
Full abstraction for multi-language systems
ML plus linear types

Gabriel Scherer, Amal Ahmed, Max New

Northeastern University

August 18, 2016

1

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the
feature space. (simpler?)

Multi-language system design may include designing new languages for
interoperation.

Full abstraction to understand graceful language interoperability.

2

Full abstraction for multi-language systems

J K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop
S2

full abs.~~
T

Mixed S1,S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)

3

Full abstraction for multi-language systems

J K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.

Graceful multi-language semantics.
(or vice versa)

3

Full abstraction for multi-language systems

J K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.

interop.
S2

full abs.~~
T

Mixed S1, S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)

3

Which languages?

ML sweet spot hard to beat,
but ML programmers yearn for language extensions.

ML plus:

low-level memory, resource tracking, ownership

effect system

theorem proving

. . .

In this talk: a first ongoing experiment on ML plus linear types.

4

Linear types: base
A simple but useful language with linear types.

Γ1 ` σ1 Γ2 ` σ2

Γ1 . Γ2 ` σ1⊗σ2

Γ ` σ1⊗σ2 ∆, σ1, σ2 ` σ

Γ . ∆ ` σ

!Γ ` 1

Γ ` 1 ∆ ` σ

Γ . ∆ ` σ

Γ, σ ` σ′

Γ ` σ(σ′
Γ ` σ′(σ ∆ ` σ′

Γ . ∆ ` σ

!Γ ` σ

!Γ ` !σ

Γ ` !σ

Γ ` σ
5

Linear types: base
A simple but useful language with linear types.

Γ1 ` e1 :σ1 Γ2 ` e2 :σ2

Γ1 . Γ2 ` 〈e1, e2〉 :σ1⊗σ2

Γ ` e :σ1⊗σ2 ∆, x1 :σ1, x2 :σ2 ` e′ :σ

Γ . ∆ ` let 〈x1, x2〉= e in e′ :σ

!Γ ` 〈〉 :1

Γ ` e :1 ∆ ` e′ :σ

Γ . ∆ ` e; e′ :σ

Γ, x :σ ` e :σ′

Γ ` λ(x :σ). e :σ(σ′
Γ ` e :σ′(σ ∆ ` e′ :σ′

Γ . ∆ ` e e′ :σ

!Γ ` e :σ

!Γ ` :!σ

Γ ` e :!σ

Γ ` :σ
5

Linear types: base
A simple but useful language with linear types.

Γ1 ` e1 :σ1 Γ2 ` e2 :σ2

Γ1 . Γ2 ` 〈e1, e2〉 :σ1⊗σ2

Γ ` e :σ1⊗σ2 ∆, x1 :σ1, x2 :σ2 ` e′ :σ

Γ . ∆ ` let 〈x1, x2〉= e in e′ :σ

!Γ ` 〈〉 :1

Γ ` e :1 ∆ ` e′ :σ

Γ . ∆ ` e; e′ :σ

Γ, x :σ ` e :σ′

Γ ` λ(x :σ). e :σ(σ′
Γ ` e :σ′(σ ∆ ` e′ :σ′

Γ . ∆ ` e e′ :σ

!Γ ` e :σ

!Γ ` shareσ e :!σ

Γ ` e :!σ

Γ ` :σ
5

Linear types: base
A simple but useful language with linear types.

Γ1 ` e1 :σ1 Γ2 ` e2 :σ2

Γ1 . Γ2 ` 〈e1, e2〉 :σ1⊗σ2

Γ ` e :σ1⊗σ2 ∆, x1 :σ1, x2 :σ2 ` e′ :σ

Γ . ∆ ` let 〈x1, x2〉= e in e′ :σ

!Γ ` 〈〉 :1

Γ ` e :1 ∆ ` e′ :σ

Γ . ∆ ` e; e′ :σ

Γ, x :σ ` e :σ′

Γ ` λ(x :σ). e :σ(σ′
Γ ` e :σ′(σ ∆ ` e′ :σ′

Γ . ∆ ` e e′ :σ

!Γ ` e :σ

!Γ ` shareσ e :!σ

Γ ` e :!σ

Γ ` copyσ e :σ
5

Applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

Typestate.

6

Linear types: linear locations

Box 1 σ: full cell

Box 0 σ: empty cell

1

new
−(›−
free

Box 0 σ Box 1 σ

unbox
−(›−
box

Box 0 σ⊗σ

7

Applications

In-place reuse of memory cells.

8

List reversal

type LList a = µt. 1 ⊕ Box 1 (a ⊗ t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box (l , (x, xs)))

val reverse : LList a (LList a
let reverse list = loop Nil list

where rec loop tail = function
| Nil → tail
| Cons l x xs → loop (Conx l x tail) xs

(∗ use reverse internally ∗)

(∗ on the ML side ∗)
type List a = µt. 1 + (a × t)
let reverse list = UL(share (reverse (copy (LU(list)))))

9

Full abstraction
The ML language can be compiled into a linear language.

LU (σ)
def
= !bσc

bσ1 × σ2c
def
= Box 1 (bσ1c⊗ bσ2c)

b1c def
= 1

bσ1→ σ2c
def
= LU (σ1)(LU (σ2)

This gives a direct multi-language semantics.
Full abstraction by pure interpretation of the linear language in ML.

d!σe def
= dσe

dBox 1 σe def
= dσe

dBox 0 σe def
= 1

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)

10

Full abstraction
The ML language can be compiled into a linear language.

LU (σ)
def
= !bσc

bσ1 × σ2c
def
= Box 1 (bσ1c⊗ bσ2c)

b1c def
= 1

bσ1→ σ2c
def
= LU (σ1)(LU (σ2)

This gives a direct multi-language semantics.

Full abstraction by pure interpretation of the linear language in ML.

d!σe def
= dσe

dBox 1 σe def
= dσe

dBox 0 σe def
= 1

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)

10

Full abstraction
The ML language can be compiled into a linear language.

LU (σ)
def
= !bσc

bσ1 × σ2c
def
= Box 1 (bσ1c⊗ bσ2c)

b1c def
= 1

bσ1→ σ2c
def
= LU (σ1)(LU (σ2)

This gives a direct multi-language semantics.
Full abstraction by pure interpretation of the linear language in ML.

d!σe def
= dσe

dBox 1 σe def
= dσe

dBox 0 σe def
= 1

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)

10

Full abstraction
The ML language can be compiled into a linear language.

LU (σ)
def
= !bσc

bσ1 × σ2c
def
= Box 1 (bσ1c⊗ bσ2c)

b1c def
= 1

bσ1→ σ2c
def
= LU (σ1)(LU (σ2)

This gives a direct multi-language semantics.
Full abstraction by pure interpretation of the linear language in ML.

d!σe def
= dσe

dBox 1 σe def
= dσe

dBox 0 σe def
= 1

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)
10

Going further

Polymorphism not formalized yet.

Implementation?

11

