
Unboxed Data Constructors:
Or, How cpp Decides a Halting Problem

NICOLAS CHATAING, ENS Paris, France
STEPHEN DOLAN, Jane Street, UK
GABRIEL SCHERER, Inria, France
JEREMY YALLOP, University of Cambridge, UK

We propose a new language feature for ML-family languages, the ability to selectively unbox certain data

constructors, so that their runtime representation gets compiled away to just the identity on their argument.

Unboxing must be statically rejected when it could introduce confusion, that is, distinct values with the same

representation.

We discuss the use-case of big numbers, where unboxing allows to write code that is both efficient and safe,

replacing either a safe but slow version or a fast but unsafe version. We explain the static analysis necessary

to reject incorrect unboxing requests. We present our prototype implementation of this feature for the OCaml

programming language, discuss several design choices and the interaction with advanced features such as

Guarded Algebraic Datatypes.

Our static analysis requires expanding type definitions in type expressions, which is not necessarily

normalizing in presence of recursive type definitions. In other words, we must decide normalization of terms

in the first-order 𝜆-calculus with recursion. We provide an algorithm to detect non-termination on-the-fly

during reduction, with proofs of correctness and completeness. Our algorithm turns out to be closely related

to the normalization strategy for macro expansion in the cpp preprocessor.

CCS Concepts: • Software and its engineering→ Data types and structures; Functional languages;
Source code generation; • Theory of computation→ Type structures.

Additional Key Words and Phrases: data representation, sum types, tagging, boxing, recursive definitions,

termination

ACM Reference Format:
Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop. 2024. Unboxed Data Constructors: Or,

How cpp Decides a Halting Problem. Proc. ACM Program. Lang. 8, POPL, Article 51 (January 2024), 31 pages.

https://doi.org/10.1145/3632893

The extended version of this work, with appendices, is available at https://arxiv.org/abs/2311.07369.

1 INTRODUCTION
1.1 Sum Types and Constructor Unboxing
A central construct of ML-family programming languages is algebraic datatypes, in particular

(disjoint) sum types, also called variant types. In OCaml syntax:

Authors’ addresses: Nicolas Chataing, ENS Paris, France, nicolas.chataing@gmail.com; Stephen Dolan, Jane Street, UK,

stedolan@stedolan.net; Gabriel Scherer, Inria, France, gabriel.scherer@gmail.com; Jeremy Yallop, University of Cambridge,

UK, jeremy.yallop@cl.cam.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART51

https://doi.org/10.1145/3632893

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

HTTPS://ORCID.ORG/0009-0006-4174-2088
HTTPS://ORCID.ORG/0000-0002-4609-9101
HTTPS://ORCID.ORG/0000-0003-1758-3938
HTTPS://ORCID.ORG/0009-0002-1650-6340
https://doi.org/10.1145/3632893
https://arxiv.org/abs/2311.07369
https://orcid.org/0009-0006-4174-2088
https://orcid.org/0000-0002-4609-9101
https://orcid.org/0000-0003-1758-3938
https://orcid.org/0009-0002-1650-6340
https://doi.org/10.1145/3632893


51:2 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

type rel_num =

| Pos of nat

| Zero

| Neg of nat

let non_negative = function
| Pos(_) -> true
| Zero -> true
| Neg(_) -> false

Values of this sum type are of the form Pos(n) or Zero or Neg(n); in particular they start with a

(data) constructor, here Pos or Zero or Neg, followed by arguments (zero, one or several arguments),

which is data carried along the constructor. In mathematical terms this corresponds to a sum or

coproduct 𝐴 + 𝐵 between sets of values, rather than a union 𝐴 ∪ 𝐵, because one can always tell from

which side of the sum a value is coming from, by pattern-matching.

In mathematics, the coproduct between sets is typically implemented as a (disjoint) union:

𝐴 + 𝐵 def
= ({0} ×𝐴) ⊎ ({1} × 𝐵)

∑︁
(𝐴𝑖 )𝑖∈𝐼

def
=

⊎
𝑖∈𝐼
({𝑖} ×𝐴𝑖 )

using a cartesian product of the form {𝑖} × 𝑆 to build the pairs of a tag value 𝑖 and an element of 𝑆 .

Software implementations of programming languages use the same approach: the representation

of sum types in memory typically includes not only the data for their arguments, but also a tag
representing the constructor; pattern-matching on the value is implemented by a test on this tag –

often followed by accessing the arguments of the constructor. For example, the standard OCaml

compiler will represent the value Neg(n) by a pointer to a block of two consecutive machine words

in heap memory, with the first word (the block header) containing the tag (among other things),

followed by the argument of type nat in the second word. We say that the parameter of type nat is
boxed in this representation: it is contained inside another value, a “box”.

Boxing induced by data constructors introduces a performance overhead. In the vast majority of

cases it is negligible, as ML-family language implementations heavily optimize the allocation of

heap blocks and often benefit from good spatial locality. There are still some performance-critical

situations where the overhead of boxing (compared to carrying just a nat) is significant.
One common, easy case where boxing can be avoided is for sum types with a single constructor:

type t = Foo of arg. Values of this type could be represented exactly as values of type arg, as
there are no other cases to distinguish than Foo. Haskell provides an explicit newtype binder for
this case. In OCaml, this is expressed by using the @@unboxed attribute on the datatype declaration.

newtype Fd = Fd Int -- Haskell type fd = Fd of int [@@unboxed] (* OCaml *)

Note that the programmer could have manipulated values of type int directly, instead of defining
a single-constructor type fd (file descriptor) isomorphic to int; but often the intent is precisely

to define an isomorphic but incompatible type, to have explicit conversions back and forth in

the program, and avoid mistaking one for the other. Single-constructor unboxing makes efficient

programming more expressive or safe, or expressive/safe programming more efficient.

1.2 Constructor Unboxing
In the present work, we introduce a generalization of single-constructor unboxing, that we simply

call constructor unboxing. It enables unboxing one or several constructors of a sum type, as long as

disjointedness is preserved.

Our main example for this selective unboxing of constructors is a datatype zarith of (rela-

tive) numbers of arbitrary size, that are represented either by an OCaml machine-word integer

(int), when they are small enough, or a “big number” of type Gmp.t implemented by the GMP

library [Granlund and contributors 1991]:

type zarith = Small of int [@unboxed] | Big of Gmp.t

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:3

The [@unboxed] attribute requests the unboxing of the data constructor Small, that is, that
its application be represented by just the identity function at runtime. This request can only be

satisfied if it does not introduce confusion in the datatype representation, that is, two distinct values

(at the source level) that get the same representation. In our zarith example, the definition can

be accepted with an unboxed constructor, because the OCaml representation of int (immediate

values) is always disjoint from the boxed constructor Big of Gmp.t (heap blocks). Otherwise we

would have rejected this definition statically.

type clash = Int of int [@unboxed] | Also_int of int [@unboxed]

Error: This declaration is invalid, some [@unboxed] annotations introduce

overlapping representations.

While constructor boxing is cheap in general, unboxing the Small constructor of the zarith
type does make a noticeable performance difference, because arithmetic operations in the fast path

are very fast, even with an explicit overflow check, so the boxing overhead would be important.

On a synthetic benchmark, unboxing the Small constructor provides a 20% speedup.

1.3 Head Shapes
We propose a simple criterion to statically reject unboxing requests that would introduce confusion

– several distinct values with the same runtime representation – parameterized on two notions:

• The head of a value, an approximation/abstraction of its runtime representation.

• The head shape of a type, the (multi)set of heads of values of this type.

Our static analysis computes the head shape of datatype definitions, and rejects definitions where

the same head occurs several times.

In addition, we require that the head of a value be efficiently computable at runtime. In presence

of an unboxed constructor, the head shape of its argument type is used to compile pattern-matching.

The generated code may branch at runtime on the head of its scrutinee.

We provide a definition of heads that is specific to the standard OCaml runtime representation.

Other languages would need to use a different definition, but the static checking algorithm and the

pattern-matching compilation strategy are then fully language-agnostic.

1.4 A Halting Problem
To compute the head shape of types, and therefore to statically check unboxed constructors for

absence of confusion, we need to unfold datatype abbreviations or definitions. Example:

type num = int

and name = Name of string [@unboxed]

type id =

| By_number of num [@unboxed]

| By_name of name [@unboxed]

To check the final definition of id, we must determine that num is the primitive type int and that
name has the same representation as a primitive string, through a definition-unfolding process

that corresponds to a form of 𝛽-reduction.

In the general case, type definitions may contain arbitrary recursion. In particular, unfolding

definitions may not terminate for some definitions; we need to detect this to prevent our static

analysis from looping indefinitely.

type 'a id = Id of 'a [@unboxed]

type loop = Loop of loop id [@unboxed]

This practical problem is in fact exactly the halting problem – deciding whether terms have

a normal form – for the pure, first-order 𝜆-calculus with recursion. We present an algorithm to

detect non-termination on the fly, during normalization. Running the algorithm on a term either

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:4 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

terminates with a normal form, or it stops after detecting a loop in finite time. We prove that

our algorithm is correct (it rejects all non-terminating programs) and complete (it accepts all

terminating programs). The proof of correctness requires a sophisticated termination argument.

It turns out that this termination-monitoring algorithm is related to the approach that the

cpp preprocessor uses to avoid non-termination for recursive macros – another example where

non-termination must be detected on the fly.

1.5 Contributions and Outline
We claim the following contributions:

(1) We specify the feature of “constructor unboxing”.

(2) We implement this feature in an experimental version of the OCaml compiler
1
, and hope

to eventually merge it upstream. Section 4 details various design considerations that arose

when scaling the feature to a full programming language.

(3) We perform a case study on zarith (Section 2), demonstrating that the feature can noticeably

improve the performance of safe OCaml code, or noticeably improve safety by removing the

need for unsafe OCaml code that was previously used for this purpose.

(4) We provide a static analysis to reject unboxing requests that would introduce confusion. Our

formal treatment (Section 3) is independent from the OCaml programming language.

(5) As an unplanned side-effect, we propose an on-the-fly termination checking algorithm for the

pure, first-order 𝜆-calculus with recursion (Section 6). We prove that this algorithm is correct

(it rejects all non-terminating programs) and complete (it accepts all terminating programs).

(6) There are unexpected parallels between our termination checking work and an algorithm

written in 1986 byDave Prosser [Prosser 1986], to ensure termination of cppmacro expansions.

In Section 7 we compare our algorithm to cpp’s – for which correctness has, to our knowledge,
not been proved.

Our Related Work Section 8 has a mix of discussions on production programming languages,

experimental language designs, and theoretical work on termination of recursive 𝜆-calculi. We list

unboxing-related features in other languages and implementations (GHC Haskell, MLton, F♯, Scala,

Rust). We mention research projects that provide an explicit description language for data layout

(Hobbit, Dargent, Ribbit). Finally, we discuss Rust niche-filling optimizations in more detail.

2 CASE STUDY: BIG INTEGERS
2.1 A Primer on OCaml Value Representations
In the reference implementation of OCaml, sum types have the following in-memory representation:

• constant constructors (without parameters), such as [] or None, are represented as immediate
values, exactly like OCaml integers. The immediate values used are 0 for the first constant
constructor in the type, 1 for the second one, etc.

• non-constant constructors, with one or several parameters, are represented by pointers

to memory blocks, that start with a header word followed by the representation of each

parameter. The header word contains some information of interest for the GC and runtime

system, including a one-byte tag: 0 for the first non-constant constructor, 1 for the second
one, etc., and the arity of the constructor – its number of parameters.

Some primitive types that are not sum types – strings, floats, lazy thunks, etc. – have special

support in the OCaml runtime. They are also represented as memory blocks with a header word,

using a dozen reserved high tag values that cannot be used by sum constructors. They also include

1
We included an anonymized git repository with our submission.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:5

a tag Custom_tag (255) for blocks whose parameters are foreign data words accessed only through

the C Foreign Function Interface (FFI).

OCaml distinguishes immediate values from pointers to blocks (both word-sized) by reserving

the least significant bit for this purpose: immediate values are encoded in odd words, while pointers

are even words. (In particular, OCaml integers are 63-bits on 64-bit machines.) Pattern-matching can

check this immediate-or-pointer bit first, to distinguish constant from non-constant constructors,

and then switch on a small immediate value or block tag.

2.2 Unsafe Zarith
The Zarith library [Miné and Leroy 2012] provides an efficient OCaml implementation of arbitrary-

precision integers, on top of the reference C library Gmp [Granlund and contributors 1991].

Some users of arbitrary-precision integers perform a majority of their computations on very

large integers, way larger than the “small” integers that fit a machine word. On the other hand,

many users perform computations that rarely, if ever, overflow, but they need the guarantee that

the result will remain correct even in presence of occasional overflows. For this latter use-case, we

want to minimize the overhead of Zarith compared to using machine-sized integers directly – in

OCaml, the int type. We want to ensure that when operating on “small” integers, the operation

only performs machine-size arithmetic and bound checks, without any memory allocation, nor any

call to non-trivial C functions; in other words, we want a “fast path” for small integers.

