
Pattern-matching with mutable state: danger!

Thomas Refis, Nick Roberts, Gabriel Scherer

September 6, 2024

1



Danger!
type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (

x.b <- None; false

) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

Recipe:
patterns that look into mutable fields
ability to evaluate code concurrently
(when guards, allocations, data races)
optimizing pattern compiler

2



Danger!
type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

Recipe:
patterns that look into mutable fields
ability to evaluate code concurrently
(when guards, allocations, data races)
optimizing pattern compiler

2



Danger!
type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}

(* Segmentation fault (core dumped) *)
Recipe:

patterns that look into mutable fields
ability to evaluate code concurrently
(when guards, allocations, data races)
optimizing pattern compiler

2



Danger!
type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

Recipe:
patterns that look into mutable fields
ability to evaluate code concurrently
(when guards, allocations, data races)
optimizing pattern compiler

2



Danger!
type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

Recipe:
patterns that look into mutable fields
ability to evaluate code concurrently
(when guards, allocations, data races)
optimizing pattern compiler

2



In this talk

1 Automata/Backtracking/Split-based pattern-matching compilation

2 Optimizations in OCaml

3 Relaxing optimizations for mutable state

3



Section 1

Automata/Backtracking/Split-based
pattern-matching compilation

4



Pattern-matching compilation

General case: n-ary pattern matrices.

match ⟨a1 . . . an⟩ with
| ⟨p1 . . . pn⟩ → e1
| ⟨q1 . . . qn⟩ → e2
| . . .
| ⟨r1 . . . rn⟩ → em

5



Pattern-matching compilation

Naive idea: consider all possible constructors for a1.

match ⟨l v⟩ with
| ⟨[] p⟩ → foo
| ⟨_  q⟩ → bar
| ⟨[] r⟩ → bim

=⇒

switch l with
| [] →

match v with
| p → foo
| q → bar
| r → bim

| _::_ →
match v with
| q → bar

Problem: the clause q → bar is duplicated.
EXPONENTIAL!

6



Pattern-matching compilation

Naive idea: consider all possible constructors for a1.

match ⟨l v⟩ with
| ⟨[] p⟩ → foo
| ⟨_  q⟩ → bar
| ⟨[] r⟩ → bim

=⇒

switch l with
| [] →

match v with
| p → foo
| q → bar
| r → bim

| _::_ →
match v with
| q → bar

Problem: the clause q → bar is duplicated.

EXPONENTIAL!

6



Pattern-matching compilation

Naive idea: consider all possible constructors for a1.

match ⟨l v⟩ with
| ⟨[] p⟩ → foo
| ⟨_  q⟩ → bar
| ⟨[] r⟩ → bim

=⇒

switch l with
| [] →

match v with
| p → foo
| q → bar
| r → bim

| _::_ →
match v with
| q → bar

Problem: the clause q → bar is duplicated.
EXPONENTIAL!

6



Avoiding code blowup: two approaches

Split-based algorithms (automata/backtracking):
linear code size, but repeated check

Decision trees:
hashconsing strategies to avoid code size blowup

OCaml is split-based. (So are SML implementations; historically first)

7



Split-based algorithms

match ⟨l v⟩ with
| ⟨[] p⟩ → foo
| ⟨_  q⟩ → bar
| ⟨[] r⟩ → bim

=⇒

try
1: match ⟨l v⟩ with

| ⟨[] p⟩ → foo
| _ → fail

2: match ⟨l v⟩ with
| ⟨_  q⟩ → bar
| _ → fail

3: match ⟨l v⟩ with
| ⟨[] r⟩ → bim
| _ → fail

4: raise Match_failure

After splitting, each inner match can be compiled to a switch without
duplication. fail jumps to the next submatrix.
Pros: linear code size.
Cons: some checks (here []) are repeated.

