
Dependent Pearl: Normalization by realizability

PIERRE-ÉVARISTE DAGAND, Sorbonne Université, CNRS, Inria Paris, LIP6, France

LIONEL RIEG, VERIMAG UMR 5104, Université Grenoble Alpes, France, France

GABRIEL SCHERER, Inria Saclay, France

For those of us who generally live in the world of syntax, semantic proof techniques such as reducibility,

realizability or logical relations seem somewhat magical despite – or perhaps due to – their seemingly

unreasonable effectiveness. Why do they work? At which point in the proof is “the real work” done? Hoping to

build a programming intuition of these proofs, we implement a normalization argument for the simply-typed

λ-calculus with sums: instead of a proof, it is described as a program in a dependently-typed meta-language.

The semantic technique we set out to study is Krivine’s classical realizability, which amounts to a proof-

relevant presentation of reducibility arguments – unary logical relations. Reducibility assigns a predicate

to each type, realizability assigns a set of realizers, which are abstract machines that extend λ-terms with a

first-class notion of contexts. Normalization is a direct consequence of an adequacy theorem or “fundamental

lemma”, which states that any well-typed term translates to a realizer of its type. We show that the adequacy

theorem, when written as a dependent program, corresponds to an evaluation procedure. In particular, a

weak normalization proof precisely computes a series of reduction from the input term to a normal form.

Interestingly, the choices that we make when we define the reducibility predicates – truth and falsity witnesses

for each connective – determine the evaluation order of the proof, with each datatype constructor behaving

in a lazy or strict fashion.

While most of the ideas in this presentation are folklore among specialists, our dependently-typed functional

program provides an accessible presentation to a wider audience. In particular, our work provides a gentle

introduction to abstract machine calculi which have recently been used as an effective research vehicle [Curien,

Fiore, and Munch-Maccagnoni 2016; Downen, Johnson-Freyd, and Ariola 2015].
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1 INTRODUCTION
Realizability, logical relations and parametricity are tools to study the meta-theory of syntactic

notions of computation; typically, typed λ-calculi. Starting from a syntactic type system, they

assign to each type/formula a predicate that captures a semantic property, such as normalization,

consistency, or some canonicity properties. Proofs using such techniques rely crucially on an

adequacy lemma, or fundamental lemma, that asserts that any term accepted by the syntactic

system of inference also verifies the semantic property corresponding to its type. In a realizability

setting, one would prove that the term is accepted by the predicate. Similarly, the fundamental

lemma of logical relations states that the term is accepted by the diagonal of the relation. There

are many variants of these techniques, which have scaled to powerful logics [Abel 2013] (e.g., the

Calculus of Constructions, or predicative type theories with a countable universe hierarchy) and

advanced type-system features [Timany, Stefanesco, Krogh-Jespersen, and Birkedal 2018; Turon,

Thamsborg, Ahmed, Birkedal, and Dreyer 2013] (second-order polymorphism, general references,

equi-recursive types, local state. . . ).

This paper sets out to explain the computational behavior of these techniques. Where should we

start looking if we are interested in all three of realizability, logical relations and parametricity? Our

reasoning was the following. First, we ruled out parametricity: it is arguably a specific form of logical

relation [Hermida, Reddy, and Robinson 2013]. Besides, it is motivated by applications – such as

characterizing polymorphism, or extracting invariants from specific types – whose computational

interpretation is less clear than a proof of normalization. Second, general logical relations seem

harder to work with than realizability. They are binary (or n-ary) while realizability is unary, and

the previous work of Bernardy and Lasson [2011] suggests that logical relations and parametricity
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can be built from realizability by an iterative process. While the binary aspect of logical relations

is essential to formulate representation invariance theorems [Atkey, Ghani, and Johann 2014], it

does not come into play for normalization proof of simpler languages such as the simply-typed

λ-calculus. We are therefore left with realizability while keeping an eye towards normalization

proofs – weak normalization rather than strong, for the benefit of simplicity. This is a well-worn

path, starting with the reducibility method [Tait 1967], which we shall now recall and put in

perspective with recent developments.

