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The Store library (Noûs and Scherer, 2023; Allain, Clément, Moine, and
Scherer, 2024) provides a store datastructure that tracks a bag of mutable
references, and provides an efficient way to capture its current state and restore
it later on. This is useful to implement backtracking algorithms over mutable
state, as found in type-checkers and automated theorem provers.
We extend the Store library to store not only mutable references, but also

richer data structures such as dynamic arrays and hash tables. Instead of hard-
coding specific data structures within Store, we capture broad classes of storable
data structures through generic interfaces. These interfaces are determined by
the properties of the (anti)operations of each data structure. We describe three
interesting classes of operations – absorbing, free, and custom (the general case)
– and the corresponding APIs and implementations.

1 Introduction

1.1 Use-cases for storable types

The use-case of the Store library is to allow to take snapshots of a mutable data structure.
For example, we use it in type-checking libraries to backtrack over a union-find graph of
type unifications. To do this, we change the definition of the union-find graph to use “stored
references” instead of normal reference:

type 'a node = 'a data Store.Ref.t

and 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

In general, users interested in adopting store must change their mutable data definitions,
replacing any reference or mutable field by a stored reference of type _ Store.Ref.t. Any
mutable data structure can be systematically modified in this way. For example, a hash
table can be implemented as a reference to an array of singly-linked lists; we would use a
stored reference for each element of the array, for the reference to the array itself (which is
mutated on resizes), and for the element and tail pointer of each cell in the linked list.
We would like to extend Store to support a richer set of built-in data structures for

convenience, and also to support generic storable types, letting users version pre-existing
data structures in the store by implementing a generic interface to track their modifications.
There are at least two reasons to do this:

1. Pre-existing data structures may be faster and more sophisticated than what we, as
Store authors or users, are willing to duplicate and maintain. For example, maybe
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some library authors maintain an extremely sophisticated hash table implementation,
and are not interested in integrating Store directly – nor us in duplicating their code.

2. If we implement all mutable pointers in the structure with stored references, we get the
same backtracking behavior for all parts of the structure. But sometimes more clever
policies are desirable. For example, in a dynamic/resizable array, mutations to array
elements need to be backtracked, but we may want to not undo the the transition to
a larger backing array. Similarly, some data structures in SAT or SMT solvers are
designed to not require any work when backtracking.

For example, if the user has already chosen a third-party hash table implementation, and
they want to integrate it in a Store-powered backtracking program, they want to implement
a “storable hash table” using their hash table library. They would have to write some glue
code to record operations in the store and let them be rolled back when an older version is
restored. What interface should Store demand for this glue code? This is the question that
we set out to answer in the present article – and in an upcoming release of the Store library.

We are using Store for type-inference implementations within the Inferno project (Pottier,
Martinot, and Scherer, 2023). We would like to also adopt Store in the Alt-Ergo SMT
solver (Bury, Clément, Coquereau, Conchon, Contejean, de Olivera, El Hara, Iguernlala,
Lescuyer, Mebsout, Roux, and Villemot, 2015), and we believe that storable types are a
necessary milestone to adopt it there.

1.2 Storable types of interest

Here are a few examples of data structures which we would like to support as storable types.
Having a diverse set of structures in mind avoids over-specializing the design.

references: Store already has built-in support for references, and they are going to be faster
than an implementation through a generic mechanism. Implementing them as storable
types should still be possible, with only a constant-factor performance overhead.

dynarray: we want to support dynamic/extensible arrays. If a dynamic array transitions
to a larger backing array to store more elements, we would like backtracking to keep
this larger array, instead of reverting to the previous, smaller backing array. (Going
back to the smaller backing array is another implementation that could make sense
for some memory-conscious applications, and it is easier to express. We want both
choices to be expressible.)

hash table or kvset: hash tables with backtracking support are common in SMT solvers,
they are a natural data structure to expect. Key-value sets (kvsets) are a simpler
data structure where key-value pairs can be added and removed, without support for
modifying the value bound to a key.

n-watching sets of optional references: an n-watching set is a bag of at least n optional
references – they may or may not carry a value. Users can create several n-watching
sets, and each optional reference can be part of several sets, with a global operation to
efficiently find all the n-watching sets where no more than n references do not carry a
value. This is a generalization of “watched literals” in SAT solvers, designed to offer
efficient backtracking.

