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Checking a pattern-matching compiler

From pattern-matching to simple control-flow.
Not simple: tradeoffs in code speed vs. code size.

Bugs in the compiler: silent wrong-code production.
Painful to detect and diagnose.

In OCaml, three bugs in the last few years.
Afraid to change the compiler.

We want to catch such bugs at compile-time.
Translation-validation: check each source-target pair at compile-time.

Work In Progress: simple patterns + when-guards.
Cannot reproduce the bugs yet.
Extensible approach: symbolic execution.
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Automated solvers?

Encode patterns (Foo 42 :: rest) as formulas over access paths,
Delegate equivalence checking to a solver.

Kirchner, Moreau, and Reilles (2005) use first-order logic and Zenon.

Downsides:

hard to guess the robustness of solvers on those problems

hard to scale when pattern-matching is interleaved with arbitrary evaluation:
when guards, pattern guards (Haskell, Successor ML), etc.

Claude Kirchner, Pierre-Etienne Moreau, and Antoine Reilles. Formal validation of pattern
matching code. In PPDP, 2005.
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Example: source and target programs
Target program: exactly the OCaml -drawlambda output.

type ’a option =

| None

| Some of ’a

let mm test ret input =

match input with

| Some x when test x -> ret x

| Some 42 -> ret 42

| _ -> ret 0

(mm = (function test ret input

(catch

(if input

(let (x =a (field 0 input))

(if (apply test x)

(apply ret x)

(if (!= x 42)

(exit 1)

(apply ret 42))))

(exit 1))

with (1)

(apply ret 0))))

Pattern-matching. Arbitrary expressions : only in guards and leaves.

Use the compiler as an oracle on those; check equivalence on the rest.
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Our approach

source (patterns) target (ifs)

source decision tree target decision tree

decomposition
symbolic

execution

decision tree equivalence
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Common representation: decision trees
match input with

| Some x when test x -> ret x

| Some 42 -> ret 42

| _ -> ret 0

Switch(Root)

/ None \ Some

Leaf Guard

[](ret 0) [x = Root .0]( test x)

/ true \ false

Leaf Switch(Root .0)

[x = Root .0]( ret x) / 42 \ ¬42
Leaf Leaf

[](ret 42) [](ret 0)

+ Failure
Source decision trees test language-level values (None, Some).
Target decision trees test low-level representations (int 0, tag 0).
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Equivalence: specification

Heterogeneous equivalence of decision trees:
related source/target values give related results. (⊥ | (σ, e))

In particular: tests on accessors may be split and reordered.

But: guards must be checked in the exact same order.
(side-effects: observable evaluation order)
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Equivalence: naive

Source/target leaves with compatible path conditions
must return the same result.

S ` DS ≈ DT

input space
S ⊆ {(vS , vT ) | vS ≈val vT}

Naive rules:

∀i , (S ∩ a = Ki ) ` Di ≈ DT

S ` Switch(a, (Ki ,Di )
i ) ≈ DT

∀i , (S ∩ a ∈ πi ) ` DS ≈ Di

S ` DS ≈ Switch(a, (πi ,Di )
i )

∅ ` DS ≈ DT

S 6= ∅ tS ≈expr tT

S ` Leaf(tS) ≈ Leaf(tT )

S 6= ∅
S ` Failure ≈ Failure
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Equivalence: trimming

For each source switch condition, we can trim the tree right away.
Shares work. (hbh rather than b2h)

Naive rules:

∀i , (S ∩ a = Ki ) ` Di ≈ DT

S ` Switch(a, (Ki ,Di )
i ) ≈ DT

∀i , (S ∩ a ∈ πi ) ` DS ≈ Di

S ` DS ≈ Switch(a, (πi )
iDi )

Our rules:

∀i , (S ∩ a = Ki ) ` Di ≈ trim(DT , a = Ki )

S ` Switch(a, (Ki ,Di )
i ) ≈ DT

DS ∈ Leaf( ),Failure ∀i , (S ∩ a ∈ πi ) ` DS ≈ Di

S ` DS ≈ Switch(a, (πi )
iDi )
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Equivalence: guards

Keep a queue of guards encountered in the source
but not in the target yet.

Full judgment: S `G DS ≈ DT

S `G ,(eS=0) D0 ≈ DT S `G ,(eS=1) D1 ≈ DT

S `G Guard(eS ,D0,D1) ≈ DT

S 6= ∅ eS ≈expr eT S `G DS ≈ Db

S `(eS=b),G DS ≈ Guard(eT ,D0,D1)

Switch rules preserve the guard queue,
non-empty leaf rules require an empty queue.
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Conclusion

source (patterns) target (ifs)

source decision tree target decision tree

decomposition
symbolic

execution

decision tree equivalence

Work in progress. Future work:

Exceptions / extensible constructors:
symbolic names with (in)equality assumptions.

Mutable fields:
forget path conditions on potential mutation.

Compiler integration.
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