
Tracking Data-Flow with Open Closure Types

Gabriel Scherer1 and Jan Hoffmann2

1 INRIA Paris-Rocquencourt
2 Yale University

Abstract. Type systems hide data that is captured by function closures
in function types. In most cases this is a beneficial design that enables
simplicity and compositionality. However, some applications require ex-
plicit information about the data that is captured in closures.
This paper introduces open closure types, that is, function types that are
decorated with type contexts. They are used to track data-flow from the
environment into the function closure. A simply-typed lambda calculus
is used to study the properties of the type theory of open closure types.
A distinctive feature of this type theory is that an open closure type of
a function can vary in different type contexts. To present an application
of the type theory, it is shown that a type derivation establishes a sim-
ple non-interference property in the sense of information-flow theory. A
publicly available prototype implementation of the system can be used
to experiment with type derivations for example programs.

Table of Contents

Tracking Data-Flow with Open Closure Types . 1
Gabriel Scherer and Jan Hoffmann

1 Introduction . 2
2 A Type System for Open Closures . 5
3 A Big-Step Operational Semantics . 13
4 Dependency information as non-interference . 21
5 Prototype implementation . 24
6 Conclusion . 25

1 Introduction

Function types in traditional type systems only provide information about the
arguments and return values of the functions but not about the data that is
captured in function closures. Such function types naturally lead to simple and
compositional type systems.

Recently, syntax-directed type systems have been increasingly used to stati-
cally verify strong program properties such as resource usage [8,7,6], information
flow [5,14], and termination [1,3,2]. In such type systems, it is sometimes nec-
essary and natural to include information in the function types about the data
that is captured by closures. To see why, assume that we want to design a type
system to verify resource usage. Now consider for example the curried append
function for integer lists which has the following type in OCaml.

append : int list → int list → int list

At first glance, we might say that the time complexity of append is O(n) if n
is the length of the first argument. But a closer inspection of the definition of
append reveals that this is a gross simplification. In fact, the complexity of the
partial function call app_par = append ℓ is constant. Moreover, the complexity
of the function app_par is linear—not in the length of the argument but in the
length of the list ℓ that is captured in the function closure.

In general, we have to describe the resource consumption of a curried func-
tion f : A1 → · · · → An → A with n expressions ci(a1, . . . , ai) such that ci
describes the complexity of the computation that takes place after f is applied
to i arguments a1, . . . , ai. We are not aware of any existing type system that can
verify a statement of this form.

To express the aforementioned statement in a type system, we have to deco-
rate the function types with additional information about the data that is cap-
tured in a function closure. It is however not sufficient to directly describe the
complexity of a closure in terms of its arguments and the data captured in the
closure. Admittedly, this would work to accurately describe the resource usage
in our example function append because the first argument is directly captured in

Tracking Data-Flow with Open Closure Types 3

the closure. But in general, the data captured in a closure fa1 · · · ai can be any
data that is computed from the arguments a1, . . . , ai (and from the data in the
environment). To reference this data in the types would not only be meaningless
for a user, it would also hamper the compositionality of the type system. It is
for instance unclear how to define subtyping for closures that capture different
data (which is, e.g., needed in the two branches of a conditional.)

To preserve the compositionality of traditional type systems, we propose to
describe the resource usage of a closure as a function of its argument and the
data that is visible in the current environment. To this end we introduce open
closure types, function types that refer to their arguments and to the data in the
current environment.

More formally, consider a typing judgment of the form Γ ⊢ e : σ, in a type
system that tracks fine-grained intensional properties characterizing not only
the shape of values, but the behavior of the reduction of e into a value (e.g.,
resource usage). A typing rule for open closure types, Γ,∆ ⊢ e : [Γ′](x:σ) → τ ,
captures the idea that, under a weak reduction semantics, the computation of
the closure itself, and later the computation of the closure application, will have
very different behaviors, captured by two different typing environments Γ and
Γ′ of the same domain, the free variables of e. To describe the complexity of
append, we might for instance have a statement

ℓ:int list ⊢ append ℓ : [ℓ:int list](y:int list) → int list .

This puts us in a position to use type annotations to describe the resource usage
of append ℓ as a function of ℓ and the future argument y. For example, using
type-based amortized analysis [6], we can express a bound on the number of
created list notes in append with the following open closure type.

append : [](x:int list0) → [x:int list1](y:int list0) → int list0 .

The intuitive meaning of this type for append is as follows. To pay for the cons
operations in the evaluation of append ℓ1 we need 0·|ℓ1| resource units and to pay
for the cons operations in the evaluation of append ℓ1 ℓ2 we need 0·|ℓ1| + 1·|ℓ2|
resource units.

The development of a type system for open closure types entails some inter-
esting technical challenges: term variables now appear in types, which requires
mechanisms for scope management not unlike dependent type theories. If x ap-
pears in σ, the context Γ, x:τ, y:σ is not exchangeable with Γ, y:σ, x:τ . Similarly,
the judgment Γ, x:τ ⊢ e2 : σ will not entail Γ ⊢ letx = e1 in e2 : σ, as the re-
turn type σ may contain open closures scoping over x, so we need to substitute
variables in types.

The main contribution of this paper is a type theory of open closure types
and the proof of its main properties. We start from the simply-typed lambda
calculus, and consider the simple intensional property of data-flow tracking, an-
notating each simply-typed lambda-calculus type with a single boolean vari-
able. This allows us to study the metatheory of open closure types in clean and
straightforward way. This is the first important step for using such types in more
sophisticated type systems for resource usage and termination.

4 Gabriel Scherer and Jan Hoffmann

Our type system for data-flow tracking captures higher-order data-flow infor-
mation. As a byproduct, we get our secondary contribution, a non-interference
property in the sense of information flow theory: high-level inputs do not influ-
ence the (low-level) results of computations.

To experiment with of our type system, we implemented a software prototype
in OCaml (see Section 5).

Related Work In our type system we maintain the invariant that open closure
types only refer to variables that are present in the current typing context. This
is a feature that distinguishes open closure types from existing formalisms for
closure types.

Contextual types [11,13,15] also decorate types with context information.
However, it is not necessary in contextual modal type theory that the context
that is captured in a type is related to the current context. Furthermore, our goal
of describing properties that may depend on previous function arguments and
other visible variables is quite different from the main applications of contextual
types in programming language support for manipulating proof terms and meta-
variables.

Having closure types carry a set of captured variables has been done in the
literature, as for example in Leroy [9], which use closure types to keep track of
of dangerous type variables that can not be generalized without breaking type
safety, or in the higher-order lifetime analysis of Hannan et al. [4], where variable
sets denote variables that must be kept in memory. However, these works have
no need to vary function types in different typing contexts and subtyping can be
defined using set inclusion, which makes the metatheory significantly simpler. On
the contrary, our scoping mechanism allows to study more complex properties,
such as value dependencies and non-interference.

The classical way to understand value capture in closures in a typed way
is through the typed closure conversion of Minamide et al. [10]. They use ex-
istential types to account for hidden data in function closures without losing
compositionality, by abstracting over the difference between functions capturing
from different environments. Our system retains this compositionality, albeit in
a less apparent way: we get finer-grained information about the dependency of
a closure on the ambient typing environment. Typed closure conversion is still
possible, and could be typed in a more precise way, abstracting only over values
that are outside the lexical context.

Petricek et al. [12] study coeffects systems with judgments of the form CrΓ ⊢
e : τ and function types Csσ → τ , where r and s are coeffect annotations
over a indexed comonad C. Their work is orthogonal to the present one as they
cover very different topics: on one side, the comonadic semantics structure of
coarse-grained effect indexes, and on the other the syntactic scoping rules that
arise from tracking each variable of the context separately. We believe that our
dependency of types on term variables would make a semantic study significantly
more challenging, and conversely that use cases of open closure types are not in
general characterized by a comonadic structure.

Tracking Data-Flow with Open Closure Types 5

The non-interference property that we prove is different from the usual treat-
ment in type systems for information flow like the SLam Calculus [5]. In SLam,
the information flow into closure is accounted for at abstraction time. In contrast,
we account for the information flow into the closure at application time.

2 A Type System for Open Closures

We define a type system for the simplest problem domain that exhibits a need
for open closure types. Our goal is to determine statically, for an open term e,
on which variables of the environment the value of e depends.

We are interested in weak reduction, and assume a call-by-value reduction
strategy. In this context, an abstraction λx.e is already a value, so reducing
it does not depend on the environment at all. More generally, for a term e
evaluating to a function (closure), we make a distinction between the part of the
environment the reduction of e depends on, and the part that will be used when
the resulting closure will be applied. For example, the term (y, λx.z) depends
on the variable y at evaluation time, but will not need the variable z until the
closure in the right pair component is applied.

This is where we need open closure types. Our function types are of the
form [ΓΦ](x:σϕ) → τ , where the mapping Φ from variables to Booleans indicates
on which variables the evaluation depends at application time. The Boolean ϕ
indicates whether the argument x is used in the function body. We call Φ the
dependency annotation of Γ. Our previous example would for instance be typed
as follows.

y:σ1, z:τ0 ⊢ (y, λx.z) : σ ∗ ([y:σ0, z:τ1](x:ρ0) → τ)

The typing expresses that the result of the computation depends on the variable
y but not on the variable z. Moreover, result of the function in the second
component of the pair depends on z but not on y.