Zarith uses a type Zarith.t whose inhabitants are either machine-sized OCaml integers (type

int) or a “custom” value, a pointer to a memory block with tag Custom_tag and the gmp digits as

arguments. This type cannot be expressed in OCaml today, so Zarith has to use the low-level, unsafe

compiler intrinsics to perform unsafe checks and casts, giving up on the type- and memory-safety

usually guaranteed by the OCaml programming language.
2

type t (* int or gmp integer (in a custom block) *)

external is_small_int: t -> bool = "%obj_is_int" (* imm-or-block bit *)

external unsafe_to_int: t -> int = "%identity" (* unsafe cast *)

external of_int: int -> t = "%identity" (* unsafe cast *)

external c_add: t -> t -> t = "ml_z_add" (* slow path, in C *)

let add x y =

if is_small_int x && is_small_int y then begin (* ``fast path'' addition *)

let z = unsafe_to_int x + unsafe_to_int y in
(* Overflow check -- Hacker's Delight, section 2.12 *)

if (z lxor unsafe_to_int x) land (z lxor unsafe_to_int y) >= 0

then of_int z else c_add x y

end else (* ``slow path'' *) c_add x y

2.3 Unboxed Zarith
Using our experimental OCaml compiler with constructor unboxing, we can write instead:

type custom_gmp_t [@@shape [custom]] (* gmp integer (in custom block) *)

type t = Small of int [@unboxed] | Big of custom_gmp_t [@unboxed]

2
A previous version of Zarith would even implement the small-integer fast path in assembly code on some architectures to

use native overflow-checking instructions instead of bit-fiddling checks in OCaml. But the cost of switching from OCaml to

the assembly FFI in the fast path in fact made this version slower than the OCaml version – it was also painful to maintain.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith


51:6 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

external c_add: t -> t -> t = "ml_z_add"

let add a b = match a, b with
| Small x, Small y ->

let z = x + y in
(* Overflow check -- Hacker's Delight, section 2.12 *)

if (z lxor x) land (z lxor y) >= 0

then Small z else c_add a b

| _, _ -> c_add a b

This code is equivalent to the previous version, generates exactly the same machine code, but

does not require any unsafe casts. One still has to trust the FFI code of c_add to respect the intended
memory representation, and we trust the annotation shape [custom] that claims that the abstract

type custom_gmp_t is only inhabited (via the FFI) by Custom_tag-tagged blocks. But the unsafe

boundary has been pushed completely off the fast path; it can disappear completely in other

examples not involving bindings to C libraries.

On a synthetic microbenchmark, we observed that our new version has essentially the same

performance as the previous unsafe code, and is 20% more efficient than a boxed version – using a

sum type without [@unboxed] annotations.

Case-study conclusion. Unboxing relieves some of the tension between safety and efficiency in

performance-critical libraries. Users sometimes have to choose between safe, idiomatic sum types

or more efficient encodings that are unsafe and require more complex code. In some cases, such as

Zarith, constructor unboxing provides a safe, clear and efficient implementation.

2.4 Other Use-Cases
Let us briefly mention a few other use-cases for constructor unboxing.

A ropes benchmark. Our original design proposal Yallop [2020] includes a similar performance

experiment on ropes (trees formed by concatenating many small strings), reporting a 30% perfor-

mance gain on an example workload – a similar performance ballpark to our 20%. The example

was implemented using unsafe features only as unboxing was not implemented at the time; we can

express it as follows:

type rope =

| Leaf of string [@unboxed]

| Branch of { llen: int; l:rope; r:rope }

Coq’s native_compute machinery. Another use-case where constructor unboxing could provide

safety is the representation of Coq values in the native_compute implementation of compiled

reduction, first introduced in Boespflug, Dénès and Grégoire [2011]. native_compute is a Coq tactic
that compiles a Coq term into an OCaml term such that evaluating the OCaml term (by compilation

then execution, in the usual call-by-value OCaml strategy) computes a strong normal form for

the original Coq term. It uses an unsafe representation of values that mixes (unboxed) functions,

sum constructors, and immediate values, and could be defined as a proper OCaml inductive if

constructor unboxing was available. (The relation with constructor unboxing was pointed out to

us by Jacques-Henri Jourdan, Guillaume Melquiond and Guillaume Munch-Maccagnoni.)

A partial sum-type presentation of dynamic values. This feature could make some forms of

dynamic introspection of runtime values more ergonomic than what is currently exposed in the

Obj module. We could think of defining a sort of “universal type” as follows:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://github.com/ocaml/Zarith
https://github.com/ocaml/RFCs/pull/14#issuecomment-674442570
https://github.com/ocaml/RFCs/pull/14#issuecomment-674442570


Unboxed Data Constructors 51:7

type dyn =

| Immediate of int [@unboxed]

| Block of dyn array [@unboxed]

| Float of float [@unboxed]

| String of string [@unboxed]

| Function of (dyn -> dyn) [@unboxed]

| Custom of custom [@unboxed]

| ...

and custom [@@shape [custom]]

let to_dyn : 'a -> dyn =

fun x -> (Obj.magic x : dyn)

This interface cannot cover all needs – for example it is not possible to distinguish between

Int32, Int64 by their tags, they would be lumped together in the Custom case – and we may need

to restrict it due to shape approximations required by portability concerns – see Section 4.2. But it

would still provide a pleasant pattern-matching interface for unsafe value introspection code that

people write today using the Obj module directly.
3

Non-use-case: magic performance gains in many places. One should not hope that there are

plenty of performance-sensitive OCaml codebases lying around today that would get a noticeable

performance boost by sprinkling a few (or many) unboxing annotations. In the vast majority of

cases, unboxing provides no noticeable performance improvement. There are two reasons:

(1) Allocating values in the OCaml minor heap is really fast. In the boxed version of the Zarith

benchmark, checking against integer overflow is slower than allocating the Small constructor.
Most programmers overestimate the performance cost of boxing, it makes little difference

for most workloads.
4

(2) In the few cases of performance-sensitive programs where boxing would add noticeable

overhead, the authors of the program already chose a different implementation strategy to

avoid this boxing, for example using unsafe tricks as Zarith.

The second point is common to most language design for performance: existing performance-

sensitive codebases are written with the existing feature set in mind, and typically do not present

low-hanging fruits for a new performance-oriented feature. The benefits rather come from giving

more, better options (safer, simpler, more idiomatic) to write performant code in the future.
It is also reassuring for users to know that a new idiom made available is “zero-cost”. Even in

cases where in fact the non-optimized approach would have perfectly fine performance, there is a

real productivity benefit for users to know that a given change has zero performance impact. For

example, this can avoid the need to write specific benchmarks to reassure reviewers of a change.

3 HEADS AND HEAD SHAPES
To formalize constructor unboxing, we use a simple language of types 𝜏 and datatype definitions 𝑑 .

This captures sum types in typical ML-inspired, typed functional programming languages.

3
A Github code search for Obj usage suggests https://github.com/rickyvetter/bucklescript/blob/

cbc2bd65ce334e1fc83e1c4c5bf1468cfc15e7f9/jscomp/ext/ext_obj.ml#L25 for example.

4
One should be careful that the cost of boxing is not only the extra allocation, but the reduced memory locality of wider data

representations. Locality effects are hard to measure accurately and in particular are not captured well in micro-benchmarks.

Still, our prediction remains that unboxing makes a very small difference for most use-cases.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://github.com/rickyvetter/bucklescript/blob/cbc2bd65ce334e1fc83e1c4c5bf1468cfc15e7f9/jscomp/ext/ext_obj.ml#L25
https://github.com/rickyvetter/bucklescript/blob/cbc2bd65ce334e1fc83e1c4c5bf1468cfc15e7f9/jscomp/ext/ext_obj.ml#L25


51:8 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

Notation. We write (𝑒𝑖 )𝑖∈𝐼 for a family of objects 𝑒𝑖 indexed over 𝐼 . (Placing the domain as a

superscript is reminiscent of the exponential notation 𝐴𝐼 for function spaces.) We often omit the

indexing domain 𝐼 , writing just (𝑒𝑖 )𝑖 . Indexing domains 𝐼 , 𝐽 , 𝐾 , etc. are meta-variables that we

understand as denoting finite, totally ordered sets – for example, integer intervals [0;𝑛].

3.1 Types, Datatype Declarations, Values
Types ∋ 𝜏 ::= 𝛼 | 𝑡 (𝜏𝑖 )𝑖 | t̂ (𝜏𝑖 )𝑖

TyDecls ∋ 𝑑 ::= type 𝑡 (𝛼𝑖 )𝑖 = (𝐶 𝑗 of (𝜏 𝑗,𝑘 )𝑘∈𝐾𝑗 ) 𝑗 (𝐶unboxed
𝑢 of 𝜏𝑙 )𝑙

A datatype definition introduces a datatype constructor 𝑡 parameterized over the family of type

variables (𝛼𝑖 )𝑖 as a sum typemade of a (possibly empty) family of boxed constructors (𝐶 𝑗 of (𝜏 𝑗,𝑘 )𝑘 ) 𝑗 ,
where each 𝐶 𝑗 expects a family of arguments at types (𝜏 𝑗,𝑘 )𝑘∈𝐾𝑗

, and a (possibly empty) family of

unboxed constructors (𝐶unboxed
𝑙

of 𝜏𝑙 )𝑙 each expecting a single argument of type 𝜏𝑙 .

A type 𝜏 is either a type variable 𝛼 , an instance 𝑡 (𝜏𝑖 )𝑖 of a datatype (the (𝜏𝑖 )𝑖 instantiate the
datatype parameters (𝛼𝑖 )𝑖 ), or an instance t̂ (𝜏𝑖 )𝑖 of some primitive type constructor t̂, such as

integers, floats, functions, tuples, strings, arrays, custom values, etc.

Closed types (without type variables) in this grammar are inhabited by values 𝑣 defined by the

following grammar, with a simple typing judgment 𝑣 : 𝜏 expressing that 𝑣 has type 𝜏 .

Values ∋ 𝑣 ::= 𝐶 (𝑣𝑘 )𝑘∈𝐾 | 𝐶unboxed 𝑣 | v̂

type 𝑡 (𝛼𝑖 )𝑖 = (𝐶 𝑗 of (𝜏 𝑗,𝑘 )𝑘 ) 𝑗 . . .
(𝑣𝑘 : 𝜏 𝑗,𝑘

[
𝛼𝑖 ← 𝜏 ′𝑖

]𝑖 )𝑘
𝐶 𝑗 (𝑣𝑘 )𝑘 : 𝑡 (𝜏 ′𝑖 )𝑖

type 𝑡 (𝛼𝑖 )𝑖 = . . . (𝐶unboxed
𝑙

of 𝜏𝑙 )𝑙

𝑣 : 𝜏𝑙
[
𝛼𝑖 ← 𝜏 ′𝑖

]𝑖
𝐶unboxed
𝑙

𝑣 : 𝑡 (𝜏 ′𝑖 )𝑖

language-specific rules for primitive values at primitive types

v̂ : t̂ (𝜏𝑖 )𝑖

3.2 Low-Level Representation of Values
Unboxed constructors intrinsically depend on a notion of low-level data representation.

We assume given a set Data of low-level representations, and a function

repr : Value × Type→ Data
that determines the data representation of each value.

We further assume two properties of the repr function:
(1) Injectivity: if 𝑣1, 𝑣2 : 𝜏 have no unboxed constructors and 𝑣1 ≠ 𝑣2, then repr(𝑣1, 𝜏) ≠ repr(𝑣2, 𝜏).
(2) Unboxing: for any 𝐶unboxed of 𝜏 ′ in 𝜏 and 𝑣 : 𝜏 ′, we have

repr(𝐶unboxed 𝑣, 𝜏) = repr(𝑣, 𝜏 ′)
Our injectivity assumption merely states that our representation was correct before the intro-

duction of constructor unboxing. Our static analysis rejects some unboxed constructor definitions

to extend this property to well-typed values with unboxed constructors.

3.2.1 For OCaml. In the specific case of OCaml, writing Zm for the set of machine integers, we

claim that the representation of values in the reference OCaml implementation can be modeled as:

DataOCaml ∋ 𝑤 ::= Imm (𝑛 ∈ Zm) | Block (𝑡 ∈ Zm) (𝑎0, . . . , 𝑎𝑛−1)
BlockArgs ∋ 𝑎 ::= (𝑤 ∈ Data) | (𝑛 ∈ Zm)

As we mentioned in Section 2.1, the low-level representation of OCaml values is either an imme-
diate value, which we approximate as living in Zm, or a block starting with a header word containing

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:9

a tag in Zm followed by several words of block arguments 𝑎0 . . . 𝑎𝑛−1. Block arguments can be

either valid OCaml values themselves or arbitrary machine words. Note that this representation

loses some information, for example: immediate values live in a smaller space with one less bit

available, and the tag 𝑡 of a block determines whether its arguments must be valid OCaml values

(most tags) or machine words (Custom_tag, String_tag, Double_tag, Double_array_tag, etc.).
We can now define the repr function going from well-typed source values to their low-level rep-

resentation. In OCaml, constant constructors (taking no argument) are represented as immediates,

while non-constant constructors are represented as blocks, and the representation of a constructor

in each category depends on its position (indexed starting at 0) in the type declaration.

repr(𝐶 ∅, 𝜏) def
= Imm 𝑖 𝐶 is 𝜏 ’s 𝑖-th constant constructor

repr(𝐶 (𝑣𝑘 )𝑘∈𝐾 , 𝜏)
def
= Block 𝑖 (repr(𝑣𝑘 , 𝜏𝑘 ))𝐾 𝐶 of (𝜏𝑘 )𝑘 is 𝜏 ’s 𝑖-th non-constant constructor

repr(𝐶unboxed 𝑣, 𝜏) def
= repr(𝑣, 𝜏 ′) 𝐶unboxed of 𝜏 ′ is an unboxed constructor of 𝜏

As required, this repr function is injective on boxed constructors and erases unboxed constructors.
The representations of some primitive values include:

repr(true, bool) def
= Imm 0

repr((𝑣1, 𝑣2), (𝜏1 × 𝜏2))
def
= Block 0 (repr(𝑣1, 𝜏1), repr(𝑣2, 𝜏2))

repr(fun x -> x+y, 𝜏1 → 𝜏2)
def
= Block Closure_tag . . .

repr(3.14, float) def
= Block Double_tag . . .

repr(”Hello”, string) def
= Block String_tag . . .