1.3 Anti-operations and their composition

Our idea for storable types is that when a user performs a modifying operation on a
data structure in the store, the store should record what we call an anti-operation, a
description of how to undo this operation to restore the current value of the data structure.
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Different data structures offer different sets of operations, and they also have different sets
of anti-operations.
For example, references can be described as supporting operations of the form Set(v),

where v is a new value for the reference. If the current value of a reference is v, then an
anti-operation that can undo the operation Set(v') would be Unset(v), which simply
remembers the current value of the reference.
In a kvset, operations can be described as Insert(k, v) and Delete(k), and the cor-

responding anti-operations would be Undelete(k,v), which undoes the delection of k by
reinstating the key v, and Uninsert k.

In these two examples, operations and anti-operations are very symmetric, so it is tempting
to suggest to use the same type for both. Yet, this is not always the case. For example, an
at-most-one-assignment reference (references start uninitialized, and can no longer change
value once initialized) may have an operation Init(v) and anti-operation Uninit.

Composition When the user performs several operations on a storable type after taking
a snapshot, we can record a list of anti-operations, one for each operation, but often we can
combine several anti-operations into a single anti-operation. This saves space, and it can be
faster to rollback.
In general we ask that anti-operations for a given storable type form a monoid, with a

multiplication or composition operation: if a is the anti-operation for the operation o in
the current state, and b is the anti-operation for p in the state resulting from o, we can
write a.b for the composed anti-operation, that is able to un-do the sequential composition
(o; p) from the current state. In general, supporting composition requires enriching the
set of anti-operations with new kinds of anti-operations, or even changing the type of
anti-operations. Our earlier idea of storing a list of anti-operations in fact corresponds
to the most general way to do this: if we designed a type A with an anti-operation for
each operation of the structure (but no support for composition), then we can use the type
SnocList(A) of lists that grow on the right, with list concatenation for composition, as the
free monoid of (composable) anti-operations.

1.4 Properties of composition: absorbing, free, custom

We found that the composition of anti-operations has different properties depending on the
data structure – and on the signature of the anti-operations. We distinguish three classes of
anti-operations of interest.

Absorbing composition We say that a monoid of anti-operations is absorbing if, for
all composable anti-operations a, b, we have a.b = a. This property implies that the
anti-operation for any operation o contains enough information to un-do not only o, but any
future extension of o into a larger sequence of operations (o; p; . . . ). This is in the particular
the case when a contains the full value of the current state of the structure.

For example, the reference anti-operation Unset(v) is absorbing: when the current value
of the reference is v, this information contains enough information to undo any operation of
the form Set(v1), but also any sequence of updates (Set(v1); Set(v2); ...). Indeed,
Unset(v) contains the current value v in full, it captures the current state of the reference.
Consider a storable type of counters, with operations Incr and Decr to increment and

decrement the counter. We could take integers as our monoid of anti-operations, composed
by addition: the anti-operation for the sequence Incr; Decr; Incr; Incr would be (−2) –
it does not depend on the current value of the counter. This monoid of anti-operations is
not absorbing: subtracting 2 only allows to go back to the initial state from the current
state, not from a future state where we increment the counter again. On the other hand, if
we take as anti-operation the current value of the counter, we have an absorbing monoid for
the same data structure.
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Free composition We say that composition is free when the monoid of anti-operations is
exactly (isomorphic to) a list of simple anti-operations with concatenation for composition.
A sequence of free anti-operations cannot be compressed/summarized in any particular way
and is recorded as-is.

Consider a storable type of monotone sets, whose only operations are of the form Add(v)

– we can only add, never delete elements. A natural choice of composable anti-operations is
to consider lists of simple anti-operations of the form Delete(v), with composition defined
as concatenation of lists. This is a free monoid of anti-operations. In fact the ordering of
deletions may not matter, so we could store sets of values instead of lists, which is non-free
again. But there would be no particular performance benefit in doing so.

Custom composition We say that composition of anti-operations is custom when it is nei-
ther absorbing nor free. For example, if instead of monotone sets (only additions) we consider
sets with both addition Add(v) and deletion Delete(v). We could choose as (composable)
anti-operations just lists of operations, so the anti-operation for the operation sequence
(Add(v1); Add(v2); Delete(v3)) would be the list [Add(v3); Delete(v2); Delete(v1)].
But sometimes two operations cancel out: for example, the anti-operation for the sequence
(Add(v); Delete(v)) can be just the empty list. To implement this efficiently, we would
define our anti-operations as partial maps from values to either Added or Deleted. This
monoid of anti-operations is neither absorbing nor free, it is custom.

1.5 Different interfaces for different properties

The key idea of our implementation of storable types in Store is that these three properties
correspond to three important classes of storable types, that each deserve specific support.
We offer:

• A simple API for free anti-operations, which logs a separate anti-operation for each
operation performed. It is easy to use, but using it for absorbing or custom anti-
operations could lead to worse asymptotics in memory usage and backtracking time.

