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Shapes

The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, etc.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end

module M = F(Origin)

Now suppose a user, or an OCaml-processing tool, wants to know where to find “the definition of” the
identifier M.x. The answer is: let x = 1 in the Origin module. But how do we know that? Can tools tell
without having to reimplement their own understanding of the whole OCaml module system?

To solve this problem for the Merlin language server, Ulysse Gérard, Thomas Refis and Leo White recently
introduced a notion of “shapes” to represent the structure of OCaml modules, and track where each term-level
construct inside a module is defined. The above program can be erased into a shape, are just lambda-terms
with functions (representing functors), records (representing structures), and “locations of definitions” as
primitive values. “Normalizing” this shape provides direct access to the definition of M.x.

They proposed that the OCaml type-checker should be in charge of computing the shape of each module /
compilation unit / source file, pushing all intricate knowledge of the OCaml module system back into the
compiler codebase. Those shapes would be stored in the build artifacts, easy to use by OCaml-processing
tools. Shapes, they suggested, should be stored in normal form in the build artifacts, so that tools do not
have to recompute the reduction each time they are asked about an installed package or library.

The OCaml compiler uses separate compilations, it is fed source files independently and compiles them with
only a partial knowledge of its dependencies. In particular, when we “reduce” the shape term for an OCaml
source file, the shape of its dependencies are unknown, they are treated as free variables. Inside functors
(such as F(X) in our example), the input parameter is also a free variable, and we still want to reduce the
shape of the body of the functor. This means that we want the OCaml compiler to perform deep reduction
of shape terms. Code-processing tools that have access to a whole program can then “link” those shapes
together, perform more reduction, and get a closed normal form.



Strong call-by-need

Gérard, Refis and White implemented a very naive strong evaluator for shapes — repeated beta-reductions.
This works fine for all the programs they tested, and was merged in development version of the OCaml
compiler. The OCaml compiler release process involves building all (opam) OCaml packages, and the next
testing round found out that the compiler would blow up on a specific module-heavy source file in the Irmin
project: shape reduction would grind to a halt and consume massive amounts of memory'. A not-very-native
evaluator was called from.

Our contribution is an arguably-simple implementation of strong call-by-need evaluation, meant for shape
reduction and integrated into the OCaml compiler. To our knowledge, two aspects are new:

1. This may be the first use-case for strong call-by-need reduction outside proof assistants.

2. Call-by-need evaluation is usually presented as small-step reduction strategies with explicit sharing
— on abstract machines (Barras, 1999; Biernacka and Charatonik, 2019) or term calculi (Balabonski,
Barenbaum, Bonelli, and Kesner, 2017). We present a “direct evaluator” implementation — a recursive
function that returns normal forms — that is arguably simpler, and may make strong call-by-need more
approachable to newcomers.

What we don’t have is a formal argument that our implementation matches the reduction strategy of existing
strong call-by-need abstract machines.

Performance numbers?: without computing shapes, the problematic Irmin source file compiles in 0.39s and
produces a built artifact of 2538Ko — around 2.5Mo. With the naive evaluator plus some specific optimizations
proposed by Gérard and Refis, compilation time went to 2.15s and artifact size to 91Mo. With our strong
call-by-need evaluator, compile-time is 0.40s and artifact size is 2552Ko.

Note: why the explosion?

It is not entirely clear to us what precisely in the module-heavy Irmin source file made the naive evaluator —
and many variants of it — blow up in time and memory. We tried to analyze it, but it is hard to make sense
of the megabytes of output it would provide.

Our current understanding is that while both weak and strong reduction for the lambda-calculus can result
in blowup in normal forms, such a blowup is uncommon in practice in weakly-evaluated programs, but more
common in strongly-evaluated program — see the discussion of size explosion in Accatoli and Leberle (2019).
Consider for example the following program:

module F(A) = struct
let x = A.x
let y = Ay
let z = A.z

end

With weak reduction, the functor F will only reduce when provided a concrete module A providing values for
X, ¥, 2. The size of the normal form will be the size of A plus a constant. With open or strong reduction,
the application F(Lib.Make (Foo)), where Lib is a free variable, musth andle Lib.Make (Foo) as an inert
normal form and reduce the body of F, returning a normal form duplicating the argument Lib.Make (Foo)
three times.

In the Irmin codebase we have observed quadratic blowups in program size due to subterms of this form,
which can be common: we desugar a signature sealing (X : S) into a term of this shape — in this example S
would contain three values x, y, z.
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Our implementation, step by step

In the interest of space, we restrict here our language of shapes to variables, applications and lambda-
abstractions — full shapes also contain records and projections, and contain location information.

type var = Ident.t
and t =
| Var of var
| Abs of var * t
| App of t * t

We describe here the iterations we went through to obtain our final strong call-by-need evaluator. The full
code for all steps (in the simplified setting of our exposition) can be found at

; it contains additional explanations for technical details omitted here. The in-
compiler implementation is at

Naive strong reduction

The environments we pass around during reduction contain either a value (when replacing a variable by a
value) or a free variable (when evaluating under a binder). We will use different evaluation strategies with
diffent notions of “value”, so our environments are parametrized over the type 'v of values. They use the 'a
Ident.tbl type of identifier-indexed maps provided by the OCaml compiler.

type 'v open_value =
| Val of 'v
| Free of var
type 'v open_env = 'v open_value Ident.tbl

An (environment-based) naive strong evaluator normalizes terms by first evaluating into a structured type of
“normal forms”, and then “read back” those normal forms into (normalized) terms. A type of normal forms is
as follows:

type nf = (* normal forms *)

| Ne of ne

| Clos of env * var * t * var * nf
and ne = (* neutral terms *)

| Var of var

| App of ne * nf

and env = nf open_env

Note that the Clos case, representing function closures, is unusual: the normal form of Abs(x, t) will be
of the form Clos(env, x, t, x', nf) where env is the current environment (as expected of closure), and
nf is the strong normal form of t where occurrences of the bound variable x have been replaced by a fresh
variable x'. (This fresh x' is important to avoid variable capture for input terms that may reuse the same
identifier in several bindings. The OCaml compiler maintains unicity of binders, so we could always reuse x
at the cost of a less general exposition.)

