
Pattern-matching on mutable values: danger!

September 5, 2024

Abstract

The OCaml pattern-matching compiler is unsound, it generates incor-
rect code in the obscure corner case where we match on a value with
mutable fields, and those fields are mutated during pattern-matching –
from when clauses, allocation callbacks, or an access race in concurrent
execution.

We recall the overall compilation strategy of the OCaml pattern-
matching compiler, and explain how to weaken its optimization
information to remain correct in the face of mutation.

Pattern matching on mutable values
The problem
The following program segfaults on all released versions of OCaml:

type u = {a: bool; mutable b: int option}

let f x =
match x with
| {a = false; b = _} -> 0
| {a = _; b = None} -> 1
| {a = _; b = _} when (x.b <- None; false) -> 2
| {a = true; b = Some y} -> y

let _ = f {a=true; b=Some 5}

The function f is pattern-matching on a record with two fields a : bool and
b : int option, and the field b is mutable (this could be written with an
immutable field of type int option ref). The pattern-matching clauses first
check whether a = false, then whether b = None. If these two clauses failed,
then of course it must be the case that a = true and b <> None, so b must
be of the form Some _. But then the third clause executes a when guard that
sets x.b <- None. When the compiler checks the fourth and last clause, it is
still convinced (wrongly) that x.b must be of the form Some _, and it compiles
the pattern Some y as a direct to the first argument, without checking for the

1

possibility of None first. This tries to dereference None as a pointer and we get
a segfault.

In other words, the OCaml pattern-matching compiler is unsound in presence
of mutable state, it generates incorrect code.

The general problem is as follows:

1. The pattern-matching compiler relies on optimizations to generate better
code by reasoning about what values may flow in certain sub-patterns.

2. Code execution can happen while the pattern-matching program runs,
mutate the value that is being matched, and violate these assumptions.

We implemented a comprehensive fix for this issue and we are in the process
of getting it merged in the OCaml compiler. (See https://github.com/oca
ml/ocaml/issues/7241#issuecomment-1722226025 for the full details of the
implementation progress.) The fix touches subtle, advanced parts of the pattern-
matching compiler, a little-known part of the codebase. Reviewing the changes
and thinking about their performance implications is non-trivial, and finding
the right reviewers was difficult – the original author, Luc Maranget, is happy
to give feedback from the sidelines but was not available for a full review.

In the rest of this document: we start with a reminder/tutorial on pattern-
matching compilation and its optimizations as performed by the OCaml com-
piler; we explain why some of those optimizations are unsound in presence of
mutable state; and we describe a mitigation strategy – how to weaken those
optimizations – to stop generating incorrect code in this situation.

Are other languages concerned?

Our example uses a when guard which is arguably a dubious feature of OCaml,
but there are other ways to run effectful code simultaneously with pattern-
matching control flow:

• Certain pattern-matching constructs allocate (for example reading a boxed
double-float-point variable from an unboxed record or array), and alloca-
tions may trigger context switches and/or call asynchronous callbacks.

• Since OCaml 5, the runtime supports parallel execution of OCaml pro-
grams. The matched value x could be shared with another thread/domain
that mutates it in parallel.

This suggests that other ML-family languages with pattern-matching and mu-
table data structures may be affected by this issue as well, even if they don’t
offer when-guards or more general view patterns.

This example also relies on the fact that:

1. Pattern-matching can inspect mutable positions of the scrutinee. Haskell
would not be affected as it does not allow mutable-read operations to be

2

https://github.com/ocaml/ocaml/issues/7241#issuecomment-1722226025
https://github.com/ocaml/ocaml/issues/7241#issuecomment-1722226025

composed within pattern-clauses. (Mutable reads must have a monadic
type, and pattern guards do not perform monadic binding.)

2. The OCaml type discipline allows two different parts of the program to
race on access to a mutable position (two accesses, one of them being a
write). A direct transcription of this program in Rust would fail to satisfy
the ownership discipline and be rejected at compile-time.

OCaml Pattern-matching compilation and optimizations
The OCaml compiler uses a standard “backtracking” compilation scheme, also
called “compilation to automata”, as described in Augustsson (1985).

A reminder on backtracking compilation

In its general form the pattern-matching compiler takes a list of argument ex-
pressions to match, of length 𝑛, and a list of “clauses”, which each a list of 𝑛
patterns, an optional when-guard, and the expression to return if the pattern
and guard match.

