The or-pattern \((p \mid q)\) matches a value \(v\) if either \(p\) or \(q\) match \(v\). It may happen that both \(p\) and \(q\) match certain values, but that they don’t bind their variables at the same places. OCaml specifies that the left pattern \(p\) then takes precedence, but users intuitively expect an angelic behavior, making the “best” choice. Subtle bugs arise from this mismatch. When are \((p \mid q)\) and \((q \mid p)\) observably different?

To correctly answer this question we had to go back to pattern matrices, the primary technique to compile patterns and analyze them for exhaustivity, redundant clauses, etc. There is a generational gap: pattern matching was actively studied when most ML languages were first implemented, but many of today’s students and practitioners trust our elders to maintain and improve them. Read on for your decadely fix of pattern matching theory!

A bad surprise Consider the following OCaml matching clause:

```ocaml
| (Const n, a) | (a, Const n)
  when is_neutral n -> a
```

This clause, part of a simplification function on some symbolic monoid expressions, uses two interesting features of OCaml pattern matching: *when* guards and or-patterns.

A clause of the form \(p \text{ when } g \rightarrow e\) matches a pattern scrutinee if the pattern \(p\) matches, and the guard \(g\), an expression of type *bool*, evaluates to *true* in the environment enriched with the variables bound in \(p\). Guards occur at the clause level, they cannot occur deep inside a pattern.

The semantics of our above example seems clear: when given a pair whose left or right element is of the form \(\text{Const } n\), where \(n\) is neutral, it matches and returns the other element of the pair.

Unfortunately, this code contains a subtle bug: when passed an input of the form \((\text{Const } v, \text{Const } n)\) where \(v\) is not neutral but \(n\) is, the clause does not match! This goes against our natural intuition of what the code means, but it is easily explained by the OCaml semantics detailed above. A guarded clause \(p \text{ when } g \rightarrow e\) matches the scrutinee against \(p\) first, and checks \(g\) second. Our input matches both sides of the or-pattern; by the specified left-to-right order, the captured environment binds the pattern variable \(n\) to the value \(v\) (not \(n\)). The test \texttt{is_neutral n} fails in this environment, so the clause does not match the scrutinee.

A new warning This is not an *implementation* bug, the behavior is as specified. This is a *usability* bug, as our intuition contradicts the specification.

There is no easy way to change the semantics to match user expectations. The intuitive semantics of “try both branches” does not extend gracefully to or-patterns that are in depth rather that at the toplevel of the pattern. Another approach would be to allow *when* guards in depth inside patterns, but that would be a very invasive change, going against the current design stance of remaining in the pattern fragment that is easy to compile – and correspondingly has excellent exhaustiveness and usefulness warnings. The last resort, then, is to at least complain about it: detect this unfortunate situation and warn the user that the behavior may not be the intended one. The mission statement for this new warning was as follows: “warn on \((p_1 \mid q_2) \text{ when } g\) when an input could pass the guard \(g\) when matched by \(p_2\), and fail when matched by \(p_1\)”.

We introduced this new warning in OCaml 4.03, released in April 2016.

Specification and non-examples A pattern \(p\) may or may not match a value \(v\), but if it contains or-patterns it may match it in several different ways. Let us define \texttt{matches}(\(p, v\)) as the ordered list of matching environments, binding the free variables of \(p\) to sub-parts of \(v\); if it is the empty list, then the pattern does not match the value.

A variable \(x \in p\) is *ambiguous* if there exists a value \(v\) such that distinct environments of \texttt{matches}(\(p, v\)) map \(x\)
to distinct values, and stable otherwise. We must warn
when a guard uses an ambiguous variable.

x is stable in \(((x, \text{None}, _)) \lor ((x, _, \text{None})) \), as it
will always bind the same sub-value for any input.

x is stable in \(((x, \text{None}, _)) \lor ((_, \text{Some}_x, x)) \), as
no value may match both sides of the or-pattern.

Pattern matrices Pattern matrices are a common
representation for pattern-matching algorithms. A \(m \times n \)
pattern matrix corresponds to a \(m \)-disjunction of pattern
on \(n \) arguments matched in parallel:

\[
\begin{bmatrix}
p_{1,1} & p_{1,2} & \cdots & p_{1,n} \\
p_{2,1} & p_{2,2} & \cdots & p_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m,1} & p_{m,2} & \cdots & p_{m,n}
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
(p_{1,1,1}, p_{1,2,1}, \cdots, p_{1,n,1}) \\
(p_{2,1,2}, p_{2,2,2}, \cdots, p_{2,n,2}) \\
\vdots \\
(p_{m,1,n}, p_{m,2,n}, \cdots, p_{m,1,n})
\end{bmatrix}
\]