• A simple API for absorbing operations, which is efficient but not general: it can only
be used for storable types whose anti-operations are absorbing.

• A complex API for custom anti-operations, that lets user implement arbitrary non-free
composition of anti-operations. This is the most general interface and it could be used
for any storable type.

Contributions We consider the contribution of our work to be the separation of storable
types in these three classes (absorbing, free, custom), the design of an API for each class
that offers an adequate balance between complexity and efficiency, and the implementation
of the corresponding logic in the Store library.

We implemented representative data structures in each of these classes, and the final design
results from several iterations on those implementations. We report on these implementations,
which demonstrate that the APIs are usable and expressive. We do not make any claim
regarding efficiency in this article – on the overhead of implementing a data structure with
one of those generic interfaces instead of built-in support – and will not provide benchmarks
as part of our evaluation, thank you very much.1

1The joke is that running good benchmarks is brutally hard. Last time we decided to benchmark our Store
implementation, it took us weeks of full-time work to converge to a result that we believe was a correct
experimental validation of our qualitative performance claims. The amount of effort required for our
benchmarks was comparable to the effort of writing a mechanized Coq/Rocq proof of correctness for the
persistent part of Store.
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Our implementation vehicle is an experimental version of Store that is available as open-
source software, and will hopefully be integrated shortly as a new Store release. It is available
at https://gitlab.com/basile.clement/store/-/tree/jfla2025.

2 A Store reminder

Allain, Clément, Moine, and Scherer (2024) provide a complete description of the design
and implementation of the Store library (without storable types), with a partial formal
verification and detailed benchmarks. Reading this previous work is not strictly necessary
to follow the present article, as we include a self-contained reminder – but if anything is
unclear below, please have a look at that paper.
The current article is focused on storable types, and in particular our Related Work

discussion focuses on works that are relevant for storable types, not other works that are
related to Store in more general ways. For a discussion of those, again, please have a look at
Allain, Clément, Moine, and Scherer (2024).

2.1 Interface

The Store library defines a type store of stores.

type store

val create : unit -> store

In the Store library as described in Allain, Clément, Moine, and Scherer (2024), the only
data structure that can be put in a store are references:

module Ref : sig

type 'a t

val make : store -> 'a -> 'a t

val get : store -> 'a t -> 'a

val set : store -> 'a t -> 'a -> unit

end

The backtracking support of Store is offered through two different APIs. The persis-
tent API offers immutable snapshots that can be restored an arbitrary number of times:
capture store takes a snapshot of the current value of all structures in the store, and
restore store snapshot reverts the store to the state it had when the snapshot was taken.

type snapshot

val capture : store -> snapshot

val restore : store -> snapshot -> unit

The semi-persistent API offers ephemeral transactions, that can be terminated at most
once and follow a last-in-first-out discipline: terminating a transaction invalidates all
transactions and snapshots created within that transaction. A transaction can be terminated
by rollback, which reverts the store to the state it had when the transaction started, or by
commit, which leaves the store state unchanged.

type transaction

val transaction : store -> transaction

val rollback : store -> transaction -> unit

val commit : store -> transaction -> unit

Terminating a transaction using rollback or commit invalidates all transactions or
snapshots which were created within the transaction. On the other hand, it remains possible
to restore a previous snapshot, or to terminate an enclosing transaction.
Finally, we provide two high-level wrappers:
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val temporarily : store -> ('a -> unit) -> unit

val tentatively : store -> ('a -> unit) -> unit

temporarily st f takes a store st and a function f that performs an arbitrary computa-
tion, calls f (), and then reverts any change to the store that would have been performed by
f. tentatively reverts the changes only if f raises an exception, and persists the changes
if it returns a value.
Note that this gives a different programming style than the semi-persistent APIs as

originally presented by Conchon and Filliâtre (2008). In our API, users explicitly capture
and restore transactions or snapshots – unless their uses are simple enough that the high-level
wrappers suffice. The API of Conchon and Filliâtre (2008) gives a programming style that is
closer to programming with pure, persistent data structures, with no explicit manipulation
of snapshot/transactions; but it is also less expressive, for example one cannot easily expose
commit in this model.