For example (in pseudo-code, using [a b c] for a three-element list):

match [x.a x.b] with
| [false _] -> 0
| [_ None] -> 1
end

Let us call this input (the arguments and clauses) a sub-matching. This is often
called a sub-matrix, in reference to the core part of this input data, a rectangular
matrix of patterns:

[false _]
[_ None]

The core operation of the pattern-matching compiler is to decompose a sub-
matching into a switch on the head constructor of one of the matched values,
with a specialized sub-matching for each switch case. For example,

match [li v] with
| [[] p] -> foo
| [x::xs q] -> bar
end

becomes:

switch li with
| [] ->
match [v] with
| [p] -> foo
end

3

| x::xs ->
match [v] with
| [q] -> bar
end

end

We could generate a switch for this sub-matching because the patterns in its first
column each start with a head constructor for lists datatype – we can partition
matching into disjoint sub-matchings, such that each possible input values may
only match one of them. We say that such a sub-matching is “decomposable”.
(Precisely: a matrix is decomposable along a colum if, for any two patterns in
the column, either they have the same head pattern constructor, or their heads
match disjoint sets of values.)

Not all pattern matrices are decomposable, so the first step of pattern-matching
compilation is to split the input sub-matching into a sequence of decomposable
sub-matchings.

Consider for example the variation:

match [li v] with
| [[] p] -> foo
| [_ q] -> bar
end

The [_ q] clause may match whether li is an empty list or a cons cell. If we
wanted to generate a switch right away, we would have to include this clause
in both sub-matchings, resulting in code duplication – in the worst case, there
may be an exponential blowup in code size, which happens on realistic exam-
ples. “Decision trees”-based compilers use sharing / hash-consing strategies
to reduce code blowup, while “backtracking”/“automata”-based compilers use
splits to guarantee linear-sized output – each decomposition step preserves the
total number of clauses.

Here the result of the split would be

try
match [li v] with
| [[] p] -> foo
| _ -> fail
end

or
match [li v] with
| [_ q] -> bar
end

end

where fail is a new (pseudo-code) keyword indicating that the current sub-
matching failed to match the input, and try m1 or m2 end means: first try to
see if m1 matches the input, and if it fails match it using m2 instead. This splits

4

give its names to the compilation technique (“backtracking compiler” or “matrix
automata”): we can see try m1 or m2 end as backtracking, or we can see each
sub-matching as a state (“we are in the state of checking the input against this
sub-matching”), and the fallback to m1 to m2 as a “jump”, or transition from
one state to another.

In general the result of the pattern-matching compiler looks like a control-flow
tree that alternates between try nodes, a list of sub-matchings to attempt in
sequence (each of them may match the value or fail), and switch nodes, which
decompose one of the input values.

The total number of clauses is preserved by each compilation step, and switch
nodes result in structurally smaller patterns. Eventually at the leaves we en-
counter matrices of empty rows (matching on no value at all), which gets com-
piled to just taking the first action in the matrix:

match [] with
| [] -> foo
| [] -> bar
end

becomes just the expression foo.

Optimizing pattern-matching compilation

Totality Before pattern-matching compilation, the OCaml type-checker
checks that the pattern-matching is well-typed, and also checks whether
the clauses are exhaustive, whether they cover all possible inputs. If a
pattern-matching is not exhaustive, a final default clause | _ -> raise
(Match_failure ...) is implicitly added at the end.

During compilation, the pattern-matching compiler tracks whether the sub-
matching it is compiling is known to be total, or whether it is partial. A
sub-matching is total if all values that flow to this part of the generated code
will be matched by some clause of the sub-matching. Otherwise it is partial,
it may fail to another sub-matching in the current split, or to the final default
clause. On switch, the totality of each decomposed sub-matching is the totality
of the input sub-matching. On try, all sub-matchings except the last one are
considered partial, and the last one is total if the input sub-matching was total.

This lets us generate better code, consider for example:

match [li ...] with
| [x::xs ...] -> foo
end

There is no | _ -> fail catch-all clause when we know that this sub-matching
is total (for example because we are under a switch that also handled the empty-
list case). When generating code for this matching, we do not need to check that

5

the head constructor is x::xs, we can generate direct field accesses to compute
x and xs without a branch. This substantially improves the generated code.

Contexts

Within each branch of a switch node, we have learned some information on the
scrutinee values. For example in the | x::xs -> case we know that the first
value is of the form _::_. The OCaml compiler tracks this information about
the global input of the pattern-matching in a “context”.