3.3 Heads and Head Shapes
We assume given a set Head of value heads. The head ℎ of a value 𝑣 represents an easily computable

abstraction/approximation of the low-level representation of the value 𝑣 : we assume a function

headdata : Data→ Head
computing the head of a value representation, and define

head(𝑣, 𝜏) def
= headdata (repr(𝑣, 𝜏))

Note that if two values have different heads, then they are necessarily distinct.

Our static analysis will run on arbitrary type definitions allowed by our syntax of type decla-

rations, and reject certain type declarations that would introduce conflicts, that is, allow distinct

values with the same representation. The cleanest way we found to model this was to define the

head shape of a type expression as a multiset of heads, which may contain duplicate elements.

Notation (M(𝑆), 𝑀 (𝑥), {{ . . .}}, ⌊𝑀⌋set, max(𝑀1, 𝑀2), 𝑀1 +𝑀2). We writeM(𝑆) for the set of
multisets of elements of 𝑆 , 𝑀 (𝑥) for the number of occurrences of 𝑥 in the multiset 𝑀 , {{ . . .}} for
multiset comprehension, and ⌊𝑀⌋set (in P(𝑆)) for the set of elements of a multiset𝑀 (inM(𝑆)).

We use two standard union-like operations on multisets: the maximum and the sum, defined by:

max(𝑀1, 𝑀2) (𝑥)
def
= max(𝑀1 (𝑥), 𝑀2 (𝑥)) (𝑀1 +𝑀2) (𝑥)

def
= 𝑀1 (𝑥) +𝑀2 (𝑥)

We define the head shape headshapeClosedTypes (𝜏) of a closed type expression 𝜏 as the multiset of

heads of values of this type. We extend this notation to constructor declarations instantiated at a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:10 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

closed return type, which we call “type components” 𝜖 as they come up in type declarations.

TyComps ∋ 𝜖 ::= 𝜏 | 𝐶 of (𝜏𝑖 )𝑖 : 𝜏 | 𝐶unboxed of 𝜏 ′ : 𝜏

headshapeClosedTypes : ClosedTypes→M(Heads)
headshapeClosedTypes (𝜏)

def
= {{head(𝑣, 𝜏) | 𝑣 : 𝜏}}

headshapeClosedTyComps (𝐶 of (𝜏𝑖 )𝑖 : 𝜏) def
= {{head(𝐶 (𝑣𝑖 )𝑖 , 𝜏) | (𝑣𝑖 : 𝜏𝑖 )𝑖 }}

headshapeClosedTyComps (𝐶unboxed of 𝜏 ′ : 𝜏) def
= headshapeClosedTypes (𝜏 ′)

Finally, we can extend the notion of head shapes to open types (or type components) containing

type variables 𝛼 , by taking the union of all their closed instances. We write 𝜏 ↑ 𝜏 ′ if 𝜏 ′ is a closed
type or type component) that instantiates the free type variables of 𝜏 .

𝜖′ closed
𝜖′ = 𝜖 [𝛼𝑖 ← 𝜏𝑖 ]𝑖

𝜖 ↑ 𝜖′
headshapeTyComps : TyComps→M(Heads)

headshapeTyComps (𝜖)
def
= max{headshapeClosedTyComps (𝜖′) | 𝜖 ↑ 𝜖′}

Note that we take the maximum of all closed instances, not their sum. In particular, if all the closed

instances have head shapes that are sets (they do not contain any duplicates), then the headshape

of the open type is itself a set. In particular, in absence of unboxed constructors, headshape(𝛼)
is typically equal to the set Heads of all heads seen as a multiset (assuming that each shape is in

the image of at least one well-typed value). If we had used a sum in our definition above, then

headshape(𝛼) would have duplicates as soon as two distinct types have heads in common.

3.3.1 For OCaml. In the specific case of OCaml, we define the head of an immediate 𝑛 ∈ Zm as

just the pair (Imm, 𝑛), and the head of a block of tag 𝑡 ∈ Zm as the pair (Block, 𝑡).

HeadsOCaml

def
= {Imm,Block} × Zm

headdata,OCaml (Imm 𝑛) def
= (Imm, 𝑛)

headdata,OCaml (Block 𝑡 (𝑎0, . . . , 𝑎𝑛−1))
def
= (Block, 𝑡)

Note that, while our previous choice of Data and repr functions for OCaml model an existing

representation, and are not visible to the users – even in presence of unboxed constructors – the

definition of heads and the function head : Value→ Heads are new design choices that have the

user-visible impact of accepting or rejecting certain unboxed constructors in datatype declarations.

We could use a finer-grained notion of head (for example we could include the arity 𝑛 of a block

in its head), which allows to distinguish more types and thus accept more unboxed type definitions.

Conversely, a coarser-grained notion of head would be more portable to other implementations.

For example, an implementation that would represent constructors by user-visible name rather than

position could not use our notion of head as is. We discuss this portability question in Section 4.2.

Another reason to choose a coarser-grained notion of head is to have a simpler model to explain

to users, at the cost of rejecting more declarations; for example, one could restrict unboxing to

immediate types by using a pessimistic ⊤ shape for all types containing blocks.

Finally, our implementation defines a concrete syntax of head shapes that denote sets of heads
and is easy to use in computations. Elements of this head shape syntax are pairs of approximations,

one for immediates and one for blocks. Approximations are defined as either a finite set of machine

words (including in particular the empty set ∅) or the wildcard shape ⊤ representing all heads.

HeadShapeStx ∋ 𝐻 def
= ImmShape × BlockShape

ImmShapes,BlockShapes
def
= {⊤} ∪ FinSet(Zm)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:11

J_K : HeadShapeStx→ P(Heads)
J(𝐼 , 𝐵)K def

= {Imm 𝑖 | 𝑖 ∈ J𝐼K}
⊎ {Block 𝑡 | 𝑡 ∈ J𝐵K}

J_K : ImmShapes ∪ BlockShapes→ P(Zm)
J⊤K def

= Zm

J𝑆K def
= 𝑆 (𝑆 ∈ FinSet(Zm))

For example, our shape syntax for OCaml integers is (⊤, ∅), our shape syntax for OCaml booleans

is ({0, 1}, ∅), our shape syntax for lists or options (one constant constructor and one non-constant

constructor) is ({0}, {0}), and our shape syntax for custom blocks is (∅, {Custom_tag}).
This syntax is a correct abstraction of multisets that happen to be mere sets. It does not let us

express multisets with conflicts. We can directly implement the non-disjoint union 𝐻1 ∪ 𝐻2 of two

syntactic shapes, and also implement the disjoint union 𝐻1 ⊎ 𝐻2 as a partial operation that returns

a syntactic shape if 𝐻1, 𝐻2 are disjoint, and is undefined otherwise – if the resulting multiset has

duplicates, and cannot be represented as a syntactic shape.

(𝐼1, 𝐵1) ∪ (𝐼2, 𝐵2)
def
= (𝐼1 ∪ 𝐼2, 𝐵1 ∪ 𝐵2)

⊤ ∪ 𝑥 , 𝑥 ∪ ⊤ def
= ⊤

(𝐼1, 𝐵1) ⊎ (𝐼2, 𝐵2)
def
= (𝐼1 ⊎ 𝐼2, 𝐵1 ⊎ 𝐵2)

In the general case, the definition headshape(𝜏) of head shapes for open types may be difficult

to compute, as it contains a quantification over all closed extensions of 𝜏 . The OCaml value

representation is very regular, which makes it easy to compute shapes of type variables, constructor

declarations and primitive types. We can represent them directly in our head shape syntax:

headshape
OCaml

(𝛼) def
= (⊤,⊤)

headshape
OCaml

(𝐶 of ∅) def
= ({𝑖}, ∅) 𝐶 is the 𝑖-th constant constructor at its type

headshape
OCaml

(𝐶 of (𝜏𝑘 )𝑘 )
def
= (∅, {𝑖}) 𝐼 ≠ ∅, 𝐶 is the 𝑖-th non-constant constructor at its type

headshape
OCaml

(t̂ (𝜏𝑖 )𝑖 )
def
= the immediates and tags of primitive type constructor t̂

This definition of headshape
OCaml

on base types and boxed constructor definitions agrees with

the generic definition headshape, in the sense that headshapeTyComps (𝜖) = Jheadshape
OCaml

(𝜖)K
for the OCaml value representation and our choice of heads.

3.4 Sum Normal Form
To compute the head shape of a type expression 𝜏 , we must unfold type definitions and traverse

unboxed constructors. This transformation is of independent interest, we formalize it in this section.

We define a grammar of sum normal forms 𝑆 that capture the result of this unfolding process,
and a (partial) normalization judgment 𝜏 ⇒ 𝑆 that computes the head normal form of a type.

𝑆 ::= ∅ | 𝜂 | 𝑆 + 𝑆
𝜂 ::= 𝛼 | 𝐶 of (𝜏𝑖 )𝑖 | t̂ (𝜏𝑖 )𝑖

var

𝛼 ⇒ 𝛼

prim

t̂ (𝜏𝑖 )𝑖 ⇒ t̂ (𝜏𝑖 )𝑖

constr

type 𝑡 (𝛼𝑖 )𝑖 = (𝐶 𝑗 of (𝜏 𝑗,𝑘 )𝑘 ) 𝑗 (𝐶unboxed
𝑙

of 𝜏𝑙 )𝑙 (𝜏𝑙 [𝛼𝑖 ← 𝜏𝑖 ]𝑖 ⇒ 𝑆𝑙 )𝑙

𝑡 (𝜏𝑖 )𝑖 ⇒
∑︁
𝑗

𝐶 𝑗 of (𝜏 𝑗,𝑘 [𝛼𝑖 ← 𝜏𝑖 ]𝑖 )𝑘 +
∑︁
𝑙

𝑆𝑙

A sum normal form is a multiset of components 𝜂 written as a formal sum, that are either a boxed

constructor, a type variable or a primitive type constructor. The normalization judgment unfolds

datatype declarations, sums boxed constructors and the normal form of the unboxed arguments.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:12 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

In presence of mutually-recursive definitions, some type expressions may “loop” forever: they

don’t have a sum normal form. Consider for example:

type loop = Intunboxed of înt | Loopunboxed of loop
Fortunately, the problem of whether a given type expression 𝜏 has a sum normal form is in fact

decidable. We discuss our decision procedure in Section 6.

3.5 Rejecting Conflicts
Finally, given a type declaration 𝑑 , our static analysis computes a head shape headshape(𝑆) of its
sum normal form 𝑆 by summing the head shape of each component of the sum. Our static analysis

accepts the definition if and only if headshape(𝑆) does not contain any duplicates.

𝑡 (𝛼𝑖 )𝑖 ⇒ 𝑆

headshapedecl (type 𝑡 (𝛼𝑖 )𝑖 = . . . ) def= headshapesnf (𝑆)

headshapesnf (∅)
def
= ∅

headshapesnf (𝜂)
def
= headshapeTyComps (𝜂)

headshapesnf (𝑆1 + 𝑆2)
def
= headshapesnf (𝑆1) + headshapesnf (𝑆2)

The result of this analysis can be easily computed, in the case of OCaml, by using our head shape

syntax: the head shape of 𝑆1 + 𝑆2 is conflict-free if headshapeOCaml
(𝑆1) ⊎ headshape

OCaml
(𝑆2) is

defined and has a conflict otherwise.

3.6 Pattern-Matching Compilation
When checking a type declaration with unboxed constructors, we record for each unboxed construc-

tor 𝐶unboxed of 𝜏 the head shape of its type parameter 𝜏 . When compiling pattern-matching clauses

using an unboxed constructor in a pattern, say 𝐶unboxed𝑝 , we implement matching on 𝐶unboxed of 𝜏
as a condition that the head of the scrutinee must belong to the shape of 𝜏 . (The details of how to

do this depends of course on the pattern-matching compilation algorithm of the language.)

We know that this approach is always sound, thanks to the property that none of the other

scrutinees (starting, at the source level, with a different constructor) may have a head belonging

to the head shape of 𝜏 . Note that this property, enforced by our static analysis, is in fact slightly

stronger than the absence of conflicts: not only must the representation of inhabitants of 𝜏 be

distinct from all the other possible scrutinees, they should furthermore have distinct heads.

The runtime cost of checking the head depends on the language and the notion of head chosen.

For our choice of heads for OCaml, it is exactly as costly as checking the head constructor of a

value, so this does not add overhead on pattern-matching. A finer-grained notion of head that

would inspect the value “in depth” could add a higher cost – to balance against the space savings

of accepting more unboxing.

4 SCALING TO A FULL LANGUAGE
In this section, we describe less formally all the “other issues” that we had to consider to scale this

proposed feature to a full programming language, namely OCaml.

4.1 Handling All the Tricky Cases
We did not encounter any conceptual issue when scaling this approach to all the primitive types

supported by the OCaml runtime. (This is not too surprising given that our heads are closelymodeled

on the existing runtime data representation.) In the interest of demonstrating the difference between

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:13

the simple situation of datatypes with a simple representation and everything else, let us give here

an exhaustive list of all the tricky cases.