For example, a normal form of Abs(x, App(id, Var x)) would be, where id is the identity function and y
is a fresh identifier:

Clos(Ident.empty,
x, App(id, Var x),
v, y)

Why store both t and nf? This is one of the mysteries of strong evaluation; one would expect to store only nf,
but this is in fact terrible in the application case. Indeed, if you consider a redex (fun x -> t) u, you want


https://gitlab.com/gasche-papers/shapes/-/blob/trunk/code.ml
https://gitlab.com/gasche-papers/shapes/-/blob/trunk/code.ml
https://github.com/ocaml/ocaml/blob/3aaa9a7/typing/shape.ml#L217-L438

to normalize t [u/x] (where N(...) is the normalization function) and not N(t) [u/x]: the intermediate term
N(t) is likely to be much larger than t, due to the size explosion phenomenons we mentionend previously,
and N(t) could contain many more occurrences of x that will form redexes once replaced by u.

Long story short: a closure Clos(env, x, t, x', nf) uses the t part when the closure is applied (passed
parameters), and the nf part when the closure is returned as a value (in strong normal form).

The implementation of evaluation and read-back are rather direct from this type.

let rec eval env : t -> nf = function
| Var x —>
begin match Ident.find_same x env with
| Val v —> v
| Free x —> Ne (Var x)
end
| Abs (x, t) ->
let y = fresh x in
Clos (env, x, t, ¥y,
let env' = Ident.add x (Free y) env in
eval env' t)
| App (t, w) ->
let f, arg = eval env t, eval env u in
match f with
| Ne n -> Ne (App (n, arg))
| Clos (env', x, body, _y, _v) ->
eval (Ident.add x (Val arg) env') body

let rec read_back : nf -> t = function
| Clos (env', _x, _t, y, v) -> Abs (y, read_back v)
| Ne (App (n, v)) -> App (read_back (Ne n), read_back v)
| Ne (Var x) -> Var x

let normalize env t =
read_back (eval env t)

There are two apparent issues with this implementation of strong reduction:

e Useless reduction: when evaluating Abs(x,t), we always evaluate t to a strong normal form, but
normalizing t is useless in our strategy if this abstraction is only applied, never returned as a value.

o Loss of sharing: while our syntax does not contain an explicit sharing construct (let, explicit sub-
stitutions. .. ), you can notice that the normal form of App(Abs(x,t), v) does not contain several
copies of the normal form of v, even if x occurs several times in t. Instead, we return a term where all
occurrences of the normal form of v come from looking up x in the environment, and are thus physically
shared in memory. In other words, the natural semantics of the host language provide implicit sharing
here.

Unfortunately this sharing is lost immediately by the read_back function, which will map over each
occurrence of the normal form of v and create physically-distinct read-back forms for them.

Memoized strong reduction

To solve the “loss of sharing” problem without introducing explicit sharing construct (we are too lazy to do
that), one functional solution is to introduce memoization of the eval and read_back function. This is a
trivial change to implement with a well-chosen memoizing-fixpoint combinator (using hashtables).



Strong call-by-need

The “useless reduction” issue can be solved by using lazyness in the host language: just make the nf component
in closures a lazy thunk, computed on demand and shared between consumers.

type nf = (* normal forms *)
| Ne of ne
| Clos of env * var * t * var * dnf
and ne = (¥ neutral terms *)
| Var of var
| App of ne * nf
and dnf = nf Thunk.t (* delayed normal forms *)

and env = dnf open_env

Adapting the evaluator is again fairly simple.

Strong call-by-need with memoization

In fact, if we use memoization, we don’t need to use lazy thunks in the host language. A value of type nf
Thunk.t can be represented exactly by a pair env * t, where “forcing” the thunk is just calling the eval
function. Normally this would duplicate computations, but remember that our eval function is memoized!
In essence, instead of (internally mutable) lazy thunks we use the memoization table for sharing.

type nf = (* normal forms *)

| Ne of ne

| Clos of env * var * t * var * dnf
and ne = (¥ neutral terms *)

| Var of var

| App of ne * dnf
and dnf = Delayed of env * t

and env = dnf open_env
This was our last stop in the OCaml compiler codebase, which uses this variant.

In fact, it is possible to simplify it further by noticing that the dnf element of closures is redundant with
the env and t already stored in them. It is possible to present the exact same implementation in a slightly
different style:

type nf = (* normal forms *)
| Ne of ne
| Clos of env * var * t
and ne = (* neutral terms *)
| Var of var
| App of ne * env * t
and dnf = Delayed of env * t

and env = dnf open_env

Notice how closures now carry exactly the same information as closures for a weak reduction strategy. The
read_back case for closures looks like this:

| Clos (env, x, t) —>
let y = fresh x in



let env' = Ident.add x (Free y) env' in
Abs (x, normalize env' t)

This is reminiscent of Grégoire and Leroy’s “iterated symbolic weak reduction and read-back” strategy
(Grégoire and Leroy, 2002), but for a call-by-need rather than call-by-value strategy.
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