A central operation is to split a matrix into sub-
matrices along a given column, for example the first column.
Consider the matrix

\[
\begin{bmatrix}
K_1(q_{1,1}) & p_{1,2} & \cdots & p_{1,n} \\
K_2(q_{2,1}, q_{2,2}) & p_{2,2} & \cdots & p_{2,n} \\
_ & p_{3,1} & \cdots & p_{3,n} \\
K_2(q_{4,1}, q_{4,2}) & p_{4,2} & \cdots & p_{4,n}
\end{bmatrix}
\]

The first element of a \(n \)-tuple matching some row of
the matrix starts with either (1) the head constructor \(K_1 \),
or (2) \(K_2 \), or (3) another one. The three following sub-
matrices thus describe the shape of all possible values
matching this pattern – with the head constructor of the
first column removed:

(1) \[
\begin{bmatrix}
q_{1,1} & p_{1,2} & \cdots & p_{1,n} \\
_ & p_{3,1} & \cdots & p_{3,n}
\end{bmatrix}
\]

(2) \[
\begin{bmatrix}
q_{2,1} & q_{2,2} & p_{2,2} & \cdots & p_{2,n} \\
_ & p_{3,1} & \cdots & p_{3,n}
\end{bmatrix}
\]

(3) \[
\begin{bmatrix}
_ & p_{3,1} & \cdots & p_{3,n}
\end{bmatrix}
\]

A variable is stable in a matrix if it is stable in each of
its sub-matrices.

If a pattern in the column we wish to split does not
start with a head constructor or \(_ \), but with an or-
pattern, one can simplify it into two rows:

\[
\begin{bmatrix}
(q_1 | q_2) & r \\
\vdots & \ddots
\end{bmatrix} \quad \Rightarrow \quad
\begin{bmatrix}
q_1 & r \\
q_2 & r \\
\vdots & \ddots
\end{bmatrix}
\]

After repeated splitting, a column ends up with only
nullary constructors or universal patterns \(_ \); the next split removes the column. Eventually, repeated splitting
terminates on a matrix with several rows but no columns.

Binding sets When splitting a matrix into sub-
matrices, we peel off a layer of head constructors, and
thus lose information on any variable bound at this position
in the patterns.

To correctly compute stable variables, we need to keep
track of these binding sites: we enrich pattern matrices
with information on what variables were peeled off each row.
Our matrices are now of the form

\[
\begin{bmatrix}
B_{1,1} & \ldots & B_{1,l} & | & p_{1,1} & p_{1,2} & \cdots & p_{1,n} \\
\vdots & \vdots & & | & \vdots & \vdots & \ddots & \vdots \\
B_{m,1} & \ldots & B_{m,l} & | & p_{m,1} & p_{m,2} & \cdots & p_{m,n}
\end{bmatrix}
\]

where the \(B_{i,k} \) are binding sets, sets of variables found
in the same position during pattern traversal. Variables
of different columns correspond to different binding posi-
tions, so they may bind distinct values.

The type-checker ensures that the two sides of an or-
pattern \((p \lor q) \) bind the same variables, and that pat-
terns are otherwise linear – each variable occurs once.
This guarantees that all rows bind the same envi-
ronment, and that each variable occurs either in a single
pattern of the row, or in one of the binding sets.

Variable binding at the head of the leftmost pattern
are moved it to the rightmost binding set.

\[
[\ldots B_{1,l} | (p \text{ as } x) \ldots] \Rightarrow [\ldots (B_{1,l} \cup \{x\}) | p \ldots] \\
[\ldots B_{1,l} | x \ldots] \Rightarrow [\ldots (B_{1,l} \cup \{x\}) | _ \ldots]
\]

We insert a new binding set when splitting on the head
constructor of the first pattern row: head variables of the
new rows bind to a different position.

\[
\begin{bmatrix}
B_{i,1} & \ldots & B_{i,l} & | & K(q_1, \ldots, q_k) & p_{i,2} & \cdots & p_{i,m}
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
B_{i,1} & \ldots & B_{i,l} & | & q_1 & \ldots & q_k & p_{i,2} & \cdots & p_{i,m}
\end{bmatrix}
\]

When traversal ends on a matrix with empty rows, we
compute stability of this matrix from the binding sets:

\[
\begin{bmatrix}
B_{1,1} & \ldots & B_{1,l} & |
\vdots & \vdots & \vdots & |
B_{m,1} & \ldots & B_{m,l} & |
\end{bmatrix}
\]

Binding sets along a given column correspond to vari-
ables that are bound at the same position for all possible
ways to enter this sub-matrix. The intersection of these
sets thus gives the stable variables of the column. Be-
cause the variable sets are disjoint, a variable stable for
a column cannot appear anywhere else.

Acknowledgments This subtle bug was brought to
our attention by Arthur Charguéraud, Martin Clochard
and Claude Marché. François Pottier made the elegant
remark that ambiguity corresponds to non-commutative
or-patterns – \((p \lor q) \) different from \((q \lor p) \).