
Constructor unboxing
– or, how cpp decides a halting problem

Nicolas Chataing, Stephen Dolan, Gabriel Scherer, Jeremy Yallop

January 19, 2024

Low-level data representation feature for OCaml.
Theory surprise.

1

Single-constructor unboxing

type id = Id of int

Cons(Id 42, Nil)

Single-constructor unboxing (since 2016):

type id = Id of int [@@unboxed]

source: Cons(Id 42, Nil)

repr: Cons(42, Nil)

space: 2 1 1

Opt-in: FFI concerns.

2

Single-constructor unboxing

type id = Id of int

Cons(Id 42, Nil)

Single-constructor unboxing (since 2016):

type id = Id of int [@@unboxed]

source: Cons(Id 42, Nil)

repr: Cons(42, Nil)

space: 2 1 1

Opt-in: FFI concerns.

2

Single-constructor unboxing

type id = Id of int

Cons(Id 42, Nil)

Single-constructor unboxing (since 2016):

type id = Id of int [@@unboxed]

source: Cons(Id 42, Nil)

repr: Cons(42, Nil)

space: 2 1 1

Opt-in: FFI concerns.

2

Constructor unboxing

Our proposed extension.

type bignum =

| Small of int [@unboxed]

| Big of Gmp.t [@unboxed]

Perf: 20% time speedup on bignum micro-benchmark.

Other locality benefits for space-bound programs.

3

Forbidding confusion

type t =

| Id of int [@unboxed]

| Error of error_code [@unboxed]

and error_code = int

Error: This declaration is invalid,

some [@unboxed] annotations introduce

overlapping representations.

A static analysis at type-declaration time:

abstract/approximate types into head shapes

fail on non-disjoint shapes

Precision tradeoff: performance, simplicity, portability.

4

Forbidding confusion

type t =

| Id of int [@unboxed]

| Error of error_code [@unboxed]

and error_code = int

Error: This declaration is invalid,

some [@unboxed] annotations introduce

overlapping representations.

A static analysis at type-declaration time:

abstract/approximate types into head shapes

fail on non-disjoint shapes

Precision tradeoff: performance, simplicity, portability.

4

Computing the head shape?

How to compute the head shape of a type?

5

Computing the head shape?

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(... -> ...)

= {(Imm, 0)} + {(Block, Obj.closure_tag)}

Expanding a type definition is a β-reduction.
Call-by-name (head) normal form.

let rec

tree a = seq (prod a (tree a))

seq a = nil + (arrow unit (prod a (seq a)))

foo = tree int + ...

in tree int

6

Computing the head shape?

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(... -> ...)

= {(Imm, 0)} + {(Block, Obj.closure_tag)}

Expanding a type definition is a β-reduction.
Call-by-name (head) normal form.

let rec

tree a = seq (prod a (tree a))

seq a = nil + (arrow unit (prod a (seq a)))

foo = tree int + ...

in tree int

6

Computing the head shape?

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(... -> ...)

= {(Imm, 0)} + {(Block, Obj.closure_tag)}

Expanding a type definition is a β-reduction.
Call-by-name (head) normal form.

let rec

tree a = seq (prod a (tree a))

seq a = nil + (arrow unit (prod a (seq a)))

foo = tree int + ...

in tree int

6

Cycles

type t = U of u [@unboxed] | Bar

and u = T of t [@unboxed]

let rec

t = u + bar

u = t

in t

Deciding termination?

(STLC, just functions, let rec, first-order)

7

Attempt 1: rule out cycles statically

“Statically”: without expanding definitions.

(As done for type synonym/aliases.)

Problem: too restrictive

type ’a seq = ...

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

8

Attempt 2: prevent repetition of whole types

Block if the same type expression comes up again.

type ’a bad = Loop of (’a * ’a) bad [@unboxed]

let rec

bad a = bad (prod a a)

in

bad int

→ bad (prod int int)

→ bad (prod (prod int int) (prod int int))

→ ...

9

Attempt 3: prevent repetition of head constructors

Abort if an expanded constructor comes again in head position.

Problem: too restrictive

let rec

id a = a

foo = id (id int)

in

foo []

→ id (id int) [foo]

→ id int [foo, id]

̸→

10

Solution: annotate (sub)expressions with expansion context

Track when subexpressions appeared in the type,
not how they came to head position.

let rec

id a = a

delay a = id (id a)

foo = delay int

in

[]foo

→ [foo](delay [foo]int)

→ [foo,delay](id ([foo,delay]id [foo]int)

→ [foo,delay](id [foo]int)

→ [foo]int

(Remark: similar to cpp termination control.)

11

Sound: ensures termination.
Complete (in the first-order fragment): only rejects non-normalizing terms.

Wait, is this problem decidable?

12

Types-list to the rescue

[TYPES] Reference request: decidability of head normalization for a pure
first-order calculus with recursion.

Excellent replies by
Pablo Barenbaum, Martin Lester, Gordon Plotkin, Sylvain Salvati.

“Recursion does not always help.” Plotkin (2022)
+ literature on Higher-Order Model Checking

How to relate our first-order algorithm
to existing higher-order algorithms?

Thanks! Questions?

13

Types-list to the rescue

[TYPES] Reference request: decidability of head normalization for a pure
first-order calculus with recursion.

Excellent replies by
Pablo Barenbaum, Martin Lester, Gordon Plotkin, Sylvain Salvati.

“Recursion does not always help.” Plotkin (2022)
+ literature on Higher-Order Model Checking

How to relate our first-order algorithm
to existing higher-order algorithms?

Thanks! Questions?

13

Types-list to the rescue

[TYPES] Reference request: decidability of head normalization for a pure
first-order calculus with recursion.

Excellent replies by
Pablo Barenbaum, Martin Lester, Gordon Plotkin, Sylvain Salvati.

“Recursion does not always help.” Plotkin (2022)
+ literature on Higher-Order Model Checking

How to relate our first-order algorithm
to existing higher-order algorithms?

Thanks! Questions?

13

Gordon Plotkin. Recursion does not always help. 2022.

14

https://arxiv.org/pdf/2206.08413.pdf

	References

