
Unboxing Mutually Recursive Type Definitions in OCaml

Simon Colin, Rodolphe Lepigre1, and Gabriel Scherer2

1 Inria, LSV, CNRS, ENS Paris-Saclay, France – rodolphe.lepigre@inria.fr
2 Inria, France – gabriel.scherer@inria.fr

October 2018

Abstract

In modern OCaml, single-argument datatype declarations (variants with a single con-
structor, records with a single immutable field) can sometimes be “unboxed”. This means
that their memory representation is the same as their single argument, omitting an indi-
rection through the variant or record constructor, thus achieving better memory efficiency.
However, in the case of generalized/guarded algebraic datatypes (GADTs), unboxing is not
always possible due to a subtle assumption about the runtime representation of OCaml
values. The current correctness check is incomplete, rejecting many valid definitions, in
particular those involving mutually-recursive datatype declarations. In this paper, we ex-
plain the notion of separability as a semantic for the unboxing criterion, and propose a set
of inference rules to check separability. From these inference rules, we derive a new imple-
mentation of the unboxing check that properly supports mutually-recursive definitions.

1 Introduction

Version 4.04 of the OCaml programming language, released in November 2016, introduced the
possibility to unbox single-constructor variants and single-immutable-field records. In other
words, a value inhabiting such a datatype is exactly represented at runtime as the value that
it contains, rather than as a pointer to a block containing a tag for the constructor and the
contained value. The removal of this indirection is called constructor unboxing, or unboxing for
short, and it allows for a slight improvement in speed and memory usage.

In the current version of OCaml, unboxing must be explicitly requested with [@@unboxed]

as shown in the following example:

type uid = UId of int [@@unboxed]

One of the main interests of unboxing is that it allows the incorporation of semantic type
distinctions without losing runtime efficiency – the mythical zero-cost abstraction. For example,
the elements of uid are distinct from those of int for the type checker, but they have the
same runtime representation. Unboxing resolves a tension between software engineering and
performance.

Unboxing becomes even more interesting when it is combined with advanced features such as
existential types, with GADTs, or higher-rank polymorphism, with polymorphic record fields,
which are otherwise only accessible in boxed form.

type ’a data = { name : string ; data : ’a }

type any_data = Any_data : ’a data -> any_data [@@unboxed]

type proj = { proj : ’a. ’a -> ’a -> ’a } [@@unboxed]

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

1.1 Unboxing and dynamic floating-point checks

OCaml uses a uniform memory representation, one machine word for all values. Multi-word
data such as floating-point numbers, records or arrays are represented by a word-sized pointer
to a block on the heap.

For local computations involving floating-point numbers, the compiler tries to optimize by
storing short-lived floating-point values directly, without the pointer indirection; this is called
floating-point unboxing, a different form of unboxing optimization. The boxing indirection needs
to be kept for values passed across function boundaries, or passed through data structures that
expect generic OCaml values.

To avoid indirection costs on typical numeric computations, a specific representation exists
for floating-point arrays, in which floating-point numbers are stored unboxed, as two consecutive
words in memory. The compiler uses this optimized representation when an array is statically
known to have type float array . It also performs a dynamic optimization when creating a
new non-empty array: it checks whether its first element is a (boxed) floating-point value, and
in that case uses the special floating-point array representation. As a consequence, all writes
to such an array need to be unboxed first, and reads produce data in already-unboxed form,
which meshes well with the local floating-point unboxing optimizations.

However, this optimization crucially relies on an underlying assumption: the inhabitants,
the values of any given type are either all boxed floating-point values, or none of them are. We
don’t know of a standard name for this property, so we call it separability.

Indeed, if there were non-separable types, containing both floating-point and non-floating-
point values, then this optimization would be unsound. This is demonstrated by the following
example, which relies on the unsafe/forbidden casting function Obj.magic .

let despicable : float array = [| 0.0 ; Obj.magic 42 |]

(* Produces: "segmentation fault (core dumped)" *)

The array of floating point numbers that is constructed here is stored using the optimized
representation. As a consequence, its elements must be unboxed prior to being inserted into
the actual array. Here, the segmentation fault is precisely triggered when attempting to unbox
the value 42 , which is not stored in a block but as an immediate memory word: dereferencing
it as a float pointer accesses forbidden memory.

Although the above example requires unsafe features, a similar situation also arises when
using a single-constructor GADT whose parameter is existentially quantified, and can hence
contain either floating-point or non-floating-point values.

type any = Any : ’a -> any

The above datatype is the GADT formulation of the existential type Dα. α: it can contain any
OCaml value. However, those values are “boxed” under the Any constructor. In particular,
the value Any 0.0 is not directly represented as a floating-point value, but as pointer to a
block stored on the heap that is tagged with the Any constructor, following by (the OCaml
representation of) the floating-point number.

If the any datatype were allowed to be unboxed, we would have constructed a type breaking
the separability assumption. The above example of segmentation fault could then be reproduced
by a well-typed program as follows.

2

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

type any = Any : ’a -> any [@@unboxed]

(* The above type is rightfully rejected by OCaml, it cannot be unboxed. *)

let array = [| Any 0.0 ; Any 42 |]

The current implementation correctly rejects this any datatype, but it also rejects valid
unboxed definitions that would not introduce non-separable types, when mutually-recursive
datatypes are involved. The following real-world example of an interesting definition that is
wrongly rejected was given by Markus Mottl.1

type (_, _) tree =

| Root : { mutable value : ’a; mutable rank : int } -> (’a, [‘root]) tree

| Inner : { mutable parent : ’a node } -> (’a, [‘inner]) tree

and _ node = Node : (’a, _) tree -> ’a node [@@ocaml.unboxed]

(* The above type is incorrectly rejected by OCaml, it could be unboxed. *)

Yet another example of such wrongful rejection was encountered by the second author, in
the context of the Bindlib library (Lepigre and Raffalli, 2018). It resembles the definitions of
any_type and ’a data that were given earlier, but it is rejected as the two datatypes are

defined mutually-recursively (for more details, see Lepigre and Raffalli, 2018, Section 3.1).

1.2 The existing check

The existing implementation of the compiler check for unboxing was implemented by Damien
Doligez in 2016, when constructor unboxing was introduced. It proceeds by inspecting the
parameter of every unboxed GADT constructor. If it is an existential variable ’a , the definition
is rejected. If it is a type expression whose value representation is known, such as a function
foo -> bar or a product foo * bar , then it is separable and the definition is accepted. The

difficult case arises when the parameter is of the form (foo, bar, ...) t . For example, if
the parameter has type ’a t , where ’a is an existential variable, then this definition must
be rejected if t is defined as type ’a t = ’a , but it can be accepted if it is defined as
type ’a t = int * ’a , for example.

