Frozen inference constraints for type-directed disambiguation

Olivier Martinot, Gabriel Scherer

Partout, Inria Saclay, France

August 21, 2021
Type-directed disambiguation

Many language support type-directed disambiguation of names. How to combine this with type inference?
Type-directed disambiguation

Many language support type-directed disambiguation of names. How to combine this with type inference?

Type classes (qualified types):
 - nice inference through *constraint abstraction*
 - excellent approach for operator overloading.
Type-directed disambiguation outside qualified types

A feature where type classes are not enough: data constructor disambiguation.

\[
f (K \ t) \\
mismatch t \text{ with } K \ x \rightarrow u
\]
Type-directed disambiguation outside qualified types

A feature where type classes are not enough:
data constructor disambiguation.

\[
f (K \ t) \\
\text{match } t \text{ with } K \ x \rightarrow u
\]

1. We do not want to *abstract* over \(K \).
2. The type of \(K \) may not be expressible as a class argument
 (existentials, etc.; data constructors are not functions.)
3. Different constructors \(K \) may have vastly different typing rules.
Constructor disambiguation and type inference

\[\text{f (K t)} \]
\[\text{match t with K x -> u} \]

Need program types to disambiguate \(K \).
Need the type of \(K \) to infer program types.

HM type inference:
propagation by unification (within generalization boundaries).

Bidirectional type inference (commonly used for disambiguation):
leafward propagation from annotations (robust)
+ some lateral propagation (fragile): \(t u \)

This Work In Progress explores unification-based type disambiguation
\textit{frozen constraints}.
Constraint-based type inference: a primer

implicitly-typed $t \overset{\text{generate}}{\Rightarrow}$ constraint $C \overset{\text{solve}}{\Rightarrow}$ explicitly-typed t'

Constraint for application $t \ u$ with return type variable α:

$$
[t \ u]_\alpha \overset{\text{def}}{=} \exists \beta_t. \exists \gamma_u. ((\beta_t = \gamma_u \rightarrow \alpha) \land [t]_{\beta_t} \land [u]_{\gamma_u})
$$
Frozen constraints

\[\langle \alpha \rangle f \]

\(\alpha \): type inference variable
\(f \): function from partial types to constraints

waits on a type unification variable \(\alpha \):
when \(\alpha \) becomes (partly) defined as \(\tau \),
the constraint \(f(\tau) \) must be solved.

Constructor constraint (non-GADT case):

\[\llbracket K \ t \rrbracket_\alpha \overset{\text{def}}{=} \exists \beta_t. (\llbracket t \rrbracket_{\beta_t} \land \langle \alpha \rangle(\lambda \tau. \beta_t = \text{arg_type}(\tau, K))) \]

Principled (and principal) inference with type-disambiguation.
(Maybe too restrictive?)

Difficult to combine with generalization!
Practical difficulty: generalization (1/2)

If $\langle \alpha \rangle f$ remains unsolved “at the end”, type inference fails.

But when is the end?
Practical difficulty: generalization (1/2)

If $\langle \alpha \rangle f$ remains unsolved “at the end”, type inference fails.

But when is the end?

How does $\langle \alpha \rangle f$ interact with let-generalization?
Practical difficulty: generalization (2/2)

Generalization: which inference variables α are *local* and and can be generalized into polymorphic variables?
Practical difficulty: generalization (2/2)

Generalization: which inference variables α are local and can be generalized into polymorphic variables?

Frozen generalization of τ:
if a variable β of τ is “blocked” by a frozen constraint, it must be tracked during instantiation and possibly generalized later.

Partially-frozen schemas:
- On generalization: store β as a blocked schema variable.
- On instantiation: track the instance of the partially-frozen schema.
- When β gets unblocked: continue generalization, update tracked instances.

Delicate to implement. Difficult to implement efficiently.
Theoretical difficulty: semantics (1/3)

Constraints are given meaning by a solution relation $V \models C$.

A good constraint generator has correct solutions.

A good constraint solver (big-step function or small-step rewrites) preserves solutions.

$$
\frac{\tau[V] =_{ty} \tau'[V]}{V \models \tau = \tau'}
$$

$$
\frac{V \models C[T/\alpha]}{(T, V) \models \exists\alpha. C}
$$

How to specify frozen constraints?
Theoretical difficulty: semantics (2/3)

Natural approach:

\[V \models f(\alpha[V]) \]
\[\frac{V \models f(\alpha[V])} {V \models \langle \alpha \rangle f} \]

This specification allows “out of thin air” behaviors.

\[[\alpha \mapsto \text{int}] \models \langle \alpha \rangle (\lambda \tau. \alpha = \text{int}) \]

Our solver does not: the specification is not precise enough.
We want to express that $\alpha[V]$ is determined “without looking inside f”. How can we do this?

Morally:

\[
\frac{C[T \text{ determines } \alpha]}{V \vdash C[f(\alpha[V])]}
\]

\[
V \vdash C[\langle \alpha \rangle f]
\]
Summary

Frozen constraints: interesting but difficult constraint combinator.

Work in progress.

Thanks! Questions?