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Motivation

GADTs were just added to OCaml.

OCaml also has limited, but useful, support for subtyping.
Type parameters have a variance.

How can we check the variances of GADT definitions?
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Introduction to GADTs

With algebraic datatypes we often write things like:

type expr =

| Int of int

| Bool of bool

let get_int : expr -> int = function

| Int n -> n

| Bool _ -> failwith "int excepted"

GADTs allow a more fine-grained typing

type α expr =

| Int : int -> int expr

| Bool : bool -> bool expr

let get_int : int expr→ int = function

| Int n -> n
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Internally, GADTs are data types that may carry type equalities (and
existentials).

type α expr =

| Int of int with α = int

| Bool of bool with α = bool

Equalities are used during pattern-matching: refinement and dead cases.

let eval : ∀α. α expr→ α = function

| Int n -> n (* α = int *)

| Bool b -> b (* α = bool *)

let get_int : int expr→ int = function

| Int n -> n

(* case Bool is dead: (bool = int) unsatisfiable *)
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Variance of type parameters

Subtyping: σ ≤ τ means “all values of σ are also values of τ”.
Equality (σ = τ) defined as (σ ≤ τ) ∧ (σ ≥ τ).

σ1 ≥ σ′1 σ2 ≤ σ′2
(σ1 → σ2) ≤ (σ′1 → σ′2)

Variance describes subtyping on a type from subtyping on its parametrs.

type (α,β,γ) t = (α ∗ γ)→ (β ∗ γ) : type (-α, +β, =γ) t

α ≥ α′ β ≤ β′ γ = γ′

(α, β, γ) t ≤ (α′, β′, γ′) t

For simple types, this is easy to check. For GADTs?
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Vincent Simonet and François Pottier.
A constraint-based approach to guarded algebraic data types.
ACM Transactions on Programming Languages and Systems, 29(1),
January 2007.

General framework with arbitrary constraints.
Generic semantic soundness criterion (hairy first-order formula).

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu.
Variance and generalized constraints for C# generics.
In Proceedings of the 20th European conference on Object-Oriented
Programming, ECOOP’06, 2006.

Distinct setting of subtyping constraints.
Simple syntactic soundness criterion.

We need : a syntactic criterion for equality constraints. New, hard.
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Variance for GADT: harder than it seems

Is this definition correct?

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

The constructor Val could appear in a simple ADT:

| Val of α

What about Prod?
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Variance for GADT: harder than it seems (2)

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

Breaks abstraction!

let o = File stdin in

let o’ = (o : file_descr t :> int t)

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

(Using polymorphic variants or object types, you could break soundness)
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Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let rec coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

Prod ? β′

α = (β ∗ γ) , α ≤ α′

=⇒ ∃β′, γ′, α′ = (β′ ∗ γ′)

(β ∗ γ) ≤ (β′ ∗ γ′) =⇒ β ≤ β′ , γ ≤ γ′

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for β ∗ γ, but fails for file descr = private int.
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In a more general case

type +α t =

| ...

| K of ∃β[α = E [β]] . A[β]

Assume that σ ≤ σ′. Can I convert any value v : σ t into a σ′ t?

match v : σ t with

| ...

| K arg -> K

(

arg

: A[ ρ ]

:> A[ ρ′ ]

) : σ′ t

We can type-check this partial coercion term if and only if:

∀ρ,

σ = E [ρ] =⇒ ∃ ρ′ , A[ρ] ≤ A[ρ′] ∧ σ′ = E [ρ′]

This semantic criterion (also found in [SP07]) extends both
upward-closure and the usual variance check on A.
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From semantics to syntax

The semantic criterion is a logic property (constraint entailment problem).

∀ρ, (∀i , σi = Ei [ρ]) =⇒ ∃ρ′, τ [ρ] ≤ τ [ρ′] ∧ (∀i , σ′i = Ei [ρ
′])

Our contribution: equivalent syntactic judgments.
Easier to implement and explain to users.

1 Γ ` τ : v a variance check (well-known)

2 Γ ` τ : v ⇒ (=) a v -closure check (new!)