In the current check, (foo, bar, ...) t is expanded according to the definition of t ,
and its expansion is checked recursively. In the case where t is an abstract datatype, the
check correctly fails as soon as one of the parameter is an existential. If t is part of the same
block of mutually-recursive definitions, its definition may not be known yet, and the check fails
although it could have succeeded had the definition been known. Finally, it is worth noting that
because of recursive datatypes, the expansion process may not terminate. As a consequence,
there is a hard limit on the number of expansions.2

1.3 Our approach: inference rules for separability

We propose to replace the current check using a “type system” for separability. In other words,
we introduce inference rules to approximate the semantic notion of separability: a type is
separable if the values it contains are all floating-point numbers, or if none of them are. This

1https://github.com/ocaml/ocaml/pull/606#issuecomment-248656482
2This limit was originally set too high, and it had to be reduced to avoid type-checking slowdowns.

3

https://github.com/ocaml/ocaml/pull/606#issuecomment-248656482

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

approach is very similar to how the variance of datatype parameters is handled in languages
with subtyping, including OCaml, both in theory and in practice. In the case of variance, the
“types” are annotations such as covariant or contravariant, and the “terms” that are being
checked are types and datatype definitions.

Here, the “types” are separability modes indicating whether the corresponding type parame-
ters need to be separable for the whole datatype to be separable. Modes include Sep (separable),
the mode of types or parameters that must be separable, and Ind (indifferent), the mode of
types or parameters on which no separability constraint is imposed.3 For example, in the case of
type ’a t = ’a * int , the parameter ’a has mode Ind since the values it contains are all

pairs, independently of the type used to instantiate ’a . For type (’a, ’b) second = ’b ,
the parameter ’a has mode Ind, but the parameter ’b has mode Sep. Indeed, if ’b is not
instantiated with a separable type, then the whole definition cannot be separable either. The
separability behavior of a parametrized datatype is characterized by a mode signature, which
gives a choice of mode for the type parameters that guarantees that the whole datatype will be
separable. For instance, the previous two examples would have mode signatures (’a:Ind) t

and (’a:Ind, ’b:Sep) second .
If a type that is being checked is defined in terms of a type constructor (foo, bar, ...) t ,

and if the mode signature of t is known, then its definition does not need to be unfolded
as in the legacy implementation. Indeed, it is enough to simply check the parameter in-
stances (foo , bar , ...) against the modes of the signature. For example, if we encounter
(foo, bar) second , then we only need to check that bar is separable.

In the case of a block of mutually-recursive datatype definitions, a mode signature must be
constructed for each definition of the block. However, this cannot be done separately for each
definition due to dependencies. As a consequence, we proceed by computing a fixpoint, as for
variance: we iteratively refine an approximation of the mode signatures for the block, updating
when encountering conflicts, until a mode signature that requires no update is found: it is a valid
signature for the block. The number of possible modes assignments for each parameter is finite,
so this fixpoint computation always terminates. Note that our inference rules do not talk about
the fixpoint computation, or about algorithmic aspects in general. It is a simpler, declarative
specification for the correctness of mode assignments, from which the checking algorithm can
be derived. It can also be used to reason about the semantic correctness of our check.

1.4 Contributions

We claim the following three contributions:

• A clear explanation of separability. The notion of separability evidently existed in Damien
Doligez’s mind when unboxed datatypes where implemented in 2016, but we had to redis-
cover it to understand the check, and we took this opportunity to document separability
and to give it a precise semantic definition.

• A set of inference rules for separability of type expressions and datatype definitions.
• An implementation of a separability check derived from these inference rules, within

the OCaml compiler. It is compatible with mutually-recursive definitions, which were
previously always rejected.

A preliminary version of this work was produced during an internship of the first author (Colin,
2018). We give here a full treatment of GADTs, while the internship report used first-class
existential types, without equations. We also moved from a prototype implementation, separate

3There is actually a third mode Deepsep (deeply separable) that will be explained in the next section.

4

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

from the OCaml type-checker and defined on simpler data-structures, to a production-ready
implementation of the separability check in (an experimental fork of) the OCaml type-checker.

2 Type language and separability modes

As mentioned in the introduction, our approach to unboxability checking relies on the notion
of separability of a type, which was already introduced in an intuitive way.

Definition 1 (Separability). A type is said to be separable if and only if its inhabitant contain
either only floating-point values, or only non-floating point values.

Intuitively, our final goal is to make sure that all type definitions have a separable body. That
is, for all definition type (’a, ’b, ...) t = <type_body> , we want to check that the type
<type_body> is separable under some assumptions on the separability of parameters. Before

going into formal definitions, two potential sources of difficulties must be discussed: GADTs,
which are the only possible source of non-separability, and the (related) typing constraints,
which can be used to extract possibly non-separable subcomponents of a type.

2.1 GADTs using type equalities and existential quantifiers

Generalized/guarded algebraic datatypes, GADTs for short extend the usual variant datatypes
using a slightly different syntax. They are parametrized datatypes (_, _, ...) t in which
the typing constraints on the parameters may vary depending on the variant constructor. More-
over, existentially quantified type variables may appear in GADT constructors.4 Examples of
GADTs illustrating these features are given below.

type _ data =

| Char : char -> char data

| Bool : bool -> bool data

type any_function = Fun : (’a -> ’b) -> any_function

type _ first = First : ’c -> (’c * ’d) first

As it turns out, GADTs can be decomposed into more primitive components: non-GADT
algebraic datatypes, type equalities and existential types. For instance, the above examples can
be encoded as follows, using an imaginary extension of the OCaml syntax explained below.5

type ’a data =

| Char of char with (’a = char)

| Bool of bool with (’a = bool)

type any_function = Fun of exists ’a ’b. ’a -> ’b

4See the OCaml manual (https://caml.inria.fr/pub/docs/manual-ocaml-4.07/extn.html#sec252) for a
more thorough introduction to GADTs.

We are intentionally unclear about whether the “G” means “generalized” or “guarded”, because both words
have been used in the literature. In the present article, “guarded” makes more sense as we concentrate on the
pains introduced by equality constraints, or equality guards. “Generalized” is also a rather empty name, as
there are many other ways to generalize algebraic datatypes.

5The translation can be defined in a systematic way, see for example Simonet and Pottier (2007).

5

https://caml.inria.fr/pub/docs/manual-ocaml-4.07/extn.html#sec252

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

type ’a first = First of exists ’b ’c. ’b with (’a = ’b * ’c)

In the above, we use the new syntax exists ’a. <type_expr> for first-class existential quan-
tification over one or several type variables, and <type_expr> with (’a = <type_expr>) for
guarding a type expression with an equality constraint. In our formal description of the separa-
bility check, we will use the syntax Dα.τ for existentials, and the syntax τæpα “ κq for equality
guards, where α is a type variable, and τ and κ are type expressions.