(1) Double_array_tag is used to represent nominal records whose fields are all float, and also

values of type float array.
To determine the shape of a record type, we must call the same logic that the type-checker

uses to the decide the “unboxed float record” criterion and use (∅, {Double_array_tag})
instead of (∅, {0}) in that case.

For arrays, we use the head shape (∅, {0, Double_array_tag}) in all cases. Note that OCaml

supports a configuration option to disable the unboxing of float array (supporting this

representation adds some dynamic checks on array operations), but we decided to use the

pessimistic shape with both tag values independently of the configuration value, to avoid

having the compiler statically reject some programs only in some specific configuration.

(2) Values of type ty Lazy.t have an optimized representation where they may be represented

by a lazy thunk of tag Lazy_tag, a computed value of tag Forward_tag, or directly a value

of type ty, under some conditions on ty. The corresponding shape is the maximum of

(∅, {Lazy_tag, Forcing_tag, Forward_tag}) and of the shape of ty. (OCaml 5 added a third

tag Forcing_tag to detect concurrent forcing; it was trivial to adapt our analysis.)

Note that Section 3.3.1 defined headshape
OCaml̂

t (𝜏𝑖 )𝑖 as depending only on t̂, not the 𝜏𝑖 ; here
we are handling lazy values in a more precise way due to their non-uniform representation.

(We could also approximate them to the uniform shape ⊤.)
(3) Function closures may have either tags Closure_tag or Infix_tag (used for some mutually-

recursive functions). The pattern-matching code that we generate on sum types with an

unboxed function type (which is useful for Coq native_compute) is slightly less good than it

could be because these two tags are not consecutive (247 and 249), so we are slightly tempted

to renumber the tags in the future.

(4) Exceptions, and in general inhabitants of extensible sum types, use tag Object_tag. Object
types themselves have an obscure and complex data representation due to various optimiza-

tions, and we just assigned them the top shape ⊤.

4.2 Portability of our Heads
The language of head shapes makes some aspects of the low-level representation of values visible to

users of the surface language. This comes at the risk of complexity, but also at the risk of reducing

the portability of the language by setting in stone certain representation choices, that would rule

out other implementations.

One could think of making constructor-unboxing a “best effort” feature to avoid this downside,

by simply emitting a warning in the case where an unboxing annotation would introduce a conflict

under the current implementation, and keeping the constructor boxed. We decided against this for

now, because we believe that advanced performance features such as constructor unboxing are

used when users reason about the performance of their application, that is, when data representa-

tion is part of their specification for the code they are writing. In this context, silently ignoring

representation requests is arguably a bug: it breaks the specification the user has in mind.

Instead we are trying to discuss with other implementors of OCaml to find whether we should

make our heads more coarse-grained in some places, to increase portability without breaking

relevant examples of interest. In particular, the alternative backend js_of_ocaml compiles OCaml

to JavaScript, and uses native JavaScript numbers for most OCaml numeric types (int, float,
nativeint, int32). We are planning to quotient the difference between those types in our language

of shape, to improve portability.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:14 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

4.3 Abstract Types with Shapes
Abstract types can readily be given the top shape ⊤. We also support annotating an abstract type

with a shape restriction [@shape ..], which gives a head shape for this type.

For abstract types coming from the interface of modules or functor parameters, those shape

annotations are checked when checking that the interface conforms to the implementation.

For abstract types used to represent values only populated by the FFI, these shape annotations

have to be trusted, in the same way that the OCaml FFI trusts foreign functions to respect their

type provided on the OCaml side.

We used this feature in our Zarith example in Section 2.3 to allow unboxing the Big constructor,

whose argument is an abstract type custom_gmp_t of GMP numbers implemented through the FFI.

4.4 Are We Really First-Order?
Parametrized type definitions fall in the first-order fragment because OCaml does not support

higher-kinded types.

Note that some designs for higher-kinded types in related languages are restricted to higher-order

“type constructors” that do not create 𝛽-redexes, so they do not necessarily have the expressiveness

of the full higher-order 𝜆-calculus.

On the other hand, the OCaml module system does provide higher-order abstractions through

functors: a type in a functor may depend on a parametrized type in the functor argument. However,

unfolding of type definitions remain first-order in nature:

• When we are checking the body of a functor and encounter a type that belongs to a module

parameter, it is handled as any other type declaration.

• Whenwe encounter a type expression containing a functor application, e.g. Set.Make(Int).t,
the type-checker has access to the signature of the functor application Set.Make(Int) and

we check its type t.

Another way to think of the treatment of functor application is that the OCaml type-checker

performed 𝛽-reduction of functor applications before we compute shapes. In other words, in this

work, we consider the module language as a strongly-normalizing higher-order subset whose

normal forms are first-order.

4.5 OCaml Features Subsumed by Head Shapes
The OCaml type-checker currently contains three subsystems that we believe would be subsumed

by our head shape analysis:

(1) It contains an analysis of the “unboxed form” of a type (due to the presence of unboxing for

single-constructor variants and single-field records) that corresponds to our notion of sum

normal form of a type, and would benefit from our normalizing algorithm to compute those

in presence of recursion.

(2) It defines a property called [@@immediate] for abstract types, which claims that the inhabitant

of the type are all immediate values. (This is used by the runtime to specialize ad-hoc

polymorphic functions such as comparison and serialization.) Computing the head shape

subsumes immediateness-checking.

(3) To implement unboxing of single-variant GADTs, it must perform an intricate static analysis

to reject attempts to unbox existentials, which would make the float array optimization

unsound. (Don’t ask.) We believe that this static analysis, detailed in Colin, Lepigre and

Scherer [2019], could be subsumed by our head shape computation.

We are planning to simplify the compiler implementation by removing all the existing logic to

implement these separate aspects, and replace them by a shape computation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:15

5 POTENTIAL EXTENSIONS
We have considered the following aspects, but have not implemented them. They are not necessary

to consider upstreaming a first useful version of constructor unboxing.

5.1 Shape Constraints on Type Variables
Section 4.3 shows how abstract types can now be annotated with constraints on the head shapes of

their inhabitants. A related feature would be to constrain the type variables of parametrized types:

type ('a [@shape any_block]) block_option = None | Some of 'a [@unboxed]

type ('a [@shape immediate]) imm_option = None of unit | Some of 'a [@unboxed]

The type 'a block_option is similar to the standard 'a option datatype, but its type param-

eter 'a may only be instantiated with type expressions whose shape is included in the shape

any_block – any block tag, but no immediate value. This restriction allows unboxing the Some
constructor without conflicting with the None immediate value. Conversely, imm_option may only

be instantiated with immediate types, and its Some constructor can also be unboxed as we made

None of unit a block constructor.

Similarly to abstract types with shapes (Section 4.3), this feature provides modularity. We can

construct large types with specialized representations by composing together smaller parameterized

types (or functors), with shape assumptions on the boundaries between the various definitions.

This change is easy conceptually, but requires non-trivial changes to the OCaml compiler where

type variables do not carry kind information. It goes in the same direction as other “layout” changes

experimented with by Jane Street, so some of the implementation work can be shared.

5.2 Harmless Cycles
Our algorithm to compute shapes unfolds potentially-recursive type definitions and monitors

termination: it stops when encountering a cycle in the definition. Currently our prototype rejects

all definition that contain such cycles. But the cycles fall in two categories: most cycles are “harmful

cycles” that must be rejected, but there are “harmless cycles” that could be accepted.

type harmful = A | Loop of harmful [@unboxed]

type harmless = Loop of harmless [@unboxed]

Both those examples are rejected by our prototype as their shape computation detects a cycle.

harmful cannot soundly be accepted, as there would be a confusion between the values A, Loop(A),
Loop(Loop(A)), etc. On the other hand, allowing the unboxing of harmless would not in fact

introduce any confusion as the type would be empty – without any inhabitant. Said otherwise,

cycles in shape computations can be interpreted as smallest fixpoints; most of those fixpoints

contain conflicts but a few are the empty set of value.

Accepting harmless cycles should be of medium difficulty. From an implementation perspective

it is not easy to distinguish harmless cycles and accept them, it is substantially more work than

rejecting all cycles. Besides, there is no point in writing types such as harmless in practice – just

write an empty type directly. So this is naturally left as future work.

There is however one good reason to do more work there, which is related to data abstraction.

Consider the following example:

type 'a foo type weird = Loop of weird foo [@unboxed]

This weird definition is accepted by our shape analysis. For the abstract type 'a foo we assume

the shape ⊤ of any possible value – this does not depend on the parameter 'a. Then weird foo
has the same shape ⊤ and the definition of weird is accepted. (Adding any other constructor to

weird would make it rejected.)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:16 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

However, we could later learn that the type 'a foo is in fact defined as type 'a foo = 'a. If
we perform the substitution, we get a harmless cycle. In other words, rejecting harmless cycles

breaks the substituability property for abstract types. This is a nice meta-theoretical property, and

breaking it may result in surprising software engineering situations that are problematic in practice.

5.3 Unboxing by Transformation
In our work, unboxed constructors act as the identity on the representation of their arguments. One

could generalize this by allowing constructor unboxing to be realized by a non-identity transforma-

tion on its arguments – chosen to be more efficient than the default constructor representation.

Applying non-identity transformations could avoid conflicts in value representations, allowing

more unboxing requests. Consider for example:

type 'a t = A of bool | B of 'a option

Our work only supports unboxing the constructor A in this example. Unboxing B is not supported:

• if A is not unboxed, then we would have a confusion between blocks constructed by A and
those coming from the Some constructor of the option.

• if A is unboxed, then we would have a confusion between immediates corresponding to the

false value (in A) and the None value (in B).

It would however be possible to unbox the constructor B if we accepted to change the rep-

resentation of the constructor A of bool [@unboxed]. Instead of storing a bool value directly

(an immediate in {0, 1}), we could transform the bool value to store it as an immediate in {1, 2}
for example, avoiding a conflict with the None value (immediate 0) unboxed from B. Examples of

representative approaches follow.

(* no shifting, but a different boolean type *)
type 'a t1 =

| A of fake_bool [@unboxed]

| B of 'a option [@unboxed]

and fake_bool =

| Fake_false [@tag 1]

| Fake_true [@tag 2]

The type t1 is in fact not an example of a transformation associated with an unboxed constructor:

instead we assume that it is possible to specify a non-standard choice of tag at declaration time –

the imaginary [@tag 2] attribute. Supporting this would be an easy change, but it requires using a

non-standard boolean type and thus requires code changes for the user, making it cumbersome or

impractical in many situations.

(* explicit shifting *)

type 'a t2 =

| A of bool [@unboxed by (add 1)]

| B of 'a option [@unboxed]

(* fully inferred transformation *)

type 'a t3 =

| A of bool [@unboxed]

| B of 'a option [@unboxed]

The type t2 performs a transformation at unboxing time (adding 2 to the value) that is specified

by the user. Pattern-matching code would then have to be careful to undo this transformation on

the fly (by subtracting 1). Note that (add 1) is not an arbitrary OCaml term here, it must be part

of a dedicated transformation DSL that we know to invert efficiently.

Another valid choice would be to have the constructor B transform its argument in a way that

leaves its block values unchanged but shifts its None value from the immediate 0 to an immediate

outside {0, 1} or to a block of non-zero tag (with no argument). Note that unboxing Bwould come at

a higher runtime cost as the transformation (to apply at construction time and unapply at matching

time) is more complex.

Finally the type t3 assumes a version of constructor unboxing that implicitly infers such trans-

formations to satisfy the user’s unboxing request. This is not the design approach that we have

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:17

used in our OCaml work, but it corresponds to unboxing strategies in some other programming

languages – see our discussion of Rust’s niche-filling optimizations in our Related Work Section 8.2.

Arbitrary transformations can be supported, as long as we can express the corresponding abstract

transformation on shapes. For OCaml and the notion of heads that we proposed, a natural space of

transformations are those that would change the head of a value, and leave the rest unchanged, by:

(1) applying amapping to its immediate values, and/or turning some of them into blocks (constant

blocks with fixed tags, or non-constant blocks with the transformed immediate as argument)

(2) applying a mapping to the tag of its blocks, leaving its arity and arguments unchanged

The set of transformations of interest is also constrained by performance considerations. In

particular, turning an immediate into a non-constant block requires an allocation and memory

indirection (constant blocks can be preallocated), which is precisely what we wanted to avoid by

unboxing the constructor. It may still be beneficial if this transformation occurs only for some

inputs that are rare in practice, with all other cases unboxed.

Supporting tag choice requests as in t1 should be easy; user-specified transformations as in t2
would be of medium difficulty, depending on the expressiveness of the transformations. We are not

planning to work on full transformation inference in the context of OCaml.

5.4 Using Unboxing to Describe Existing Representation Tricks
Some subtle data-representation choices of the OCaml compiler and runtime, mentioned in Sec-

tion 4.1, could in fact be presented as unboxing, possibly with further extensions.

Flat float arrays. OCaml arrays use a uniform representation (using tag 0) except for arrays of
elements represented as floats, which have the tag Double_array_tag and a custom representation.

