Full abstraction for multi-language systems ML plus linear types

Gabriel Scherer, Amal Ahmed, Max New

Northeastern University, Boston

February 9, 2017
(1) Full Abstraction for Multi-Language Systems: Introduction
(2) Case Study: Unrestricted and Linear
(3) How Fully Abstract Can We Go?

Section 1

Full Abstraction for Multi-Language Systems: Introduction

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up: C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the feature space. (simpler?)

Multi-language system design may include designing new languages for interoperation.

Full abstraction to understand graceful language interoperability.

Multi-language stories

Graceful interoperation?
Abstraction leaks?
(Several expert languages: not (yet?) in this work)

Full abstraction

$\llbracket _\rrbracket: S \longrightarrow T$ fully abstract:

$$
a \approx^{c t x} b \Longrightarrow \llbracket a \rrbracket \approx^{c t x} \llbracket b \rrbracket
$$

Full abstraction preserves (equational) reasoning.

Full abstraction for multi-language systems

Graceful interoperation: $G \xrightarrow{\text { f.a. }}(G+E)$
No abstraction leaks: $T \xrightarrow{\text { f.a. }} W$

Which languages?

ML sweet spot hard to beat, but ML programmers yearn for language extensions.

ML plus:

- low-level memory, resource tracking, ownership
- effect system
- theorem proving
- ...

In this talk: a first ongoing experiment on ML plus linear types.

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

$$
U \xrightarrow{\text { f.a. }}(U+L)
$$

Proof: by translating L back into U in an inefficient but correct way.

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

$$
U \xrightarrow{\text { f.a. }}(U+L)
$$

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

$$
U \xrightarrow{\text { f.a. }}(U+L)
$$

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

Note: $U \longrightarrow(U+L)$ not meant to be fully abstract.
(Not robust to extensions of U)

Section 2

Case Study: Unrestricted and Linear

Unrestricted language: syntax

Types

$$
\begin{aligned}
\sigma \quad::= & \alpha\left|\sigma_{1} \times \sigma_{2}\right| 1\left|\sigma_{1} \rightarrow \sigma_{2}\right| \\
& \sigma_{1}+\sigma_{2}|\mu \alpha . \sigma| \forall \alpha . \sigma
\end{aligned}
$$

Expressions

$$
\mathrm{e} \quad::=\mathrm{x} \mid
$$

$$
\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle\left|\pi_{1} \mathrm{e}\right| \pi_{2} \mathrm{e} \mid
$$

$$
\rangle| e_{1} ; e_{2} \mid
$$

$$
\lambda(\mathrm{x}: \sigma) . \mathrm{e}\left|\mathrm{e}_{1} \mathrm{e}_{2}\right|
$$

$$
\mathrm{inj}_{1} \mathrm{e}\left|\mathrm{inj}_{2} \mathrm{e}\right| \text { case } \mathrm{e}^{\prime} \text { of } \mathrm{x}_{1} \cdot \mathrm{e}_{1}\left|\mathrm{x}_{2} \cdot \mathrm{e}_{2}\right|
$$

$$
\text { fold }_{\mu \alpha . \sigma} \mathrm{e} \mid \text { unfold } \mathrm{e} \mid
$$

$$
\Lambda \alpha . \mathrm{e} \mid \mathrm{e}[\sigma]
$$

Typing contexts Г, $\Delta \quad::=\cdot|Г, \times: \sigma|\ulcorner, \alpha$

Linear types: introduction

Resource tracking, unique ownership.
σ
$!\sigma$
「
! Γ

$$
\Gamma \vdash_{1} e: \sigma
$$

We own e at type σ (duplicable or not), e owns the resources in Γ.

$$
\begin{aligned}
\sigma::= & \sigma_{1} \otimes \sigma_{2}|1| \sigma_{1} \multimap \sigma_{2} \mid \\
& \sigma_{1} \oplus \sigma_{2}|\mu \alpha \cdot \sigma| \alpha \mid \\
& !\sigma \mid \\
& \text { Box b } \sigma
\end{aligned}
$$