3 Γ1 & Γ2 an interference check (see the paper!)

Correctness (syntax implies semantics) : easy with the right definitions.
Completeness (semantics implies syntax) : quite challenging.
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From semantics to syntax: Some subtleties

Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ γ is upward-closed. What about β ∗ β?
Repeating a variable twice is dangerous.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).

Yet, (β ref) ∗ (β ref) is closed
Repeated variables are ok when all occurences are invariant.

Some more subtleties in the paper (one extra variance), an operator
v1 & v2 defined when repeating a variable at variances v1 and v2 is ok.
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Interesting design implications

This was the technical part of our work.

The closure conditions also raise interesting design questions.
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Are GADT contravariance and private types incompatible?

We have discussed upward-closed types, but checking contravariant
parameters naturally requires downward-closed types τ [σ]:

If τ ′ ≤ τ [σ], then τ ′ is also of the form τ [σ′] for some σ′.

This never works in presence of private types: for any τ we can define a
distinct type (τ ′ := private τ) with τ ′ ≤ τ .
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Closed-world vs. open-world

A subtyping fact σ ≤ τ is knowledge about the world (of types).

Closure criterions make a closed world assumption.
However, introducing a private type adds a new subtyping fact.

To solve this tension, add downward-closed to forbid future extensions.

type t = downward-closed

| Foo ...

| Bar ...

A private synonym of t would then be rejected.

Similar to final in object-oriented languages.
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GADTs with subtyping constraints

type +α expr =

| Int of int with int ≤ α
| Bool of bool with bool ≤ α

This definition is obviously covariant:
If int ≤ α and α ≤ α′, then int ≤ α′.
No upward-closure issues.

let eval : ∀α. α expr→ α = function

| Int n -> (n : int :> α) (* int ≤ α *)

| Bool b -> (b : bool :> α) (* bool ≤ α *)

But the following isn’t obviously correct anymore:

let get_int : int expr -> int = function

| Int n -> n

(* bool ≤ int ? *)
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GADTs with subtyping constraints

Constraints of the form α ≥ τ are obviously correct for a covariant +α.
Constraints of the form α ≤ τ are hard for +α: like type equalities, they
need reasoning on closure conditions.

Closure conditions (our work) and subtyping constraints (from [EKRY06])
are of incomparable expressivity:

For get int you really need equalities.

For file descr, only subtyping constraints can give you covariance.

In the general case you want to have both.
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Conclusion

GADT variance checking: suprisingly less obvious than we thought.

We have a sound criterion that can be implemented easily in a type
checker.

Raises deeper design questions: open and closed worlds, GADTs with
subtyping constraints.

Thank you!
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Γ ` τ : v ⇒ v ′

We want to say that Γ ` τ is v -closed if:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] = τ ′

We need a generalization:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] ≺v ′ τ ′

This is our Γ ` τ : v ⇒ v ′ judgment.
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Inference rules

Triv
v ≥ v ′ Γ ` τ : v

Γ ` τ : v ⇒ v ′

Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v ′

Constr

Γ ` wα t : v -closed ∀i , Γi ` σi : v .wi ⇒ v ′.wi Γ = &i Γi

Γ ` σ t : v ⇒ v ′
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Bonus Slide: Variance and the value restriction

type (=’a) ref = { mutable contents : ’a }

In a language with mutable data, generalizing any expression is unsafe
(because you may generalize data locations):

# let test = ref [];;

val test : ’_a list ref

Solution (Wright, 1992): only generalize values (fun () -> ref [], or
[]).

Painful when manipulating polymorphic data structures:

let test = id [] (* not generalized? *)

OCaml relies on variance for the relaxed value restriction covariant data
is immutable, so covariant type variables may be safely generalized. Very
useful in practice (through module abstractions).

# let test = id [];;

val test : ’a list = []

Gabriel Scherer, Didier Rémy (Gallium) GADTs meet Subtyping March 22, 2013 21 / 18


	Introduction and examples
	Appendix