In general, types are defined by the following grammar.
Types ∋ σ, τ, ρ ::= types

| α atoms
| τ1 ∗ τ2 products
| [ΓΦ](x:σϕ) → τ closures

The closure type [ΓΦ](x:σϕ) → τ binds the new argument variable x, but not
the variables occurring in Γ which are reference variables bound in the current
typing context. Such a type is well-scoped only when all the variables it closes
over are actually present in the current context. In particular, it has no meaning
in an empty context, unless Γ is itself empty.

We define well-scoping judgments on contexts (Γ ⊢) and types (Γ ⊢ σ). The
judgments are defined simultaneously in Figure 1 and refer to each another. They
use non-annotated contexts: the dependency annotations characterize data-flow
information of terms, and are not needed to state the well-formedness of static
types and contexts.

6 Gabriel Scherer and Jan Hoffmann

Scope-Context-Nil
∅ ⊢

Scope-Context
Γ ⊢ σ

Γ, x:σ ⊢

Scope-Atom
Γ ⊢
Γ ⊢ α

Scope-Product
Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 ∗ τ2

Scope-Closure
Γ0,Γ1 ⊢ Γ0 ⊢ σ Γ0, x:σ ⊢ τ

Γ0,Γ1 ⊢ [ΓΦ
0](x:σ

ϕ) → τ

Fig. 1: Well-scoping of types and contexts

Notice that the closure contexts appearing in the return type of a closure,
τ in our rule Scope-Closure, may capture the variable x corresponding to the
function argument, which is why we chose the dependent-arrow–like notation
(x:σ) → τ rather than only σ → τ . There is no dependency of types on terms in
this system, this is only used for scope tracking.

Note that Γ ⊢ σ implies Γ ⊢ (as proved by direct induction until an atom
or a function closure is reached). Note also that a context type [Γ0](x:σ) → τ is
well-scoped in any larger environment Γ0,Γ1: the context information may only
mention variables existing in the typing context, but it need not mention all of
them. As a result, well-scoping is preserved by context extension: if Γ0 ⊢ σ and
Γ0,Γ1 ⊢, then Γ0,Γ1 ⊢ σ.

A Term Language, and a Naive Attempt at a Type System Our term
language, is the lambda calculus with pairs, let bindings and fixpoints. This
language is sufficient to discuss the most interesting problems that arise in an
application of closure types in a more realistic language.

Terms ∋ t, u, e ::= terms
| x variables
| (e1, e2) pairs
| πi(e) projections (i ∈ {1, 2})
| λx.e lambda abstractions
| t u applications
| letx = e1 in e2 let declarations

For didactic purposes, we start with an intuitive type system presented in
Figure 2. The judgment ΓΦ ⊢ e : σ means that the expression e has type σ, in
the context Γ carrying the intensional information Φ. Context variable mapped
to 0 in Φ are not used during the reduction of e to a value. We will show that
the rules App-Tmp and Let-Tmp are not correct, and introduce a new judgment
to develop correct versions of the rules.

In a judgment Γ0 ⊢ λx.t : [ΓΦ](x:σ0) → τ , Γ is bound only in one place (the
context), and α-renaming any of its variable necessitates a mirroring change in
its right-hand-side occurrences (ΓΦ but also in σ and τ), while x is independently
bound in the term and in the type, so the aforementioned type is equivalent to
[ΓΦ](y:σ) → τ [y/x]. In particular, variables occurring in types do not reveal
implementation details of the underlying term.

Tracking Data-Flow with Open Closure Types 7

Var
Γ, x:σ,∆ ⊢

Γ0, x:σ1,∆0 ⊢ x : σ

Product
ΓΦ1 ⊢ e1 : τ1 ΓΦ2 ⊢ e2 : τ2

ΓΦ1+Φ2 ⊢ (e1, e2) : τ1 ∗ τ2

Proj
ΓΦ ⊢ e : τ1 ∗ τ2
ΓΦ ⊢ πi(e) : τi

Lam
ΓΦ, x:σϕ ⊢ t : τ

Γ0 ⊢ λx.t : [ΓΦ](x:σϕ) → τ

Fix
ΓΦ, f :([ΓΨ](x:σϕ) → τ)χ, x : σϕ ⊢ e : τ

Γ0 ⊢ fix f x.e : [ΓΨ](x:σϕ) → τ

App-Tmp
(Γ0,Γ1)

Φfun ⊢ t : [ΓΦclos
0](x:σϕ) → τ (Γ0,Γ1)

Φarg ⊢ u : σ

(Γ0,Γ1)
Φfun+Φclos+ϕ.Φarg ⊢ t u : τ

Let-Tmp
ΓΦdef ⊢ e1 : σ ΓΦbody , x:σϕ ⊢ e2 : τ

Γϕ.Φdef+Φbody ⊢ letx = e1 in e2 : τ

Fig. 2: Naive rules for the type system

The syntax ϕ.Φ used in the App-Tmp and Let-Tmp rules is a product, or
conjunction, of the single boolean dependency annotation ϕ, and of the vector
dependency annotation Φ. The sum Φ1 +Φ2 is the disjunction. In the Let-Tmp
rule for example, if the typing of e2 determines that the evaluation of e2 does not
depend on the definition x = e1 (ϕ is 0), then ϕ.Φdef will mark all the variables
used by e1 as not needed as well (all 0), and only the variables needed by e2 will
be marked in the result annotation ϕ.Φdef +Φbody.

In the introduction we present closure types of the form [Γ](x:σ) → τ , while
we here use the apparently different form [ΓΦ](x:σϕ) → τ . This new syntax is
actually a simpler special case of the previous one: we could consider a type
grammar of the form σϕ, and the type [Γ](x:σ) → τ would then capture all
the needed information, as each type in Γ would come with its own annotation.
Instead, we don’t embed dependency information in the types directly, and use
annotated context ΓΦ to carry equivalent information. This simplification makes
it easier to control the scoping correctness: it is easier to notice that ΓΦ and ΓΨ

are contexts ranging over the same domain than if we wrote Γ and Γ′. It is made
possible by two specific aspects of this simple system:

– Our intensional information has a very simple structure, only a boolean, that
does not apply to the types in depth. The simplification would not work, for
example, in a security type system where products could have components of
different security levels (τ l ∗σr), but the structure of the rules would remain
the same.

– In this example, we are interested mostly in intensional information on the
contexts, rather than the return type of a judgment. The general case rather
suggests a judgment of the form ΓΦ ⊢ e : σϕ, but with only boolean an-
notations this boils to a judgment ΓΦ ⊢ e : σ1, when we are interested in
the value being type-checked, and a trivial judgment Γ0 ⊢ e : σ0, used to
type-check terms that will not be used in the rest of the computation, and
which degenerates to a check in the simply-typed lambda-calculus. Instead,
we define a single judgment ΓΦ ⊢ e : σ corresponding to the case where ϕ is
1, and use the notation ϕ.Φ to nullify the dependency information coming
of from e when the outer computation does not actually depend on it (ϕ is
0).

8 Gabriel Scherer and Jan Hoffmann

While dependency annotations make the development easier to follow, they
do not affect the generality of the type theory, as the common denominator of
open closure type systems is more concerned with the scoping of closure contexts
than the structure of the intensional information itself.

Maintaining Closure Contexts As pointed out, the rule App-Tmp and Let-Tmp
of the system above are wrong (hence the “temporary” name): the left-hand-side
of the rule App-Tmp assumes that the closure captures the same environment Γ
that it is computed in. This property is initially true in the closure of the rule
Lam, but is not preserved by Let-Tmp (for the body type) or App-Tmp (for the
return type). This means that the intensional information in a type may become
stale, mentioning variables that have been removed from the context. We will
now fix the type system to never mention unbound variables.

We need a closure substitution mechanism to explain the type τf = [ΓΦ, y:ρχ](x:σϕ) →
τψ of a closure f in the smaller environment Γ, given dependency information
for y in Γ. Assume for example that y was bound in a let binding let y = e . . .
and that the type τf leaves the scope of y. Then we have to adapt the type rules
to express the following. “If f depends on y (at application time) then f depends
on the variables of Γ that e depends on.”

We define in Figure 3 the judgment Γ, y:ρ,∆ ⊢ σ
y\Ψ⇝ Γ,∆′ ⊢ τ . Assuming

that the variable y in the context Γ, y:ρ,∆ was let-bound to an definition with
usage information ΓΨ, this judgment transforms any type σ in this context in a
type τ in a context Γ,∆′ that does not mention y anymore. Note that ∆ and ∆′

have the same domain, only their intensional information changed: any mention
of y in a closure type of ∆ was removed in ∆′. Also note that Γ, y:ρ,∆ and Γ,∆′,
or σ and τ , are not annotated with dependency annotations themselves: this is
only a scoping transformation that depends on the dependency annotations of
y in the closures of σ and ∆.

As for the scope-checking judgment, we simultaneously define the substitu-
tions on contexts themselves Γ, y:ρ,∆

y\Ψ⇝ Γ,∆′. There are two rules for substi-
tuting a closure type. If the variable being substituted is not part of the closure
type context (rule Subst-Closure-Notin), this closure type is unchanged. Oth-
erwise (rule Subst-Closure) the substitution is performed in the closure type,
and the neededness annotation for y is reported to its definition context Γ0.

The following lemma verifies that this substitution preserves well-scoping of
contexts and types.

