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Arithmetic expressions over one variable x: meaning in N - N
a,b = neN|x|a+blaxhb

This representation has redundancies: 2 + 2 and 4, same meaning.
TIMTOWTDI

Polynomials:
> e
0<k<d

More canonical representation: 2 + 2 and 4 both become 4x°.
TIOOWTDI

Helps for application: does a asymptotically dominate b?
Less convenient to write: P X Q.



Representations are human-designed.

Good representations reveal the structure of formal objects.

Canonical representations (no redundancies at all)
precisely capture/expose this structure.



For programming languages, clear notion of equivalence given by
contextual equivalence.

But representations are under-studied.

What is a canonical representation of the programs of your language?

Some applications:
e Equivalence algorithms.

@ Program synthesis.
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Logicians have studied proof representations for decades.

Natural deduction
Sequent calculus
Tableaux
Matrices/connections
Expansion proofs
Proof nets

Focusing

® 6 6 6 6 o o o

Multi-focusing

Eliminates redundancies, clarifies the structure of proof search, restricts
the search space.
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A new Curry-Howard connection.

“The structure of programs
corresponds to
the structure of proof search.”

To find good program representations, go read logic papers.
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Focusing

(Andreoli 1992)

=)

Fr=A M= A

Gives canonical representations for impure A-calculi.
(Zeilberger 2009)

Nice sequent syntax in Munch-Maccagnoni (2013).




(Scherer and Rémy 2015)
Combines backward and forward proof-search.

Gives canonical representation of the pure simply-typed A-calculus.

Application: equivalence of programs with sums and the empty type
(Scherer 2017).



Types with a unique inhabitant (Scherer and Rémy 2015):
correct-by-construction synthesis.

Type-directed synthesis builds on focusing. Can it use saturation?
(Osera and Zdancewic 2015; Frankle, Osera, Walker, and Zdancewic 2016;
Polikarpova, Kuraj, and Solar-Lezama 2016)
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