
Jbuilder design
discussion



Agenda

• Main topic: Extensibility
• Overview of jbuilder, what can be done, difficulties and tradeoffs
• Discuss what we want:

• Make custom code generator first class (ctypes, atd, …)
• Support other languages/backends (bucklescript, ocsigen, …)
• …

• Other design choices and priorities
• Alternative implementations (variants)
• Setting default release/dev flags
• OS-based dispatching
• Cross-compilation
• Multi-directories libraries
• …



Current state

• ~250 projects in opam using jbuilder (~350 packages)

• ~1000 jbuild files (25 in OCaml syntax)

• 94 PRs, 154 issues



Overview of Jbuilder and 
extensibility questions



RULE GENERATOR

LIBRARY DB

BINARY DB

BUILD
SYSTEM

JBUILD FILES

Extensibility



Extensibility: additional complication

Usually: staging
at the package level

Jbuilder is
composable

Dynamic rules
generation



Dynamic rules: prototype

(executable ((name foo)))

(rule (with-output-to rules.jbuild (run foo.exe)))

(include rules.jbuild)



Dynamic rules: limitation

• Cannot generate libraries or public executables
• Cannot resolve library/executable names if some parts are not yet know

• Could partition the workspace by package but not great :
• Reduce parallelism

• The contents of opam files becomes relevant for the build

• Might be needed even inside a single package

• Complicate things

OCaml syntax



Possible design for extensibility



Plugins can add new stanzas

(ctypes.stubs
((names (foo bar))
…)

Implementation:
- Dynlink library “ctypes”
- Execute:

$ <plugin-path>/ctypes.stubs.exe “((names …) …)”



Global rules (ppx, js_of_ocaml, …)

.auto/<name>/<path>/<file>

$ <plugin-path>/auto/<name>.exe <path>



mk-jbuilder

• Make it easy to create custom jbuilder executables

• Full access to internal APIs