The OCaml runtime (written in C) checks the array tag on each low-level operation to determine how

to access the array. OCaml cannot currently express the type of custom arrays of float-represented

values, but our proposed shape annotations (Section 5.1) would make it possible to do so:

type ('a [@shape double]) double_array [@@shape double_array]

With constructor unboxing we can then express the array representation trick in safe OCaml code:

type 'a array =

| Any : 'a generic_array -> 'a array

| Double : ('d [@shape double]). 'd double_array -> 'd array

The type 'a generic_array is a type that does not exist in OCaml today, of uniform arrays

with tag 0. The constraint 'd [@shape double] indicates that (in our proposed OCaml extension)

matching a value of type 'd array with the Double constructor reveals that 'd is represented as

double. This definition would suffice for defining array-accessing functions in pure OCaml, but for

array creation the runtime checks dynamically if its argument is a float. Implementing the check

in OCaml would require exposing an extra (inelegant and non-parametric, but safe) primitive:

type 'a double_check =

| IsAny : 'a double_check

| IsDouble : ('d [@shape double]). 'd double_check

val check_if_double : 'a -> 'a double_check

Lazy forwarding. The representation of a lazy value may be a block of tag Lazy_tag, for a thunk
that has not yet been evaluated to a result, or a block of tag Forward_tag storing a result, or

sometimes this resulting value directly. The OCaml runtime sometimes “shortcuts” forward blocks

when they are moved around, replacing them by their value directly, with a dynamic check that this

does not introduce an ambiguity – the value should not itself have tag Lazy_tag or Forward_tag.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:18 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

Let us try to express this shortcutting trick in OCaml rather than in the runtime code in C. Let

us assume an imaginary [@unboxed unsafe] attribute that does not perform any static confusion

check for this constructor – we intentionally do not provide this in our current design proposal,

which focuses on safe uses. We could then write:

type 'a lazy_state = and 'a lazy = 'a lazy_state ref
| Thunk of (unit -> 'a) [@tag lazy_tag]

| Forward of 'a [@tag forward_tag]

| Forward_unboxed of 'a [@unboxed unsafe]

let make_forward (v : 'a) : 'a lazy_state =

if List.mem (Obj.tag (Obj.repr v)) Obj.[lazy_tag; forward_tag; double_tag]

then Forward v

else Forward_unboxed v

One could even think of an imaginary [@unboxed dynamic] variant where the compiler is in

charge of inserting this dynamic check:

type 'a lazy_state =

| Thunk of (unit -> 'a) [@tag lazy_tag]

| Forward of 'a [@tag forward_tag] [@unboxed dynamic]

6 OUR HALTING PROBLEM
In Section 3.4, we mention that computing the head shape of a type requires unfolding datatype

definitions, and that this unfolding process may not terminate in presence of mutually-recursive

datatype definitions.

In the present section, we discuss this problem in more detail, and present a novel algorithm

to normalize safely in presence of recursion: it either returns the sum normal form of a type, or

reports (in a finite amount of time) that the definition loops and no sum normal form exists.

First, we remark that this problem corresponds to the halting problem for a specific fragment of

the pure 𝜆-calculus (just function types, no products, booleans, natural numbers etc.), namely the

first-order fragment with arbitrary recursion. Consider the following example:

type 'a id = 'a

type name = Name of string [@unboxed]

type handle =

| By_number of int id [@unboxed]

| By_name of name [@unboxed]

| Opaque of string

It can be rephrased as a 𝜆-term with recursive definitions as follows:

let rec id(a) = a

and name = string

and handle = sum (id int) (sum name (box string))

In this translation, we use a free variable sum as a binary operator to separate constructor cases,

and a free variable box over the translation of type expressions appearing under a constructor.

(Other free variables encode primitive types.) The sum normal form of any type in the definition

environment above can be read back from a normal form of the translated 𝜆-terms in presence of

the recursive definitions. (More precisely, we only need a “weak” normal form that does not reduce

under box applications.)

The algorithm that we present in this section decides the halting problem for the first-order pure 𝜆-

calculus with recursive definitions, also called “order-1 recursive program schemes” in the literature,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:19

with an arbitrary reduction strategy. This is not unreasonable, given that the halting problem for

this fragment is already known to be decidable, as demonstrated for example in Khasidashvil [2020]

in the first-order case and in Plotkin [2022]; Salvati and Walukiewicz [2015] (for example) in the

more general setting of the pure simply-typed 𝜆-calculus with arbitrary recursive definitions!

6.1 On-The-Fly rather than Global Termination Checking
The normalization arguments in previous work on recursive program schemes are global in nature;

they reason by normalizing all mutually-recursive definitions at once [Khasidashvil 2020], or at

least they compute a termination bound that depends on the size of the whole mutually-recursive

system [Plotkin 2022].

In our setting, the set of mutually-recursive definitions potentially contains large type definitions

in scope, that are either explicitly mutually-recursive, or depend on each other through recursive

modules. Normalizing datatype definitions without unboxed constructors is immediate as they

are their own normal forms, but we also have to normalize through OCaml type abbreviations
which are widely used. (We have not included type abbreviations in our Section 3 as the abbreviation

type t = 𝜏 can be understood in this context as syntactic sugar for type t = Abbrevunboxed of 𝜏 .)

Expanding all abbreviations is also known to potentially generate very large structural types for

some use-cases, so the OCaml type checker uses careful memoization to only expand on-demand

during type inference.

Another issue with a global termination analysis is that OCaml type definitions change often
due to functor applications.

5
Some type definitions in a functor body rely on abstract (or concrete)

types from the functor argument. When the functor is applied to a module parameter, we get a new

instance of those definitions where previously abstract type constructors from the formal argument

are concrete, which may even introduce new recursive dependencies. Any global termination

analysis done on all type definitions would thus have to be partially recomputed on functor

applications – and delimiting the part of the computations to rerun may not be obvious in presence

of recursive dependencies.

Performing a global termination analysis thus runs the risk of large computational costs in

practice, which is all the more frustrating that we expect unboxed constructors themselves to be

rarely used, being an advanced feature. It should come at no cost when not used and at little cost

when used sparingly.

Instead, we propose an on-the-fly termination checking algorithm. Without any static precompu-

tation on the set of mutually-recursive definitions (which may be large and/or change often during

type checking), our algorithm takes a term and monitors its reduction sequence: it maintains some

information on the side that is updated during reduction, and may “block” the reduction if it detects

that it is about to loop forever. We must provide the following guarantees:

• Correctness: reduction sequences that are never blocked by the termination monitor are

always finite; they cannot diverge.

• Completeness: if a reduction sequence is blocked by the termination monitor, then it would

have diverged in absence of monitoring.

The existence of a termination monitor that is sound and complete implies decidability of the

halting problem for the reduction being considered. We have not found termination results in the

existing literature whose proofs would suggest this termination-monitoring approach; to the best of

our knowledge, this approach is novel for the pure first-order 𝜆-calculus with recursive definitions.

(But the literature on term rewriting systems is vast and our knowledge of it very partial.)

5
Functor in the ML-family sense of a module (possibly carrying type components) parameterized by another module.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:20 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

We consider this as a notable contribution of our work whose interest is independent of con-

structor unboxing. Already in the OCaml compiler, there are other parts of the type checker that

need to normalize type definitions (including unboxed single-constructor datatypes), and rely on

the unprincipled approach of passing a fixed amount of “fuel” and failing with an error once it

is exhausted. We plan to rewrite these computations using on-the-fly normalization checking.

We hope that other language implementors could use this approach to work with recursive type

definitions, and there may be other use-cases thanks to the generality of the language considered.

Remark: our termination-monitoring approach means that we are only adding some bookkeep-

ing logic to a head-shape computation that we need to do anyway, that happens rarely (single-

constructor unboxing is a rarely used, opt-in feature), and whose cost is bounded by a very small

constant in practice, the depth of type definitions that need to be unfolded to compute the head

shape (at most 5 for reasonable OCaml programs). In particular, we know with certainty that head

shape computations will add no noticeable compile-time overhead to the compilation process of

real-world OCaml programs.

6.2 Intuition
Attempt 1: detect repetition of whole terms. A first idea to prevent non-termination is to perform

a simple cycle detection: block the reduction sequence if we encounter a term that was already

part of the reduction sequence. This approach is obviously complete: we have found a cycle that

can diverge, but it is not correct in presence of “non-regular recursion”, that can generate infinitely

many distinct terms. Consider for example (in 𝜆-calculus syntax):

let rec loop(a) = loop(list a) in loop(int)

In this environment loop(int) reduces to loop(list int), then loop(list (list int)), etc.,
without ever repeating the same term or even the same subterm in reducible position.

Attempt 2: detect repetition of head functions. The second idea is that, if detecting repeating of

whole terms is too coarse-grained, we should instead track repetitions of the head function of

the term, in the usual sense of the topmost function/rule/constructor in reducible position. This

approach would prevent the infinite reduction sequence for loop int in the example above, by

blocking at the second redex with the same head loop. It is easy to show that it is sound for

termination, given that the number of distinct heads is finite. However, this approach is incomplete,

it blocks reduction sequences that would have normalized, for example:

let rec id(a) = a in id (id int)

This reduction sequence needs to reduce the function id twice before reaching a normal form.

Solution: trace head functions for each subexpression. Our solution is a refinement of detecting

repetition of heads. Instead of tracking the heads that have been expanded in the whole term, we

trace a different set of heads for each subterm, corresponding to the set of function heads whose

expansions were necessary to have the subterm appear in the term.

In the first example above, we start with the term loop int where all subterms are annotated

with the empty trace (no expansion happened). We can write this as []loop []int: the subterms

loop int and int are both in the empty trace. The first step of the reduction results in the annotated

term [loop]loop ([loop]list []int): the subterm []int was unchanged by the expansion,

but the surrounding context loop (list □) appeared in the reduction of loop in the empty trace,

so this part of the new term gets annotated with [loop]. At this point, our algorithm blocks the

redex loop (list int) as it is already annotated with the function head [loop].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



Unboxed Data Constructors 51:21

In the second example, []id ([]id []int) reduces to its argument []id []int unchanged –

this argument was already present in the term before the expansions, it did not appear during the

reduction. []id []int can in turn reduce to []int which is an (annotated) normal form.

6.3 Formalizing our Algorithm
We start from a grammar for programs 𝑝 in the first-order 𝜆-calculus with recursive definitions,

containing in particular terms 𝑡 , and introduce a distinct category of annotated terms 𝑡 whose

function-call subterms carry an expansion trace 𝑙 (a list of function names without duplicates).

𝑝 ::= let rec 𝐷 in 𝑡 recursive programs

𝐷 ::= ∅ | 𝐷, 𝑓 (𝑥𝑖 )𝑖 = 𝑡 function definitions

𝑓 function name

𝑥 first-order variable

𝑡 ::= 𝑥 | 𝑓 (𝑡𝑖 )𝑖 term

𝑝 ::= let rec 𝐷 in 𝑡 annotated programs

𝑡 ::= 𝑥 | 𝑓 (𝑡𝑖 )𝑖 @ 𝑙 annotated term

𝑙 ::= ∅ | 𝑙, 𝑓 (we require 𝑓 ∉ 𝑙 )

𝐶 [□] ::= □ | 𝑓 ((𝑡𝑖 )𝑖 ,𝐶 [□], (𝑡 𝑗 ) 𝑗 ) @ 𝑙 annotated reduction context

We extend the usual notion of 𝛽-reduction 𝑡 { 𝑡 ′ to annotated terms. Expanding a function

call 𝑓 (𝑡𝑖 )𝑖 is only possible if its trace does not already contain 𝑓 – otherwise this term is stuck, we

call it a blocked redex. The arguments (𝑡𝑖 )𝑖 are annotated terms, but the body 𝑡 ′ of the definition
of the function 𝑓 is a non-annotated term: the body and its subterms appear in the reduction

sequence at this point, and we use an annotating substitution 𝑡 ′ [𝜎]@𝑙 to annotate them, where 𝜎 is

a substitution from variables to annotated terms and 𝑙 is the trace to use to annotate new subterms.

Definition 6.1 (𝑝 { 𝑝′, 𝑡 [𝜎]@𝑙 ).
(𝑓 (𝑥𝑖 )𝑖 = 𝑡 ′) ∈ 𝐷 𝑓 ∉ 𝑙

let rec 𝐷 in 𝐶 [𝑓 (𝑡𝑖 )𝑖 @ 𝑙] { let rec 𝐷 in 𝐶 [𝑡 ′
[
(𝑥𝑖 ← 𝑡𝑖 )𝑖

]
@𝑙,𝑓 ]

𝑥 [𝜎]@𝑙 = 𝜎 (𝑥)
𝑓 (𝑡𝑖 )𝑖 [𝜎]@𝑙 = 𝑓 (𝑡𝑖 [𝜎]@𝑙 )𝑖 @ 𝑙

Note that the annotating substitution 𝑡 [∅]@𝑙 annotates each function call of an unannotated

term 𝑡 with the trace 𝑙 .

Notation (⌊𝑡⌋). Let us write ⌊𝑡⌋ (or ⌊𝑝⌋) for the unannotated term (or program) obtained from
erasing all annotations from 𝑡 (or 𝑝).

We are only interested in annotated terms that were obtained starting from an initial anno-

tated term with all traces empty. Outside this subset of annotated terms there are terms with

weird/impossible annotations (for example annotation of functions that do not exist in the recursive

environments) that we sometimes want to rule out from our statements.

Definition 6.2 (Reachable annotated term). An annotated term 𝑡 is reachable if it occurs as

the subterm of a term in a reduction sequence starting from an initial program of the form

let rec 𝐷 in 𝑡 [∅]@∅ .