Linear types: base

A simple but useful language with linear types.

$$
\begin{aligned}
& \frac{\Gamma \vdash_{\mathrm{I}} \mathrm{e}: 1 \quad \Delta \vdash_{\mathrm{I}} \mathrm{e}^{\prime}: \sigma}{\Gamma \bigvee \Delta \vdash_{\mathrm{I}} \mathrm{e} ; \mathrm{e}^{\prime}: \sigma} \\
& \frac{\Gamma_{1} \vdash_{1} \mathbf{e}_{1}: \sigma_{1} \quad \Gamma_{2} \vdash_{1} \mathbf{e}_{2}: \sigma_{2}}{\Gamma_{1} \bigvee \Gamma_{2} \vdash_{1}\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle: \sigma_{1} \otimes \sigma_{2}} \quad \frac{\Gamma \vdash_{1} \mathrm{e}: \sigma_{1} \otimes \sigma_{2} \quad \Delta, \mathrm{x}_{1}: \sigma_{1}, \mathrm{x}_{2}: \sigma_{2} \vdash_{\mathrm{l}} \mathrm{e}^{\prime}: \sigma}{\Gamma \bigvee \Delta \vdash_{1} \operatorname{let}\left\langle\mathbf{x}_{1}, \mathrm{x}_{2}\right\rangle=\mathrm{eine}^{\prime}: \sigma} \\
& \Gamma, x: \sigma \vdash_{\mathrm{l}} \mathrm{e}: \sigma^{\prime} \\
& \overline{\Gamma \vdash, \lambda(x: \sigma) \cdot e: \sigma \multimap \sigma^{\prime}} \\
& \frac{\Gamma \vdash_{\mathrm{I}} \mathrm{e}: \sigma^{\prime} \multimap \sigma \quad \Delta \vdash_{\mathrm{I}} \mathrm{e}^{\prime}: \sigma^{\prime}}{\Gamma \bigvee \Delta \vdash_{\mathrm{I}} \mathrm{e} \mathrm{e}^{\prime}: \sigma} \\
& \Gamma \vdash_{ı} \mathrm{e}: \sigma_{i} \\
& \Gamma \vdash_{\mathrm{I}} \mathrm{e}: \sigma_{1} \oplus \sigma_{2} \quad\left(\Delta, \mathrm{x}_{i}: \sigma_{i} \vdash_{\mathrm{I}} \mathrm{e}_{i}: \sigma\right)_{\mathbf{i} \in\{1,2\}} \\
& \Gamma \bigvee \Delta \vdash_{1} \text { case e of } \mathrm{x}_{1} \cdot \mathrm{e}_{1} \mid \mathrm{x}_{2} \cdot \mathrm{e}_{2}: \sigma \\
& \Gamma \vdash \text { ı }:!\sigma \\
& \bar{\Gamma} \vdash_{\text {, copy }}{ }^{\sigma} \text { e: } \sigma
\end{aligned}
$$

Applications

Protocol with resource handling requirements.
"This file descriptor must be closed"
open : ! (! [Path] \multimap Handle)
line $: \quad!(H a n d l e \multimap($ Handle $\oplus(![$ String $] \otimes$ Handle $)))$
close : ! (Handle $\multimap 1$)
(details about the boundaries come later)

Typestate.
(details about the boundaries come later)

open : ! (! [Path] \multimap Handle)

line $:!(H a n d l e ~ \multimap(H a n d l e ~ \oplus(![$ String $] \otimes$ Handle $)))$
close : ! (Handle $\multimap 1$)

```
let concat_lines path : String = UL(
    loop (open LU(path)) LU(Nil)
    where rec loop handle (acc : ![List String]) =
    match line handle with
    | EOF handle ->
        close handle; LU(rev_concat "\n" UL(acc))
        | Next line handle ->
        loop handle LU(Cons UL(line) UL(acc)))
```

(U values are passed back and forth, never inspected)

Linear types: linear locations

Box 1σ : full cell
Box 0 o: empty cell

Applications: in-place reuse of memory cells.