Lemma 1 (Substitution preserves scoping). If Γ, y:ρ,∆ ⊢ and Γ, y:ρ,∆
y\Ψ⇝

Γ,∆′ hold, then Γ,∆′ ⊢ holds. If Γ, y:ρ,∆ ⊢ σ and Γ, y:ρ,∆ ⊢ σ y\Ψ⇝ Γ,∆′ ⊢ τ
hold, then Γ,∆′ ⊢ τ holds.

Proof. By mutual induction on the judgments Γ, y:ρ,∆
y\Ψ⇝ Γ,∆′ and

Γ, y:ρ,∆ ⊢ σ y\Ψ⇝ Γ,∆′ ⊢ τ .

Tracking Data-Flow with Open Closure Types 9

Subst-Context-Nil
Γ, y:ρ, ∅ y\Ψ⇝ Γ

Subst-Context
Γ, y:ρ,∆ ⊢ σ

y\Ψ⇝ Γ,∆′ ⊢ τ

Γ, y:ρ,∆, x:σ
y\Ψ⇝ Γ,∆′, x:τ

Subst-Atom
Γ, y:ρ,∆

y\Ψ⇝ Γ,∆′

Γ, y:ρ,∆ ⊢ α
y\Ψ⇝ Γ,∆′ ⊢ α

Subst-Product
Γ, y:ρ,∆ ⊢ σ1

y\Ψ⇝ Γ,∆′ ⊢ τ1 Γ, y:ρ,∆ ⊢ σ2
y\Ψ⇝ Γ,∆′ ⊢ τ2

Γ, y:ρ,∆ ⊢ σ1 ∗ σ2
y\Ψ⇝ Γ,∆′ ⊢ τ1 ∗ τ2

Subst-Closure-Notin
Γ0,Γ1, y:ρ,∆

y\Ψ⇝ Γ0,Γ1,∆
′

Γ0,Γ1, y:ρ,∆ ⊢ [ΓΦ
0](x:σ

ϕ
1) → σ2

y\Ψ⇝ Γ0,Γ1,∆
′ ⊢ [ΓΦ

0](x:σ
ϕ
1) → σ2

Subst-Closure
Γ, y:ρ,∆,Γ1

y\Ψ⇝ Γ,∆′,Γ′
1

Γ, y:ρ,∆ ⊢ σ1
y\Ψ⇝ Γ,∆′ ⊢ σ1 Γ, y:ρ,∆, x:σ1 ⊢ σ2

y\Ψ⇝ Γ,∆′, x:σ1 ⊢ τ2

Γ, y:ρ,∆,Γ1 ⊢ [ΓΦ1 , y:ρχ,∆Φ2](x:σϕ1) → σ2
y\Ψ⇝ Γ,∆′,Γ′

1 ⊢ [ΓΦ1+χ.Ψ,∆′Φ2](x:σϕ1) → τ2

Fig. 3: Type substitution

Case Subst-Context-Nil: using Scope-Context-Nil, Γ, x:σ ⊢ implies Γ ⊢ σ,
which in turn implies Γ ⊢.

Case Subst-Context: from our hypothesis Γ, y:ρ,∆, x:σ ⊢ we deduce Γ, y:ρ,∆ ⊢
σ. By induction we can deduce Γ,∆′ ⊢ τ , which gives context well-formedness
Γ,∆′ ⊢.

Case Subst-Atom: direct by Scope-Atom and induction hypothesis.

Case Subst-Product: by inversion, the last rule of the derivation of Γ, y:ρ ⊢
(σ1 ∗ σ2) is Scope-Product, so we can proceed by direct induction on the
premises of both judgments.

Case Subst-Closure: Using our induction hypothesis on Γ, y:ρ,∆,Γ1
y\Ψ⇝

Γ,∆′,Γ′
1 we can deduce that Γ,∆′,Γ′

1 ⊢ and in particular Γ,∆′ ⊢.

By inversion, the last rule of the derivation of Γ, y:ρ,∆,Γ1 ⊢ [ΓΦ1 , y:ρχ,∆Φ2](y : σϕ1

1) →
σ2 is Scope-Closure. Its premises are Γ, y:ρ,∆ ⊢ σ1 and Γ, y:ρ,∆, x:σ1 ⊢ σ2,
from which we deduce by induction hypothesis Γ,∆′ ⊢ τ1 and Γ,∆′, x:τ1 ⊢ τ2
respectively, allowing to deduce that Γ,∆′ ⊢ [ΓΦ1+χ.Ψ,∆′Φ2](x : τ1) → τ2,
which allows to conclude by weakening with the well-scoped Γ′

1.

Case Subst-Closure-Notin: direct by induction and inversion.

⊓⊔

10 Gabriel Scherer and Jan Hoffmann

We can now give the correct rules for binders:
Let
ΓΦdef ⊢ e1 : σ ΓΦbody , x:σϕ ⊢ e2 : τ Γ, x:σ ⊢ τ x\Φdef⇝ Γ ⊢ τ ′

Γϕ.Φdef+Φbody ⊢ letx = e1 in e2 : τ ′

App
(Γ0,Γ1)

Φfun ⊢ t : [ΓΦclos
0](x:σϕ) → τ

(Γ0,Γ1)
Φarg ⊢ u : σ Γ0,Γ1, x:σ ⊢ τ x\Φarg⇝ Γ0,Γ1 ⊢ τ ′

(Γ0,Γ1)
Φfun+Φclos+ϕ.Φarg ⊢ t u : τ ′

Lemma 2 (Typing respects scoping). If Γ ⊢ t : σ holds, then Γ ⊢ σ holds.

This lemma guarantees that we fixed the problem of stale intensional infor-
mation: types appearing in the typing judgment are always well-scoped.

Proof. By induction on the derivation of Γ ⊢ t : σ.

Case Var: from the premise Γ0, x : σ1,∆0 ⊢ we have Γ ⊢ σ.
Case Prod: direct by induction.
Case Proj: the induction hypothesis is Γ ⊢ τ1 ∗ τ2, from which we get Γ ⊢ τi
(for i ∈ {1, 2}) by inversion.

Case Lam: the induction hypothesis is Γ, x:σ ⊢ τ . From this we get Γ, x:σ
and therefore Γ ⊢ σ, which allows to conclude with Scope-Closure.

Case Fix: the hypothesis implies Γ, f :[ΓΨ](x:σϕ) → τ ⊢, which in turn im-
plies Γ ⊢ [ΓΨ](x:σϕ) → τ .

Case App: Using our induction hypothesis on the first premise give us that
Γ0,Γ1 ⊢ [ΓΦclos

0](x:σ) → τ , so by inversion Γ0,Γ1 ⊢ and Γ0, x:σ ⊢ τ . The
latter fact can be weakened into Γ0,Γ1, x:σ ⊢ τ , and then combined with the
last premise Γ0,Γ1, x:σ ⊢ τ

x\Φarg⇝ Γ0,Γ1 ⊢ τ ′ and Lemma 1 to get our goal
Γ0,Γ1 ⊢ τ ′.

Case Let: reasoning similar to the App case. By induction on the middle
premise, we have Γ, x:σ ⊢ τ , combined with the right premise Γ, x:σ ⊢ τ x\Φdef⇝
Γ ⊢ τ ′ we get Γ ⊢ τ ′.

⊓⊔

It is handy to introduce a convenient derived notation ΓΦ ⊢ τ y\Ψ⇝ Γ′Φ′ ⊢ τ ′
that is defined below. This substitution relation does not only remove y from
the open closure types in Γ, it also updates the dependency annotation on Γ to
add the dependency Ψ, corresponding to all the variables that y depended on –
if it is itself marked as needed.

Γ, y:ρ,∆ ⊢ τ y\Ψ⇝ Γ,∆′ ⊢ τ ′

ΓΦ1 , y:ρχ,∆Φ2 ⊢ τ y\Ψ⇝ ΓΦ1+χ.Ψ,∆′Φ2 ⊢ τ ′

It is interesting to see that substituting y away in ΓΦ1 , y:ρ,∆Φ2 changes the
annotation on Γ, but not its types (Γ is unchanged in the output as its types

Tracking Data-Flow with Open Closure Types 11

may not depend on y), while it changes the types in ∆ but not its annotation
(Φ2 is unchanged in the output as a value for y may only depend on variables
from Γ, not ∆).

The following technical results allow us to permute substitutions on unre-
lated variables. They will be used in the typing soundness proof of the next
section (Theorem 1).