For example if we started from the input vector [o li] and have done the
following decompositions so far

switch p with
| false -> ...
| true ->
switch li with
| [] -> ...
| x::xs -> (* we are here *)
end

end

then the corresponding sub-matching on inputs [x xs] will carry a context
relating this input vector to the original input vector of the outer matching [p
li], which we here know must be of the form [true x::xs].

The context at any point in the generated control-flow tree is made of two part:
- information about what is “above” the current scrutinees, how they relate
to the scrutinees of outer sub-matchings; in this example this information can
be represented as a stack of head constructors [true (_::_)] (growing to the
right). - information about what is “below”, a known prefix shape for the current
scrutinees; in this example we know nothing about the scrutinees [x xs], so
the information is just [_ _].

We can “shift” a context, changing the perspective from the current sub-
matching to an outer sub-matching – while preserving the same static
information. Shifting once pops the _::_ constructor from the “context above”,
and we get the same context from the perspective of the parent sub-matching:
above we now have [true], and below we have [_::_]. If we shift again we
have the empty list [] above and the two-element list [true (_::_)] below,
representing this static context from the perspective of the outermost matching
on the list [p li].

Using contexts for failure optimization

In general try nodes represent a sequential choice between an arbitrary number
of non-disjoint sub-matchings. It is useful to name them, for example with a
number from 1 to n:

6

try
1: <sub-matching>
2: <sub-matching>
3: <sub-matching>
...
end

Default environments are another piece of static context information that maps
the name/number of sub-matchings in a try sequence to its sub-matrix, seen
as a description of the set of values that could possibly be succesfully matched
by this sub-matching.

Consider the following example:

try
1: switch p with

| true ->
match [li ...] with
| [x::xs ...] -> ... (* we are here *)
| _ -> fail
end

end
2: match [p li ...] with

| [_ [] ...] -> ...
| _ -> fail
end

3: match [p li ...] with
| [true x::xs ...] -> ...
| _ -> fail
end

...
end

When we compile the first sub-matching, failure has the effect of jumping to
a following sub-matching in the try sequence. Naively one would jump to
the next sub-matching (here the one numbered 2:). But we can see from the
context information within the sub-matching, which is at least as precise as
[true x::xs] that the current values cannot match the non-failure clauses
of 2:, so we can jump right ahead at 3: instead. The generic fail keyword
would thus be transformed into a more precise exit 3 instruction, jumping to
a specific sub-matching in the sequence. If we are deeper down in the matching
of 1: we could have even more precise context information and jump to a later
sub-matching.

Jump summaries

When we compile a sub-matching, we generate a switch/try tree that contains
exit <i> instructions jumping to subsequent sub-matchings – not bound in the

7

specific sub-matching we are compiled, but by an outer try node, they are free
variables. The pattern-matching compiler collects the context at the point of
each such exit i instruction: a mapping from those free exit variables to a
union of contexts describing the known shape of the current scrutinee for any
jump included in the generated code. We call this mapping a “jump summary”.

The jump summary of try node is the union of the jump summaries of each
component. The jump summary of a switch node requires shifting all contexts
in the jump summary of each sub-matching, and then taking the union.

When we compile a sub-matching that comes next in the sequence, we start from
a more precise context, given by the union of the jump summaries of earlier sub-
matchings. In particular, if this context is empty, we know that there is not in
fact any exit jumping to this sub-matching, and we can remove it entirely as
dead code. Even when it is non-empty, it can let us discover that certain clauses
(or sub-clauses obtained by further decomposition) are useless / dead code, as
none of the possible scrutinee values can reach them, and we can improve the
generated code. Finally, we can sometimes discover that a switch that was
assumed to be Partial is in fact Total, if its jump summaries indicates that it
never jumps to an outer exit, so we can improve the generated code again.

Mutability ruins the party
When we analyzed the causes of the unsound compilation, we discovered that
there are two orthogonal issues: - totality information can be incorrect - context
information can be incorrect

Incorrect totality information

We mentioned that the OCaml type-checker computes totality information. The
pattern-matching compiler itself does not rely on type information, and this
separation was made for reasons of simplicity – typing GADTs in particular
is complex, generating good code for pattern-matching is non-trivial, we don’t
want to interleave the two logics in the same piece of code.