List reversal

```
type LList a = \mut. 1 \oplus Box 1 (a \otimes t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box (l, (x, xs)))
val reverse : LList a \multimap LList a
let reverse list = loop Nil list
    where rec loop tail = function
    | Nil }->\mathrm{ tail
    | Cons l x xs }->\mathrm{ loop (Cons l x tail) xs
type List a = \mut. 1 + (a }\times t
let reverse list = UL(share (reverse (copy (LU(list)))))
```

(U values are created from the L side from a compatible type)

Interaction: lump

$\begin{aligned} \text { Types } \sigma & \\ & \\ & \\ & \\ & \\ & +::=\cdots \mid[\sigma]\end{aligned}$
Expressions e|e

$$
\begin{array}{ll}
\mathrm{e}+::=\cdots \mid & \mathcal{U} \mathcal{L}(\mathrm{e}) \\
\mathrm{e} \quad+::=\cdots & \mathcal{L U}(\mathrm{e})
\end{array}
$$

Contexts $\Gamma::=\cdot|\Gamma, x: \sigma| \Gamma, \alpha \mid \Gamma, x: \sigma$

$$
\frac{!\Gamma \vdash_{\mathrm{lu}} \mathrm{e}: \sigma}{!\Gamma \vdash_{\mathrm{ul}} \mathcal{L U}(\mathrm{e}):![\sigma]}
$$

$$
\frac{!\Gamma \vdash_{\mathrm{ul}} \mathrm{e}:![\sigma]}{!\Gamma \vdash_{\mathrm{lu}} \mathcal{U} \mathcal{L}(\mathrm{e}): \sigma}
$$

Interaction: compatibility

Compatibility relation

$$
\vdash_{\mathrm{ul}} \sigma \simeq \sigma
$$

$$
\begin{gathered}
\frac{\vdash_{\mathrm{ul}} 1 \simeq!1}{\sigma_{1} \simeq!\sigma_{1}} \vdash_{\mathrm{ul}} \sigma_{2} \simeq!\sigma_{1} \times \sigma_{2} \simeq!\left(\sigma_{1} \otimes \sigma_{2}\right) \\
\frac{\vdash_{\mathrm{ul}} \sigma_{1} \simeq!\sigma_{1}}{\vdash_{\mathrm{ul}} \sigma_{1}+\sigma_{2} \simeq!\left(\sigma_{1} \oplus \sigma_{2}\right)} \quad \vdash_{\mathrm{ul}} \sigma_{2} \simeq!\sigma_{2} \\
\frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \rightarrow \sigma^{\prime} \simeq!\left(!\sigma-!\vdash_{\mathrm{ul}} \sigma^{\prime} \simeq!\sigma^{\prime}\right)} \\
\frac{\vdash_{\mathrm{ul}} \sigma \simeq![\sigma]}{} \quad \frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \simeq!!\sigma} \quad \frac{\vdash_{\mathrm{ul}} \sigma \simeq!\sigma}{\vdash_{\mathrm{ul}} \sigma \simeq!(\operatorname{Box} 1 \sigma)}
\end{gathered}
$$

Interaction primitives and derived constructs:

$$
\begin{aligned}
& { }^{\sigma} \text { unlump } \\
& ![\sigma] \underset{\text { lump }^{\sigma}}{\square} \quad \sigma \text { when } \quad \vdash_{\mathrm{ul}} \sigma \simeq \sigma \\
& \begin{array}{l}
{ }^{\sigma} \mathcal{L U}(\mathrm{e}) \stackrel{\text { def }}{=}{ }^{\sigma} \text { unlump } \mathcal{L U}(\mathrm{e}) \\
\mathcal{U} \mathcal{L}^{\sigma}(\mathrm{e}) \stackrel{\text { def }}{=} \mathcal{U} \mathcal{L}\left(\text { lump }^{\sigma} \mathrm{e}\right)
\end{array}
\end{aligned}
$$

Full abstraction

Theorem
The embedding of U into UL is fully abstract.
Proof: by pure interpretation of the linear language into ML.