Lemma 3 (Confluence). If Γ1 ⊢ τ1
xa\Ψa⇝ Γ2a ⊢ τ2a and Γ1 ⊢ τ1

xb\Ψb⇝ Γ2b ⊢
τ2b then there exists a unique Γ3 ⊢ τ3 such that

Γ2a ⊢ τ2a
xb\(Ψb+Ψa.Ψb(xa))⇝ Γ3 ⊢ τ3 and Γ2b ⊢ τ2b

xa\(Ψa+Ψb.Ψa(xb))⇝ Γ3 ⊢ τ3
Proof. Without loss of generality we can assume that xa appears before xb in
Γ1, so in particular Ψa(xb) = 0. For any subcontext of the form

∆1
Ψ1 , xa:σa

ρa ,∆2
Ψ2 , xb:σb

ρb

, assume that substituting Ψa for xa first results in

∆1
Ψ1+ρa.Ψa ,∆2a

Ψ2 , xb:σba
ρb

, while substituting Ψb for xb first results in

∆1
Ψ1+ρb.Ψb(∆1), xa:σa

ρa+ρb.Ψb(xa),∆2
Ψ2+ρb.Ψb(∆2)

. Substituting Ψb +Ψa.Ψb(xa) for xb in

∆1
Ψ1+ρa.Ψa ,∆2a

Ψ2 , xb:σba
ρb

results in

∆1
Ψ1+ρa.Ψa+ρb.(Ψb+Ψa.Ψb(xa))(∆1),∆2a

Ψ2+ρb.(Ψb+Ψa.Ψb(xa))(∆2a)

which simplifies to

∆1
Ψ1+ρa.Ψa+ρb.Ψb(∆1)+ρb.Ψb(xa).Ψa ,∆2a

Ψ2+ρb.Ψb(∆2a)

Substituting Ψa +Ψb.Ψa(xb) = Ψa for xa in

∆1
Ψ1+ρb.Ψb(∆1), xa:σa

ρa+ρb.Ψb(xa),∆2
Ψ2+ρb.Ψb(∆2)

results in
∆1

Ψ1+ρb.Ψb(∆1)+(ρa+ρb.Ψb(xa)).Ψa),∆2a
Ψ2+ρb.Ψb(∆2)

which simplifies to

∆1
Ψ1+ρb.Ψb(∆1)+ρa.Ψa+ρb.Ψb(xa).Ψa ,∆2a

Ψ2+ρb.Ψb(∆2)

Given that ∆2 and ∆2a have the same domain (only different types), the
restrictions Ψb(∆2) and Ψb(∆2a) are equal, allowing to conclude that the two
substitutions indeed end in the same sequent

∆1
Ψ1+(ρa+ρb.Ψb(xa)).Ψa+ρb.Ψb(∆1),∆2a

Ψ2+ρb.Ψb(∆2)

Note that we can make sense, informally, of this resulting sequent. The vari-
able used by this final contexts are

12 Gabriel Scherer and Jan Hoffmann

– the variables used of ∆1 used in the initial judgment (Ψ1)
– the variables of ∆2 (updated in ∆2a to remove references to the substituted

variable xa) used in the initial judgment (Ψ2)
– the variables used by Ψb, if it is used (ρb is 1)
– the variables used by Ψa if either x was used (ρa is 1), or if xb is used (ρb is

1) and itself uses xa (Ψb(xa) is 1).

To get this intuition, we considered again the annotations as booleans, but note
that the equivalence proof was done in a purely algebraic manner. It should
therefore be preserved in future work where the intensional information has a
richer structure.

⊓⊔

Corollary 1 (Reordering of substitutions). If Ψa and Ψb have domain Γ,
and

Γ1
Φ1 ⊢ τ1

xa\Ψa⇝ Γ2
Φ2 ⊢ τ2

xb\(Ψb+Ψb(xa).Ψa)⇝ Γ3
Φ3 ⊢ τ3

then there exists Γ′
2
Φ′

2 ⊢ τ ′2 such that

Γ1
Φ1 ⊢ τ1

xb\Ψb⇝ Γ′
2
Φ′

2 ⊢ τ ′2
xa\(Ψa+Ψa(xb).Ψb)⇝ Γ3

Φ3 ⊢ τ3

On open closure types on the left of function types Note that the
Subst-Closure handles the function type on the left-hand-side of the arrow,
σ1, is a specific and subtle way: it must be unchanged by the substitution judg-
ment. Under a slightly simplified form, the judgment reads:

Γ, y:ρ,∆ ⊢ σ1
y\Ψ⇝ Γ,∆′ ⊢ σ1 Γ, y:ρ,∆, x:σ1 ⊢ σ2

y\Ψ⇝ Γ,∆′, x:σ1 ⊢ τ2

Γ, y:ρ,∆ ⊢ [ΓΦ1 , y:ρχ,∆Φ2](x:σϕ1) → σ2
y\Ψ⇝ Γ,∆′ ⊢ [ΓΦ1+χ.Ψ,∆′Φ2](x:σϕ1) → τ2

This corresponds to the usual “change of direction” on the left of arrow type.
A substitution Γ, y:ρ ⊢ τ

y\Ψ⇝ Γ ⊢ τ ′ is a lossy transformation, as we forget
how y is used in τ and instead mix its definition information with the rest of
the context information in τ ′. Such a loss makes sense for the return type of a
function: we forget information about the return value. But by contravariance
of input argument, we should instead refine the argument types.

But as the gain or loss or precision correspond to variables going out of scope,
such a refinement could only happen in smaller nested scopes. On the contrary,
when going out to a wider scope, the only possibility is that the closure type
does not depend on the particular variable being substituted (so the type σ is
preserved, Γ, y:ρ,∆ ⊢ σ

y\Ψ⇝ Γ,∆′ ⊢ σ) . If the variable was used, a loss of
precision would be possible: this substitution must be rejected.

Tracking Data-Flow with Open Closure Types 13

Consider the following example:
(* in context Γ *)
let x : int = e_x in
let y : bool = e_y in
let f (g : [Γ0, x:int1](z : unit0) → int) : int = g () in
f (λz. x);
f

In the environment Γ, x:int, y:bool, the type of f’s function argument g de-
scribes a function whose result depends on x. We can still express this dependency
when substituting the variable y away, that is when considering the type of the
expression (let y = ... in let f g = ... in f) as a whole: the argument type
will still have type [Γ0, x:int1](z : unit) → int. However, this dependency on x
cannot make sense anymore if we remove x itself from the context, the substitu-
tion does not preserve this function type. This makes the whole expression (let
x = ... in (let y = ... in let f g = ... in f)) ill-typed, as x escapes its
scope in the argument function type.

One way to understand this requirement is that there are two parts to having
an analysis be fully “higher-order”. Fist, it handles programs that take functions
as input, and second, it handles programs that return functions as result of
computations. Some languages only pass functions as parameters (this is in par-
ticular the case of C with pointers to global functions), some constructions such
as currying fundamentally rely on function creation with environment capture.
Our system proposes a new way to handle this second part, and is intensionally
simplistic, to the point of being restrictive, on the rest.

In a non-toy language one would want to add subtyping of context infor-
mation, that would allow controlled loss of precision to, for example, create
lists of functions with slightly different context information. Another useful fea-
ture would be context information polymorphism to express functions being
parametric with respect to the context information of their argument. This is
intentionally left to future work.

3 A Big-Step Operational Semantics

In this section, we will define an operational semantics for our term language, and
use it to prove the soundness of the type system (Theorem 1). Our semantics is
equivalent to the usual call-by-value big-step reduction semantics for the lambda-
calculus in the sense that computation happens at the same time. There is
however a notable difference.

Function closures are not built in the same way as they are in classical big-
step semantics. Usually, we have a rule of the form V ⊢ λx.t =⇒ (V, λx.t) where
the closure for λx.t is a pair of the value environment V (possibly restricted to its
subset appearing in t) and the function code. In contrast, we capture no values
at closure creation time in our semantics: V ⊢ λx.t =⇒ (∅, λx.t). The captured
values will be added to the closure incrementally, during the reduction of binding
forms that introduced them in the context.

14 Gabriel Scherer and Jan Hoffmann

Consider for example the following two derivations; one in the classic big-step
reduction, and the other in our alternative system.

Classic-Red-Let
x:v ⊢ x c

=⇒ v x:v, y:v ⊢ λz.y c
=⇒ ((x 7→ v, y 7→ v), λz.y)

x:v ⊢ let y = x in λz.y
c

=⇒ ((x 7→ v, y 7→ v), λz.y)

Our-Red-Let
x:v ⊢ x =⇒ v

x:v, y:v ⊢ λz.y =⇒ ([x, y], ∅, λz.y) (∅, λz.y) y\v⇝ ([x], y 7→ v, λz.y)

x:v ⊢ let y = x in λz.y =⇒ ([x], y 7→ v, λz.y)

Rather than capturing the whole environment in a closure, we store none at
all at the beginning (merely record their names), and add values incrementally,
just before they get popped from the environment. This is done by the value
substitution judgment w x\v⇝ w′ that we will define in this section. The reason for
this choice is that this closely corresponds to our typing rules, value substitution
being a runtime counterpart to substitution in types Γ ⊢ σ

x\Φ⇝ Γ′ ⊢ σ′; this
common structure is essential to prove of the type soundness (Theorem 1).

Note that derivations in this modified system and in the original one are
in one-to-one mapping. It should not be considered a new dynamic semantics,
rather a reformulation that is convenient for our proofs as it mirrors our static
judgment structure.

Values and Value Substitution Values are defined as follows.

Val ∋ v, w ::= values
| vα value of atomic type
| (v, w) value tuples
| ([xj]j∈J , (xi 7→ vi)i∈I , λx.t) function closures
| ([xj]j∈J , (xi 7→ vi)i∈I , fix f x.t) recursive function closures

The set of variables bound in a closure is split into an ordered mapping
(xi 7→ vi)i∈I for variables that have been substituted to their value, and a simple
list [xj]j∈J of variables whose value has not yet been captured. They are both
binding occurrences of variables bound in t; α-renaming them is correct as long
as t is updated as well.