2.2 Examples

2.2.1 Unification with rollback on error

Suppose we have a type-checker that uses our union-find from Section 1.1, with the type
ty node used to represent a type, which is also a node in a Union-Find graph. We have an
implementation of the function

exception Unification

val unify_head :

Store.t -> (ty node * ty node) Queue.t ->

ty node -> ty node -> unit

which unifies two type nodes, raises an exception if they are incompatible, and pushes the
children of the nodes into a queue of pairs to be unified later. For example, unifying X -> Y

and X' -> int pushes the pairs (X, X') and (Y, int) into the unification queue.
We now want to wrap this in a higher-level function that unifies two types in depth,

recursively unifying its children. If some unification fails along the way, we want all
unifications performed so far to be rolled back: we will print an error message to the user
that shows the types involved, and we do not want the types shown to include some partial
unification information, depending on the traversal order of the unifier. This can be done
by capturing the state of the store before the unifications start, and restoring this initial
state on error.

let unify st ty1 ty2 =

let snapshot = Store.capture st in

try

let q = Queue.create () in

Queue.push (ty1, ty2) q;

while not (Queue.is_empty q) do

let (v1, v2) = Queue.take q in

unify_head st q v1 v2

done

with Unification as err ->

Store.restore st snapshot;

raise err

The snapshot snapshot is only restored at most once in this example, so it fits the
constraints of the semi-persistent API, which would make the code slightly more efficient:
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let unify st ty1 ty2 =

let transaction = Store.transaction st in

try

let q = Queue.create () in

Queue.push (ty1, ty2) q;

while not (Queue.is_empty q) do

let (v1, v2) = Queue.take q in

unify_head st q v1 v2

done;

Store.commit st transaction;

with Unification_error as err ->

Store.rollback st transaction;

raise err

(Slightly more efficient: in theory there can be arbitrary savings in time and memory
usage, but in practice in most cases we would not observe a performance difference. In
some use-cases we observed that the semi-persistent version is about 20% faster. It also has
better memory-usage properties: in technical terms that will only be clear later, commit
compresses anti-operations by increasing the opportunities for record elision.)

This use-case of rolling back a transaction on error is common enough that Store proposes
a high-level wrapper for this, Store.tentatively:

let unify st ty1 ty2 =

Store.tentatively st (fun () ->

let q = Queue.create () in

Queue.push (ty1, ty2) q;

while not (Queue.is_empty q) do

let (v1, v2) = Queue.take q in

unify_head st q v1 v2

done

)

2.2.2 A persistent union-find

One of the type-checkers that we implemented in this style really wants to see the type-
checking environment as a persistent data structure: it is used inside a non-determinism
monad that runs many different variants of the same type-checking computation, reusing
the same solver state many times.

Suppose we want to provide the following interface, which exposes a persistent “equation
environment” which records equations between types and can then check whether two types
are equal:

module Env : sig

type t (* a persistent typing environment *)

val equal : t -> ty node -> ty node -> bool

(* are two types equal in the given environment? *)

val unify : t -> ty node -> ty node -> t

(* add an equation between two types,

resulting in a new equation environment *)

end

This can be implemented by storing the store and a snapshot of the store in the type t
representing the persistent environment:
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type t = {

store: Store.t;

snapshot: Store.snapshot;

}

Manipulating types in a given environment is done by first restoring the snapshot of the
environment:

let equal env ty1 ty2 =

Store.restore env.store env.snapshot;

UnionFind.equal env.store ty1 ty2

Unifying two types is followed by taking a new snapshot, to return a semantically distinct
type environment:

let unify env ty1 ty2 =

Store.restore env.store env.snapshot;

unify env.store ty1 ty2;

{ env with store = Store.capture env.store }

Here we really need to use the persistent API, as the user may alternate between different
equation environments. It may seem inefficient to call Store.restore so often, but in fact
this is efficient in practice as Store.restore is a no-op when the store is already in the
desired state. This also illustrates that Store allows switching from its more complex API
to a simpler persistent (or semi-persistent) API at an arbitrary abstraction level. The env
type above provides a fully persistent interface while still benefitting from record elision in
the implementation of unify.

2.3 Implementation

The implementation of Store maintains a tree-shaped directed graph, where each node
denotes a version of the store, and edges between nodes carry information on how to mutate
the store state to move from one version to another. We call this graph the store graph. It
has a designated root node, which corresponds to the current state. Operations that need
to record a change create a new node, create an edge between the current root and this new
node that carries an anti-operation, and make that new node the new root of the store.

The store graph has the shape of a tree, there is a unique path to the root from any node.
Nodes of the graph are represented directly as OCaml references, whose content store their
parent node in the graph and the information on the edge between the two nodes. Each
store reference is a mutable record that stores its current value (just like normal OCaml
references); only older versions are stored in edges of the store graph.

Taking a snapshot is O(1), we just return a reference to the current root node. Operations
on the mutable structures are also O(1), and in particular reading a stored reference
has exactly the same implementation and performance as reading a standard, non-stored
reference. Restoring a previous state of the store traverses all edges between the captured
node and the current root, updating the stored references and the store state in the process,
by undoing each recorded operation. The complexity is linear in the number of operations
recorded between the two versions. Moving between states using the persistent API requires
some extra book-keeeping compared to the semi-persistent version (still O(1) per operation),
as we revert and update the edges to allow going back later.