The semantic intuition behind these two type-formers is the following. An existential type
Dα.τ can be understood as the union over all types κ of τ rα :“ κs. For example, the values
of the type exists ’a. ’a -> ’a contains the values of int -> int , but also the values
of bool -> bool and the values of (char -> bool) -> (char -> bool) . 6 An equality
guard τæpα “ κq exactly corresponds to τ in the case where the constraint pα “ κq is satisfied,
and it is empty otherwise. Note that guards whose left-hand-side is a type variable suffice to
express GADTs: all guards equate a type parameter to its instance in the “return type” of the
variant constructor.

2.2 Equality guards and deep separability

In the introduction, the parametrized type constructors ’a t that were considered either had
the mode signature (’a : Ind) t , meaning that ’a t is always separable no matter what
’a is, or they had mode signature (’a : Sep) t , meaning that ’a t is separable only if
’a is itself separable. However, these two modes are not always sufficient due to equality

guards.
The equality guards used in GADTs7 introduce the ability for parametrized types to “peek”

into the definition of their parameters in ways that affect our separability check. Consider,
for example, the unboxed version of the _ first datatype, which is accepted by the current
constructor unboxing check.

type _ first =

| First : ’b -> (’b * ’c) first [@@unboxed]

Using this definition, (’b * int) first has the same memory representation as ’b , so it is
separable if and only if ’b is separable. In other words, the separability of type foo first

does not on the separability of type foo , but rather on the separability of a sub-component,
in the sense of syntactic inclusion, of the type foo .

To account for this situation, we introduce a third separability mode Deepsep (deeply sep-
arable). For a closed type expression (a type expression with no free type variables) to be
Deepsep, all its sub-components, including the type expression itself, must be separable.

2.3 Formal syntax of types

We define the syntax of the type expressions and datatypes that we consider in the top and
middle parts of Figure 1. It is a representative subset of the OCaml grammar of types,8 with
first-class existential types Dα.τ and type restrictions τæpα “ κq to represent GADTs with

6The interpretation of existential quantifiers as unions (and dually, of universal quantifiers as intersections)
is very common in realizability semantics, for example.

7Constrained datatype definitions such as type ’a t = ’b constraint ’a = ’b * int may also involve
equality guards, but we chose to ignore this feature here since it poses exactly the same problem.

8For instance, we omit object types and polymorphic variants, but they could be handled just like products.

6

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

Syntax of type expressions:

τ, κ ::“ α, β type variable
| float | int | bool builtin types
| tpτ1, . . . , τnq (parametrized) type constructor
| τ Ñ κ function type
| τ1 ˆ ¨ ¨ ¨ ˆ τn product/record type
| @α.τ polymorphic type
| Dα.τ existential type
| τæpα “ κq equality guard

Syntax of datatypes:

A,B ::“ C1 of τ1 | . . . | Cn of τn boxed variant
| C of τ r@@unboxeds unboxed variant
| tmutable? l1 : τ1 ; . . . ; mutable? ln : τnu boxed record
| tl : τu r@@unboxeds unboxed record
| τ type synonym

Sub-component relation on type expressions:

τ Ÿ τ

τ1 Ÿ τ2 τ2 Ÿ τ3

τ1 Ÿ τ3

i P r1;ns

τi Ÿ tpτ1, . . . , τnq

1 P t1, 2u

τi Ÿ τ1 Ñ τ2

i P r1;ns

τi Ÿ τ1 ˆ ¨ ¨ ¨ ˆ τn

τ Ÿ κ α R τ

τ Ÿ @α.κ

τ Ÿ κ α R τ

τ Ÿ Dα.κ

i P t1, 2u

τi Ÿ pτ2æpα “ τ1qq

Figure 1: Syntax of type expressions, datatypes, and sub-component relation.

finer-grained rules, as explained in Section 2.1. We also include first-class universal types @α.τ ,
although they are only allowed in record or method fields in OCaml.

To define deep separability, we first need to define the syntactic sub-components of a type
(see Section 2.2). We define a sub-component relation τ Ÿ κ (“τ is a sub-component of κ”) at
the bottom of Figure 1. The first two rules make the relation reflexive and transitive, and the
others give the immediate sub-components for each type-former.

The definition of the sub-component relation is careful to preserve the scoping of variables.
For example, τ Ÿ @α.κ holds only if α does not occur free in τ , which we write α R τ . In
particular, whenever τ Ÿ κ holds, the free type variables of τ are included in those of κ; the
sub-components of a closed type expression are also closed types.

2.4 Separability modes

Separability modes m, n, their order structure m ă n and mode composition m ˝ n are defined
in Figure 2. Modes are totally ordered from less to more demanding. We may use derived
notations such as m ď n, minpm,nq or maxpm,nq for the non-strict ordering, the minimum or

7

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

Separability modes (or simply, modes):

m,n ::“ Ind indifferent
| Sep separable
| Deepsep deeply separable

Mode composition m ˝ n:

Ind ˝ m :“ Ind

Sep ˝ m :“ m
Deepsep ˝ m :“ Deepsep

Order structure:
Ind ă Sep ă Deepsep

Figure 2: Separability modes and mode operations.

the maximum of two modes.
A mode m expresses a requirement on a type expression, which comes from its context:

for the whole expression to be valid, some of its sub-components must have the separability
property m. The operation m ˝ n expresses composition of those requirements in our inference
rules (given in the next section). For example, if tpαq requires its parameter α to have mode m
for the whole expression to be separable, and upβq requires its parameter β to have mode n for
the whole expression to be separable, then tpupβqq is separable when β has mode m ˝ n.

2.5 Contexts and mode signatures

Our separability judgments in Section 3 make use of contexts Γ, representing separability as-
sumptions on the type variables (α, β . . .) that are in scope. Moreover, we also rely on mode
signatures Σ, representing the separability requirements on the datatype constructors tpαq that
are available in the scope. Contexts and mode signatures are defined in Figure 3.

Γ ::“ H | Γ, α : m Σ ::“ H | Σ, tpα : mq

Γ ď Γ1 m ď m1

Γ, α : m ď Γ1, α : m1

Σ ď Σ1 α “ α1 m ě m1

Σ, tpα : mq ď Σ1, tpα1 : m1q

Figure 3: Contexts, mode signatures, and their order

This figure also defines the extension of the order on modes to an order on contexts and
on mode signatures. The order on contexts is just a point-wise extension of the mode order,
imposing that two comparable contexts have the same type variables. The order on signatures
imposes the same datatype constructors on both sides, but requires their parameter modes
to be pointwise comparable in the opposite order, pěq rather than pďq: parameters are in
contravariant position. For example, we have tpα : Sep, β : Sepq ď tpα : Ind, β : Indq.

3 Separability inference

The formal deduction rules that we will use to assess the separability of datatype definitions
are defined in Figure 4. Type expressions are checked by judgments of the form Σ; Γ $ τ : m,
which can intuitively be read in either direction, from Γ to m or conversely:

• If the type variables respect the modes in Γ, then the type expression τ has the mode m.

