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A metaphor

G.W. Tryon Jr. (1879)
https://commons.wikimedia.org/wiki/File:Ommastrephes_mouchezi.jpg

The giant squid that washed ashore on Île Saint-Paul on 2 November 1874.
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In case you wonder where Île Saint-Paul is:
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This talk

A field report on the

first sighting (to our knowledge)

of

strong (by-need) reduction

in the wild, outside proof assistants.

Note: I’m not an expert!
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Shapes

Shapes, as designed by Thomas Refis, Ulysse Gérard and Leo White,
are λ-terms representing the shape of OCaml modules – and source files.
(no term-level information except source locations)

They extended the OCaml compiler to compute shapes
and store them in object files.

Motivation: tooling support: “where is foo defined?”
(requires normalization)
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Shape computations

foo.ml bar.ml

foo.cmt bar.cmt

whole project (merlin)

ocamlc ocamlc

Separate compilation: the shape of a module is an open term.

Definition lookup inside functors: we want strong reduction.
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Problem

A naive implementation of strong reduction does fine in general, but it

explodes

on some complex functor-using OCaml programs. (Irmin)
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Solution

Ulysse Gérard and Thomas Refis implemented some optimizations;
enough for “termination” but still unsatisfying.

Strong call-by-need reduction avoids blowups.

Performance on a problematic source file:
compilation time output size

no shapes 0.39s 2538Kio : 2.5Mio
shapes, naive +opts 2.15s 91Mio
shapes, strong cbneed 0.40s 2552Kio : 2.5Mio
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Why the blowup?
Consider:

module M = struct
let x = A.x
let y = A.y
let z = A.z

end

With closed reduction, this only reduces when A is a structure/record.

‖M‖ ≤ ‖A‖

With open reduction, A may be neutral: F(X).Bar. Then:

‖M‖ ' 3 ∗ ‖A‖

Actually a very common pattern:
module M = (A : S)
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Why the blowup? Intuition

Intuition:
closed, weak reduction has size-exploding examples,
but strong reduction explodes more

More precisely:
some realistic closed programs have small normal forms,
but their subterms could blow up under strong reduction.
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Thanks!

(Bonus slides follow.)
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A terrible implementation

let rec eval env : t → t = function
| Var x →

Ident.find same x env
| Abs (x, t) →

Abs (x,
let env’ = Ident.add x (Var x) env in
eval env’ t)

| App (t, u) →
let f, arg = eval env t, eval env u in
match f with
| (Var | App ) as ne → App (ne, arg)
| Abs (x, body) →

eval (Ident.add x arg env) body
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A naive implementation (1): types

type nf = (∗ normal forms ∗)
| Ne of ne
| Clos of env ∗ var ∗ t ∗ var ∗ nf

and ne = (∗ neutral terms ∗)
| Var of var
| App of ne ∗ nf

type open value =
| Val of nf
| Free of var
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A naive implementation (2): code
let rec eval = fun env (t : t) : nf →

match t with
| Var x → begin match Ident.find same x env with
| Val v → v
| Free x → Ne (Var x)
end
| Abs (x, t) →

let y = fresh x in
Clos (env, x, t, y,
let env’ = Ident.add x (Free y) env in
eval env’ t)

| App (t, u) →
let f, arg = eval env t, eval env u in
match f with
| Ne n → Ne (App (n, arg))
| Clos (env’, x, body, y, v) →

eval (Ident.add x (Val arg) env’) body
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A naive implementation (3): memoization
let eval = memo fix 2 @@ fun eval env (t : t) : nf →

match t with
| Var x → begin match Ident.find same x env with
| Val v → v
| Free x → Ne (Var x)
end
| Abs (x, t) →

let y = fresh x in
Clos (env, x, t, y,
let env’ = Ident.add x (Free y) env in
eval env’ t)

| App (t, u) →
let f, arg = eval env t, eval env u in
match f with
| Ne n → Ne (App (n, arg))
| Clos (env’, x, body, y, v) →

eval (Ident.add x (Val arg) env’) body
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A by-need implementation (1)

type nf = (∗ normal forms ∗)
| Ne of ne
| Clos of env ∗ var ∗ t ∗ var ∗ dnf

and dnf = nf Lazy.t
and ne = (∗ neutral terms ∗)
| Var of var
| App of ne ∗ dnf

let force eval env t = lazy (eval env)
let delay eval env dv = Lazy.force dv
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A naive implementation: reminder
let eval = memo fix 2 @@ fun eval env (t : t) : nf →

match t with
| Var x → begin match Ident.find same x env with
| Val v → v
| Free x → Ne (Var x)
end
| Abs (x, t) →

let y = fresh x in
Clos (env, x, t, y,

let env’ = Ident.add x (Free y) env in
eval env’ t)

| App (t, u) →
let f, arg = eval env t, eval env u in
match f with
| Ne n → Ne (App (n, arg))
| Clos (env’, x, body, y, v) →

eval (Ident.add x (Val arg) env’) body
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A by-need implementation (2)
let eval = memo fix 2 @@ fun eval env (t : t) : nf →

match t with
| Var x → begin match Ident.find same x env with
| Val v → force eval v
| Free x → Ne (Var x)
end
| Abs (x, t) →

let y = fresh x in
Clos (env, x, t, y,

let env’ = Ident.add x (Free y) env in
delay eval env’ t)

| App (t, u) →
let f, arg = eval env t, delay eval env u in
match f with
| Ne n → Ne (App (n, arg))
| Clos (env’, x, body, y, v) →

eval (Ident.add x (Val arg) env’) body
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A by-need implementation (3)

type nf = (∗ normal forms ∗)
| Ne of ne
| Clos of env ∗ var ∗ t ∗ var ∗ dnf

and dnf = Delayed of env ∗ t
and ne = (∗ neutral terms ∗)
| Var of var
| App of ne ∗ dnf

let force eval (env, t) = eval env t
let delay eval env t = (env, t)

If you squint: a by-need version of iterated weak reduction.
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