Parsimony Store has a parsimonious implementation: the OCaml value that denotes a
snapshot only refers to anti-operations that happened after the snapshot was taken, not
before. In particular, if a snapshot becomes unreachable as an OCaml value, then all
anti-operations that are only reachable from this snapshot can be collected by the garbage
collector. This would not be the case if we used, for example, a single global dynamic array
to store all anti-operations (which was the implementation technique in Noûs and Scherer
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(2023)); then holding any snapshot or just the store would force all anti-operations to remain
alive, retaining more memory than the user expects.

2.4 Record elision

Store implements a key optimization we call record elision. When a reference has already
been updated since the last snapshot was taken, we have the anti-operation Unset(v)

somewhere on the path from the current node to the last snapshot. There is no need
to record further updates to the same reference until the next snapshot, as the existing
anti-operation is sufficient for the reference to be correctly restored to v. This implicitly
relies on the fact that references have absorbing anti-operations.
To take advantage of this fact, we track generations, which are integers such that:

• Each snapshot in history has a distinct generation.

• The current root carries a generation, larger than the generation of all snapshots in
history, which is stored in the store metadata.

• Each stored reference carries a generation, which is the generation that the store had
on the last time the reference was updated.

When a referenced is updated, the implementation compares its generation with the
store generation. If the reference has an older generation, it means that the last update
to the reference took place before the last snapshot was taken. In this case, Store records
an anti-operation for this update in the store graph. But if the reference has the same
generation as the store, it means that the store was modified after the last snapshot was
taken, and Store does not need to record another anti-operation — it elides this extra work.
Record elision has a transformative impact on performance. On the workflows we are

interested in, backtracking is a relatively infrequent operation compared to operations on
the stored data structures. In this regime, only the first update of each reference after a
snapshot incurs some versioning overhead, and the many following updates have the same
performance as writing to a non-stored reference. In practice, using Store in this regime has
no noticeable overhead over using global mutable state that does not support backtracking.

Record elision is a key design question when generalizing Store from (absorbing) references
to other storable types. To what extent can we perform record elision for those operations?

Elision on commit There is another situation where we perform a less-direct form of
runtime elision. When we commit a transaction, we must keep the anti-operations logged
during the transaction somewhere in the store graph to allow going back to an earlier
snapshot. We implement this by, morally, re-recording each operation in turn, in the context
of the previous snapshot — as the snapshot corresponding to the transaction is invalidated
by the commit. In particular, some anti-operations that had to be recorded when the
transaction was performed (there was no previous record in the current transaction) can
now be elided (there is a previous record in the outer snapshot or transaction), and this
performs a form of compression of the history.
For example, consider the following sequence of operations:

let snap1 = Store.capture s in

Store.Ref.set s r v1;

let snap2 = Store.transaction s in

Store.Ref.set s r v2;

Store.commit s snap2;

The second call to Store.Ref.set is the first set on r since the last snapshot (the
transaction snap2) was taken, so it creates a node in the graph — it is not elided. But
when we decide to commit this transaction snap2, the snapshot snap2 is removed from the
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graph, so the changes since snap2 now have snap1 as their latest snapshot. In particular,
the capture of r corresponding to the second set is not necessary anymore, as the value of
r at snap1 was already recorded on the first set. This second write is removed from the
graph during commit, using a comparison of generations.

3 Our interfaces: free, absorbing, custom.

3.1 Storing free operations

We offer a module Store.Free to implement storable types with free operations.

module Free : sig

val modify :

store -> 'a -> op:('a -> unit) -> anti:('a -> unit) -> unit

end

When they want to perform a free operation on data structure data at a storable type, the
user should call Free.modify store data ~op ~anti, where op is a function that performs
the operation and anti is a function that reverts the operation. (We guarantee that anti is
only called in the state produced by the op function.). The triple (data, op, anti) is be
stored as a new edge in the graph, ready to be reverted or re-applied in the future.

Example: RareRef As an example, we can implement RareRef, a type of references that
are updated rarely, as follows:

module RareRef = struct

type 'a t = 'a ref

let make = ref

let get _store r = !r

let set store r v =

let setter v = fun r -> r := v in

Free.modify store r (setter v) (setter !r)

end

This module is observationally equivalent to the built-in module Store.Ref of stored
references, but the performance tradeoffs are fairly different. RareRef does not perform
record elision, so it is noticeably slower than Store.Ref if a reference is modified a lot
between two snapshots. But on the other hand RareRef.t does not need to carry a
generation for elision, so it consumes less space than Store.Ref, and can be a good choice
for certain read-dominated workflows.