8

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

• For the type expression τ to be safe at mode m, then its type variables need to have at
least the modes given in Γ.

Inference rules at type-expression level:

pα : mq P Γ

Σ; Γ $ α : m

tpα1 : m1, . . . , αn : mnq P Σ pΣ; Γ $ τi : m ˝ miq1ďiďn

Σ; Γ $ tpτ1, . . . , τnq : m

Σ; Γ $ τ : m ˝ Ind Σ; Γ $ κ : m ˝ Ind

Σ; Γ $ τ Ñ κ : m

pΣ; Γ $ τi : m ˝ Indq1ďiďn

Σ; Γ $ τ1 ˆ ¨ ¨ ¨ ˆ τn : m

Σ; Γ, α : n $ τ : m

Σ; Γ $ @α.τ : m

Σ; Γ, α : Ind $ τ : m

Σ; Γ $ Dα.τ : m

Σ; Γ $ τ : m m ě n

Σ; Γ $ τ : n

@Γ1 ě Γ, Σ; Γ1 $ pκ1 “ κ2q ùñ Σ; Γ1 $ τ : m

Σ; Γ $ τæpκ1 “ κ2q : m

@m, Σ; Γ $ τ1 : m ðñ Σ; Γ $ τ2 : m

Σ; Γ $ pτ1 “ τ2q

Inference rules at datatype level:

Σ; Γ $decl C1 of τ1 | . . . | Cn of τn
Σ; Γ $ τ : Sep

Σ; Γ $decl C of τ r@@unboxeds

Σ; Γ $decl tl1 : τ1 ; . . . ; ln : τnu
Σ; Γ $ τ : Sep

Σ; Γ $decl tl : τu r@@unboxeds

Σ; Γ $ τ : Sep

Σ; Γ $decl τ

Inference rule at the datatype declaration block level:

Dpmiq1ďiďn, Σblock :“ t1pα1 : m1q, . . . , tnpαn : mnq pΣenv,Σblock;αi : mi $decl Aiq1ďiďn

Σenv $ ptipαiq :“ Aiq1ďiďn % Σblock

Figure 4: Inference rules for separability.

Type expressions. The rule for parametrized datatypes tpτ1, . . . , τmq uses mode composi-
tion; for example, if t is a one-argument type constructor with signature tpα : nq and we want
tpτq to have mode m, then τ needs to have the mode m ˝ n.

The rules for concrete datatypes (functions and products, but also most other OCaml type-
formers if we were to add them) use m ˝ Ind on their arguments. If m is Sep or Ind, then
m ˝ Ind is Ind, which corresponds to not requiring anything of the sub-components: the values
at type τ1 Ñ τ2 are all functions, never floats, regardless of τi. If m is Deepsep, then we do
need to check the sub-components, and indeed Deepsep ˝ Ind is Deepsep.

A value is at the universal type @α. τ only if it belongs to all the τ rκ{αs for all κ. In
particular, it is enough to prove the separability at just one of these τ rκ{αs, the universal type
has even less values, so we can assume the arbitrary mode n of this particular κ by adding α : n
in the context. Conversely, Dα. τ is inhabited by all the τ rκ{αs, so τ has to have the desired
mode for all possible modes of κ. Instead of requiring the premise to hold for all possible modes
n, we equivalently ask for the most demanding mode Ind.

The conversion rule allows to forget some information about a type τ : m by exporting it at
a smaller mode n ď m. For example, all Sep types are also Ind types.

9

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

Equality constraints. The rule for equality constraints is the most complex rule in the
system. A first remark is that κæpτ1 “ τ2q always has less elements than κ: it has the same
elements when the equality holds, or no elements otherwise. In particular, if κ : m holds in the
current context Γ, then κæpτ1 “ τ2q : m should also hold in Γ.

When we see an equality constraint, we gain more information, which should allow us to
mode-check more types. The way our rules represent this information gain is by moving from the
current mode context Γ to a stronger mode context Γ1. More precisely, to check κæpτ1 “ τ2q : m
in Γ, the rule asks to check κ : m in any context Γ1 ě Γ that is consistent with the assumption
pτ1 “ τ2q. This corresponds to the Γ1 $ pτ1 “ τ2q hypothesis, which will be explained shortly.
For example, if Γ is α : Ind, β : Sep, and we observe the equality pα “ βq, then in particular we
know that α : Sep also holds: if the two types are equal, they must have the same mode. Our
rule will type-check the body type κ in stronger contexts Γ1 with α : Sep, β : Sep.

A context Γ is valid for a type equality, written Γ $ pτ1 “ τ2q, if the two types τ1 and
τ2 have exactly the same mode in Γ. Remark that it is not enough to ask that, for a given
mode m, both types have mode m; for example, all types trivially have mode Ind. Instead, we
ask that for any mode m, either τ1 and τ2 have mode m, or neither of them have it. This is
equivalent to requiring τ1 and τ2 to have the same “best”, maximal mode.

In our example where Γ is α : Ind, β : Sep, note that we do not have Γ $ pα “ βq: β has mode
Sep but α does not. The modes Γ1 ě Γ that satisfy Γ1 $ pα “ βq are ΓSep :“ α : Sep, β : Sep,
and ΓDeepsep :“ α : Deepsep, β : Deepsep. To check that κæpα “ βq : m holds in Γ, our rule
asks us to check that κ : m holds in both ΓSep and ΓDeepsep. But in fact we, the implementers
of the checking algorithm, know that making stronger assumptions in the context makes more
mode-checks pass, so it suffices to check in context ΓSep.

9

Finally, it is interesting to consider the derivation of the following judgment, which represents
in our system the key ingredient of the _ first GADT that led to the introduction of Deepsep
in Section 2.2.

α : m $ Dβγ. βæpα “ β ˆ γq : Sep

We expect to accept this type declaration only in the case where α : Deepsep, this assumption
guaranteeing that β will be separable. Opening the existentials puts β, γ in the context at Ind:

α : m,β : Ind, γ : Ind $ βæpα “ β ˆ γq : Sep

Let us now reason by case analysis on m to show that only m “ Deepsep has a valid derivation
of this judgment.

• If m is Deepsep, then any Γ1 ě Γ with Γ1 $ pα “ βˆγq has β : Deepsep, γ : Deepsep since
otherwise β ˆ γ : Deepsep cannot hold. In particular, Γ1 $ β : Sep holds as expected, so
the judgment is derivable.

• If m is Sep or Ind, then Γ1 :“ α : Sep, β : Ind, γ : Ind satisfies Γ1 ě Γ and Γ1 $ pα “ βˆγq,
but we do not have Γ1 $ β : Sep: the judgment is not derivable.

Datatypes. The judgment for datatypes is simple: a datatype is accepted if its set of values is
separable. Boxed variant or record definitions are always separable, so no premises are required.
Unboxed variants/records with parameter type τ , or type synonyms for τ require τ : Sep.

