
Full abstraction for multi-language systems
ML plus linear types

Gabriel Scherer, Amal Ahmed, Max New

Northeastern University, Boston

May 5, 2017

1

1 Full Abstraction for Multi-Language Systems: Introduction

2 Case Study: Unrestricted and Linear

3 How Fully Abstract Can We Go?

2

Section 1

Full Abstraction for Multi-Language Systems:
Introduction

3

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the
feature space. (simpler?)

Multi-language system design may include designing new languages for
interoperation.

Full abstraction to understand graceful language interoperability.

4

Multi-language stories

Expert
language

General-purpose
language

Teachable
sublanguage

Wild
language

Graceful interoperation? Abstraction leaks?

(Several expert languages: not (yet?) in this work)

5

Full abstraction

J_K : S −→ T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

6

Full abstraction for multi-language systems

Expert
language

General-purpose
language

Teachable
sublanguage

Wild
language

Graceful interoperation: G f .a.−→ (G + E)

No abstraction leaks: T f .a.−→W

7

Which languages?

ML sweet spot hard to beat,
but ML programmers yearn for language extensions.

ML plus:
low-level memory, resource tracking, ownership
effect system
theorem proving
. . .

In this talk: a first ongoing experiment on ML plus linear types.

8

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

U
f .a.−→ (U + L)

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

Note: L −→ (U + L) not meant to be fully abstract.
(Not robust to extensions of U)

9

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

U
f .a.−→ (U + L)

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

Note: L −→ (U + L) not meant to be fully abstract.
(Not robust to extensions of U)

9

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

U
f .a.−→ (U + L)

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

Note: L −→ (U + L) not meant to be fully abstract.
(Not robust to extensions of U)

9

Section 2

Case Study: Unrestricted and Linear

10

Unrestricted language: syntax

Types σ ::= α | σ1 × σ2 | 1 | σ1→ σ2 |
σ1 + σ2 | µα. σ | ∀α. σ

Expressions e ::= x |
〈e1, e2〉 | π1 e | π2 e |
〈〉 | e1; e2 |
λ(x :σ). e | e1 e2 |
inj1 e | inj2 e | case e′ of x1. e1 | x2. e2 |
foldµα.σ e | unfold e |
Λα. e | e [σ]

Typing contexts Γ, Γ′ ::= · | Γ, x :σ | Γ, α

11

Linear types: introduction

Resource tracking, unique ownership.

σ !σ Γ !Γ

Γ `l e : σ

We own e at type σ (duplicable or not), e owns the resources in Γ.

σ ::= σ1⊗σ2 | 1 | σ1(σ2 |
σ1⊕σ2 | µα. σ | α |
!σ |
Box b σ

12

Linear types: base
A simple but useful language with linear types.

!Γ, x :σ `l x : σ !Γ `l 〈〉 : 1
Γ `l e : 1 Γ′ `l e′ : σ

Γ � Γ′ `l e; e′ : σ

Γ1 `l e1 : σ1 Γ2 `l e2 : σ2

Γ1 � Γ2 `l 〈e1, e2〉 : σ1⊗σ2

Γ `l e : σ1⊗σ2 Γ′, x1 :σ1, x2 :σ2 `l e′ : σ

Γ � Γ′ `l let 〈x1, x2〉= e in e′ : σ

Γ, x :σ `l e : σ′

Γ `l λ(x :σ). e : σ(σ′
Γ `l e : σ′(σ Γ′ `l e′ : σ′

Γ � Γ′ `l e e′ : σ

Γ `l e : σi

Γ `l inji e : σ1⊕σ2

Γ `l e : σ1⊕σ2 (Γ′, xi : σi `l ei : σ)i∈{1,2}

Γ � Γ′ `l case e of x1. e1 | x2. e2 : σ

!Γ `l e : σ

!Γ `l share e : !σ

Γ `l e : !σ

Γ `l copyσ e : σ

µα. σ

unfold
−(›−

foldµα.σ

σ[µα. σ/α]
13

Applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

open : !(![Path](Handle)
line : !(Handle((Handle⊕ (![String]⊗Handle)))
close : !(Handle(1)

(details about the boundaries come later)

Typestate.

14

(details about the boundaries come later)

open : !(![Path](Handle)
line : !(Handle((Handle⊕ (![String]⊗Handle)))
close : !(Handle(1)

let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle LU(acc : List String) =
match line handle with
| EOF handle ->
close handle; LU(rev_concat "\n" acc)

| Next line handle ->
loop handle LU(Cons UL(line) acc))

(U values are passed back and forth, never inspected)

15

Linear types: linear locations

Box 1 σ: full cell

Box 0 : empty cell

1
new
−(›−
free

Box 0 Box 1 σ
unbox
−(›−
box

(Box 0)⊗σ

Applications: in-place reuse of memory cells.