To formulate our type soundness result, we define a typing judgment on values
Γ ⊢ v : σ in Figure 4. An intuition for the rule Value-Closure is the following.
Internally, the term t has a dependency ΓΦ on the ambient context, but also
dependencies (τψi

i) on the captured variables. But externally, the type may not
mention the captured variables, so it reports a different dependency ΓΦ′ that
corresponds to the internal dependency ΓΦ, combined with the dependencies
(Ψi) of the captured values. Both families (ψi)i∈I and (Ψi)i∈I are existentially
quantified in this rule.

Tracking Data-Flow with Open Closure Types 15

Value-Atom
Γ ⊢

Γ ⊢ vα : α

Value-Product
Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2

Γ ⊢ (v1, v2) : τ1 ∗ τ2
Value-Closure

Γ,Γ1 ⊢ ∀i ∈ I, Γ, (xj :τj)j<i ⊢ vi : τi

ΓΦ, (xi:τ
ψi
i)i∈I , x:σ

ϕ ⊢ t : τ ΓΦ, (xi:τ
ψi
i)i∈I , x:σ

ϕ ⊢ τ
(xi)\(Ψi)⇝ ΓΦ′

, x:σϕ ⊢ τ ′

Γ,Γ1 ⊢ (domΓ, (xi 7→ vi)i∈I , λx.t) : [Γ
Φ′
](x:σϕ) → τ ′

Value-Closure-Fix
Γ,Γ1 ⊢ ∀i ∈ I, Γ, (xj :τj)j<i ⊢ vi : τi

ΓΦ, (xi:τ
ψi
i)i∈I , f :([Γ, (xi:τ

ψi
i)](x:σϕ) → τ)χ, x:σϕ ⊢ t : τ

ΓΦ, (xi:τ
ψi
i)i∈I , x:σ

ϕ ⊢ τ
(xi)\(Ψi)⇝ ΓΦ′

, x:σϕ ⊢ τ ′

Γ,Γ1 ⊢ (domΓ, (xi 7→ vi)i∈I , fix f x.t) : [ΓΦ′
](x:σϕ) → τ ′

Fig. 4: Value typing

Subst-Value-Atom
vα

y\v⇝ vα

Subst-Value-Product
w1

y\v⇝ w′
1 w2

y\v⇝ w′
2

(w1, w2)
y\v⇝ (w′

1, w
′
2)

Subst-Value-Closure
([xj1 , . . . , xjn , y], (xi 7→ wi)i∈I , t)

y\v⇝ ([xj1 , . . . , xjn], (y 7→ v)(xi 7→ wi)i, t)

Subst-Value-Closure-Notin
y /∈ (xj)j∈J

([xj]j∈J , (xi 7→ wi)i∈I , t)
y\v⇝ ([xj]j∈J , (xi 7→ wi)i∈I , t)

Fig. 5: Value substitution

In the judgment rule, the notation (xj : τj)j<i is meant to define the envi-
ronment of each (xi : τi) as ΓΦ, plus all the (xj : τj) that come before xi in the
typing judgment ΓΦ, (xi : τi)i∈I , x : σϕ ⊢ t. The notation . . . (xi)\(Ψi)⇝ . . . denotes
the sequence of substitutions for all (xi,Ψi), with the rightmost variable (intro-
duced last) substituted first: in our dynamic semantics, values are captured by
the closure in the LIFO order in which their binding variables enter and leave
the lexical scope.

Substituting Values In the typing rules, we use the substitution relation
Γ, y:ρ ⊢ σ y\Φ⇝ Γ ⊢ τ to remove the variable y from the closure types in σ. Corre-
spondingly, in our runtime semantics, we add the variable y to the vector stored
in the closure value, by a value substitution judgment w y\v⇝ w′ (see Figure 5)
when the binding of y is removed from the evaluation context.

In the Subst-Value-Closure, the notation , (y 7→ v)(xi 7→ wi)i means that
the binding y 7→ v is added in first position in the vector of captured values. The
values wi were computed in a context depending on y, so they need to appear
after the binding y 7→ v for the value to be type-correct.

16 Gabriel Scherer and Jan Hoffmann

Lemma 4 (Value substitution preserves typing). If (Γ ⊢ v : ρ), (Γ, y:ρ ⊢
w : σ), (Γ, y:ρ ⊢ σ y\Ψ⇝ Γ ⊢ τ) and (w

y\v⇝ w′) hold, then (Γ ⊢ w′ : τ) holds.

Note that this theorem is restricted to substitutions of the rightmost variable
of the context. While substitution in types needs to operate under binders (in
rule Subst-Closure), value substitution is a runtime operation that will only be
used by our (weak) reduction relation on the last introduced variable.

Proof. By induction on the value typing judgment Γ, y:ρ ⊢ w : σ.

Case Value-Atom: by inversion we know that the last rule of Γ, y:ρ ⊢ α y\Ψ⇝ Γ ⊢ τ
is Subst-Atom. From the premise Γ, y:ρ ⊢ and Γ, y:ρ

y\Ψ⇝ Γ we can deduce
from Lemma 1 that Γ ⊢, which allows to conclude Γ ⊢ vα : α.

Case Value-Product: by inversion, the last rules of Γ, y:ρ ⊢ (σ1 ∗ σ2)
y\Ψ⇝ Γ ⊢ τ

and w
y\v⇝ w′ are respectively Subst-Product and Subst-Value-Product,

so by induction hypothesis we have Γ ⊢ w′
1 : τ1 and Γ ⊢ w′

2 : τ2, which allows
us to conclude Γ ⊢ (w′

1, w
′
2) : τ1 ∗ τ2.

Case Value-Closure. By inversion we know that the last substitution rules
applied are either Subst-Closure and Subst-Value-Closure, or Subst-Closure-Notin
and Subst-Value-Closure-Notin, depending on whether the substituted
variable is part of the closure context.
In the latter case, both the types and the judgments are unchanged, so the
result is immediate. If the substituted value is part of the closure context,
the rules of the involved judgments are

Γ, y:ρ ⊢ σ1
y\Ψ⇝ Γ ⊢ σ1 Γ, y:ρ, x:σ1 ⊢ σ2

y\Ψ⇝ Γ, x:σ1 ⊢ σ′
2

Γ, y:ρ ⊢ [ΓΦ1 , y:ρχ](x:σϕ1) → σ2
y\Ψ⇝ Γ ⊢ [ΓΦ1+χ.Ψ](x:σ1

ϕ) → σ′
2

∀i ∈ I, Γ, y:ρ, (xj :τj)j<i ⊢ wi : τi ΓΦ′′
1 , y:ρχ

′′
, (xi:τ

ψi

i)i∈I , x:σ1
ϕ ⊢ t : σ′′

2

ΓΦ′′
1 , y:ρχ

′′
, (xi:τ

ψi

i)i∈I , x:σ1
ϕ ⊢ σ′′

2

(xi)\(Ψi)⇝ ΓΦ1 , y:ρχ, x:σ1
ϕ ⊢ σ2

Γ, y:ρ ⊢ (domΓ, (xi 7→ wi)i∈I , λx.t) : [Γ
Φ1 , y:ρχ](x:σ1

ϕ) → σ2

([domΓ, y], (xi 7→ wi)i∈I , t)
y\v⇝ (domΓ, (y 7→ v)(xi 7→ wi)i, t)

We can reach our goal by using the following inference rule:

∀i ∈ I, Γ, y:ρ, (xj :τj)j<i ⊢ wi : τi
ΓΦ′′

1 , y : ρχ
′′
, (xi:τi

ψi)i∈I , x:σ1
ϕ ⊢ t : σ′′

2

ΓΦ′′
1 , y:ρχ

′′
, (xi:τ

ψi

i)i∈I , x:σ1
ϕ ⊢ σ′′

2

,y(xi)i\,Ψ(Ψi)i⇝ ΓΦ1+χ.Ψ, x:σ1
ϕ ⊢ σ′

2

Γ ⊢ (domΓ, , (y 7→ v)(xi 7→ wi)i∈I , λx.t) : [Γ
Φ1+χ.Ψ](x:σ1

ϕ) → σ′
2

Tracking Data-Flow with Open Closure Types 17

Red-Var
V ⊢ x =⇒ V (x)

Red-Lam
V ⊢ λx.t =⇒ (domV, ∅, λx.t)

Red-Lam-Fix
V ⊢ fix f x.t =⇒ (domV, ∅, fix f x.t)

Red-Pair
V ⊢ e1 =⇒ v1 V ⊢ e2 =⇒ v2

V ⊢ (e1, e2) =⇒ (v1, v2)

Red-Proj
V ⊢ e =⇒ (v1, v2)

V ⊢ πi(e) =⇒ vi

Red-Let
V ⊢ e1 =⇒ v1 V, (x 7→ v1) ⊢ e2 =⇒ v2 v2

x\v1⇝ v′2

V ⊢ letx = e1 in e2 =⇒ v′2

Red-App
V, V1 ⊢ t =⇒ (domV, V2, λy.t

′)

V, V1 ⊢ u =⇒ varg V, V1, V2, y 7→ varg ⊢ t′ =⇒ w w
y\varg⇝ w′ V2⇝ w′′

V, V1 ⊢ t u =⇒ w′′

Red-App-Fix
V, V1 ⊢ t =⇒ (domV, (xi 7→ vi)i∈I , fix f y.t′)

V, V1 ⊢ u =⇒ varg V, (xi 7→ vi)i, (f 7→ fix f y.t′), (y 7→ varg) ⊢ t′ =⇒ w

V, V1 ⊢ t u =⇒ w

Fig. 6: Big-step reduction rules

The typing assumptions all match those of our premise. The reduction as-
sumption is simply the composition of the reductions of the premises:

ΓΦ′′
1 , y:ρχ

′′
, (xi:τ

ψi

i)i∈I , x:σ1
ϕ ⊢ σ′′

2
(xi)\(Ψi)⇝ ΓΦ1 , y:ρχ, x:σ1

ϕ ⊢ σ2
y\Ψ⇝ ΓΦ1+χ.Ψ, x:σ1

ϕ ⊢ σ′
2

⊓⊔

The Big-Step Reduction Relation We are now equipped to define in Figure 6
the big-step reduction relation on well-typed terms V ⊢ e =⇒ v, where V is a
mapping from the variables to values that is assumed to contain at least all the
free variables of e. The notation w V2⇝ w′ denotes the sequence of substitutions
for each (variable, value) pair in V2, from the last one introduced in the context
to the first; the intermediate values are unnamed and existentially quantified.