Definition blocks. The judgment for definition blocks has an input signature, Σenv in the
rule, which lists assumptions that we make on the datatype constructors provided by the typing

9We could formulate the rule to only check the unique minimal context Γ1, but Fact 2 in Section 4 suggests
that such a unique context may not always exist.

10

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

environment, and an output signature, Σblock in the rule, which is a valid signature for the
current block of mutually-recursive definitions. A definition block is valid if each datatype
definition it contains is valid. Note that each definition is checked with the full Σblock in the
signature context: all mutually-recursive datatype constructors are available in scope.

Meta-theory. The following two lemmas can be easily proved by structural induction on
typing derivations.

Lemma 1 (Cut elimination). A separability derivation can always be rewritten so that all
occurrences of the conversion rule only have axiom rules as their premises or, equivalently,
using the following more primitive rule.

pα : mq P Γ m ě n

Σ; Γ $ α : n

Lemma 2 (Monotonicity). The following rule is admissible.

Σ ď Σ1 Γ ď Γ1 Σ; Γ $ τ : m m ě m1

Σ1; Γ1 $ τ : m1

4 Semantics

Due to space limitations, we moved our presentation of separability semantics to Appendix A.
It contains a precise semantic characterization of separability judgments in the flavor of set-
theoretic or realizability models, and a discussion of soundness, principality and completeness.
Many results are left as conjectures – we explain why some of them are surprisingly delicate.

5 Integration into OCaml

We are now going to highlight some important points of our implementation in the OCaml
type-checker. The corresponding code has been proposed for integration through a GitHub pull
request, that is visible at the following URL.

https://github.com/ocaml/ocaml/pull/2188

Our implementation is derived from the type system given in Section 3 by inferring mode
signatures for type definitions. It only assigns mode signatures that can be justified by our syn-
tactic type system. For example, if (’a : Sep, ’b : Ind) t is assigned to a type definition
type (’a, ’b) t = A , then Σenv $ tpα, βq :“ A % tpα : Sep, β : Indq must be derivable using

the inference rules of Figure 4.

5.1 Inferring block signatures with a fixpoint

Our main checking function constructs a block signature Σblock given an environment Σenv and
a block of type definitions ptipαiq :“ Aiq1ďiďn:

val check : Env.t -> type_definition ConstrMap.t -> mode_signature ConstrMap.t

In this signature, type_definition ConstrMap.t maps datatype constructors tipαq to datatype
definitions Ai, and mode_signature ConstrMap.t them to a mode signature tipα : mq.

11

https://github.com/ocaml/ocaml/pull/2188

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

It is not possible to directly compute mode signatures for mode definitions, due to recursive
types: we need to know the mode signature of the type constructors in order to assign them a
mode signature. This circularity is solved by using a fixpoint computation: we iteratively refine
an approximation of the mode signatures.

The fixpoint computation starts with the most permissive mode signature, which only re-
quires mode Ind for the variables of every type constructor of the block. At each iteration, the
separability of every type of the block is checked against the current approximation of the mode
signatures, accumulating more precise constraints whenever required. If the mode signatures
coming from these constraints are more demanding than those of the current approximation,
we define them as the new approximation and continue. Otherwise, we have found a mode
signature that validates the judgment – it is sound. In fact, it is the most permissive mode
signature that we can find by iteration in this way.

5.2 Management of GADTs

As explained in Section 2.1, our type system for separability does not directly account for
GADTs: they are encoded using existential quantifiers and equality guards. Our implementa-
tion handles only GADTs, which correspond to a very specific mode of use of existentials and
guards within type declarations.

Consider, for example, type ’a fun = Fun : (’b -> ’c) -> (’b -> ’c) fun . The re-
turn type (’b -> ’c) fun determines the equality guard p1a “ 1b Ñ 1cq, and the existential
types are the free type variables 1b, 1c of the declaration. In general, unboxable GADT types
contain existential quantifiers only at the toplevel, immediately followed by one equation for
each type parameter, with finally a concrete parameter type τ .

The first thing to note is that all existential quantifiers occurs at the top level: they exactly
correspond to the free variables of the parameter type. We can infer a mode signature for the
parameter type τ and, following our rule for existentials, check that the modes inferred for
the free existential variables in τ are Ind and fail otherwise. Finally, the mode signature for
the definition of the GADT is obtained by removing the existential variables from the inferred
mode signature.

The delicate matter with in handling of GADTs is unsurprisingly the management of equality
guards. Recall that an unboxed GADT type tpαq “ K : τ Ñ tpκq is encoded as Dβ.τæpα “ κq,
where the β are the type variables free in τ, κ and the κ do not contain any αi. The idea
of the implementation is to first infer a mode context Γ such that Σ; Γ $ τ : Sep, assigning
modes to the variables in α and β. Equations are then discharged one by one, refining Γ in the
process, before the existential variables β are checked to be Ind and eliminated to create the
final context for the GADT parameters only – the mode signature. Every equation, taken in
any order, is managed according to the following three cases:

• An equation of the form pαi “ βjq leads to Γ being updated with tαi ÞÑ Γpβjq, βj ÞÑ Indu.
• An equation of the form pαi “ κq with Γ X FV pκq only containing Ind leads to the

equation being discarded without any update to Γ.
• Any other equation (i.e., equations pαi “ κq with Γ X FV pκq not only containing Ind)

leads to Γ being updated with tαi ÞÑ Deepsep, FV pκq ÞÑ Indu.

These transformations respect the following invariant: if the equation pα “ κq updates Γ into
Γ0, then any Γ1 ě Γ0 that satisfies Γ1 $ pα “ κq is above the original Γ (Γ1 ě Γ). In other
words, strengthening the resulting context Γ0 with the equation we just handled would give a
context as permissive or more than the original context Γ.

12

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

5.3 Cyclic types

The OCaml type system accepts equi-recursive types. By default, any cycle in types must go
through a polymorphic variant or object type constructor, but the -rectypes option general-
izes this to any ground type constructor. A type such as (’a -> ’b) as ’b , for example, gives
a cyclic representation to the infinite type ’a -> ’a -> ’a -> ... , and must be supported
by our implementation.

To support cyclic types, we extend our checking rules to support a form of coinduction:
each time we reduce a judgment to simpler premises (for example from Γ $ τ1 Ñ τ2 : m to
Γ $ τi : m ˝ Ind), we record in the premises that we have previously encountered the judgment
τ1 Ñ τ2 : m. If, later, we encounter the same judgment to prove, we terminate immediately
with a success.

With this rule, it is possible to prove both

α : Ind $ ppαÑ βq as βq : Sep α : Deepsep $ ppαÑ βq as βq : Deepsep

Informally, the reason why recursive occurrences of the same judgment can be considered an
immediate success is that we “made progress” between the first occurrence of the cyclic type
β and its second occurrence in α Ñ β: the second occurrence is “guarded” under a value
constructor, and the set of values of β we are classifying as separable, or deeply separable, is
not the one we started from – that would be an invalid cyclic reasoning – but a copy of it
occurring deeper in the type structure.

