Pattern-matching with mutable state: danger!

Thomas Refis, Nick Roberts, Gabriel Scherer

September 6, 2024

Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| {a = _; b = _} when () — 2
| {a = true; b = Some y} — ¥y

Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 x)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}

Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

Danger!

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (% example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _3} — 0

| {a=_; b= DNone} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — ¥y

let _ = f {a=true; b=Some 5}
(x Segmentation fault (core dumped) *)
Recipe:
@ patterns that look into mutable fields
@ ability to evaluate code concurrently
(when guards, allocations, data races)
@ optimizing pattern compiler

In this talk

@ Automata/Backtracking/Split-based pattern-matching compilation

© Optimizations in OCaml

© Relaxing optimizations for mutable state

Section 1

Automata/Backtracking/Split-based
pattern-matching compilation

Pattern-matching compilation
General case: n-ary pattern matrices.

match (a;...a,) with
| (pr...pn) — e

| {q1-..qn) = e
|

| (n...rm) — em

Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with

| O —
match (1 v) with TatCinz;th
| ([J p) — foo P
= | g —
| < > - | r — bim
| ([1 r) - bim
| —

match v with
I —

Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with
| 0 —
match v with
foo | p — foo
| —
| r — bim
i =
match v with
| —

bim |

Problem: the clause g — is duplicated.

Pattern-matching compilation
Naive idea: consider all possible constructors for a;.

switch 1 with

| 0 —
tch ith
match (1 v) with mareh v wi
| p — foo
| ([1 p) — foo
o) = | r — bim
| ([J r) — bim
| _::_ —
match v with
| g —
Problem: the clause g — is duplicated.

EXPONENTIAL!

Avoiding code blowup: two approaches

Split-based algorithms (automata/backtracking):
linear code size, but repeated check

Decision trees:
hashconsing strategies to avoid code size blowup

OCaml is split-based. (So are SML implementations; historically first)

Split-based algorithms

try
1: match (1 v) with
| ([J p) — foo

match (1 v) with |- = fail

2: match (1 v) with
| ([1 p) — foo
R = I) —
| (1] ©) — bin | _ — fail

3: match (1 v) with
| ([1 r) — bim
| _ — fail
4: raise Match_failure

After splitting, each inner match can be compiled to a switch without
duplication. fail jumps to the next submatrix.

Pros: linear code size.
Cons: some checks (here []) are repeated.

8

Section 2

Optimizations in OCaml

Static information

@ context:

matrix 1 .
Trix static knowledge on matched values

@ jump summary:
. the context of each jump
motrix & = optimizes jump targets
2 @ default environment:
the matrix of each jump target

matrix 3 — optimize jumps

o totality

. . optimize the last matrix
raise Match_failure = op

compile: totality * env * context * source-matrix
— compiled-matrix * summary

10

Contexts

switch p with
| false — ...
| true —
switch 1 with
[O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):

11

Contexts

switch p with
| false — ...
| true —
switch 1 with
I 1 —
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))

11

Contexts

switch p with
| false — ...
| true —
switch 1 with - -
[O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))

11

Contexts

switch p with
| false — ...
| true —
switch 1 with - -
[O — ...
| x::xs8 —
(* HERE *)

@ context at (* HERE *):
(true (_::_))

11

Totality

match (1 ...) with
| (x::xs ...) — foo

(notice: no | _ — fail case)

Direct field access.

12

Totality

match (1 ...) with
| (x::xs ...) — foo

(notice: no | _ — fail case)
Direct field access.

Awkward design in OCaml:

@ type-checker computes totality information
(and checks exhaustivity, usefulness, etc.)

@ compiler does not use type information

12

Big picture (again)

@ context:

matrix 1 .
Trix static knowledge on matched values

@ jump summary:
. the context of each jump
motrix & = optimizes jump targets
2 @ default environment:
the matrix of each jump target

matrix 3 — optimize jumps

o totality

. . optimize the last matrix
raise Match_failure = op

compile: totality * env * context * source-matrix
— compiled-matrix * summary

13

Section 3

Relaxing optimizations for mutable state

14

Bug (reminder)

15

Bug (reminder)

type 'a option = None | Some of 'a
type u = {a: bool; mutable b: int option}

let £ (x : u) = (* example by Stephen Dolan, 2017 *)
match x with
| {a = false; b= _} — 0
| {a=_; b= None} — 1
| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — y

let _ = f {a=true; b=Some 5}
(* Segmentation fault (core dumped) *)

15

Bug 1: incorrect contexts

try

1: match x with
| {a = false; b= _} — 0
| {a = _; b = None} — 1
| _ — fail (* HERE %)

2: match x with
| —

if (x.b <- None; false) then 2
else fail (x ALSO HERE *)

3: match x with
| {a = true; b = Some y} — y

Context on both fail:
(a = true; b = Some _)

16

Bug 1: incorrect contexts

1: match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| _ — fail (* HERE *)

Context on fail:
(a = true; b = Some _)

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.

17

Bug 1: incorrect contexts

1: match x with
| {a = false; b= _} — 0
| {a=_; b= DNone} — 1
| _ — fail (* HERE *)

Context on fail:
(a = true; b = Some _)

Not just about when.
At the point of fail, any concurrent mutation can invalidate the context.

Solution: erase context information in mutable positions.
below: (a = true; b = _)

Safel

17

Bug 2: incorrect totality

3: match x with
| {a = true; b = Some y} — y

Notice that there isno | _ — fail at the end. Wrong!

Problem: the type-checker believes this program to be total.

match x with

| {a = false; b= _} = 0

| {a=_; b= DNone} — 1

| {a = _; b = _} when (x.b <- None; false) — 2
| {a = true; b = Some y} — y

18

Fix 1: forget about totality

Fix: do not trust the type-checker, only the match compiler;
(it can sometimes prove totality)

Problem: many programs are pessimized by this criterion,
notably all GADT matches.

19

Fix 2: forget totality in mutable posititions

Only pessimize matches under a mutable field (transitively).

20

Fix 3: temporality heuristic

[matrix 1 type temporality =
First | Following

Totality can optimize matrix 3
(outside mutable positions)

[matrix 3]
Temporality can de-pessimize matrix 1

(at mutable positions)

matrix A 2

raise Match_failure

If the user matching has no split: no pessimization.

21

Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?

22

Impact analysis

We believe that there were no unsound matchings
in real-life OCaml programs.

... but the fix pessimizes more programs

How can we convince everyone to pay the cost of correctness?

@ We implemented a warning to detect pessimization.
@ Nick Roberts compiled the Jane Street codebase with it:

I've tested this change and found indeed that it flags
only complex matches on mutable fields — | found

only 3 instances in a codebase with millions of lines,

and it was possible to rewrite them without much trouble.

22

Thanks!

Questions?

23

	Automata/Backtracking/Split-based pattern-matching compilation
	Optimizations in OCaml
	Relaxing optimizations for mutable state

