Namespaces for OCaml: ode to discussion

Gabriel Scherer Didier Rémy Fabrice Le Fessant

November 26, 2012

Yes, we have a Problem

Two library providers use the same filename.
This clash cannot be solved by the user.

Workaround 1: -pack-ing libraries
Problem: produces bloated .cmo that library users hate

Workaround 2: jane_street_core_list.ml
Problem: users get long names in their source code, and there is
no satisfying way to alias modules (and distribute aliasing choices).

The module system of OCaml is complicated enough. We look for
a solution that is not about modules per se.

Where does the problem come from?

We made the somewhat arbitrary choice to use the file name of a
compilation unit as both:

1. the module name used to refer to compilation units from
source
(Can't talk about two clashing compunits in the same
program)

2. the internal name encoded into compiled objects to be linked
(Can't link together two clashing compunits)

We need to change both to support user-side clash resolution.

Making internal names more unique
A range of strategies:

>

>

use long filenames, plus strategies for shortening them in
source

use a distinct provider-defined provenance field, for example
inria.gallium.stdlib.list

use the .cmi hash of the compilation unit

use a random unique identifier (fixed in the .cmi) to get
strong unicity

let the user manually override the internal name

Any non-overridable name rules out some uncommon scenario,
such as:

>

>

linking together two compunits with the same interface
(incompatible with pure .cmi hash)

linking together two versions of the same library
(incompatible with provider-defined filenames or provenance)

We must decide whether we want to leave the door open to them.

Naming compilation units from OCaml source files

Difference between local modules accessible in the typing env., and
the external units looked up in the filesystem.

We formalize the latter lookup with a compilation environment
that maps in-source compilation unit names to external
compilation units.

It is currently defined by the include path.

We want richer ways to construct the compilation environment
passed to the compiler. We call those compilation environments
namespaces.

To solve clashes, let users refine their namespace.
For example, map
{FooA -> "a/foo.cm*", FooB -> "b/foo.cm*"}
to avoid a clash on Foo (if the internal names are unique enough).

The structure of a namespace

Namespaces are hierarchical: natural, convenient and expressive.
Subsumes most uses of -pack.

{
Joe: {
List: "+site-1ib/joe/joe_list",
Array: "+site-1ib/joe/joe_array"
3,
Jenny: {
List: "+list",
ListDev: "/opt/ocaml/trunk/stdlib/list"
}
}

This is only a semantic value, like the “"mapping from module
names to compunits in the module path” is imaginary today.

The interface to define these values (command-line flags, etc.) can
change, but the notion is robust.

The namespace description interface: default namespace

General idea : with a good default choice, most users never hear
about namespaces.

Reasonable default: scanning the content of the include path
recursively, to get a hierarchical structure:
Camlp4#Printers#0Caml.

(note: # is abstract syntax)

If the provenance field is present, we can alternatively use it:
Inria#Gallium#3tdlib#List.

For additional guarantees, can even check that the two hierarchies
coincide.

Namespace description: explicit constructs

Minimal additional construct (supported by Fabrice): provide an
additional open construct to shorten some paths from the

environment.
Conflicts would be resolved by letting the other choose which of
Stdlib#List or Core#List is shortened to List.

Namespace description: explicit constructs

Minimal additional construct (supported by Fabrice): provide an
additional open construct to shorten some paths from the
environment.

Conflicts would be resolved by letting the other choose which of
Stdlib#List or Core#List is shortened to List.

We can also ask for a richer description language. For example:

let stdlib = scan "+" in
let joe = load "+site-lib/joe/joe.ns" in
let trunk = scan "/opt/ocaml/trunk/stdlib" in
{ Joe: joe only {List, Array},
Jenny: { List: stdlib#List,
ListDev: trunk#List } }

A rigid common convention, or a more expressive description
language?
What do users need?

Extremal description language

As an extremal design point, rich combinators plus special cases
for common conventions.

E,F == { (label : (" path” |E))* } literal structu:
| E#label projection
| EonlyS sig. restrictiol
| E [shallow|deep] merge [left|right|strict] F merge
| load "path” file loading
| [file|provenance|strict] scan [flat|rec] "path/" directory scan
| letx = E;in E let binding

Debate! Which subset do you need?

The view from the language

module-path ::=
| compunit-name (. module-name)*
| module-name (. module-name)*

let test 1i =
let foo = ... in
let curr_result = Joe#List.map foo 1i in
let dev_result = Jenny#ListDev.map foo 1li in
Test.assert_equal curr_result dev_result

ocamlc -I foo —namespace bar.ns
=> (scan rec "foo") merge right (load "bar.ns")

Proposal: distinguish compilation unit names from modules

Currently List is ambiguous: internal module names or external
compunit name.

The backward-compatible proposal preserves this.

Proposal: allow #List for the compunit name, and a
-strict-namespace flag to disable the ambigous syntax List.

Benefit: ocamldep becomes grep!

Thanks to the people that discussed namespaces with me.

Didier Remy
Fabrice Le Fessant
Nicolas Pouillard
Alain Frisch
Martin Jambon
Jacques Garrigue
Francois Pottier
Edgar Friendly
Scott Kilpatrick