We write V : Γ ⊢ if the context valuation V , mapping free variables to values,
is well-typed according to the context Γ.

Value-Env-Empty
∅ : ∅ ⊢

Value-Env
V : Γ ⊢ Γ ⊢ v : σ

V, x 7→ v : Γ, x:σ ⊢

Theorem 1 (Type soundness). If ΓΦ ⊢ t : σ, V : Γ ⊢ and V ⊢ t =⇒ v then
Γ ⊢ v : σ.

18 Gabriel Scherer and Jan Hoffmann

Proof. By induction on the reduction derivation V ⊢ t =⇒ v.

Case Red-Var: From V : Γ ⊢ we have Γ ⊢ V (x) : σ.
Case Red-Lam, Red-Lam-Fix: in the degenerate case where there are no
captured values, the value typing rule Value-Closure for [ΓΦ](x:σϕ) → τ
has as only premise ΓΦ, x:σϕ ⊢ τ , which is precisely our typing assumption.

Case Red-Pair, Red-Proj: direct by induction.
Case Red-Let: The involved derivations are the following:

V ⊢ e1 =⇒ v1 V, x 7→ v1 ⊢ e2 =⇒ v2 v2
x\v1⇝ v′2

V ⊢ letx = e1 in e2 =⇒ v′2

ΓΦdef ⊢ e1 : σ ΓΦbody , x:σϕ ⊢ e2 : τ Γ, x:σ ⊢ τ x\Φdef⇝ Γ ⊢ τ ′

Γϕ.Φdef+Φbody ⊢ letx = e1 in e2 : τ ′

By induction hypothesis we have Γ ⊢ v1 : σ, from which we deduce that
V, x 7→ v1 : Γ, x:σ ⊢. This allows us to use induction again to deduce that
Γ, x:σ ⊢ v2 : τ . Finally, preservation of value typing by value substitution
(Lemma 4) allows to conclude that the remaining goal Γ ⊢ v′2 : τ ′ holds.

Case Red-App: the involved derivations are the following.

V, V1 ⊢ t =⇒ (domV, (xi 7→ vi)i∈I , λy.t
′) V, V1 ⊢ u =⇒ varg

V, V1, (xi 7→ vi)i, y 7→ varg ⊢ t′ =⇒ w w
y\varg⇝ w′ (xi)\(vi)⇝ w′′

V, V1 ⊢ t u =⇒ w′′

(Γ,Γ1)
Φfun ⊢ t : [ΓΦclos](y:σϕ) → τ

(Γ,Γ1)
Φarg ⊢ u : σ Γ, y:σ ⊢ τ y\Φarg⇝ Γ ⊢ τ ′

(Γ,Γ1)
Φfun+Φclos+ϕ.Φarg ⊢ t u : τ ′

By induction we have that Γ,Γ1 ⊢ varg : σ and Γ ⊢ ((xi 7→ vi)i, λy.t
′) :

[ΓΦclos](y:σϕ) → τ .
By inversion, we know that the derivation for this value typing judgment is
of the form

Γ,Γ1 ⊢ ∀i ∈ I, Γ, (xj :τj)j<i ⊢ vi : τi ΓΦ, (xi:τ
ψi

i)i∈I , y:σ
ϕ ⊢ t′ : τ ′′

ΓΦ, (xi:τ
ψi

i)i∈I , y:σ
ϕ ⊢ τ ′′ (xi)\(Ψi)⇝ ΓΦclos , y:σϕ ⊢ τ

Γ,Γ1 ⊢ (domΓ, (xi 7→ vi)i∈I , λy.t
′) : [ΓΦclos](y:σϕ) → τ

From our result Γ,Γ1 ⊢ varg and the premises Γ, (xj :τj)j<i ⊢ vi : τi we deduce
that the application valuation is well-typed with respect to the application
environment: V, V1, (xi 7→ vi)i, y 7→ varg : Γ,Γ1, (xi:τi), σ ⊢. It is used in
the premise of the body computation judgment, so by induction we get that
Γ,Γ1, (xi:τi), y:σ ⊢ w : τ ′′.

Tracking Data-Flow with Open Closure Types 19

Classic-Red-Var
W ⊢ x

c
=⇒ W (x)

Classic-Red-Lam
W ⊢ λx.t

c
=⇒ (W,λx.t)

Classic-Red-Lam-Fix
W ⊢ fix f x.t

c
=⇒ (W, fix f x.t)

Classic-Red-Pair
W ⊢ e1

c
=⇒ w1 W ⊢ e2

c
=⇒ w2

W ⊢ (e1, e2)
c

=⇒ (w1, w2)

Classic-Red-Proj
W ⊢ e

c
=⇒ (w1, w2)

W ⊢ πi(e)
c

=⇒ wi

Classic-Red-Let
W ⊢ e1

c
=⇒ w1 W,x 7→ w1 ⊢ e2

c
=⇒ w2

W ⊢ letx = e1 in e2
c

=⇒ w2

Classic-Red-App
W ⊢ t

c
=⇒ (W ′, λy.t′) W ⊢ u

c
=⇒ warg W ′, y 7→ warg ⊢ t′

c
=⇒ w

W ⊢ t u
c

=⇒ w

Classic-Red-App-Fix
W ⊢ t

c
=⇒ (W ′, fix f y.t′)

W ⊢ u
c

=⇒ warg W ′, f 7→ (W ′, fix f y.t′), y 7→ warg ⊢ t′
c

=⇒ w

W ⊢ t u
c

=⇒ w

Fig. 7: Classic big-step reduction rules

From there, we wish to use preservation of value typing on the chain of value
substitutions w y\varg⇝ w′ (xi)\(vi)⇝ w′′ to conclude that Γ ⊢ w′′ : τ ′. However,
the type substitutions of our premises are in the reverse order:

ΓΦ, (xi:τ
ψi

i)i∈I , y:σ
ϕ ⊢ τ ′′ (xi)\(Ψi)⇝ ΓΦclos , y:σϕ ⊢ τ y\Φarg⇝ ΓΦclos+ϕ.Φarg ⊢ τ ′

we therefore need to use our Reordering Lemma (1) to get them in the right
order — note that the annotations (Ψi)i∈I and Φarg are not changed as they
are independent from each other: for any i, we have Ψi(y) = Φarg(xi) = 0.

ΓΦ, (xi:τ
ψi

i)i∈I , y:σ
ϕ ⊢ τ ′′ y\Φarg⇝ ΓΦ′

clos , (xi:τ
ψi

i)i∈I ⊢ τ
(xi)\(Ψi)⇝ ΓΦclos+ϕ.Φarg ⊢ τ ′

⊓⊔

Finally, we recall the usual big-step semantics for the call-by-value calculus
with environments, in figure 7, and state its equivalence with our utilitarian
semantics. Due to space restriction we will only mention the rules that differ,
and elide the equivalence proof, but the long version contains all the details.

There is a close correspondence between judgments of both semantics, but as
the value differ slightly, in the general cases the value bindings of the environment
will also differ. We state the theorem only for closed terms, but the proof will
proceed by induction on a stronger induction hypothesis using an equivalence
between non-empty contexts.
Theorem 2 (Semantic equivalence). Our reduction relation is equivalent
with the classic one on closed terms: ∅ ⊢ t =⇒ v holds if and only if ∅ ⊢ t c

=⇒ v
also holds.

20 Gabriel Scherer and Jan Hoffmann

To formulate our induction hypothesis, we define the equivalence judgment
V ⊢ v = W

c

⊢ w; on each side of the equal sign there is a context and a value,
the right-hand side being considered in the classical semantics.

∅ ⊢ = ∅
c

⊢
V ⊢ =W

c

⊢ V ⊢ v =W
c

⊢ w

V, x 7→ v ⊢ =W,x 7→ w
c

⊢

V ⊢ =W
c

⊢

V ⊢ vα =W
c

⊢ vα

V ⊢ v1 =W
c

⊢ w1 V ⊢ v2 =W
c

⊢ w2

V ⊢ (v1, v2) =W
c

⊢ (w1, w2)

V ⊢ =W
c

⊢ V, xi 7→ vi ⊢ =W ′
c

⊢

V ⊢ ((xi 7→ vi)i∈I , λx.t) =W
c

⊢ (W ′, λx.t)

The stronger version of the theorem becomes the following: if V ⊢ = W
c

⊢
and V ⊢ t =⇒ v and W ⊢ t c

=⇒ w, then V ⊢ v =W
c

⊢ w.
As for subject reduction, we first need to prove that value substitution pre-

serves value equivalence.

