Search for Program Structure

Gabriel Scherer

Northeastern University, Boston

SNAPL 2017
May 8, 2017

Perl vs. Python

Perl vs. Python

TIMTOWTDI

VS.

TIOOWTDI

“There Is More Than One Way To Do It”

VS.

“There Is Only One Way To Do It”

Arithmetic expressions over one variable x: meaning in N - N

a,b = neN|x|a+blaxhb

Arithmetic expressions over one variable x: meaning in N - N
a,b = neN|x|a+blaxhb

This representation has redundancies: 2 + 2 and 4, same meaning.
TIMTOWTDI

Arithmetic expressions over one variable x: meaning in N - N
a,b = neN|x|a+blaxhb

This representation has redundancies: 2 + 2 and 4, same meaning.
TIMTOWTDI

Polynomials:

> e

0<k<d

More canonical representation: 2 + 2 and 4 both become 4x°.
TIOOWTDI

Arithmetic expressions over one variable x: meaning in N - N
a,b = neN|x|a+blaxhb

This representation has redundancies: 2 + 2 and 4, same meaning.
TIMTOWTDI

Polynomials:

> e

0<k<d

More canonical representation: 2 + 2 and 4 both become 4x°.
TIOOWTDI

Helps for application: does a asymptotically dominate b?

Arithmetic expressions over one variable x: meaning in N - N
a,b = neN|x|a+blaxhb

This representation has redundancies: 2 + 2 and 4, same meaning.
TIMTOWTDI

Polynomials:
> e
0<k<d

More canonical representation: 2 + 2 and 4 both become 4x°.
TIOOWTDI

Helps for application: does a asymptotically dominate b?
Less convenient to write: P X Q.

Representations are human-designed.

Good representations reveal the structure of formal objects.

Canonical representations (no redundancies at all)
precisely capture/expose this structure.

For programming languages, clear notion of equivalence given by
contextual equivalence.

But representations are under-studied.

What is a canonical representation of the programs of your language?

Some applications:
e Equivalence algorithms.

@ Program synthesis.

Logicians have studied proof representations for decades.

@ Natural deduction

Logicians have studied proof representations for decades.

@ Natural deduction

@ Sequent calculus

Logicians have studied proof representations for decades.

o Natural deduction
@ Sequent calculus

o Tableaux

Logicians have studied proof representations for decades.

o Natural deduction

@ Sequent calculus

o Tableaux

e Matrices/connections

Logicians have studied proof representations for decades.

o Natural deduction
@ Sequent calculus

o Tableaux

e Matrices/connections
o

Expansion proofs

Logicians have studied proof representations for decades.

@ Natural deduction
Sequent calculus

Tableaux

°
°
e Matrices/connections
@ Expansion proofs

°

Proof nets

Logicians have studied proof representations for decades.

o Natural deduction
Sequent calculus
Tableaux
Matrices/connections

°
°

°

@ Expansion proofs
@ Proof nets

°

Focusing

Logicians have studied proof representations for decades.

Natural deduction
Sequent calculus
Tableaux
Matrices/connections
Expansion proofs
Proof nets

Focusing

® 6 6 6 6 o o o

Multi-focusing

Logicians have studied proof representations for decades.

Natural deduction
Sequent calculus
Tableaux
Matrices/connections
Expansion proofs
Proof nets

Focusing

® 6 6 6 6 o o o

Multi-focusing

Logicians have studied proof representations for decades.

Natural deduction
Sequent calculus
Tableaux
Matrices/connections
Expansion proofs
Proof nets

Focusing

® 6 6 6 6 o o o

Multi-focusing

Eliminates redundancies, clarifies the structure of proof search, restricts
the search space.

A new Curry-Howard connection.

“The structure of programs
corresponds to
the structure of proof search.”

A new Curry-Howard connection.

“The structure of programs
corresponds to
the structure of proof search.”

To find good program representations, go read logic papers.

Focusing

(Andreoli 1992)

Fr=A M= A

Focusing

(Andreoli 1992)

=)

Fr=A M= A

Gives canonical representations for impure A-calculi.
(Zeilberger 2009)

Nice sequent syntax in Munch-Maccagnoni (2013).

(Scherer and Rémy 2015)
Combines backward and forward proof-search.

Gives canonical representation of the pure simply-typed A-calculus.

Application: equivalence of programs with sums and the empty type
(Scherer 2017).

Types with a unique inhabitant (Scherer and Rémy 2015):
correct-by-construction synthesis.

Type-directed synthesis builds on focusing. Can it use saturation?
(Osera and Zdancewic 2015; Frankle, Osera, Walker, and Zdancewic 2016;
Polikarpova, Kuraj, and Solar-Lezama 2016)

10

Jean-Marc Andreoli (1992). “Logic Programming with Focusing Proofs in
Linear Logic”. Journal of Logic and Computation 2.3.

Noam Zeilberger (2009). “The Logical Basis of Evaluation Order and
Pattern-Matching”. PhD thesis.

Guillaume Munch-Maccagnoni (2013). “Syntax and Models of a
non-Associative Composition of Programs and Proofs”. PhD thesis.

Peter-Michael Osera and Steve Zdancewic (2015).
“Type-and-Example-Directed Program Synthesis”. PLDI.

Gabriel Scherer and Didier Rémy (2015). “Which simple types have a
unique inhabitant?” ICFP.

Jonathan Frankle, Peter-Michael Osera, David Walker, and
Steve Zdancewic (2016). “Example-directed synthesis: a type-theoretic
interpretation”. POPL.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama (2016).
“Program synthesis from polymorphic refinement types’. PLDI.

Gabriel Scherer (2017). “Deciding equivalence with sums and the empty
type”’. POPL.

11

