Full abstraction for multi-language systems
ML plus linear types

Gabriel Scherer, Max New, Nick Rioux, Amal Ahmed

INRIA, France
Northeastern University, Boston, USA

April 15, 2018

A question worth asking

What does it mean for two languages to “interact well together"?

A question worth asking

What does it mean for two languages to “interact well together"?

@ no segfaults?

A question worth asking

What does it mean for two languages to “interact well together"?

@ no segfaults?

@ the type systems are not broken?
(correspondence between types on both sides, or runtime checks)

A question worth asking

What does it mean for two languages to “interact well together"?

@ no segfaults?

@ the type systems are not broken?
(correspondence between types on both sides, or runtime checks)

@ more?

Multi-language stories

Abstraction leaks? Graceful interoperation?

Full abstraction

[]:S— T fully abstract:

a Ot b — [[a]] X [[b]]

Full abstraction preserves (equational) reasoning.

Full abstraction

[]:S— T fully abstract:

3 %ctx b — [[a]] %ctx [[b]]

Full abstraction preserves (equational) reasoning.

Can be used to think about compilation, but not only...

Full abstraction for multi-language systems

No abstraction leaks: T f—a> w]
Graceful interoperation: G ~% (G + E)

Full abstraction for multi-language systems

No abstraction leaks: T f—a> w]
Graceful interoperation: G ~% (G + E)

In this talk: a first experiment on ML plus linear types.

U: a core ML

[Fye:o

L: linear types

Resource tracking, unique ownership.

o lo I Ir
r|—|e:(f

We own e at type o (duplicable or not), e owns the resources in I'.

Multi-language applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

open . I(![Path] — Handle)
read line : !(Handle — (Handle & (![String] ©® Handle)))
close : !(Handle — 1)

Typestate.

Multi-language applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

open . I(![Path] — Handle)
read line : !(Handle — (Handle @ (![String] ® Handle)))
close : !(Handle — 1)

Typestate.

pattern EOF handle = inl handle
pattern Next line handle = inr (line, handle)

open . I(![Path] — Handle)
read line : !(Handle — (Handle & (![String] ©® Handle)))
close : !(Handle —1)

let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle (acc : ![List String]) =
match read_line handle with
| Next line handle ->
loop handle LU(Cons UL(line) UL(acc))
| EOF handle ->
close handle; LU(rev_concat "\n" UL(acc)))

MThye:o Ty e o]
T o LU(e) - 1[0] T o UL() o

(opaque boundaries)

Linear types: linear locations

Box 1 o: full cell

Box 0 o: empty cell

new unbox

1 ° Box0Oo Boxlo — ° Box0oc®o
o— o—
free box

Applications: in-place reuse of memory cells.

10

List reversal

type LList a = put. 1 @& Box 1 (a ® t)
pattern Nil = inl ()
pattern Cons 1 x xs = inr (box (1, (x, xs)))

val reverse : LList a — LList a
let reverse list = loop Nil list
where rec loop acc = function
| Nil — acc
| Cons 1 x xs — loop (Cons 1 x acc) xs

type List a = pt. 1 + (a X t)

let reverse list =
UL{!LList _}(share (reverse (copy (LU{!LList _}(1list)))))

11

List reversal

type LList a = put. 1 @& Box 1 (a ® t)
pattern Nil = inl ()
pattern Cons 1 x xs = inr (box (1, (x, xs)))

val reverse : LList a — LList a
let reverse list = loop Nil list
where rec loop acc = function
| Nil — acc
| Cons 1 x xs — loop (Cons 1 x acc) xs

type List a = pt. 1 + (a X t)
let reverse list =
UL{!LList _}(share (reverse (copy (LU{!LList _}(1list)))))

List a~ !LList ![al Fuox~o

(transparent boundaries)
11

let partition p li = partition_aux p (Nil, Nil) 1i
partition_aux p (yes, no) = function
| Nil -> (yes, no)
| Cons 1 x xs ->
let (yes, no) =
if copy p x then (Cons 1 x yes, no) else (yes, Cons 1 x no)
in partition_aux p (yes, no) xs

let lin_quicksort 1li = quicksort_aux 1li Nil
let quicksort_aux 1i acc = match 1i with
| Nil -> acc
| Cons 1 head 1i ->
let p = share (fun x -> x < head) in
let (below, above) = partition p 1li in
quicksort_aux below (Cons 1 head (quicksort_aux above acc))
quicksort 1i =
UL{!LList _}(share (lin_quicksort (copy LU{!LList _}(1i))))

12

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.
(Cogent)

13

Questions 7

Thanks!

14

« | g1 X 09 ‘ 1 | g1 —> 0?2
o1+ 02 | pa.o | Va.o

o1®02 | 1| o102 |
o1@or | pao | o
lo |

Box b o

15

Linear typing rules

MHe:l MHe:o

Myx:okx:0o M ()1 TYlMkHeé:o
ke o1 ok e:ior ThHe:o1®0 F’,xl:al,x2:02 H e:o
MYk (er,e2) 1 010> FY T Hlet(x,xo) =eine : o
M xiobe:o THe:o —0o e o
FH AMx:0).e:0—0 TYMHeée:o
NHe:o; lHe:0180) (r,,X,'ZU,' F e;:a)ie{lﬁz}
[injie: o1 @ oo FY T caseeofxj.e1 [x0.e2: 0
fold
MHe: o MHe:lo unto’
- po. o olpua. o/a]
IT I sharee : lo icopy’ e:o o

fold a0

16

Interaction: lump

Types o | o Values v | v

o +u=--| o] v o= ||V

Expressions e | e

e +u=---| UL(e)
Contexts I == - | Ix:o | o | T,x:0
MThye:o Ty e o]

T LU(e) = o] My UL(e) i o

17

Interaction: compatibility

Compatibility relation

Fu 01 > oy Ful o2 = 1o
Fal~!l Ful O'1><0'22!(0'1®O'2)

Fu o1 >~ log Fu o2 >~ lo) Foao~lo Fa o ~ 1o

Fa o1+ 02 = (01 B 0)) Fao—o ~1(lo—ld")

Fuo~lo Fuo~lo
Fu o~ o] Fuo~llo Fu o =~ !(Box 1 o)

Interaction primitives and derived constructs:

Zunlump

TLU(e) df o Zunlump LU(e)
UL (e) = def UL(lump? €)

o] o__o o when Fyo~o

lump?

18