Full abstraction

Theorem
The embedding of U into UL is fully abstract.
Proof: by pure interpretation of the linear language into ML.

$$
\begin{array}{ll}
\lceil!\sigma\rceil & \stackrel{\text { def }}{=}\lceil\sigma\rceil \\
\lceil\text { Box } 00 \sigma\rceil & \stackrel{\text { def }}{=} 1 \\
\lceil\text { Box } 1 \quad \sigma\rceil & \stackrel{\text { def }}{=} 1 \times\lceil\sigma\rceil \\
\left\lceil\sigma_{1} \otimes \sigma_{2}\right\rceil & \stackrel{\text { def }}{=}\left\lceil\sigma_{1}\right\rceil \times\left\lceil\sigma_{2}\right\rceil
\end{array}
$$

(Cogent)

Remark on parametricity

(from Max New)
$\left(\Lambda \alpha \cdot \lambda(\mathrm{x}: \alpha) \cdot \mathcal{U} \mathcal{L}^{\alpha}\left({ }^{\alpha} \mathcal{L U}(\mathrm{x})\right)\right)[\sigma] \quad \stackrel{\cup}{\hookrightarrow} ? \quad \lambda(\mathrm{x}: \sigma) \cdot \mathcal{U} \mathcal{L}^{\sigma}\left({ }^{\sigma} \mathcal{L U}(\mathrm{x})\right)$
Not well-typed!
$\left(\Lambda \alpha \cdot \lambda(\mathrm{x}: \alpha) \cdot \mathcal{U} \mathcal{L}^{![\alpha]}(![\alpha] \mathcal{U} \mathcal{U}(\mathrm{x}))\right)[\sigma] \quad \stackrel{U}{\hookrightarrow} \quad \lambda(\mathrm{x}: \sigma) \cdot \mathcal{U} \mathcal{L}^{![\sigma]}([[\sigma] \mathcal{L} \mathcal{U}(\mathrm{x}))$

Questions

But not the end!

Implementation ?

Implementability? (Cell size.)

Limitation: no separation of pointer and capability.

Does this approach scale to a language usable in practice? (Polymorphism in L?)
(Without losing its simplicity?)

Your questions.

Section 3

How Fully Abstract Can We Go?

I used to think of Full Abstraction as an ideal property that would never be reached in practice.

I changed my mind. The statement can be weakened to fit many situations, and remains a useful specification.

I will now present some (abstract) examples of this approach.

Weak Trick 1: restrict the interaction types

The no-interaction multi-language: always fully abstract!

Types restrict interaction: "only integers", "only ground types".

Extend the scope of safe interaction by adding more types. Design tool.

Idea: the idealist will still have a useful system.

Weak Trick 2: weaken the source equivalence

Full abstraction is relative to the source equivalence.

Contextual equivalence makes a closed-world assumption. Good, sometimes too strong.

Safe impure language: forbid reordering of calls.

Safe impure language: add impure counters for user reasoning.

Or use types with weaker equivalence principles: linking types (Daniel Patterson, Amal Ahmed)

Idea: full abstraction forces you to specify the right thing.

Questions

Compare different ways to specify a weaker equivalence for full abstraction?

- through explicit term equations?
- through types?
- by adding phantom features?

Does our multi-language design scale to more than two languages? (Yes, I think)

Are boundaries multi-language designs also convenience boundaries? (good or bad?)

Your questions.

Thanks!