6.4 A Sketch of Correctness (Termination)
Due to space limitations, we moved our proofs of correctness and completeness for this annotated

reduction algorithm to an appendix in our extended version. It proves the following results.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://arxiv.org/pdf/2311.07369


51:22 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

Lemma. If 𝑡 is reachable and reduces, in the annotated system, to a 𝛽-normal form 𝑣 , then ⌊𝑣⌋ is
the 𝛽-normal form of ⌊𝑡⌋.
Theorem (Correctness). Annotated reduction is strongly normalizing: it either reduces to a

𝛽-normal form or reduces to a blocked redex in a finite number of reduction steps.

Theorem (Completeness). If an annotated program 𝑡 contains a blocked redex, then its unanno-
tated erasure ⌊𝑡⌋ admits an infinite reduction sequence.

In this section we will merely sketch our termination argument.

The general approach is to use a termination measure. We first define a measure, that is, a

function from our terms into a well-ordered set – a set with an order relation, such that there do

not exist infinite strictly-decreasing sequences. Then we prove that the our annotated reduction

strictly decreases the measure of terms.

We can first define a measure on our traces 𝑙 . There is a finite set of type declarations in our

system, and a trace can contain each type constructor at most one, so there is a largest possible

trace 𝐿 that contains all type constructors. An application annotated with this trace cannot be

reduced. Any trace 𝑙 can then be measured by the length difference length(𝐿) − length(𝑙), a natural
number.

Then the question is how to extend this measure on traces into a measure on annotated terms.

One could think of using the (measure of) the trace of the head application, but this does not

decrease during reduction if a subterm contains a larger trace and ends up in head position. (Note:

we state correctness for any reduction strategy on annotated terms, not necessarily head reduction.)

A second idea is to measure a term 𝑡 by the set of (measures of) the traces that occur inside it

– technically the multiset of traces, using the multiset ordering. But this is not decreasing either:

when we reduce an application 𝑓 (𝑡𝑖 )𝑖 @ 𝑙 , we may duplicate its arguments 𝑡𝑖 arbitrarily many

times, and those may contain traces that are strictly larger than 𝑙 , resulting in a larger overall

measure for the reduced term.

The trick to make the proof work, which was suggested to us by Irène Waldspurger, is to use

multisets of multisets: we measure each subterm in our annotated term by the path from this

subterm to the root of the term, seen as a multiset of traces of applications. And then we measure

our term by the multiset of measures of its subterms.

For example, for the term 𝑓 (𝑔 @ 𝑙𝑔, ℎ @ 𝑙ℎ) @ 𝑙𝑓 , the measure of the root subterm is {{𝑙𝑓 }} (we
use double braces for multisets rather than sets), the measure of the 𝑔 subterm is {{𝑙𝑓 , 𝑙𝑔}}, and the

measure of the ℎ subterm is {{𝑙𝑓 , 𝑙ℎ}}, so the measure of the whole term is {{{{𝑙𝑓 }}, {{𝑙𝑓 , 𝑙𝑔}}, {{𝑙𝑓 , 𝑙ℎ}}}}.
Consider now a subterm 𝑢 of an argument of the redex 𝑓 (𝑡𝑖 )𝑖 @ 𝑙 . The measure of its head

application may be larger than the measure of 𝑙 , but its measure as a subterm is the path to the root,

which contains 𝑙 . When the application of 𝑓 gets replaced by new subterms of a strictly smaller

trace 𝑓 , 𝑙 , then the path from 𝑢 to the root will change, 𝑓 gets replaced by these new nodes in the

path, so the path measure of 𝑢 decreases strictly. This works even if this subterm 𝑢 gets duplicated

by expansion: we get several copies, but at a strictly smaller measure, so we are still decreasing for

the multiset measure.

For example, if 𝑓 (𝑔 @ 𝑙𝑔, ℎ @ 𝑙ℎ) @ 𝑙𝑓 reduces into 𝑓
′ (𝑔 @ 𝑙𝑔, 𝑔 @ 𝑙𝑔) @ (𝑙𝑓 , 𝑓 ), the subterm ℎ

has been erased and the subterm 𝑔 has been duplicated; its measure is now {{(𝑙𝑓 , 𝑓 ), 𝑙𝑔}}, which is

strictly smaller than its previous measure {{𝑙𝑓 , 𝑙𝑔}}. The measure of the whole term changed from

{{{{𝑙𝑓 }}, {{𝑙𝑓 , 𝑙𝑔}}, {{𝑙𝑓 , 𝑙ℎ}}}} to the strictly smaller {{{{(𝑙𝑓 , 𝑓 )}}, {{(𝑙𝑓 , 𝑓 ), 𝑙𝑔}}, {{(𝑙𝑓 , 𝑓 ), 𝑙𝑔}}}}.

7 ON CPP

Our on-the-fly termination checking algorithm is related to the macro expansion algorithm of the

cpp preprocessor for C, as presented in the C11 standard. Quoting the standard:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://en.wikipedia.org/wiki/Dershowitz-Manna_ordering


Unboxed Data Constructors 51:23

6.10.3.4 (2) If the name of the macro being replaced is found during this scan

of the replacement list (not including the rest of the source file’s preprocessing

tokens), it is not replaced. Furthermore, if any nested replacements encounter the

name of the macro being replaced, it is not replaced. These nonreplaced macro

name preprocessing tokens are no longer available for further replacement even

if they are later (re)examined in contexts in which that macro name preprocessing

token would otherwise have been replaced.

In this context, the “replacement list” denotes the body of a function-like macro definition – here

we only consider function-like macros, #define FOO(..) ... rather than #define FOO .... The
standard explains that a macro must not be expanded from its own definition or from a “nested

replacement”. This corresponds to our idea of blocking redexes whose function name occur in

their own trace. The idea that this non-replacement information remains active “in later contexts”

corresponds to the idea of carrying annotations around in subterms as the computation proceeds.

The phrasing of the standard is not very clear! In the 1980s, Dave Prosser worked on a strategy

to ensure that macro replacement always terminates by disallowing dangerous cyclic/recursive

macros, and wrote a careful algorithm to allow as much replacement as would be possible without

– hopefully – endangering non-termination. This algorithm was published as pseudo-code in a

technical note Prosser [1986]. The C89 standard committee then translated Dave Prosser’s pseudo-

code into the obscure prose that became the standard text.

We know about David Prosser’s pseudo-code today thanks to Diomidis Spinellis who spent “five

years trying to implement a fully conforming C preprocessor”; Spinellis wrote an annotated version

of Prosser’s pseudo-code that explains the code: Spinellis [2008].

Prosser’s algorithm is strongly related to our termination-monitoring algorithm – it was not an

inspiration as we were unfortunately unaware of the connection when designing our own. We are

not aware of any proof of correctness for Prosser’s algorithm – that it does guarantee termination.

In this section, we will compare the two algorithms. We will only consider the “core” fragment

of cpp macros, consisting of the function-like macros that use their formal parameters directly –

no conditionals, no use of stringization or concatenation, etc.

7.1 First-Order and Closed-Higher-Order Function Macros
The cpp preprocessor performs 𝛽-reduction, but also parsing: it starts from a linear sequence of

tokens instead of an abstract syntax tree. It is difficult to reason at the level of sequences of tokens,

in particular about macros that generate unbalanced sequences of parentheses; we will not attempt

to do so here. Let us only consider (core) macros whose terms are well-parenthesized. What is their

expressivity in terms of a 𝜆-calculus?

We define the first-order fragment of core macros as the fragment where all bound occurrences

of a macro name foo are syntactically an application foo(...) – foo is immediately followed by

well-bracketed parentheses.

This is the fragment that the vast majority of C programmers use. But it is possible to write

(well-parenthesized) macros outside that fragment, whose reduction behavior is less clear. We will

mention two examples, which we call the NIL example and the a(a) example:

#define NIL(xxx) xxx

#define G0(arg) NIL(G1)(arg)

#define G1(arg) NIL(arg)

G0(42) // { NIL(G1)(42) { G1(42)

// { NIL(42) { 42

#define a(x) b

#define b(x) x

a(a)(a)(a) // { b(a)(a)

// { a(a) { b

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:24 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

In the NIL example, G1 is used in non-applied position in the definition of G0. In the a(a) example,

the second occurrence of a in a(a) is not in application position.

We call this general case a closed-higher-order language: it is higher-order in the sense that

functions (macro names) can be passed as parameters and returned as results, but those functions

remain closed: functions cannot be declared locally and capture lexical variables. This language

also corresponds to simply-typed supercombinators [Hughes 1982; Turner 1979]. (It is also similar

to the use of function pointers in C, but we use macro names instead of runtime addresses.)

We can consider typed or untyped versions of this closed-higher-order language. The simply-

typed version is a fragment of the simply-typed 𝜆-calculus with recursion, so its halting problem is

decidable. The untyped version is Turing-complete, just like most extensions with more constructors

or richer type systems, so their halting problem is undecidable. C macro authors probably do not

consider typing their macros, so they work in the untyped version, but an extension of ML with

higher-kinded type definitions would correspond to the typed version. Our algorithm does not

depend on types, so it can work on either version.

In the rest of this section we will detail the following claims:

Fact 1. Our algorithm gives the same result as Dave Prosser’s on the first-order macro fragment.
Fact 2. Our algorithm extends to the closed-higher-order macro fragment, and remains correct.
Fact 3. Neither our algorithm nor Prosser’s are complete on the closed-higher-order macro fragment.

7.2 The C and C++ Standard Bodies on Closed-Higher-Order Macros
Those two examples, NIL and a(a), come from the Defect Reports 017 of the C and C++ standard

committee [The C standard committee, working group WG14 1992]. Since the C89 standard was

published, programmers have asked for clarifications about the replacement behavior that would

dictate how those examples should behave – we have indicated possible reduction sequences in

comments, but implementations in the wild would behave differently and often stop before reaching

the normal form.

In the first few years, the C standard committee refused to provide clarifications – we understand

that those examples were perceived as unrealistic and absent from real-world C code. See the

answers to questions 17 and 23 in the Defect report 017 [The C standard committee, working group

WG14 1992]. It later became clear that some C or C++ programmers made real-world use of the

non-first-order fragment, and lately standard bodies have moved towards actually specifying this

behavior, choosing to honor Dave Prosser’s original intent to reduce as much as possible. See in

particular the discussion of the NIL example above in the document N3882 from the C++ standard

body [The C++ standard committee, working group SG12 2014].

7.3 Relating our Algorithm to Dave Prosser’s Pseudo-Code
In an appendix in our extended version, we show and explain Dave Prosser’s algorithm, we relate

it to our own termination-monitoring algorithm (they are different but related), we claim that they

provide the same expansions in the first-order case, and finally we explain how Dave Prosser’s

algorithm works outside the first-order fragment.

We are not aware of any previous proof that Dave Prosser’s algorithm terminates on all inputs;

our comparison provides a proof in the first-order case for the core fragment, but the closed-higher-

order case remains open.

7.4 Adapting our Algorithm to Closed-Higher-Order Macros
For the purposes of OCaml head shape computation, we have only formulated our termination-

monitoring algorithm on the first-order 𝜆-calculus with recursion. We now extend our first-order

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://arxiv.org/pdf/2311.07369


Unboxed Data Constructors 51:25

calculus from Section 6.3 to the closed-higher-order fragment, and show that our termination-

monitoring algorithm still enforces termination. In the ML world, this would correspond to extend-

ing ML declarations to higher-kinded type parameters – a feature present in Haskell.

𝑝 ::= let rec 𝐷 in 𝑡
𝐷 ::= ∅ | 𝐷, 𝑓 (𝑥𝑖 )𝑖 = 𝑡
𝑓 function name

𝑥 first-order variable

𝑡 ::= 𝑥 | 𝑓 | 𝑡 (𝑡𝑖 )𝑖

𝑝 ::= let rec 𝐷 in 𝑡
𝑡 ::= 𝑥 | 𝑡 (𝑡𝑖 )𝑖 @ 𝑙

𝑙 ::= ∅ | 𝑙, 𝑓 (𝑓 ∉ 𝑙 )

𝐶 [□] ::= □ | 𝑡 ((𝑡𝑖 )𝑖 ,𝐶 [□], (𝑡 𝑗 ) 𝑗 ) @ 𝑙

We have highlighted above the changes compared to the first-order case: we add function names

𝑓 as first-class terms, and relax our syntax of application from an application of a known function

𝑓 (𝑡𝑖 )𝑖 @ 𝑙 to the application of an arbitrary term 𝑡 (𝑡𝑖 )𝑖 @ 𝑙 . Note that the annotation 𝑙 here is the

trace of the whole application node, not the trace of the function symbol – function symbols do

not carry an annotation.
6

The definition of reduction, repeated below for reference, is unchanged. But it now implicitly

restricts redexes to the case where the left-hand-side of the function application has first been

reduced to a function name 𝑓 .

