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Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| {a = _; b = _} when ( ) — 2
| {a = true; b = Some y} — ¥y



Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y
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| {a=_; b= DNone} — 1
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| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}



Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)



Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}
(x Segmentation fault (core dumped) *)
Recipe:
@ patterns that look into mutable fields
@ ability to evaluate code concurrently
(when guards, allocations, data races)
@ optimizing pattern compiler



In this talk

@ Automata/Backtracking/Split-based pattern-matching compilation

© Optimizations in OCaml

© Relaxing optimizations for mutable state



Section 1

Automata/Backtracking/Split-based
pattern-matching compilation



Pattern-matching compilation
General case: n-ary pattern matrices.

match (a;...a,) with
| (pr...pn) — e

| {q1-..qn) = e
|

| (n...rm) — em



Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with

| O —
match (1 v) with TatCinz;th
| ([J p) — foo P
= | g —
| < > - | r — bim
| ([1 r) - bim
| —

match v with
I —



Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with
| 0 —
match v with
foo | p — foo
| —
| r — bim
i =
match v with
| —

bim |

Problem: the clause g — is duplicated.



Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with

| 0 —
tch ith
match (1 v) with mareh v wi
| p — foo
| ([1 p) — foo
o ) = | r — bim
| ([J r) — bim
| _::_ —
match v with
| g —
Problem: the clause g — is duplicated.

EXPONENTIAL!



Avoiding code blowup: two approaches

Split-based algorithms (automata/backtracking):
linear code size, but repeated check

Decision trees:
hashconsing strategies to avoid code size blowup

OCaml is split-based. (So are SML implementations; historically first)



Split-based algorithms

try
1: match (1 v) with
| ([J p) — foo

match (1 v) with |- = fail

2: match (1 v) with
| ([1 p) — foo
R = I ) —
| (1] ©) — bin | _ — fail

3: match (1 v) with
| ([1 r) — bim
| _ — fail
4: raise Match_failure

After splitting, each inner match can be compiled to a switch without
duplication. fail jumps to the next submatrix.

Pros: linear code size.
Cons: some checks (here []) are repeated.
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Section 2

Optimizations in OCaml



Static information

@ context:

matrix 1 .
Trix static knowledge on matched values

@ jump summary:
. the context of each jump
motrix & = optimizes jump targets
2 @ default environment:
the matrix of each jump target

matrix 3 — optimize jumps

o totality

. . optimize the last matrix
raise Match_failure = op

compile: totality * env * context * source-matrix
— compiled-matrix * summary
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Contexts

switch p with
| false — ...
| true —
switch 1 with
[ O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):

11



Contexts

switch p with
| false — ...
| true —
switch 1 with
I 1 —
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))
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Contexts

switch p with
| false — ...
| true —
switch 1 with - -
[ O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))
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Contexts

switch p with
| false — ...
| true —
switch 1 with - -
[ O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))
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Totality

match (1 ...) with
| (x::xs ...) — foo

(notice: no | _ — fail case)

Direct field access.
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Totality

match (1 ...) with
| (x::xs ...) — foo

(notice: no | _ — fail case)
Direct field access.

Awkward design in OCaml:

@ type-checker computes totality information
(and checks exhaustivity, usefulness, etc.)

@ compiler does not use type information
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Big picture (again)

@ context:

matrix 1 .
Trix static knowledge on matched values

@ jump summary:
. the context of each jump
motrix & = optimizes jump targets
2 @ default environment:
the matrix of each jump target

matrix 3 — optimize jumps

o totality

. . optimize the last matrix
raise Match_failure = op

compile: totality * env * context * source-matrix
— compiled-matrix * summary

13



Section 3

Relaxing optimizations for mutable state

14



Bug (reminder)
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Bug (reminder)

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _} — 0
| {a=_; b= None} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)
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Bug 1: incorrect contexts

try

1: match x with
| {a = false; b= _} — 0
| {a = _; b = None} — 1
| _ — fail (* HERE %)

2: match x with
| —

if (x.b <- None; false) then 2
else fail (x ALSO HERE *)

3: match x with
| {a = true; b = Some y} — y

Context on both fail:
(a = true; b = Some _)
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Bug 1: incorrect contexts

1: match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| _ — fail (* HERE *)

Context on fail:
(a = true; b = Some _)

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.
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Bug 1: incorrect contexts

1: match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| _ — fail (* HERE *)

Context on fail:
(a = true; b = Some _)

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.

Solution: erase context information in mutable positions.
below: (a = true; b = _)

Safel
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Bug 2: incorrect totality

3: match x with
| {a = true; b = Some y} — y

Notice that there isno | _ — fail at the end. Wrong!

Problem: the type-checker believes this program to be total.

match x with

| {a = false; b= _} = 0

| {a=_; b= DNone} — 1

| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — y
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Fix 1: forget about totality

Fix: do not trust the type-checker, only the match compiler;
(it can sometimes prove totality)

Problem: many programs are pessimized by this criterion,
notably all GADT matches.
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Fix 2: forget totality in mutable posititions

Only pessimize matches under a mutable field (transitively).
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Fix 3: temporality heuristic

[ matrix 1 type temporality =
First | Following

Totality can optimize matrix 3
(outside mutable positions)

[ matrix 3 ]
Temporality can de-pessimize matrix 1

(at mutable positions)

matrix A 2

raise Match_failure

If the user matching has no split: no pessimization.
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Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?
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Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?

@ We implemented a warning to detect pessimization.
@ Nick Roberts compiled the Jane Street codebase with it:

I've tested this change and found indeed that it flags
only complex matches on mutable fields — | found

only 3 instances in a codebase with millions of lines,

and it was possible to rewrite them without much trouble.
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Thanks!

Questions?
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