However, some cyclic types such as tpαq as α have a less clear status, as the recursive
occurrence is not guarded under a computational type constructor (arrow, product...), but
under an abbreviation. Is this type well-defined if, for example, tpαq is defined as tpαq :“ α?
OCaml rejects some of these dubious-looking circular types, but instead of trusting our fate to
the rest of the type-checker we decided to account for them in our theory. We split our set of
co-inductive hypotheses (the list of judgments that we are trying to prove) into a set of “safe”
hypotheses Θsafe, which can be used immediately, and a set of “unsafe” hypotheses, which can
only be used after a computation type constructor has been traversed.

Here are some rules of the corresponding formal system, extended with coinductive hypothe-
ses, which guided our OCaml implementation:

@i P t1, 2u, Σ; Γ; Θsafe,Θunsafe, pτ1 Ñ τ2 : mq;H $ τi : m ˝ Ind

Σ; Γ; Θsafe; Θunsafe $ τ1 Ñ τ2 : m

tpα1 : m1, . . . , αn : mnq P Σ pΣ; Γ; Θsafe; Θunsafe, ptpτ1, . . . , τnq : mq $ τi : m ˝ miq1ďiďn

Σ; Γ; Θsafe; Θunsafe $ tpτ1, . . . , τnq : m

pτ : m1q P Θsafe m1 ě m

Σ; Γ; Θsafe; Θunsafe $ τ : m

pτ : mq P Θunsafe

Σ; Γ; Θsafe; Θunsafe & τ : m

The arrow rule has its premises under a computational type constructor, so it passes all coin-
ductive hypotheses, including the new assumption on τ1 Ñ τ2, to its safe set. A datatype
constructor may be just an abbreviation, so it adds the new hypothesis to the unsafe set.

Finally, whenever a judgment needs to be proved, it immediately succeeds if a stronger
hypothesis is in the safe set. On the other hand, if our hypothesis is already in the unsafe set,
then we know that it cannot be proven without recursively assuming itself, and we can in fact
fail with an error.

13

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

5.4 Non-conservativity

Section A.2, Fact 2 shows that our modes do not admit principal judgments – in particular
our judgments are non-principal. In particular, the following OCaml declaration can be given
either signatures tpα : Ind, β : Sepq and tpα : Sep, β : Indq.

type (’a, ’b) t = K : ’c -> (’c, ’c) t

Our implementation will choose one of the two minimum signatures, depending on the order
in which constraints are handled – see Section 5.2. This means that some correct uses of the
type will be disallowed: no matter which one is chosen, one of the two following declarations
will be rejected:

type t1 = T1 : (int, ’a) t -> t1

type t2 = T2 : (’a, int) t -> t2

On the other hand, the current implementation, which expands the definition of t , accepts
both definitions.

We have decided to accept these completeness regressions. Our implementation is cleaner,
accepts important examples rejected by the current implementation, and is safer in its handling
of cycles, without fuel. In contrast, the counter-examples we could build are fairly esoteric, and
we have not found any of them in the current testsuite or user programs. Only time will tell
if this assumption is reasonable; we discuss ideas to recover principality (and accept both t1

and t2) in Future Work Section 6.1.

6 Related and future work

6.1 Future work

Richer modes The implementation of our unboxability check is satisfactory in the sense that
it accepts most valid (unboxed) definitions. There is however room for improvement, especially
in the handling of type equality guards, be they in GADTs or in toplevel equality constraints.

For instance, the way we handle equations of GADTS (see the previous section) is in some
sense incomplete, and our language of modes is not principal. We considered extending our
modes with modes of the form Dpβ : mq.m1 and mæpα “ τq. However, this would significantly
increase the complexity of the theory and the implementation, only to handle corner cases that
may not be worth it.

Another simpler approach to regain an impression of principality would be to support dis-
junctions of modes. In the problematic example tpα, βq :“ βæpα “ βq, there are two minimum
modes tpα : Ind, β : Sepq and tpα : Sep, β : Indq, so this type could be given the principal mode
tpα : Ind, β : Sepq _ pα : Sep, β : Indq.

Automatic unboxing Currently, unboxable type declarations are never unboxed automati-
cally, the user has to explicitly ask for it. Automatic unboxing has been considered, but it could
break existing code using the foreign function interface. For example, a C function receiving an
OCaml value from an unboxable but non-unboxed type currently needs to unbox it explicitly.
The same action on an (automatically) unboxed type would fail if the C code is not changed
accordingly.

14

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

Disjoint GADT unboxing One could wish to unbox multi-constructors GADTs in the case
where typing constraints lead to the mutual exclusion of the different constructors.

type _ value =

| Int : int -> int value

| Bool : bool -> bool value

| Pair : (’b * ’c) -> (’b * ’c) value

While each ground instance of this value type has a single possible constructor and could
be unboxed, pattern-matching on an ’a value would then have to be disallowed: pattern-
matching learns the value of ’a from inspecting the GADT constructor, which is not present
anymore in the unboxed representation. It seems fishy to only allow pattern-matching on
partially-determined instances of the type, and we did not investigate further.

6.2 Just get rid of the damn float thing

The fairly elaborate sufferings we just went through are caused by the dynamic unboxing opti-
mization for arrays of floating point numbers. If this dynamic optimization were removed, we
would not need separability anymore and the unboxing check could also be removed. This dy-
namic check also has consequences on other features: by making a J type (our Dα. α) unsound, it
prevents extending the relaxed value restriction to generalize contravariant variables (Garrigue,
2004, page 11).

There is an ongoing debate in the OCaml community on this idea. An experimental config-
ure flag -no-flat-float-array can be set to disable dynamic flat representation optimizations
in the implementation, and benefit from the simpler type theory. Since 4.06 (November 2017),
a new primitive monomorphic type floatarray exists that is specialized for unboxed float ar-
rays, and can be used by users intending to use this optimization, but it lacks library support
and convenient array-indexing notations. The problem is with generic code, written against
parametric ’a array value and then applied in numeric programs on float array, whose per-
formance would be silently degraded with an important slowdown. In other terms, removing
the dynamic optimization would be acceptable for experts authors of numerical code willing to
modify their codebase, but hurt the performance of programs written naively by beginners.

6.3 Related work

We discussed the existing implementation of the unboxability check in Section 1.2.

The approach presented in our work is largely inspired from the way the variance of type
declarations is handled in languages with subtyping (Abel, 2008; Scherer and Rémy, 2013).