(𝑓 (𝑥𝑖 )𝑖 = 𝑡 ′) ∈ 𝐷 𝑓 ∉ 𝑙

let rec 𝐷 in 𝐶 [𝑓 (𝑡𝑖 )𝑖 @ 𝑙] { let rec 𝐷 in 𝐶 [𝑡 ′
[
(𝑥𝑖 ← 𝑡𝑖 )𝑖

]
@𝑙,𝑓 ]

This extension can trivially express the closed-higher-order examples that we discussed so far,

as well as the famous non-terminating 𝜆-term (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥).
let rec nil(x) = x

and g0(arg) = nil(g1)(arg)

and g1(arg) = nil(arg)

in g0(fortytwo)

let rec a(x) = b

and b(x) = x

in a(a)(a)(a)

let rec delta(x) = x(x)

in delta(delta)

The NIL and a(a) examples reduce without getting stuck. The delta(delta) example gets stuck

without looping.

g0(fortytwo)[]

{ nil(g1)[g0](fortytwo)[g0]

{ g1(fortytwo)[g0]

{ nil(fortytwo)[g0]

{ fortywto

a(a)[](a)[](a)[]

{ b(a)[](a)[]

{ a(a)[]

{ b

delta(delta)[]

{ delta(delta)[delta]

Theorem 7.1. Our termination-monitoring algorithm remains correct for this closed-higher-order
language: the annotated language is strongly normalizing.

The proof of this result reuses the technical machinery of the correctness proof for the first-order

fragment. It is detailed in an appendix in our extended version.

7.5 Both Algorithms are Incomplete Outside the First-Order Fragment
Here is a counterexample to completeness in the closed-higher-order fragment:

6
We conjecture that our treatment corresponds to the intersection of the hide sets of the function name and closing

parenthesis in Dave Prosser’s algorithm. The function name and closing parenthesis may have been generated by different

macro expansions, and the intersection computes a nearest common ancestor. Our application nodes make this nearest

common ancestor explicit in the AST.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://arxiv.org/pdf/2311.07369


51:26 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

#define f(p,q) p(f(q,q))

#define id(x) x

#define stop(x) done

f(id,stop) // { id(f(stop,stop)) { f(stop,stop)

// { stop(f(stop,stop)) { done

This example requires two nested expansions of f to reduce to its normal form done. Neither
our algorithm nor Prosser’s can reach this normal form; they block at f(stop,stop). Note that
this term is an example of a term that is only weakly normalizing: it has a normal form, but also an

infinite reduction sequence

f(stop,stop) { stop(f(stop,stop)) { stop(stop(f(stop,stop))) { ...

8 RELATEDWORK
There is a lot of work on value representations in programming languages, including questions of

how to optimize data representation. We are not aware, however, of previous academic work on

custom (datatype-specific) representation of sum/coproduct types, which requires checking that a

candidate representation ensures disjointedness.

We will discuss the state of representation optimization in neighboring languages with sum

types. In particular, the “niche-filling” optimizations of Rust are the most closely related work, as

they involve a form of disjointedness. To our knowledge they have not previously been discussed

in an academic context, except for a short abstract [Bartell-Mangel 2022].

8.1 Functional Programming Languages
Haskell. Haskell offers newtype for single-constructor unboxing. GHC supports unboxed sum

types among its unboxed value types. Unboxed value types live in kinds different from the usual kind

Type of types whose value representation is uniform. GHC also supports an UNPACK pragma [Mar-

low 2003] on constructor arguments to require that this argument be stored unboxed – generalizing

OCaml’s unboxing of float arrays and records. Haskell would still benefit from constructor unboxing.

Note that lifted types (containing lazy thunks) would conflict with each other, limiting applicability

– one has to use explicitly unlifted types, or Strict Haskell, etc.

MLton. MLton can eliminate some boxing due to aggressive specialization [Weeks 2006]; for

example, (int * int) array will implicitly unbox the (int * int) tuple. Its relevant optimiza-

tions are SimplifyTypes, which performs unboxing for datatypes with a single constructor (after

erasing constructors with uninhabited arguments) and DeepFlatten, RefFlatten which optimize

combinations of product types and mutable fields. The representation of sum types with several

(inhabited) constructors remains uniform.

Scala. In Scala, representation questions are constrained by the JVM but also by the high degree

of dynamic introspectability expected. Even the question of single-constructor unboxing is delicate.

A widespread AnyVal pattern has disappointing performance [Chan 2017; Compall 2017] and dotty

introduced a specific opaque type synonym feature [Odersky and Moors 2018; Osheim, Cantero and

Doeraene 2017] to work around this.

Specialization and representation optimizations. Both MLton and Rust create opportunities for

datatype representation optimizations by performing aggressive monomorphization. In OCaml, stat-

ically specializing the representation of (int * int) array (as MLton does) or Option<Box<T>>
(as Rust does) to be more compact would not be possible, as polymorphic functions working with

'a array or 'a option inputs are compiled once for all instances of these datatypes.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

http://www.mlton.org/SimplifyTypes
http://www.mlton.org/DeepFlatten
http://www.mlton.org/RefFlatten


Unboxed Data Constructors 51:27

On the other hand, a non-monomorphizing language could perfectly implement and support

representation optimizations for types that are only used in a specialized context. For example, at

the cost of some code duplication, high-performance code could define its own 'a option_ref
code that looks similar to ('a option) ref but with a more compact representation. (In fact

people do this today using foreign or unsafe code; 'a ref_option can be safely expressed with

inline records.) Finally, in Section 5.1 we described parameterized type definitions that support a

quantification on the head shape of the type parameter, which could provide a compromise between

genericity and unboxing opportunities.

We thus consider that monomorphization is a separate concern from representation optimizations

such as unboxing. Monomorphization creates more opportunities for representation optimizations,

with well-known tradeoff in terms of compilation time and code size. Languages could consider

representation optimizations whether or not they perform aggressive specialization.

Unboxed sums and active/view patterns. Some languages, such as GHC Haskell and F♯, support

both unboxed sums as “value types” [Ağacan 2016; Syme 2016] and active/view patterns [Peyton-

Jones 2007; Syme, Neverov and Margetson 2007] to apply user-defined conversions during pattern

matching. Combining those two features can get us close to unboxed constructors in some contexts,

including our Zarith/gmp example. The idea is to have a very compact primitive/opaque value

representation, and expose a “view” of these values in terms of unboxed sums – in F♯ they are

called “struct-based discriminated unions”.

This style can combine a compact in-memory representation, yet provide the usual convenience

of pattern-matching, without extra allocations – even when crossing an FFI boundary. The overhead

would typically be higher than native constructor unboxing, but only by a constant factor.

This approach is very flexible, it can be used to perform representation optimizations that are not

covered by single-constructor unboxing alone. For example, it can be used to view native integers

into an unboxed sum type of positive-or-negative-or-zero numbers. On the other hand, constructor

unboxing extends the ranges of memory layouts that can be expressed directly in the language, as

in our Zarith example; to use the “view” in this situation, we have to implement the representation

datatype and the view function in unsafe foreign code.

8.2 Rust: Niche-Filling
Rust performs a form of constructor unboxing by applying so-called “niche-filling rules”. The

paradigmatic example of niche-filling is unboxing Option<A> for all types A whose representation

contains a “niche” leaving one value available – typically, if A is a type of non-null pointers, the 0
word is never a valid A representation and can be used to represent the option’s None.

Note that niche-filling in Rust is a qualitatively different optimization from constructor unboxing

in OCaml, as it does not remove indirection through pointers. In Rust datatypes, sums (enums)

are unboxed and pointer indirections are fully explicit through types such as Box<T>, and to our

knowledge they are never optimized implicitly. Niche-filling shrinks the width of (value/unboxed)

sum types by removing their tag byte; this is important when using (unboxed) arrays of enums,

and because all values of an enum are padded to the width of its widest constructor. One could say

that it is an untagging rather than unboxing optimization – but a tag is a sort of box.

The current form of niche-filling was discussed in Beingessner [2015] and implemented in two

steps in Burtescu [2017] and Benfield [2022]. We understand that it works as follows: among the

constructors whose arguments have maximal total width, try to find one with a “niche”, a set of

impossible values, that is large enough to store the tag of the sum. Then check that the arguments

of all other constructors can be placed in the remaining space – outside the niche.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:28 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

We can formulate niche-filling in our framework. Head shapes are abstractions of sets of binary

words – all of the same size. In particular, the complement of the head shape of a type is its set

of niches. Rust allows unboxing exactly when all constructors of a type can be “unboxed” in our

sense – they can be placed in non-overlapping subsets of binary words. Rust will implicitly change

the placement of some constructor arguments to obtain more non-overlapping cases, which is an

instance of the “unboxing by transformation” approach that we discussed in Section 5.3.

Niche-filling has some limitations:

(1) Filling a niche with a type B is a direct inclusion of the tag and values of B, possibly placed at

non-zero offsets within A; it is not possible to transform the representation of B along the

way (for example, if B has two values, it is not possible to use the niches of two separate

non-null pointer fields, there must be a full padding bit available somewhere.)

This limitation is shared with our work. (We point it out because some people expect magic

from Rust optimizations.) One reason is that this guarantees that projecting the B out of the

value is cheap, instead of requiring a possibly-expensive transformation.

(2) Today niche-filling is implementation-defined in Rust, purely a compiler heuristic, and there

is no interface for the user to control niche-filling behavior. There seem to be some rare cases

where niche-filling in fact degrades performance by making pattern-matching slightly more

complex; the only recourse for programmers is to use the enum(C) attribute to ask for an

ABI-specified layout that disables all representation optimizations. (There is an instance of

this workaround in the PR that generalized niche-filling, 94075, out of concern for a potential

performance regression in the Rust compiler itself.)

(3) Rust currently only allows niche-filling when all constructors can be unboxed at once. This

is less expressive than our approach where some constructors can be unboxed selectively

while others are not. In the context of Rust, removing the tag bytes from all constructors
is the very point of niche-filling, so unboxing (untagging, really) only certain constructors

selectively is not interesting. This suggests however that niche-filling as currently conceived

in the Rust community is a specialized form of constructor unboxing, that is not necessarily

suitable for other programming languages. Our presentation is more general.

8.3 Declarative Languages for Custom Datatype Representations
Hobbit. The experimental language Hobbit offered syntax to define algebraic “bit-datatypes”

together with a mapping into a lower-level bit-level representation for FFI purposes, with support

for constructing and matching the lower-level value directly. See in particular Diatchki, Jones and

Leslie [2005], Section “2.2.4 Junk and Confusion?” on page 9, which refers to the coproduct property

as a “no junk and confusion” guarantee, and mentions that their design in fact allows confusion:

they are not forbidden by a static analysis, but a warning detects them in some cases.

One expressivity limitation is that “bit-datatypes” form a “closed universe”: all types mentioned

in a “bit-datatype” declaration must themselves be bit-data whose representation is available to the

compiler, it does not seem possible to specify only a part of the variant value as bit-data, and have

arbitrary values of the language (that may not have a bit-data encoding) for other arguments.

Cogent / Dargent. Dargent [Chen, Lafont, O’Connor, Keller, McLaughlin, Jackson and Rizkallah

2023] is a data layout language for Cogent, focused on providing flexible data representation choices

for structure/product types. Users can define custom layout rules for record types, the system

generates custom getters and setters for each field and verifies that each pair of a getter and setter

satisfies the expected specification of being a lens. Cogent also has sum types, but Dargent does

not allow unboxed layouts; it requires a bitset to store a unique tag for each case. Extending this

formalization to richer representations of sum types would allow constructor unboxing. This could

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://github.com/rust-lang/rust/pull/94075


Unboxed Data Constructors 51:29

be done by generating a pattern-matching function and a family of constructor functions, and

checking that those satisfy the expected properties of a coproduct – disjointedness.

(There are many other data-description languages (DDLs), but they tend to not offer specific

support for sum types / disjoint unions, especially not approaches to unbox them. The Dargent

Related Work mentions the prominent previous works in this area.)

Ribbit: Bit Stealing Made Legal. Simultaneous to our work, Baudon, Radanne and Gonnord

[2023] propose a new domain-specific language to express data layouts. It is designed for efficiency

rather than for interoperability with foreign data, supports flexible representation optimizations

for sum types, and formalizes (on paper) the “no-confusion” correctness condition for sums.

Having a full layout DSL is more expressive than our approach. The authors had both OCaml and

Rust in mind when elaborating their proposed DSL, called Ribbit, which is thus expressive enough

to express constructor unboxing (Zarith is mentioned as a use-case), as well as Rust niche-filling

optimizations. The language currently suffers from the same “closed universe” limitation as Hobbit,

and needs to be extended to deal with abstract types or non-specialized type parameters, but those

are not fundamental limitations of the approach.

It would be nice to restructure ourwork as elaborating the user-facing feature into an intermediate

representation of data layouts, and Ribbit would be a good candidate for this.

The authors discuss efficient compilation of pattern-matching involving datatypes with a cus-

tom layout; they moved from matrix-based pattern-matching compilation (as used in the OCaml

compiler) to decision-tree-based compilation to handle more advanced, “irregular” representations.

(The Ribbit prototype does not yet support real programs, so it is hard to draw performance

conclusions; in contrast our prototype supports the full OCaml language.) So far our intuition

is that constructor unboxing, and the various extension we considered, are regular enough that

matrix-based compilation can give good results and no invasive changes are required in the OCaml

compiler. But this question deserves further study.

8.4 Deciding Termination of Recursive Rewrite Rules
Our termination-monitoring algorithm provides an alternative proof of decidability of the halting

problem for the first-order recursive calculus. This result was well-known (inside a different

scientific sub-community than ours), but we want to point out that we provide a new (to our

knowledge) decision algorithm, and that having a simple yet efficient algorithm is important to our

application. By “termination-monitoring” we mean that our algorithm only adds some bookkeeping

information to computations that we have to perform in any case to compute a normal form.

The simplest proof of decidability of termination for the first-order recursive calculus that we

have found (thanks to Pablo Barenbaum) is Khasidashvil [2020]. Seen as a decision algorithm, this

proof is terrible: it performs an exponential computation of all normal forms of all types definitions.