3.2 Storing absorbing operations

We offer a module Store.Absorbing to implement storable types with absorbing operations.

module Absorbing : sig

type ('a, 'op, 'anti) descr = {

capture : 'a -> 'anti;

rollback : 'a -> 'anti -> unit;

undo : 'a -> 'anti -> 'op;

redo : 'a -> 'op -> 'anti;

}

To implement an absorbing operation, the user must provide the following functions
as part of the “description” record:

• A capture function that saves the current state of the storable structure as
an anti-operation.
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• A rollback function that consumes the anti-operation to revert to the
previous state; this is used by the semi-persistent API.

• an undo function that consumes the anti-operation, reverts to the previous
state, but produce an operation in 'op along the way, that can be used to
come back to the captured state by calling redo; this is used by the persistent
API.

type ('a, 'op, 'anti) t

val make : ('a, 'op, 'anti) descr -> 'a -> ('a, 'op, 'anti) t

val get : ('a, 'op, 'anti) t -> 'a

val modify : store -> 'a t -> unit

end

Absorbing.make descr v creates an instance of an absorbing structure whose current
value is v. Absorbing.get can be used to read the current value of the structure, and
Absorbing.modify must be called before any modification to the structure — unlike
Free.modify, it does not perform the modification itself, the user is in charge of the
modification. The modify function may capture the current state using the capture

callback, but it can perform record elision if that storable value was already modified since
the last snapshot.

Internally the abstract type Absorbing.t looks like a reference, with a generation and an
extra field storing the description of the absorbing operations. (We use GADT syntax to
hide the internal type parameters 'op, 'anti.)

type _ t = Absorbing : {

value : 'a;

mutable generation : Generation.t;

descr : ('a, 'op, 'anti) descr;

} -> 'a t

Note that the value field is not marked mutable: the 'a itself is usually a mutable type,
for example 'a Dynarray.t in the example that follows, and the user updates it directly.
Providing API support for updating the 'a value wholesale would mostly be useful for stored
references, and those already have a dedicated implementation.

Example: push-only queue The PushQueue module implements a queue in which only
pushing is allowed. Unlike queues that can be both pushed and popped, push-only queue
are absorbing, as their current state can be captured in a future-proof way by remembering
the current length of the queue.

module PushQueue = struct

type 'a t = ('a Dynarray.t, 'a array, int) Absorbing.t

The state of a PushQueue is a dynamic array. Our type of operations is 'a array,
representing a sequence of values to push to the queue. Our type of anti-operations
is just int, the current length of the array. A previous state can be restored by just
truncating the dynarray to the previous length (the backing array is not shrunk);
in undo we first save the suffix of the dynarray, all elements after this previous
length, for later re-application.

let capture = Dynarray.length

let rollback = Dynarray.truncate

let undo arr n =

let len = Dynarray.length arr - n in

let suffix = Array.init len (fun i -> Dynarray.get arr (n + i)) in

Dynarray.truncate arr n;

suffix
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let redo arr suffix =

let len = Dynarray.length arr in

Dynarray.append_array arr suffix;

len

let descr = { capture; rollback; undo; redo; }

Once we have defined how to apply operations and anti-operations, we define useful
functions on our queues, as a thin layer over Dynarray:

let create _s =

Absorbing.make descr (Dynarray.create ())

let push s d v =

Absorbing.modify s d;

Dynarray.add_last (Absorbing.get d) v

let length _s d =

Dynarray.length (Absorbing.get d)

let get _s d i =

Dynarray.get (Absorbing.get d) i

end

Notice how push calls Absorbing.modify, which saves the current state of the queue in
the store graph, except when record elision is possible. After calling Absorbing.modify,
the user modifies the dynamic array themselves.

3.3 Storing custom operations

The Custom interface is similar to the Absorbing interface, but the user needs to implement
composition of anti-operations on their own.

module Custom : sig

type ('a, 'op, 'trail) descr = {

record : 'a -> 'trail;

append : 'trail -> 'trail -> unit;

rollback : 'a -> 'trail -> unit;

undo : 'a -> 'trail -> 'op;

redo : 'a -> 'op -> 'trail -> unit;