Lemma 5 (Value substitution preserves value equivalence). If V, y 7→
v0 ⊢ v =W

c

⊢ w, V ⊢ v0 =W
c

⊢ w0, and v y\v0⇝ v′ then V ⊢ v′ =W
c

⊢ w.

Proof.
Subst-Value-Atom: direct.
Subst-Value-Product: direct induction.
Subst-Value-Closure: We have ((xi 7→ vi)i∈I , λx.t)

y\v0⇝ (, y 7→ v0(xi 7→
vi)i∈I , λx.t) and V, y 7→ v0 ⊢ ((xi 7→ vi)i∈I , λx.t) = W ⊢ (W ′, λx.t). The latter
implies V, y 7→ v0, xi 7→ vi ⊢ = W ′

c

⊢ which which in turn implies our goal
V ⊢ (, y 7→ v0) – with the additional premise V ⊢ = W

c

⊢ from our hypothesis
V ⊢ v0 =W

c

⊢ w0. ⊓⊔

We can now prove the theorem proper:

Proof.
Red-Var, Classic-Red-Var: we check by direct induction on the contexts that

if V ⊢ =W
c

⊢ holds, then V ⊢ V (x) =W
c

⊢W (x).
Red-Lam, Classic-Red-Lam: The correspondence between V ⊢ (∅, λx.t) and
W

c

⊢ (W,λx.t) under assumption V ⊢ =W
c

⊢ is direct from the inference rule

V, ∅ ⊢ =W
c

⊢

V ⊢ (∅, λx.t) =W
c

⊢ (W,λx.t)

Tracking Data-Flow with Open Closure Types 21

Red-Pair, Classic-Red-Pair and Red-Proj, Classic-Red-Proj: direct by in-
duction.
Red-Let, Classic-Red-Let: By induction hypothesis on the e1 premise, we

deduce that V ⊢ v1 =W
c

⊢ w1, hence V, x 7→ v1 ⊢ =W,x 7→ w1

c

⊢ . This lets us
deduce, again by induction hypothesis, that V, x 7→ v1 ⊢ v2 = W,x 7→ w1

c

⊢ w2.
As value substitution preserves value equivalence, we can deduce from v2

x\v1⇝ v′2

that our goal V ⊢ v′2 =W
c

⊢ w2 holds.
Red-App, Classic-Red-App: By induction hypothesis we have that V ⊢ varg =
W ⊢ warg and V ⊢ ((xi 7→ vi)i∈I , λy.t

′) = W
c

⊢ (W ′, λy.t′). By inversion on the
value equivalence judgment of the latter we know that V, xi 7→ vi ⊢ = W ′

c

⊢ .
Combined with the former value equivalence, this gives us V, xi 7→ vi, y 7→ varg ⊢
= W ′, y 7→ warg

c

⊢ , so by induction hypothesis and preservation of value
equivalence by reduction we can deduce our goal. ⊓⊔

4 Dependency information as non-interference

We can formulate our dependency information as a non-interference property.
Two valuations V and V ′ are Φ-equivalent, noted V =Φ V ′, if they agree on
all variables on which they depend according to Φ. We say that e respects non-
interference for Φ when, whenever V ⊢ e =⇒ v holds, then for any V ′ such
that V =Φ V ′ we have that V ′ ⊢ e =⇒ v also holds. This corresponds to the
information-flow security idea that variables marked 1 are low-security, while
variables marked 0 are high-security and should not influence the output result.

This non-interference statement requires that the two evaluations of e return
the same value v. This raises the question of what is the right notion of equality
on values. Values of atomic types have a well-defined equality, but picking the
right notion of equality for function types is more difficult. While we can state a
non-interference result on atomic values only, the inductive subcases would need
to handle higher-order cases as well.

Syntactic equality (even modulo α-equivalence) is not the right notion of
equality for closure values. Consider the following example: x:τ0 ⊢ let y =
xinλz.z : [x:τ0](z : σ1) → σ. This term contains an occurrence of the variable x,
but its result does not depend on it. However, evaluating it under two different
contexts x:v and x:v′, with v ̸= v′, returns distinct closures: (x 7→ v, λz.z) on
one hand, and (x 7→ v′, λz.z) on the other. These closures are not structurally
equal, but their difference is not essential since they are indistinguishable in any
context. Logical relations are the common technique to ignore those internal
differences and get a more observational equality on functional values. They in-
volve, however, a fair amount of metatheoretical effort (in particular in presence
of non-terminating fixpoints) that we would like to avoid.

Consider a different example: x:τ0 ⊢ λy.x : [x:τ1](y:σ0) → τ . Again, we could
use two contexts x:v and x:v′ with v ̸= v′, and we would get as a result two clo-
sures: x:v ⊢ λy.x =⇒ (x 7→ v, λy.x) and x:v′ ⊢ λy.x =⇒ (x 7→ v′, λy.x).

22 Gabriel Scherer and Jan Hoffmann

Equiv-Atom
Γ ⊢ vα =Φ0 vα : α

Equiv-Pair
Γ ⊢ v1 =Φ0 v′1 : σ1 Γ ⊢ v2 =Φ0 v′2 : σ2

Γ ⊢ (v1, v2) =Φ0 (v′1, v
′
2) : σ1 ∗ σ2

Equiv-Closure
∀i ∈ I, Γ, (xj :τj)j<i ⊢ vi : τi ΓΦ, (xi:τ

ψi
i)i∈I , x:σ

ϕ ⊢ t : τ

ΓΦ, (xi:τ
ψi
i)i∈I , x:σ

ϕ ⊢ τ
(xi)\(Ψi)⇝ ΓΦ′

, x:σϕ ⊢ τ ′ ∀i ∈ I,Ψi ⊆ Φ0 =⇒ vi =Φ0 v′i

Γ ⊢ ((xi 7→ vi)i∈I , λy.t) =Φ0 ((xi 7→ v′i)i∈I , λy.t) : [Γ
Φ′
](x:σ) → τ ′

Fig. 8: Value equivalence

Interestingly, these two closures are not equivalent under all contexts: any con-
text applying the function will be able to observe the different results. However,
our notion of interference requires that they can be considered equal. This is
motivated by real-world programming languages that only output a pointer to
a closure in a program that returns a function.

While the aforementioned closures are not equal in any context, they are in
fact equivalent from the point of view of the particular dependency annotation for
which we study non-interference, namely x:τ0. To observe the difference between
those closures, we would need to apply the closure of type [x:τ1](y : σ) → τ , so
would be in the different context x:τ1.

This insight leads us to our formulation of value equivalence in Figure 8.
Instead of being as modular and general as a logical-relation definition, we fix
a global dependency Φ0 that restricts which terms can be used to differentiate
values.

Our notion of value equivalence, Γ ⊢ v =Φ0 v′ : σ is typed and includes
structural equality. In the rule Equiv-Closure, we check that the two closures
values are well-typed, and only compare captured values whose dependencies
are included in those of the global context Φ0, as we know that the others will
not be used. This equality is tailored to the need of the non-interference result,
which only compares values resulting from the evaluation of the same subterm
– in distinct contexts.

Theorem 3 (Non-interference). If ΓΦ0 ⊢ e : σ holds, then for any contexts
V, V ′ such that V =Φ0

V ′ and values v, v′ such that V ⊢ e =⇒ v and V ′ ⊢
e =⇒ v′, we have Γ ⊢ v =Φ0 v

′ : σ. In particular, if σ is an atomic type, then
v = v′ holds.

Proof. We will proceed by simultaneous induction on the typing derivation Γ ⊢
e : σ and reduction derivation V ⊢ e =⇒ v and . Note that we use a different
induction hypothesis: for any subderivations ΓΦ ⊢ e : σ and V ⊢ t =⇒ v,
we will prove that for any V ′ that agrees with V on Φ modulo Φ0-equivalence
(∀x, V (x) =Φ0

V ′(x), which we still note V =Φ V
′), and with V ′ ⊢ t =⇒ v′, we

have v =Φ0 v
′.

We will omit the contexts and types Γ, σ of a value equivalence Γ ⊢ v =Φ0

v′ : σ when they are clear from the context.

Case Red-Var: from V =0,x:1,0 V
′ we have V (x) =Φ0 V

′(x).

Tracking Data-Flow with Open Closure Types 23

Case Red-Lam, Red-Lam-Fix : the returned value does not depend on the
environment.

Case Red-Pair, Red-Proj: direct by induction.
Case Red-Let: the involved derivations are the form

ΓΦdef ⊢ e1 : σ ΓΦbody , x:σϕ ⊢ e2 : τ

ΓΦbody+ϕ.Φdef ⊢ letx = e1 in e2 : τ

V ⊢ e1 =⇒ v1 V, x 7→ v1 ⊢ e2 =⇒ v2 v2
x\v1⇝ v3

V ⊢ letx = e1 in e2 =⇒ v3

V ′ ⊢ e1 =⇒ v′1 V ′, x 7→ v′1 ⊢ e2 =⇒ v′2 v′2
x\v′1⇝ v′3

V ′ ⊢ letx = e1 in e2 =⇒ v′3

The context equivalence V =Φbody+ϕ.Φdef V
′ implies the weaker equivalence

V =Φbody V
′, from which we can deduce V, x 7→ v1 =(Φbody,ϕ) V

′, x 7→ v′1
regardless of the value of ϕ. Indeed, if ϕ is 0 this is direct, and if ϕ is 1 we
get v1 =Φ0 v

′
1 by induction hypothesis. From this equality between contexts

we get v2 =Φ0 v
′
2 by induction hypothesis.