On the other hand, other termination proofs exist that also scale to the higher-order cases,

and rely on evaluating the program in a semantic domain where base types are interpreted as

the two-valued Scott domain {⊥,⊤}, where ⊥ represents potentially-non-terminating terms and

⊤ represent terminating terms. Terms at more complex types are interpreted as more complex

domains, but (in absence of recursive types) they remain finite, so in particular recursive definitions,

interpreted as fixpoints, can be computed by finite iteration. This approach in particular underlies

the termination proofs in Plotkin [2022]; Salvati and Walukiewicz [2015]. This argument has a

computational feel, but naively computing a fixpoint for each recursive definition in the type

environment is still more work than we want to perform. It is possible that a clever on-demand

computation strategy for those fixpoints would correspond to our algorithm.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.



51:30 Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop

ACKNOWLEDGMENTS
Jeremy Yallop proposed the general idea of this feature in March 2020 [Yallop 2020]. There are

various differences between our implementation and Jeremy Yallop’s initial proposal, mostly in

the direction of simplifying the feature by keeping independent aspects for later, and our formal

developments were a substantial new effort. Jeremy Yallop also suggested Zarith as a promising

application of the feature.

Nicolas Chataing and Gabriel Scherer worked on this topic together in spring-summer 2021,

during a master internship of Nicolas Chataing supervised by Gabriel Scherer. Most of the the ideas

presented in Sections 3, 4, 5 were obtained during this period, along with the termination-checking

algorithm, but without a convincing proof of termination. An important part of the work not

detailed in this article was the implementation of a prototype within the OCaml compiler, which

required solving difficult software engineering questions about dependency cycles between various

processes in the compiler (checking type declarations, managing the typing environment, computing

type properties for optimization, accessing type properties during compilation). Around and after

the end of the internship, Gabriel Scherer implemented the Zarith case study, implemented small

extensions, and set out to prove termination – soundness of the on-the-fly termination checking

algorithm. Gabriel Scherer also did the writing, and intends to work on upstreaming the feature.

Stephen Dolan entered the picture with high-quality remarks on the work, in particular identify-

ing the notion of benign cycles, and remarking that the termination algorithm is similar to the cpp
specification, with precise pointers to the work of Dave Prosser via Diomidis Spinellis that Gabriel

Scherer used to propose a detailed comparison in Section 7.

The most important contribution of Stephen Dolan is probably that he killed the first four or five

attempts at a termination proof. Once we collectively got frustrated with Stephen Dolan’s repeated

ability to strike down proposed termination arguments, Irène Waldspurger played the key role of

suggesting a correct argument: one has to use multisets of multisets of nodes, instead of trying to

make do with multisets of nodes.

Jacques-Henri Jourdan remarked on a relation to the Coq value representation optimization

in native_compute, Guillaume Melquiond provided extra information and Guillaume Munch-

Maccagnoni tried some early experiments. We have yet to investigate this idea in full, but it may

provide a nice simplification of this low-level aspect of native_compute.
Adrien Guatto greatly improved the presentation of a previous version of this work by a healthy

volume of constructive criticism. Anonymous POPL reviewers also provided excellent feedback

and engaging questions, in particular Section 5.4 is due to their curiosity.

Finally, the types mailing-list has helped tremendously in finding previous work on decidability

of recursive rewrite systems (thread).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

http://lists.seas.upenn.edu/pipermail/types-list/2023/002488.html


Unboxed Data Constructors 51:31

REFERENCES
Ömer Sínan Ağacan. 2016. GHC unboxed sums. https://github.com/ghc/ghc/commit/

714bebff44076061d0a719c4eda2cfd213b7ac3d

Noah Lev Bartell-Mangel. 2022. Filling a Niche: Using Spare Bits to Optimize Data Representations. https://www.noahlev.

org/papers/popl22src-filling-a-niche.pdf POPL’22 student research presentation.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. 2023. Bit-Stealing Made Legal. In ICFP. https://doi.org/10.1145/3607858
Aria Beingessner. 2015. Rust RFC 1230: More Exotic Enum Layout Optimizations. https://github.com/rust-lang/rfcs/issues/

1230

Michael Benfield. 2022. rustc PR 94075: Use niche-filling optimization even when multiple variants have data. https:

//github.com/rust-lang/rust/pull/94075

Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. 2011. Full Reduction at Full Throttle. In CPP. https://inria.hal.

science/hal-00650940

Eduard-Mihai Burtescu. 2017. rustc PR 45225: Refactor type memory layouts and ABIs, to be more general and easier to

optimize. https://github.com/rust-lang/rust/pull/45225

Lloyd Chan. 2017. Scala Pre-SIP: Unboxed wrapper types. https://contributors.scala-lang.org/t/pre-sip-unboxed-wrapper-

types/987

Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent Jackson, and Christine Rizkallah.

2023. Dargent: A Silver Bullet for Verified Data Layout Refinement. PACMPL 7, POPL, Article 47 (Jan 2023), 27 pages.

https://doi.org/10.1145/3571240

Simon Colin, Rodolphe Lepigre, and Gabriel Scherer. 2019. Unboxing Mutually Recursive Type Definitions in OCaml. In

JFLA 2019. https://hal.inria.fr/hal-01929508

Stephen Compall. 2017. Blog post: the high cost of AnyVal classes. https://failex.blogspot.com/2017/04/the-high-cost-of-

anyval-subclasses.html

Iavor S. Diatchki, Mark P. Jones, and Rebekah Leslie. 2005. High-Level Views on Low-Level Representations. In ICFP’05.
http://web.cecs.pdx.edu/~mpj/pubs/bitdata-icfp05.pdf

Torbjörn Granlund and contributors. 1991. GMP. https://gmplib.org/

John Hughes. 1982. Super-Combinators a New Implementation Method for Applicative Languages. In Proceedings of the
1982 ACM Symposium on LISP and Functional Programming (LFP). https://doi.org/10.1145/800068.802129

Zurab Khasidashvil. 2020. A short proof of the decidability of normalization in recursive program schemes. In Shalva
Pkhakadze’s Festschrift, AMIM Vol. 25 No. 2. http://www.viam.science.tsu.ge/Ami/2020_2/5_zura.pdf

Simon Marlow. 2003. GHC’s UNPACK pragma. https://github.com/ghc/ghc/commit/

abbc5a0be1df84a33015470319062ed7a3aa3153

Antoine Miné and Xavier Leroy. 2012. Zarith. https://github.com/ocaml/Zarith/

Martin Odersky and Adriaan Moors. 2018. dotty PR 5300: Opaque types. https://github.com/lampepfl/dotty/pull/5300

Erik Osheim, Jorge Vicente Cantero, and Sébastien Doeraene. 2017. Scala SIP 35: Opaque types. https://contributors.scala-

lang.org/t/pre-sip-unboxed-wrapper-types/987

Simon Peyton-Jones. 2007. GHC view patterns. https://gitlab.haskell.org/ghc/ghc/-/wikis/view-patterns

Gordon Plotkin. 2022. Recursion does not always help. (2022). https://arxiv.org/pdf/2206.08413.pdf

Dave Prosser. 1986. X3J11/86-196: Complete macro expansion algorithm. https://www.spinellis.gr/blog/20060626/x3J11-86-

196.pdf

Sylvain Salvati and Igor Walukiewicz. 2015. Using models to model-check recursive schemes. Logical Methods in Computer
Science Volume 11, Issue 2 (June 2015). https://doi.org/10.2168/LMCS-11(2:7)2015

Diomidis Spinellis. 2008. A corrected and annotated version of the X4J11/86-196 document. https://www.spinellis.gr/blog/

20060626/

Don Syme. 2016. Fsharp PR 1395: struct discriminated unions. https://github.com/dotnet/fsharp/pull/1395

Don Syme, Gregory Neverov, and James Margetson. 2007. Extensible Pattern Matching via a Lightweight Language

Extension. In ICFP’07 (ICFP ’07). https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p29-syme.pdf

The C++ standard committee, working group SG12. 2014. n3882; An update to the preprocessor specification. https:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3882.pdf

The C standard committee, working group WG14. 1992. Defect report 017. https://www.open-std.org/Jtc1/sc22/wg14/

www/docs/dr_017.html

David A. Turner. 1979. A new implementation technique for applicative languages. In Software - Practice and Experience.
Stephen Weeks. 2006. Whole-Program Compilation in MLton. In ML Workshop 2006. http://www.mlton.org/References.

attachments/060916-mlton.pdf

Jeremy Yallop. 2020. OCaml RFC: constructor unboxing. https://github.com/ocaml/RFCs/pull/14

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 51. Publication date: January 2024.

https://github.com/ghc/ghc/commit/714bebff44076061d0a719c4eda2cfd213b7ac3d
https://github.com/ghc/ghc/commit/714bebff44076061d0a719c4eda2cfd213b7ac3d
https://www.noahlev.org/papers/popl22src-filling-a-niche.pdf
https://www.noahlev.org/papers/popl22src-filling-a-niche.pdf
https://doi.org/10.1145/3607858
https://github.com/rust-lang/rfcs/issues/1230
https://github.com/rust-lang/rfcs/issues/1230
https://github.com/rust-lang/rust/pull/94075
https://github.com/rust-lang/rust/pull/94075
https://inria.hal.science/hal-00650940
https://inria.hal.science/hal-00650940
https://github.com/rust-lang/rust/pull/45225
https://contributors.scala-lang.org/t/pre-sip-unboxed-wrapper-types/987
https://contributors.scala-lang.org/t/pre-sip-unboxed-wrapper-types/987
https://doi.org/10.1145/3571240
https://hal.inria.fr/hal-01929508
https://failex.blogspot.com/2017/04/the-high-cost-of-anyval-subclasses.html
https://failex.blogspot.com/2017/04/the-high-cost-of-anyval-subclasses.html
http://web.cecs.pdx.edu/~mpj/pubs/bitdata-icfp05.pdf
https://gmplib.org/
https://doi.org/10.1145/800068.802129
http://www.viam.science.tsu.ge/Ami/2020_2/5_zura.pdf
https://github.com/ghc/ghc/commit/abbc5a0be1df84a33015470319062ed7a3aa3153
https://github.com/ghc/ghc/commit/abbc5a0be1df84a33015470319062ed7a3aa3153
https://github.com/ocaml/Zarith/
https://github.com/lampepfl/dotty/pull/5300
https://contributors.scala-lang.org/t/pre-sip-unboxed-wrapper-types/987
https://contributors.scala-lang.org/t/pre-sip-unboxed-wrapper-types/987
https://gitlab.haskell.org/ghc/ghc/-/wikis/view-patterns
https://arxiv.org/pdf/2206.08413.pdf
https://www.spinellis.gr/blog/20060626/x3J11-86-196.pdf
https://www.spinellis.gr/blog/20060626/x3J11-86-196.pdf
https://doi.org/10.2168/LMCS-11(2:7)2015
https://www.spinellis.gr/blog/20060626/
https://www.spinellis.gr/blog/20060626/
https://github.com/dotnet/fsharp/pull/1395
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p29-syme.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3882.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3882.pdf
https://www.open-std.org/Jtc1/sc22/wg14/www/docs/dr_017.html
https://www.open-std.org/Jtc1/sc22/wg14/www/docs/dr_017.html
http://www.mlton.org/References.attachments/060916-mlton.pdf
http://www.mlton.org/References.attachments/060916-mlton.pdf
https://github.com/ocaml/RFCs/pull/14

	Abstract
	1 Introduction
	1.1 Sum Types and Constructor Unboxing
	1.2 Constructor Unboxing
	1.3 Head Shapes
	1.4 A Halting Problem
	1.5 Contributions and Outline

	2 Case Study: Big Integers
	2.1 A Primer on OCaml Value Representations
	2.2 Unsafe Zarith
	2.3 Unboxed Zarith
	2.4 Other Use-Cases

	3 Heads and Head Shapes
	3.1 Types, Datatype Declarations, Values
	3.2 Low-Level Representation of Values
	3.3 Heads and Head Shapes
	3.4 Sum Normal Form
	3.5 Rejecting Conflicts
	3.6 Pattern-Matching Compilation

	4 Scaling to a Full Language
	4.1 Handling All the Tricky Cases
	4.2 Portability of our Heads
	4.3 Abstract Types with Shapes
	4.4 Are We Really First-Order?
	4.5 OCaml Features Subsumed by Head Shapes

	5 Potential Extensions
	5.1 Shape Constraints on Type Variables
	5.2 Harmless Cycles
	5.3 Unboxing by Transformation
	5.4 Using Unboxing to Describe Existing Representation Tricks

	6 Our Halting Problem
	6.1 On-The-Fly rather than Global Termination Checking
	6.2 Intuition
	6.3 Formalizing our Algorithm
	6.4 A Sketch of Correctness (Termination)

	7 On cpp
	7.1 First-Order and Closed-Higher-Order Function Macros
	7.2 The C and C++ Standard Bodies on Closed-Higher-Order Macros
	7.3 Relating our Algorithm to Dave Prosser's Pseudo-Code
	7.4 Adapting our Algorithm to Closed-Higher-Order Macros
	7.5 Both Algorithms are Incomplete Outside the First-Order Fragment

	8 Related Work
	8.1 Functional Programming Languages
	8.2 Rust: Niche-Filling
	8.3 Declarative Languages for Custom Datatype Representations
	8.4 Deciding Termination of Recursive Rewrite Rules

	Acknowledgments
	References

