Translation validation
of a pattern-matching compiler

Francesco Mecca (University of Turin), Gabriel Scherer (INRIA)

August 22, 2020

Checking a pattern-matching compiler

From pattern-matching to simple control-flow.
Not simple: tradeoffs in code speed vs. code size.

Bugs in the compiler: silent wrong-code production.
Painful to detect and diagnose.

In OCaml, three bugs in the last few years.
Afraid to change the compiler.

We want to catch such bugs at compile-time.
Translation-validation: check each source-target pair at compile-time.

Work In Progress: simple patterns 4+ when-guards.
Cannot reproduce the bugs yet.
Extensible approach: symbolic execution.

Automated solvers?

Encode patterns (Foo 42 :: rest) as formulas over access paths,
Delegate equivalence checking to a solver.

Kirchner, Moreau, and Reilles (2005) use first-order logic and Zenon.

Downsides:
@ hard to guess the robustness of solvers on those problems

@ hard to scale when pattern-matching is interleaved with arbitrary evaluation:
when guards, pattern guards (Haskell, Successor ML), etc.

Claude Kirchner, Pierre-Etienne Moreau, and Antoine Reilles. Formal validation of pattern
matching code. In PPDP, 2005.

Example: source and target programs

Target program: exactly the OCaml -drawlambda output

type ’a option =
| None

| Some of ’a

let mm test ret input =
match input with

| Some x when test x -> ret x
| Some 42 -> ret 42
| - => ret O

Example: source and target programs

Target program: exactly the OCaml -drawlambda output.

(mm = (function test ret input
(catch

type ’a option = (if input

| None (let (x =a (field O input))
| Some of ’a (if (apply test x)
let mm test ret input = (apply ret x)

match input with (if ('= x 42)

| Some x when test x -> ret x (exit 1)

| Some 42 -> ret 42 (apply ret 42))))

| _ ->ret 0 (exit 1))

with (1)

(apply ret 0))))

Example: source and target programs

Target program: exactly the OCaml -drawlambda output.

(mm = (function test ret input
(catch

type ’a option = (if input

| None (let (x =a (field O input))
| Some of ’a (if (apply test x)
let mm test ret input = (apply ret x)

match input with (if ('= x 42)

| Some x when test x -> ret x (exit 1)

| Some 42 -> ret 42 (apply ret 42))))

| _ ->ret 0 (exit 1))

with (1)

(apply ret 0))))
Pattern-matching. Arbitrary expressions :

Example: source and target programs

Target program: exactly the OCaml -drawlambda output.

(mm = (function test ret input
(catch

type ’a option = (if input

| None (let (x =a (field O input))
o ot 55 Gapty oo)
let mm test ret input = (apply ret x)

match input with (if (}= x 42)

| Some x when [EESEHR] -> ret x (exit 1)

| Some 42 -> ret 42 (apply ret 42))))

| _ ->ret 0 (exit 1))

with (1)

(apply ret 0))))
Pattern-matching. Arbitrary expressions : only in guards and leaves.

Example: source and target programs

Target program: exactly the OCaml -drawlambda output.

(mm = (function test ret input
(catch

type ’a option = (if input

| None (let (x =a (field O input))
o ot 55 Gapty oo)
let mm test ret input = (apply ret x)

match input with (if (}= x 42)

| Some x when [EESEHR] -> ret x (exit 1)

| Some 42 -> ret 42 (apply ret 42))))

| _ ->ret 0 (exit 1))

with (1)

(apply ret 0))))
Pattern-matching. Arbitrary expressions : only in guards and leaves.

Use the compiler as an oracle on those; check equivalence on the rest.

4

Our approach

source (patterns) target (ifs)
. symbolic
decomposition
execution

decision tree equivalence

source decision tree target decision tree

Common representation: decision trees

match input with

| Some x when test x -> ret x
| Some 42 -> ret 42

| _ > ret O

Common representation: decision trees

match input with
| Some x when test x -> ret x
| Some 42 -> ret 42

| _ => ret O

Switch (Root)
/ None \ Some

Leaf Guard

[J(ret 0) [x = Root.0](test x)
/ true \ false
Leaf Switch(Root .0)
[x = Root.0](ret x) / 42 \ —42

Leaf Leaf
[J(ret 42) []1(ret 0)

+ Failure

Common representation: decision trees

match input with
| Some x when test x -> ret x
| Some 42 -> ret 42

| _ => ret O

Switch (Root)
/ None \ Some

Leaf Guard

[J(ret 0) [x = Root.0](test x)
/ true \ false
Leaf Switch(Root .0)
[x = Root.0](ret x) / 42 \ —42

Leaf Leaf
[1(ret 42) []1(ret 0)
+ Failure
Source decision trees test language-level values (None, Some).
Target decision trees test low-level representatiens (int 0, tag 0).

Equivalence: specification

Heterogeneous equivalence of decision trees:
related source/target values give related results. (L | (0, ¢))

In particular: tests on accessors may be split and reordered.

But: guards must be checked in the exact same order.
(side-effects: observable evaluation order)

Equivalence: naive

Source/target leaves with compatible path conditions
must return the same result.

input space

St Ds~ Dt S C {(vs,vr) | vs =al vT}
Naive rules:
Vi,(Sﬂa:K,-)l—D,-%DT Vi,(SﬁaEm)l—DSzD;
S+ Switch(a, (K;, D))~ Dy S+ Ds ~ Switch(a, (;, D;)")
S#0D ts Rexpr tT S#£0
@ + DS [DT

S+ Leaf(ts) ~ Leaf(t1) S F Failure = Failure

Equivalence: trimming

For each source switch condition, we can trim the tree right away.
Shares work. (hb" rather than b*")

Naive rules:

Vi, (SNa=K;j)F D;~ Dt Vi, (SNaem)tF Ds~ D;
S+ Switch(a, (K;, D;)') ~ Dr S+ Ds = Switch(a, (7;)' D;)

Our rules:

Vi, (5 Na= K,) F D~ trim(DT, a= K,)
S+ Switch(a, (Ki, D)) ~ Dt

Ds € Leaf(.), Failure Vi, (SNaem)k Ds ~ D;
S+ Ds ~ Switch(a, (7;)' D;)

Equivalence: guards

Keep a queue of guards encountered in the source
but not in the target yet.

Full judgment: S+¢ Ds ~ Dt

S l_G,(eSZO) Do ~ DT S l_G,(eS:I) Dl ~ DT
S l_G Guard(es, DQ, Dl) S DT

S#0 esmeprer SteDs~ Dy
) }_(es:b)ﬁ D5 ~ Guard(eT, Do, Dl)

Switch rules preserve the guard queue,
non-empty leaf rules require an empty queue.

10

Conclusion

source (patterns) target (ifs)

. symbolic
decomposition
execution

.. decision tree equivalence ..
source decision tree <————> target decision tree

Work in progress. Future work:

@ Exceptions / extensible constructors:
symbolic names with (in)equality assumptions.

@ Mutable fields:
forget path conditions on potential mutation.

@ Compiler integration.

11

	Motivation
	References