In particular, the type-checker has information about the fact that certain
branches would be unreachable coming from type information, that is not avail-
able to the pattern-matching compiler. This occurs with polymorphic variants
and GADTs:

let foo (x : [< `A | `B]) =
match x with
| `A -> 1
| `B - >2

type _ gadt = Int : int gadt | Bool : bool gadt
let bar (x : int gadt) =

8

match x with
| Int -> 1

In both case, we need type-checking knowledge to tell that these clauses
are exhaustive, and the pattern-matching compiler itself does not main-
tain/propagate/check such typing information, it blindly trusts the [Partial |
Total] information given by the type-checker.

Unfortunately this information is sometimes wrong, because the type-checker
does not consider the possibility of the value being mutated while it is matched.
Consider our original example:

let f x =
match x with
| {a = false; b = _} -> 0
| {a = _; b = None} -> 1
| {a = _; b = _} when (x.b <- None; false) -> 2
| {a = true; b = Some y} -> y

The type-checker cannot guess whether a clause p when foo will be taken or not,
so it conservatively assumes that it never gets taken. This does not account for
the possibility that the evaluation of foo will mutate the value being matched.
The sub-matching is split in three matrices (one for clauses 1, 2, one for clause 3,
one for clause 4), and the last one is compiled as Total because the type-checker
determined that the whole matching is Total. When we reach a switch x.b
with Some y -> ..., we optimize the check to a direct field access, leading to
a segfault.

Mitigation – and re-optimizations

The simplest mitigation strategy is that each time we go under a mutable field
(or a reference pattern) during the pattern-matching decomposition, we degrade
the partiality information from Total to Partial.

From this description one may assume that the following example gets de-
optimized:

type 'a ref = {mutable v: 'a}

let f : bool ref -> int = function
| {v = true} -> 1
| {v = false} -> 2

This outer matching is determined to be Total, but when going under the mu-
table v field we would pessimize to Partial, generating a silly Match_failure
clause after checking both true and false.

In fact, the pattern-matching compiler knows about the number of declared
constructors of algebraic types (including booleans). (This is a very restricted
form of typing information.) So even if it compiles the true | false switch in

9

Partial mode it will notice that all constructors are covered and not generate a
fallback clause.

On the other hand, the following example would get de-optimized:

type _ gadt = Int : int gadt | Bool : bool gadt
let bar (x : int gadt ref) =

match x with
| {v = Int} -> 1

We implement a “re-optimization” to avoid degrading the code in this case: in
addition to the Total|Partial information coming from the context, we propagate
a new information which we call “temporality information”, which is either
First or Following. Following means that we are under a try node in a
following sub-matching, not its first sub-matching. First means that we haven’t
gone under a try at all, or only in their first sub-matching. When we are in
First position, we are not coming from any other match, so in particular our
totality information does not depend on an analysis of previous cases that could
be falsified by side-effects. In this case we can preserve Total, even under
mutable positions.

Some other innocuous examples remain degraded by this change, for example:

type 'a ref = { mutable v: 'a }
let foo (p : (int option ref * int option ref)) =

match p with
| {v = Some a}, {v = Some b} -> Some (a + b)
| {v = None}, _ -> None
| _, {v = None} -> None

In this example, the pattern-matching will split the sub-matching in a try
node, checking the two first clauses first (their first column are disjoint) and the
third clause second. Matching on the None pattern in the third clause will now
generate an explicit check with a Match_failure case instead of returning None
unconditionally.

The following variants are exactly equivalent in term of intended meaning, but
they are not pessimized in this way, and thus result in better code:

let foo1 (p : (int option ref * int option ref)) =
match p with
| {v = Some a}, {v = Some b} -> Some (a + b)
| _ -> None

let foo2 (p : (int option ref * int option ref)) =
match p with
| {v = Some a}, {v = Some b} -> Some (a + b)
| {v = None}, _ -> None
| {v = Some _}, {v = None} -> None

10

Note that there is a good reason to include a Match_failure clause in the first
version: due to the way it is compiled, the v field of the second element of the
pair will get read and checked several times, so it is possible that a concurrent
thread would mutate the value in-between, making the Match_failure result
observable. The three variants look equivalent at the source level, but they
are compiled in different control-flow trees, some of which make the mutability
observable, some which do not.

Incorrect context information

Consider the following variant of our running example

let f (x : bool * int option ref) =
match x with
| false, _ -> 0
| _, {v = None} -> 1
| _, _ when (x.b <- None; false) -> 2
| true, {v = Some y} -> y

If only downgrade the partiality of the second third sub-matching (the one of
_, {v = Some y} -> y) to partial, we still get unsound code.