The memory representation of values used in OCaml and similar languages finds its origin
in Lisp-like languages (Leroy, 1990). Despite the advantage of allowing every value to have
the same, single-word representation, this approach also has obvious limitations in terms of
performances due to the introduction of indirections. As a consequence, ways of lowering this
overhead in certain scenarios have been investigated, one possibility being to mix tagged and
untagged representations (Peterson, 1989; Leroy, 1990, 1992). Another idea that has been
investigated is to consider unboxed values as first-class citizens, although distinguished by their
types (Peyton Jones and Launchbury, 1991).

15

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

References

Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer
Science, 2008.

Simon Colin. Specifying the unboxability check on mutually recursive datatypes in OCaml,
2018. Internship report (under the supervision of Gabriel Scherer).

Jacques Garrigue. Relaxing the value restriction. In FLOPS, 2004.

Rodolphe Lepigre and Christophe Raffalli. Abstract representation of binders in ocaml using
the bindlib library. In LFMTP, 2018.

Xavier Leroy. Efficient data representation in polymorphic languages. In PLILP, 1990.

Xavier Leroy. Unboxed objects and polymorphic typing. In POPL, 1992.

John Peterson. Untagged data in tagged environments: Choosing optimal representations at
compile time. In FPCA, 1989.

Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In FPCA, 1991.

Gabriel Scherer and Didier Rémy. Gadts meet subtyping. In ESOP, 2013.

Vincent Simonet and François Pottier. A constraint-based approach to guarded algebraic data
types. TOPLAS, 2007.

16

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

A Semantics

We give a semantic model of types, datatypes and modes in Figure 5. The general idea is to be
able to interpret the judgment Γ $ τ : m as follows: “if we replace each type variable pα : mαq

of Γ by a closed/ground type with the correct separability mode mα, then τ will really have
the separability mode m”.

Ode to semantics. In Section 3 we have given a set of inference rules to prove judgments
of the form Σ; Γ $ τ : m, guided by the intuition that this should provide evidence that τ is
separable. Inference rules are our key contribution as they can easily be turned into a checking
or inference algorithm, but they are also subtle, and may very well be wrong. They are hard
to audit by someone else who does not trust us, the authors: there are a lot of details to check.

The point of a semantics is to provide an “obvious” counterpart to inference rules. A formal
definition of separability, or whatever property an inference system is trying to capture, that
is self-evident, can be easily checked and trusted by other people – in particular, it does not
depend on the previous inference rules in any way. It serves as a specification, can use arbitrary
mathematical operations, and does not need to be computable or close to an algorithm. Finally,
one wishes to prove that the syntactic inference rules and the semantics coincide in some sense;
this implies that we can trust the inference rules as much as we trust the semantics.

Our semantics can also be understood as an idealized “model” of the programming language
we are studying: it contains the assumptions that we make about the language and type system,
and can be compared to OCaml to ensure that those assumptions are correct.

Ground value semantics. To define what it means for a closed type τ to have the mode m,
we use the set-theoretic intuition introduced earlier: “its values are all floating-point numbers,
or none of them are”. To do so formally, we introduce a syntax of closed/ground values, and
specify which ground values inhabit which ground types.

Our notion of ground/closed values is idealized; in particular, we represent all values at a
function type as an opaque function blob, as if all functions were represented in the same way
in the programming languages we model. They are not, but the differences in representation
are irrelevant to reason about separability.

In the figure we define ground values v (just data, no term variables), ground types τ (no
free type variables), ground datatypes (no free type variables or parameters), and blocks of
datatype definitions σ, which assign a datatype to each datatype constructor of a signature Σ.

Finally, we define a series of semantic judgments using the symbol p(q. The judgment
v (σ τ specifies when a value inhabits a type, relative to a block of definitions σ to interpret type
constructors. The judgment v (σ A specifies when a value inhabits a type parameter; note in
particular how the judgments for unboxed datatypes reflect what happens in an implementation.

The judgments τ (σ m and A (σ m specify when a type expression or datatype respect
the separability mode m. They are defined in terms of our set-theoretic characterizations,
separablepXq. Finally, A (σ tpα : mq specifies when a parametrized datatype A respects a
mode signature, and σ (Σ specifies that a definition block respects a signature block.

In Figure 6, we use these specifications to build a semantic counterpart for each of our
syntactic judgments. This lets us easily formulate soundness and partial completeness results.
For example, Σ; Γ (τ : m is the semantic counterpart of the judgment Σ; Γ $ τ : m. It
captures what it means for the judgment to hold: for any valid definitions σ (Σ, and any
choice of ground types γ valid for Γ (γ (σ Γ), replacing the variables in τ by the ground types
in γ gives a ground type γpτq at mode m, that is, γpτq (σ holds.

17

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

Ground/closed values v, type expressions τ , datatypes A,
context valuations γ, datatype signature valuations σ

v ::“ true, false booleans
| intpn P Nq integers
| floatpx P Rq float
| pv1, . . . , vnq tuple
| function function
| tl1 : v1; . . . ; ln : vnu record
| Ci v variant

closedpτq :“ @α, α R τ
GType :“ tτ | closedpτqu

closedpAq :“ @τ P A, closedpτq
GDatatype :“ tA | closedpAqu

γ P PpTypeVarÑ GTypeq
σ P PpTypeConstructorÑ GDatatypeq

Values at a ground type expression v (σ τ

true, false (σ bool intpnq (σ int floatpxq (σ float function (σ τ1 Ñ τ2
`

vi (
σ τi

˘

1ďiďn

pv1, . . . , vnq (
σ pτ1 ˆ ¨ ¨ ¨ ˆ τnq

Dτ P GType, v (σ κrτ{αs

v (σ Dα.κ

@τ P GType, v (σ κrτ{αs

v (σ @α.κ

ptpαq :“ Aq P σ v (σdecl Arτ1{α1, . . . , τn{αns

v (σ tpτ1, . . . , τnq

pτ1 “ τ2q ùñ v (σ κ

v (σ κæpτ1 “ τ2q

Values at a ground datatype v (σdecl A

v (σ τi 1 ď i ď n

Ci v (
σ
decl C1 of τ1 | ¨ ¨ ¨ | Cn of τ1

v (σ τ

v (σdecl C of τ r@@unboxeds

`

vi (
σ τi

˘

1ďiďn

tl1 : v1; . . . ; ln : vnu (
σ
decl tl1 : τ1; . . . ; ln : τnu

v (σ τ

v (σdecl tl : τu r@@unboxeds

v (σ τ

v (σdecl τ

Ground types at a mode τ (σ m, ground valuations at a context γ (σ Γ

isfloatpvq :“ Dx, v “ floatpxq
separablepXq :“ p@v P X, isfloatpvqq _ p@v P X, isfloatpvqq

τ (σ Ind

separableptv | v (σ τuuq

τ (σ Sep

@τ 1 Ÿ τ , τ 1 (σ Sep

τ (σ Deepsep

@pα : mq P Γ, γpαq (σ m

γ (σ Γ

Remark: we have Dα. α *σ Sep, which means that not all ground types are separable.