}

A 'trail is a user-selected mutable type whose state represents a composition of
anti-operations. The record operation starts a new trail from the current state.
The user has to mutate the trail on each operation — Store has no callback
to extend the trail with a single anti-operation. But Store needs to be able
to concatenate two trails, composing their anti-operations together, this is the
append function: append trail1 trail2 consumes trail2 and transfers its anti-
operations into trail1. undo and redo are as in the Absorbing module, with a
subtle difference: redo takes the trail as an argument instead of returning a new
trail. Store only replays operations with redo that were created through undo,
and for a given operation, always passes in the same (physical) trail to redo — it
is up to the data structure implementer whether to leave the trail untouched in
undo, or to clear it and record the appropriate anti-operations in redo.
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type ('a, 'op, 'trail) t

val make : ('a, 'op, 'trail) descr -> 'a -> ('a, 'op, 'trail) t

val get : ('a, 'op, 'trail) t -> 'a

val modify : store -> ('a, 'op, 'trail) t -> 'trail

end

The rest of the module is similar to absorbing, but the modify operation returns a trail.
For absorbing types, the Store logic would take care of recording every anti-operation, but
for custom types this is the responsibility of the user, who does it by mutating the trail
returned by modify.

Internally the implementation of Custom.t is similar to Absorbing.t, with an extra field
to store the trail. In this case only 'op is hidden as an internal detail, as the 'trail is
exposed in the user-facing API.

type (_, _) t = Custom : {

value : 'a;

mutable generation : Generation.t;

descr : ('a, 'op, 'trail) custom_descr;

mutable trail : 'trail

} -> ('a, 'trail) t

Example: push-pop queue Previously we noticed that removing the pop operation
from a queue makes the structure absorbing. If we add pop, we get a custom storable type.

module Queue = struct

type 'a op = { truncate: int; suffix : 'a Dynarray.t }

type 'a trail = { mutable truncate: int; mutable suffix : 'a list }

Both operations and anti-operations truncate the queue to a certain position and
push a new suffix of elements. Anti-operations accumulate elements to push one
by one, so they use a list to represent the suffix: when the user pops the queue,
the trail is updated to push an extra element at the beginning of the suffix, so the
elements in the suffix list are in-order. Operations are built in one go by undo, so
they can use an (immutable) array instead of a list.
The implementation of those callbacks is rather similar to PushQueue:

let record arr = { truncate = Dynarray.length arr; suffix = [] }

let append trail1 trail2 = [...]

let rollback arr trail =

Dynarray.truncate arr trail.truncate;

Dynarray.append_list arr trail.suffix

Note that in undo we leave the trail untouched, so that we do not have to recreate
it in redo.

let undo arr trail =

let suffix =

Dynarray.init (Dynarray.length arr - trail.truncate)

(fun i -> Dynarray.get arr (trail.truncate + i)) in

rollback arr trail;

{ truncate = trail.truncate; suffix; }

let redo arr op =

Dynarray.truncate arr op.truncate;

Dynarray.append arr op.suffix

let descr = { record; append; rollback; undo; redo; }
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We will not repeat all Queue operations here, but focus on push and pop that
update the trail to log an anti-operation.

let push s d v =

let _trail = Custom.modify s d in

Dynarray.add_last (Custom.get d) v

The push function is identical to the previous, absorbing version. No trail update
is necessary, because the rollback logic starts by truncating the dynarray, ignoring
all later pushes.
On the other hand, pop may need to update the trail. The truncate length
represents the end of the dynarray prefix that was unchanged by the sequence
of push and pop operations accumulated since the last capture; in other words,
it is the low-water mark of changes at the end of the queue. If a pop occurs
strictly above that limit, it does not touch the unchanged prefix, and no logging is
necessary. If it happens at the limit, we need to decrement the limit, and to record
the popped element in the suffix part to be able to restore it later.

let pop s d =

let trail = Custom.modify s d in

let arr = Custom.get d in

let len = Dynarray.length arr in

let last = Dynarray.pop_last arr in

if len > trail.truncate then ()

else begin

trail.truncate <- len - 1;

trail.suffix <- last :: trail.suffix;

end;

last

end

Commit compression As we recalled in Section 2.4, record elision happens when the
user performs an operation, but also on commit, where it is used to “compress” the changes
that have been recorded during the transaction.
We want to preserve this phenomenon in our generic custom interface, and it is the

purpose of the append : 'trail -> 'trail -> unit callback. On commit, if there exists
a trail for the operation before the committed transaction (and after the last snapshot) and
a trail after the committed transaction, then they are merged together by calling append.

To implement this, when we create a new trail for a custom data structure (and record it in
the store graph), we keep a pointer to its previous trail, that records the operations performed
before the last transaction or snapshot. We did not need to do this for built-in references, or
in general for absorbing structures, where commit compression can be implemented simply
by discarding certain anti-operations in the transaction with a generation check; it does
not require looking at what was recorded before the transaction. For custom operations,
compression depends on the anti-operations recorded before, so we need to track them.
In our example of add-remove set, anti-operations are a map from set elements to

Added | Removed, and commit compression is a merge of the two maps where elements
present in both maps are omitted in the merged map. Indeed, if an element occurs in
both maps, it has been added (just before the transaction) and then removed (during the
transaction), or removed and then re-added. In both cases this is a no-op, and we can
remove this key from the single map resulting from commit, reducing memory usage and
speeding up future operations.