This comes from the fact that the jump summary of the first sub-matching (the
first two clauses) gives us precise, incorrect information about the shape of the
value at this point. The first sub-matching corresponds to the following matrix:

[false _]
[_ {v = None}]

This will generate a switch on the first constructor, and it can only fail in
the true case, if the second column fails to match None. In this case, we
must have a Some _ value. The pattern-matching compiler will compute this
(correct!) information, and the jump summary will tell us that the second and
third clauses are only reached for values matching the context [true (Some
_)]. At this point, the compiler (incorrectly) knows that the [true {v = Some
y}] clause will always match the input, so it does not need to check the Some
constructor and generates a direct access to y.

To get a sound compiler, in addition to the downgrade of totality information on
mutable fields, we need to erase mutable information when we “shift” contexts
from inner to outer sub-matchings. In this example, when we compute the jump
summary for the exit in the first clause, we have the above context [true {v =
_}], and [None] as the context below. When we “shift” this context up, instead
of [true] above and [{v = None}] below as OCaml currently computes, we
weaken the result into [true] above and [{v = _}] below. In other words, we
erase any context information below mutable fields/references, which may get
invalidated by a side-effect during matching.

11

Are we sound yet?

A natural reference semantics for pattern-matching construct is the clause-by-
clause semantics, where each clause is interpreted independently as a conditional
test. In other words:

match a with
| p1 -> e1
| p2 -> e2
...

should be equivalent to

match a with
| p1 -> e1
| _ ->

match a with
| p2 -> e2
| _ ->
match a with
...

We believe that this equivalence holds for OCaml pattern-matching when no
concurrent mutation of values is intended. It certainly did not hold before
our work for programs that contain concurrent mutation of the scrutinee – as
crashing cannot occur in the clause-by-clause translation. We do not claim
that the pessimization we performed suffice to restore this equivalence. We
believe that the changes we made suffice to regain memory-safety and type-safety
(because we are systematically more conservative in all places where direct field
accesses would be generated), which was our goal. But they do not suffice to
recover the equivalence. For example, consider the following program:

let x = ref 0

let incr () =
Printf.printf "Observed x=%d\n" !x; x := !x + 1; false

let ret =
match x with
| {contents = 0} when incr () -> 0
| {contents = 1} when incr () -> 1
| _ -> 2

The clause-by-clause semantics would expect the following output (and a return
value of 2):

Observed 0
Observed 1

but in fact the compiler (before and after our fixes) prints the following output

12

(and returns 2):

Observed 0

After checking the first incr () guard, the compiler wrongly assumes that the
second clause can be skipped. This does not endanger type-safety, but it does
not respect the natural clause-by-clause specification.

Final words
Side-effects during pattern-matching make classic compiler optimizations un-
sound. We describe how to weak the two key optimizations of the OCaml
compiler (totality information and static contexts) to remain sound in presence
of arbitrary mutation of sub-values of the scrutinee. We have implemented this
fix for the OCaml compiler.

Note that the desirability of this fix is not obvious:

• In practice, people do not write code that mutates a scrutinee during its
matching. Side-effects in when-guards are a very dubious idea, and writing
a concurrent race on a complex mutable structure is equally unreasonable.
We know of no instance of this compiler bug affecting code in the wild,
only of tests specifically crafted to hit this issue.

• On the other hand, the mitigation we propose is reasonably simple and
makes the compiler correct again, but it does degrade the compiled code
slightly for some matchings that people do write today in practice, which
are now slightly slower.

We believe that the change of generated code will not noticeably decrease the
perofrmance of user programs – it will be slightly worse in a few places. If they
notice a performance degradation in their code, they can rewrite their pattern-
matching clauses to avoid splits. But it is always hard to convince people to
maybe make their code slightly slower to fix bugs that they will probably never
encounter in practice.

References
Lennart Augustsson. Compiling pattern matching. In Functional Programming

Languages and Computer Architecture, 1985.

13

	Pattern matching on mutable values
	The problem
	Are other languages concerned?

	OCaml Pattern-matching compilation and optimizations
	A reminder on backtracking compilation
	Optimizing pattern-matching compilation
	Contexts
	Using contexts for failure optimization
	Jump summaries

	Mutability ruins the party
	Incorrect totality information
	Mitigation – and re-optimizations
	Incorrect context information
	Are we sound yet?

	Final words