Ground datatypes at a mode A (σdecl m,
parametrized datatypes at a mode signature A (σ tpα : mq,
datatype definitions at a block signature σ (σ Σ

separableptv | v (σdecl Auq

A (σdecl Sep

@γ (σ α : m, γpAq (σdecl Sep

A (σ tpα : mq

@ptpαq :“ Aq P σ, A (σ Σptq

σ (Σ

Figure 5: Ground semantics

18

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

@σ (Σ,@γ (σ Γ, γpτq (σ m

Σ; Γ (τ : m

@σ (Σ,@γ (σ Γ, γpAq (σdecl
Σ; Γ (decl A

@σ0 (Σ0, σ0, σ (Σ0,Σ

Σ0 (σ) Σ

Figure 6: Judgment semantics

One does not have to trust the inference rules of our syntactic judgment Σ; Γ $ τ : m,
which may very well be wrong, to trust that this semantic judgment Σ; Γ (τ : m captures a
good notion of separability. One need to read the declarative rules of figures 5 and 6, which we
designed to be obvious. It is now evident what the right statements should be for soundness and
completeness of our syntactic inference system: it is sound if the syntactic judgment implies
the semantic judgment (all judgments with a syntactic derivation are semantically true), and
complete if the converse holds (all true judgments can be established by a syntactic derivation).

A.1 (Maybe-)Soundness and (in-)completeness

In a research paper, the perfect way to evaluate a syntactic system of inference rules is to provide
an independent declarative semantics for it, state the corresponding soundness/completeness
results, and prove them.

In real-world implementations of a programming language, the syntactic system is rarely
written down (often, only the algorithm inspired from the rules is kept), the declarative seman-
tics are only vague intuitions in the mind of the rule designers, and the statements are never
formulated precisely enough to dream of a proof.

In this imperfect research paper, we have precise rules, and an independent declarative
semantics, and precise statements... but most proofs are missing. In fact, it is fairly non-obvious
that those proofs exist: as we were doing this precise formalization work we have discovered
that completeness does not hold in presence of constraints, and even that the system is not
principal – not only the inference rules, but even the semantics.

This subsection contains the best state of our knowledge and hopes about the formal status
of our inference rules.

Conjectured Lemma 3 (Type expression soundness). Σ; Γ $ τ : m ùñ Σ; Γ (τ : m

Remark: it is not obvious that the existential rule is sound, for example. It proves Dα. τ : m
under a premise α : Ind $ τ : m. The values of Dα. τ are the union of all the τ rσ{αs, and our
induction hypothesis tells us that each τ rσ{αs indeed has the mode m. But separability is not
at all stable by union: both int and float are separable, but their union is not. One needs
to argue that either all τ rσ{αs are inhabited by floating-point numbers only, or that none of
them contain floating-point numbers, and this is a subtle property of the structure of algebraic
datatypes.

Conjectured Theorem 1 (Soundness). Σ0 $ σ % Σ ùñ Σ0 (σ) Σ

Fact 1 (Incompleteness). There exists a τ such that H;H (τ : m but H;H & τ : m.

Proof. Consider the two types τ1 :“ Dβ.βæpint “ boolq and τ2 :“ Dαβ. βæpα “ α ˆ intq.
They are semantically separable, but our type system cannot prove it. The reason why they
are semantically separable is that the equations never hold in our semantic model with finite
ground types, so the constrained type is empty and thus trivially separable.

19

Unboxing Mutually Recursive Type Definitions Colin, Lepigre and Scherer

We could make our syntactic inference rules more complete by adding more equality-
reasoning power to the judgment Σ; Γ $ pτ1 “ τ2q. For the first case pint “ boolq, incompatible
type constructors should not be considered equal. In the second case, pα “ αˆ intq, one could
add an occurs-check to rule out such recursive types, but note that this property, true in our
model, may not hold in the real world – it does not in OCaml when -rectypes is used.

This result suggests that equality-reasoning can be fairly subtle and that we should not
expect syntactic completeness on types with constraints. We can still hope to have completeness
in their absence.

Definition 2 (Constraint-free). A type τ , datatype A or definition block σ is constraint-free if
it does not contain any type equality constraint (κæpα “ τ 1q). We write CFpτq, CFpAq or CFpσq.

Conjectured Lemma 4 (Completeness on constraint-free type expressions).

CFpτq ^ Σ; Γ (τ : m ùñ Σ; Γ $ τ : m

Conjectured Theorem 2 (Completeness on constraint-free signatures).

CFpσq ^ Σ0 $ σ % Σ ùñ Σ0 (σ) Σ

A.2 Constraint-free principality

Unfortunately, there is more bad news to come for equality constraints.

Fact 2 (Semantic non-principality). There exists a parametrized datatype A with A (H tpΓ1q

and A (H tpΓ2q, but A *H tpminpΓ1,Γ2qq.

Proof. Over two parameters α, β, take A :“ αæpα “ βq. Both Γ1 :“ α : Ind, β : Sep and
Γ2 :“ α : Sep, β : Ind are admissible signatures for A. In particular, our inference rules can
verify them: any Γ1 with Γ1 $ α “ β has pα : Sep, β : Sepq. However, the minimum signature
α : Ind, β : Ind is not valid for A.

Note the example in the above proof can be represented as an OCaml datatype as follows.

type (_, _) strange_eq =

| Strange_refl : ’a -> (’a, ’a) strange_eq [@@unboxed]

This results shows that some limitations of the system are not due to our typing rules, but
a fundamental lack of expressiveness of the current modes and mode signatures as a specifica-
tion/reasoning language. We would need a richer language of modes, keeping track of equalities
between types, to hope to get a principal system.

Lemma 5. If Σ; Γ1 $ τ : m and Σ; Γ2 $ τ : m and CFpτq then Σ; minpΓ1,Γ2q $ τ : m

Proof. This proof is done by induction on the two derivations at once, but we need to use the
Cut Elimination Lemma 1 first to be able to assume, by inversion/syntax-directedness, that
the rules on both sides are the same.

Corollary 1 (Constraint-free principality).
If Σ; Γ $ τ : m with CFpτq, then there exists a minimal context Γmin such that Σ; Γmin $ τ : m.
If Σ0 $ σ % Σ with CFpσq, then there exists a minimal signature Σmin such that Σ0 $ σ % Σmin.

20

	Introduction
	Unboxing and dynamic floating-point checks
	The existing check
	Our approach: inference rules for separability
	Contributions

	Type language and separability modes
	GADTs using type equalities and existential quantifiers
	Equality guards and deep separability
	Formal syntax of types
	Separability modes
	Contexts and mode signatures

	Separability inference
	Semantics
	Integration into OCaml
	Inferring block signatures with a fixpoint
	Management of GADTs
	Cyclic types
	Non-conservativity

	Related and future work
	Future work
	Just get rid of the damn float thing
	Related work

	Semantics
	(Maybe-)Soundness and (in-)completeness
	Constraint-free principality