Keeping a pointer to a trail from before the last snapshot weakens our parsimony property
that only later anti-operations are reachable from the OCaml representation of a snapshot
or transaction. Specifically to provide commit compression on custom data structures, we
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moved to a less parsimonious implementation. We believe that this is acceptable in practice.
Two remarks:

• The user is in control of the 'trail type, so they can choose the tradeoff between
performance, implementation complexity, and parsimony. For example, it is possible to
store anti-operations in a mutable linked list, with the 'trail type being a reference
to a last, empty cell at the end of the list — this is a complicated way to reimplement
the Free interface in terms of the Custom API. This implementation choice preserves
the strong parsimony of Store, while removing the ability to compress anti-operations.
In general the user wants to keep more data reachable from the trail, enough to enable
effective compression, but they have control over it.

• We could use a weak pointer to track this older trail, recovering strong parsimony
properties. But so far we were happy to not need weak pointers at all, which are an
advanced OCaml runtime feature that is harder to reason about and less portable to
alternative implementations.

3.4 Three implementations

In our new version of Store with storable types, we have a built-in implementation for each
of the three interface modules described above: Free, Absorbing, Custom. That is, Store
adds four kinds of built-in edges, one for Free, one for Absorbing (that can store either
operations or anti-operations), and two for Custom, one for anti-operations and one for
operations (they have a different shape).
This is a counter-intuitive choice. Our first inclination would be to only implement

built-in support for the most general, expressive interface (here Custom), and implement the
other interfaces on top of it. However, our current judgment is that having three separate
implementations is better in this case, for two reasons:

1. This provides better constant factors. For example, a Custom.t value stored in the
graph is a record of four fields: the value, the description record, the generation, and
the trail. An Absorbing.t has only three fields, as it does not keep a trail. Absorbing
also has better liveness properties than Custom, as it does not keep backward pointers
for compression of commit operations.

Performance-wise, the use of a more specific API can provide benefits: re-implementing
the original Store reference using the Absorbing API is roughly 20% slower (mostly
due to the overhead of indirect calls), while re-implementing it using the Custom API is
roughly 40% slower. A Free implementation would have entirely different performance
characteristics due to the absence of record elision.

2. Because Free and Absorbing are much simpler to implement than Custom, the extra
code is noticeably shorter than the generic implementation, keeping the maintenance
cost acceptable. In the case of Free, implementing it on top of Custom would require
more code duplication than adding built-in support.

4 Related Work

Several automated solvers (SMT solvers or constraint solvers) implement generic interfaces
to record changes to imperative data structures and backtrack them. We did not find in
the literature a clear discussion of the performance-vs-expressivity tradeoffs involved in
designing those interfaces. The only clear mention we found of this design choice is in the
tool description paper for the CVC5 solver: Barbosa, Barrett, Brain, Kremer, Lachnitt,
Mann, Mohamed, Mohamed, Niemetz, Nötzli, Ozdemir, Preiner, Reynolds, Sheng, Tinelli,
and Zohar (2022), “Context-Dependent Data Structures” (Section 2.4). One important
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aspect to note is that those implementations only support a semi-persistent interface, not
a persistent interface where snapshots are persistent and can be resumed several times.
Supporting persistence (while preserving record elision) is a distinguishing feature of Store.
This affects the storable type interface, as semi-persistent-only structures do not attempt to
store operations, only anti-operations.
We looked at the implementations themselves to understand what is used in practice.

Here is what we found:

choco the Choco constraint solver implements a trail that can store references to various
builtin types (bool, int, double), and also a generic IOperation class that only provides
an undo() method for undoing some changes — this corresponds to the free interface.
For example, its backtracking sets log an anti-operation2 on each update.

z3 does not seem to provide a generic interface for backtrackable objects, its trail hard-codes
a set of builtin types3, that are generally implemented by storing an anti-operation
for each update separately on the trail — the free interface again.

cvc5 supports context-dependent maybe/option values, append-only lists, dequeues, insert-
only hash sets, and hash maps. Its generic interface for context-dependent objects4

resembles our custom interface, if we think of the ContextObj class as representing
a trail. The cvc5 authors appear to have found complex storable types difficult to
implement5, and their main strategy is to focus on append-only structures that are
easier to backtrack.
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