β ∗ β?
Repeating a variable twice is dangerous.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).

Yet, (β ref) ∗ (β ref) is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator
v1 & v2 defined when repeating a variable at variances v1 and v2 is ok.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 12 / 18

From semantics to syntax: Some subtleties

Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ γ is upward-closed. What about β ∗ β?
Repeating a variable twice is dangerous.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).

Yet, (β ref) ∗ (β ref) is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator
v1 & v2 defined when repeating a variable at variances v1 and v2 is ok.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 12 / 18

From semantics to syntax: Some subtleties

Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ γ is upward-closed. What about β ∗ β?
Repeating a variable twice is dangerous.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).

Yet, (β ref) ∗ (β ref) is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator
v1 & v2 defined when repeating a variable at variances v1 and v2 is ok.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 12 / 18

Interesting design implications

This was the technical part of our work.

The closure conditions also raise interesting design questions.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 13 / 18

Are GADT contravariance and private types incompatible?

We have discussed upward-closed types, but checking contravariant
parameters naturally requires downward-closed types τ [σ]:

If τ ′ ≤ τ [σ], then τ ′ is also of the form τ [σ′] for some σ′.

This never works in presence of private types: for any τ we can define a
distinct type (τ ′ := private τ) with τ ′ ≤ τ .

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 14 / 18

Closed-world vs. open-world

A subtyping fact σ ≤ τ is knowledge about the world (of types).

Closure criterions make a closed world assumption.
However, introducing a private type adds a new subtyping fact.

To solve this tension, add downward-closed to forbid future extensions.

type t = downward-closed

| Foo ...

| Bar ...

A private synonym of t would then be rejected.

Similar to final in object-oriented languages.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 15 / 18

GADTs with subtyping constraints

type +α expr =

| Int of int with int ≤ α
| Bool of bool with bool ≤ α

This definition is obviously covariant:
If int ≤ α and α ≤ α′, then int ≤ α′.
No upward-closure issues.

let eval : ∀α. α expr→ α = function

| Int n -> (n : int :> α) (* int ≤ α *)

| Bool b -> (b : bool :> α) (* bool ≤ α *)

But the following isn’t obviously correct anymore:

let get_int : int expr -> int = function

| Int n -> n

(* bool ≤ int ? *)

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 16 / 18

GADTs with subtyping constraints

Constraints of the form α ≥ τ are obviously correct for a covariant +α.
Constraints of the form α ≤ τ are hard for +α: like type equalities, they
need reasoning on closure conditions.

Closure conditions (our work) and subtyping constraints (from [EKRY06])
are of incomparable expressivity:

For get int you really need equalities.

For file descr, only subtyping constraints can give you covariance.

In the general case you want to have both.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 17 / 18

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

We have a sound criterion that can be implemented easily in a type
checker.

Raises deeper design questions: open and closed worlds, GADTs with
subtyping constraints.

Thank you!

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 18 / 18

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

We have a sound criterion that can be implemented easily in a type
checker.

Raises deeper design questions: open and closed worlds, GADTs with
subtyping constraints.

Thank you!

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 18 / 18

Γ ` τ : v ⇒ v ′

We want to say that Γ ` τ is v -closed if:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] = τ ′

We need a generalization:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] ≺v ′ τ ′

This is our Γ ` τ : v ⇒ v ′ judgment.

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 19 / 18

Inference rules

Triv
v ≥ v ′ Γ ` τ : v

Γ ` τ : v ⇒ v ′

Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v ′

Constr

Γ ` wα t : v -closed ∀i , Γi ` σi : v .wi ⇒ v ′.wi Γ = &i Γi

Γ ` σ t : v ⇒ v ′

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 20 / 18

Bonus Slide: Variance and the value restriction

type (=’a) ref = { mutable contents : ’a }

In a language with mutable data, generalizing any expression is unsafe
(because you may generalize data locations):

let test = ref [];;

val test : ’_a list ref

Solution (Wright, 1992): only generalize values (fun () -> ref [], or
[]).

Painful when manipulating polymorphic data structures:

let test = id [] (* not generalized? *)

OCaml relies on variance for the relaxed value restriction covariant data
is immutable, so covariant type variables may be safely generalized. Very
useful in practice (through module abstractions).

let test = id [];;

val test : ’a list = []

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 21 / 18

	Introduction and examples
	Appendix