16

List reversal

type LList a = µt. 1 ⊕ Box 1 (a ⊗ t)

val reverse : LList a (LList a
let reverse list = loop (inl ()) list
where rec loop tail = function
| inl () → tail
| inr cell →
let (l, (x, xs)) = unbox cell in
let cell = box (l, (x, tail)) in
loop (inr cell) xs

17

List reversal (sweet)

type LList a = µt. 1 ⊕ Box 1 (a ⊗ t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box (l, (x, xs)))

val reverse : LList a (LList a
let reverse list = loop Nil list
where rec loop tail = function
| Nil → tail
| Cons l x xs → loop (Cons l x tail) xs

type List a = µt. 1 + (a × t)
let reverse list = UL(share (reverse (copy (LU(list)))))

(U values are created from the L side from a compatible type)

18

let partition p li = partition_aux p (Nil, Nil) li
partition_aux p (yes, no) = function
| Nil -> (yes, no)
| Cons l x xs ->
let (yes, no) =
if copy p x then (Cons l x yes, no) else (yes, Cons l x no)

in partition_aux p (yes, no) xs

let lin_quicksort li = quicksort_aux li Nil
let quicksort_aux li acc = match li with
| Nil -> acc
| Cons l head li ->
let p = share (fun x -> x < head) in
let (below, above) = partition p li in
quicksort_aux below (Cons l head (quicksort_aux above acc))

quicksort li UL(li) = UL(share (lin_quicksort (copy li)))

19

Interaction: lump

Types σ | σ
σ
σ + ::= · · · | [σ]

Expressions e | e
e + ::= · · · | UL(e)
e + ::= · · · | LU(e)

Contexts Γ ::= · | Γ, x :σ | Γ, α | Γ, x :σ

!Γ `lu e : σ

!Γ `ul LU(e) : ![σ]

!Γ `ul e : ![σ]

!Γ `lu UL(e) : σ

20

Interaction: compatibility
Compatibility relation `ul σ ' σ

`ul 1 ' !1
`ul σ1 ' !σ1 `ul σ2 ' !σ2

`ul σ1 × σ2 ' !(σ1⊗σ2)

`ul σ1 ' !σ1 `ul σ2 ' !σ2

`ul σ1 + σ2 ' !(σ1⊕σ2)

`ul σ ' !σ `ul σ
′ ' !σ′

`ul σ→ σ′ ' !(!σ(!σ′)

`ul σ ' ![σ]

`ul σ ' !σ

`ul σ ' !!σ

`ul σ ' !σ

`ul σ ' !(Box 1 σ)

Interaction primitives and derived constructs:

![σ]

σunlump
−(›−

lumpσ
σ when `ul σ ' σ

σLU(e)
def
= σunlump LU(e)

ULσ(e)
def
= UL(lumpσ e)

21

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.

d!σe def
= dσe

dBox 0 σe def
= 1

dBox 1 σe def
= 1× dσe

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)

22

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.

d!σe def
= dσe

dBox 0 σe def
= 1

dBox 1 σe def
= 1× dσe

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)

22

Remark on parametricity

(from Max New)

(Λα. λ(x :α).ULα(αLU(x))) [σ]
U
↪→? λ(x :σ).ULσ(σLU(x))

Not well-typed!

(Λα. λ(x :α).UL![α](![α]LU(x))) [σ]
U
↪→ λ(x :σ).UL![σ](![σ]LU(x))

Logical relation (Max New, Nicholas Rioux)

23

Questions
But not the end!

Implementation ?

Implementability? (Cell size.)

Limitation: no separation of pointer and capability.

Does this approach scale to a language usable in practice?
(Polymorphism in L?)
(Without losing its simplicity?)

Your questions.

24

Section 3

How Fully Abstract Can We Go?

25

I used to think of Full Abstraction as an ideal property that would never be
reached in practice.

I changed my mind. The statement can be weakened to fit many situations,
and remains a useful specification.

I will now present some (abstract) examples of this approach.

26

Weak Trick 1: restrict the interaction types

The no-interaction multi-language: always fully abstract!

Types restrict interaction: “only integers”, “only ground types”.

Extend the scope of safe interaction by adding more types.
Design tool.

Idea: the idealist will still have a useful system.

27

Weak Trick 2: weaken the source equivalence

Full abstraction is relative to the source equivalence.

Contextual equivalence makes a closed-world assumption.
Good, sometimes too strong.

Safe impure language: forbid reordering of calls.

Safe impure language: add impure counters for user reasoning.

Or use types with weaker equivalence principles: linking types
(Daniel Patterson, Amal Ahmed)

Idea: full abstraction forces you to specify the right thing.

28

Questions

Compare different ways to specify a weaker equivalence for full abstraction?
through explicit term equations?
through types?
by adding phantom features?

Does our multi-language design scale to more than two languages?
(Yes, I think)

Are boundaries multi-language designs also convenience boundaries?
(good or bad?)

Your questions.

Thanks!

29

	Full abstraction for multi-language systems: introduction
	Case study: Unrestricted and Linear
	How fully abstract can we go?