8



Section 2

Optimizations in OCaml

9



Static information

context:
static knowledge on matched values
jump summary:
the context of each jump

=⇒ optimizes jump targets
default environment:
the matrix of each jump target

=⇒ optimize jumps
totality

=⇒ optimize the last matrix

compile: totality * env * context * source-matrix
→ compiled-matrix * summary

10



Contexts

switch p with
| false → ...
| true →
switch l with
| [] → ...
| x::xs →
(* HERE *) ...

context at (* HERE *):

⟨true (_::_)⟩

11



Contexts

switch p with
| false → ...
| true →
switch l with
| [] → ...
| x::xs →
(* HERE *) ...

context at (* HERE *):
⟨true (_::_)⟩

11



Contexts

switch p with
| false → ...
| true →
switch l with
| [] → ...
| x::xs →
(* HERE *) ...

context at (* HERE *):
⟨true (_::_)⟩

11



Contexts

switch p with
| false → ...
| true →
switch l with
| [] → ...
| x::xs →
(* HERE *) ...

context at (* HERE *):
⟨true (_::_)⟩

11



Totality

match ⟨l . . .⟩ with
| ⟨x::xs . . .⟩ → foo

(notice: no | _ → fail case)

Direct field access.

Awkward design in OCaml:
type-checker computes totality information
(and checks exhaustivity, usefulness, etc.)
compiler does not use type information

12



Totality

match ⟨l . . .⟩ with
| ⟨x::xs . . .⟩ → foo

(notice: no | _ → fail case)

Direct field access.

Awkward design in OCaml:
type-checker computes totality information
(and checks exhaustivity, usefulness, etc.)
compiler does not use type information

12



Big picture (again)

context:
static knowledge on matched values
jump summary:
the context of each jump

=⇒ optimizes jump targets
default environment:
the matrix of each jump target

=⇒ optimize jumps
totality

=⇒ optimize the last matrix

compile: totality * env * context * source-matrix
→ compiled-matrix * summary

13



Section 3

Relaxing optimizations for mutable state

14



Bug (reminder)

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (

x.b <- None; false

) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

15



Bug (reminder)

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let f (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

15



Bug 1: incorrect contexts
try
1: match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| _ → fail (* HERE *)

2: match x with
| _ →

if (x.b <- None; false) then 2
else fail (* ALSO HERE *)

3: match x with
| {a = true; b = Some y} → y

Context on both fail:
⟨a = true; b = Some _⟩

16



Bug 1: incorrect contexts

1: match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| _ → fail (* HERE *)

Context on fail:
⟨a = true; b = Some _⟩

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.

Solution: erase context information in mutable positions.
below: ⟨a = true; b = _⟩

Safe!

17



Bug 1: incorrect contexts

1: match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| _ → fail (* HERE *)

Context on fail:
⟨a = true; b = Some _⟩

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.

Solution: erase context information in mutable positions.
below: ⟨a = true; b = _⟩

Safe!

17



Bug 2: incorrect totality

3: match x with
| {a = true; b = Some y} → y

Notice that there is no | _ → fail at the end. Wrong!

Problem: the type-checker believes this program to be total.
match x with
| {a = false; b = _} → 0
| {a = _; b = None} → 1
| {a = _; b = _} when (x.b <- None; false) → 2
| {a = true; b = Some y} → y

18



Fix 1: forget about totality

Fix: do not trust the type-checker, only the match compiler;
(it can sometimes prove totality)

Problem: many programs are pessimized by this criterion,
notably all GADT matches.

19



Fix 2: forget totality in mutable posititions

Only pessimize matches under a mutable field (transitively).

20



Fix 3: temporality heuristic

type temporality =
First | Following

Totality can optimize matrix 3
(outside mutable positions)

Temporality can de-pessimize matrix 1
(at mutable positions)

If the user matching has no split: no pessimization.

21



Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?

1 We implemented a warning to detect pessimization.
2 Nick Roberts compiled the Jane Street codebase with it:

I’ve tested this change and found indeed that it flags
only complex matches on mutable fields — I found
only 3 instances in a codebase with millions of lines,
and it was possible to rewrite them without much trouble.

22



Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?

1 We implemented a warning to detect pessimization.
2 Nick Roberts compiled the Jane Street codebase with it:

I’ve tested this change and found indeed that it flags
only complex matches on mutable fields — I found
only 3 instances in a codebase with millions of lines,
and it was possible to rewrite them without much trouble.

22



Thanks!

Questions?

23


	Automata/Backtracking/Split-based pattern-matching compilation
	Optimizations in OCaml
	Relaxing optimizations for mutable state