We then reason by case distinction on the property Φdef ⊆ Φ0. If it holds,
then again v1 =Φ0 v

′
1 by induction, so substituting v1, v′1 in the closures of

v2, v
′
2 will preserve Φ0-equivalence. And if it does not, those values v1, v′1

captured in the closures of v2, v′2 will not be tested for Φ0-equivalence. In
any case, we have v3 =Φ0 v

′
3.

Case Red-App: the proof for the application case uses the same mechanisms
as for the Red-Let case but is more tedious because of the repeated applica-
tion and substitution of the closed-over values. To simplify notations, we will
handle the case of a single captured value x 7→ v. The involved derivations
are the following:

ΓΦfun ⊢ t : [ΓΦclos](y:σϕ) → τ ΓΦarg ⊢ u : σ Γ, y:σ ⊢ τ y\Φarg⇝ Γ ⊢ τ ′

ΓΦfun+Φclos+ϕ.Φarg ⊢ t u : τ ′

V ⊢ t =⇒ (x 7→ v, λy.t′) V ⊢ u =⇒ varg

V, y 7→ varg, x 7→ v ⊢ t′ =⇒ w1 w1
x\v⇝ w2

y\varg⇝ w3

V ⊢ t u =⇒ w3

V ′ ⊢ t =⇒ (x 7→ v′, λy.t′) V ′ ⊢ u =⇒ v′arg

V, y 7→ v′arg, x 7→ v′ ⊢ t′ =⇒ w′
1 w′

1

x\v′⇝ w′
2

y\v′arg⇝ w′
3

V ⊢ t u =⇒ w′
3

From Φfun ⊆ Φfun + Φclos + ϕ.Φbody we get by induction that Γ ⊢ (x 7→
v, λy.t′) =Φ0 (x 7→ v′, λy.t′) : [ΓΦclos](y:σϕ) → τ . This equivalence gives us

24 Gabriel Scherer and Jan Hoffmann

the following premises:

Γ, x:ρ ⊢ v : τi ΓΦ, y:σϕ, x:ρψ ⊢ t : τ
ΓΦ, y:σϕ, x:ρψ ⊢ τ x\Ψ⇝ ΓΦ′

, x:σϕ ⊢ τ ′ Ψ ⊆ Φ0 =⇒ Γ ⊢ v =Φ0 v
′ : ρ

Γ ⊢ (x 7→ v, λy.t′) =Φ0 (x 7→ v′, λy.t′) : [ΓΦclos](y:σϕ) → τ

If Ψ ⊆ Φ0 then v =Φ0 v
′, and similarly we get varg = v′arg only in the case

where Φarg ⊆ . . . , that is ϕ (the argument dependency) is 1. In any case, w1

and w′
1 are Φ0-equivalent by induction, and by construction this is preserved

by the substitutions x\v⇝ and y\varg⇝ .
⊓⊔

5 Prototype implementation

To experiment with our type system, we implemented a software prototype in
OCaml. At around one thousand lines, the implementation mainly contains two
parts.
1. For each judgement in this paper, a definition of corresponding set of infer-

ence rules along with functions for building and checking derivations.
2. A (rudimentary) command-line interface that is based on a lexer, a parser,

and a pretty-printer for the expressions, types, judgments and derivations of
our system.

For the scope checking judgments for context and types, the implementation
checks well-scoping of the given contexts and types. It ether builds a derivation
using the well-scoping rules or fails to do so because of ill-scoped input.

For the typing judgment, the implementation performs some inference. Given
Γ and e, it will return the Φ and σ for which a derivation (also returned) ΓΦ ⊢
e : σ exists, and fail otherwise. The substitution and reduction judgments are
deterministic and computational in nature; our implementation takes their left-
hand side of the judgement (with additional parameters) and computes the right-
hand-side of the judgment along with a derivation.

Below is an example of interaction with the prototype interface:
% make
% ./closures.byte -str "let y = (y1, y2) in (y, \(x:\sigma) z)"
Parsed expression: let y = (y1, y2) in (y, λ(x:σ) z)

The variables (y1, y2, z) were unbound; we add them to the default environment
with dummy types (ty_y1, ty_y2, ty_z) and values (val_y1, val_y2, val_z).

Inferred typing:
y1:ty_y1¹,y2:ty_y2¹,z:ty_z⁰ ⊢

let y = (y1, y2) in (y, λ(x:σ) z)
: ((ty_y1 * ty_y2) * [y1:ty_y1⁰,y2:ty_y2⁰,z:ty_z¹](x:σ⁰) → ty_z)

Result value: ((val_y1, val_y2), ([y1,y2,z], ((y↦(val_y1, val_y2))), λ(x) z))

Tracking Data-Flow with Open Closure Types 25

In this example, adapted from the starting example of the article, y:σ1, z:τ0 ⊢
(y, λx.z), one can observe that the value z is marked as non-needed by the
global value judgment, but needed in the type of the closure λx.z. Besides, the
computed value closure has captured the local variable y, but still references the
variables y1, y2, z of the outer context.

The prototype can also produce ASCII rendering of the typing and reduction
derivations, when passed the --typing-derivation or --reduction-derivation
option. This can be useful in particular in the case of typing or reduction errors,
as a way to locate the erroneous sub-derivation.

The complete source code of the prototype is available at the following URL:
http://gallium.inria.fr/~scherer/research/open_closure_types

6 Conclusion

We have introduced open closure types and their type theory. The technical
novelty of the type system is the ability to track intensional properties of function
application in function closures types. To maintain this information,we have to
update function types when they escape to a smaller context. This update is
performed by a novel non-trivial substitution operation. We have proved the
soundness of this substitution and the type theory for a simply-typed lambda
calculus with pairs, let bindings and fixpoints.

To demonstrate how our open closure types can be used in program verifica-
tion we have applied this technique to track data-flow information and to ensure
non-interference in the sense of information-flow theory. We envision open clo-
sure types to be applied in the context of type systems for strong intensional
properties of higher-order programs, and this simple system to serve as a guide-
line for more advanced applications.

We already have preliminary results from an application of open closure types
in amortized resource analysis [7,6]. Using them, we were for the first time able to
express a linear resource bound for the curried append function (see Section 1).

References

1. Abel, A.: Semi-continuous Sized Types and Termination. Log. Methods Comput.
Sci. 4(2) (2008)

2. Barthe, G., Grégoire, B., Riba, C.: Type-Based Termination with Sized Products.
In: Computer Science Logic, 17th Ann. Conf. (CSL’08). pp. 493–507 (2008)

3. Chin, W.N., Khoo, S.C.: Calculating Sized Types. High.-Ord. and Symb. Comp.
14(2-3), 261–300 (2001)

4. Hannan, J., Hicks, P., Liben-Nowell, D.: A Lifetime Analysis for Higher-Order
Languages. Tech. rep., The Pennsylvania State University (1997), http://www.cse.
psu.edu/~hannan/papers/live.ps.gz

5. Heintze, N., Riecke, J.G.: The SLam Calculus: Programming with Secrecy and
Integrity. In: 25th Symp. on Principles of Programming Languages (POPL’98).
pp. 365–377 (1998)

http://gallium.inria.fr/~scherer/research/open_closure_types
http://www.cse.psu.edu/~hannan/papers/live.ps.gz
http://www.cse.psu.edu/~hannan/papers/live.ps.gz

26 Gabriel Scherer and Jan Hoffmann

6. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst. (2012)

7. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of Quan-
titative Resource Usage for Higher-Order Programs. In: 37th Symp. on Principles
of Programming Languages (POPL’10). pp. 223–236 (2010)

8. Lago, U.D., Petit, B.: The Geometry of Types. In: 40th Symp. on Principles of
Programming Languages (POPL’13). pp. 167–178 (2013)

9. Leroy, X.: Polymorphic Typing of an Algorithmic Language. Research report 1778,
INRIA (1992)

10. Minamide, Y., Morrisett, J.G., Harper, R.: Typed Closure Conversion. In: 23rd
Symp. on Principles of Programming Languages (POPL’96). pp. 271–283 (1996)

11. Nanevski, A., Pfenning, F., Pientka, B.: Contextual Modal Type Theory. ACM
Trans. Comput. Log. 9(3) (2008)

12. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: The Essence of Context Depen-
dence (2012), http://www.cl.cam.ac.uk/~tp322/drafts/coeffects.html

13. Pientka, B., Dunfield, J.: Programming with Proofs and Explicit Contexts. In: 10th
International Conference on Principles and Practice of Declarative Programming
(PPDP’08). pp. 163–173 (2008)

14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

15. Stampoulis, A., Shao, Z.: Static and User-Extensible Proof Checking. In: 39th
Symp. on Principles of Programming Languages (POPL’12). pp. 273–284 (2012)

http://www.cl.cam.ac.uk/~tp322/drafts/coeffects.html

	Tracking Data-Flow with Open Closure Types
	Introduction
	A Type System for Open Closures
	A Big-Step Operational Semantics
	Dependency information as non-interference
	Prototype implementation
	Conclusion