The notion of polarity plays a central role in the following retrospective. We split our types

into either positives and negatives. This distinction has a clear logical status (it refers to which of

the left or right introduction rules, in a sequent presentation, are non-invertible [Andreoli 1992;

Zeilberger 2013]). This distinction is also reminiscent of call-by-push-value [Levy 2004] and can

be summarized by the adage: “positive types are defined by their constructors whereas negatives

types are defined by their destructors”. The sum type, integers and inductive datatypes in general

are positives whereas functions, records and coinductive types [Abel, Pientka, Thibodeau, and

Setzer 2013] in general are negatives. ML programmers tend to favor the positive fragment whereas

object-oriented programmers live almost exclusively in the negative fragment [Cook 2009]. In the

absence of side-effects, we may sometimes playfully encode the latter using the former, through

Church encodings for example, or we may gainfully defunctionalize the former to obtain the

latter [Danvy 2006]. However, as noted before [Zeilberger 2009] and as we will see in the following,

studying typed calculi through suitably polarized lenses allows us to distill 50 years of research

into the following 3 pages.

On the negative fragment: reducibility. Normalization proofs for typed λ-calculi cannot pro-
ceed by direct induction on the term structure: to prove that a function application t u is normalizing,

a direct induction would only provide as hypotheses that the function t and its argument u are nor-

malizing. But this tells us nothing of whether t u itself normalizes; for example, the self-application

ω ≜ λx . x x is normalizing, but applying it to itself gives a non-normalizable term ω ω that reduces

to itself.

A powerful fix to this issue, introduced by Tait [1967] and called reducibility, is to define a type-

directed reducibility predicate: a term t of type Amay or may not be “reducible at A”. Reducibility
is defined to imply normalization, but also provide stronger hypotheses to an inductive argument;

in particular, we define “t is reducible at the function type A → B” as the implication that if some

u is “reducible at A”, then the application t u must be “reducible at B”, which is exactly what we

needed in the t u case. One can then prove, by induction on typing derivations, that any well-typed

term t of type A is normalizing at A.
There is more to this technique than a mere proof trick of strengthening an inductive hypothesis.

In particular, we have transformed a global property of being normalizing into a modular property,
reducibility, which describes the interface expected of terms at a given type. A global, whole-term

property does not say much of what happens when a term is put in a wider context; the modular

property specifies the possible interactions between the term and its context.

This view directly relates to more advanced fields of logic and type theory. It offers a semantic

interpretation of types, where “behaving at the type A” is a property of how a (possibly untyped)

term interacts with outside contexts; syntactic typing rules can be reconstructed as admissible

proof principles [Harper 1992] that establish this behavioral property by syntactic inspection of

the term. In logic, realizability is a general notion of building models where provable formulas are

“realized” by computable functions, and it is through this lens that the constructive character of

intuitionistic logics was historically explained. In programming language theory, it is common to
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define not only a unary predicate in such a type-directed fashion, but also binary predicates, called

logical relations, to capture the notion of program equivalence.

Negative interlude: a simpler proof of weak normalization. Remark that while reducibility

is traditionally used to prove strong normalization – the fact that all possible reduction sequences

(for all reduction strategies) are terminating – it can also be used to prove weak normalization –

the fact that there exists one terminating reduction sequence. For the negative fragment of the

simply-typed λ-calculus, there is a simpler proof argument for weak normalization, attributed to

Alan Turing [Barendregt and Manzonetto 2013]. This argument does not proceed by induction on

the typing derivation, but considers the sizes of the types appearing in redexes, and reduces one of

the redexes with the largest types. The intuition is that when a redex (λx . t) u at type A → B is

reduced to u[t/x], it may create new redexes, but only at the smaller types A or B.
However, introducing sum types A + B somewhat clouds this picture. The sum elimination

construction is typed as follows

Γ ⊢ t : A1 +A2 Γ, x1 : A1 ⊢ u1 : C Γ, x2 : A2 ⊢ u2 : C

Γ ⊢ match t with

���� σ1 x1 → u1

σ2 x2 → u2

: C

where C is unrelated in size to either A1 or A2. For example, consider the following term:

match

(
match σ1 v with

���� σ1 x1 → σ2 (σ2 x1)

σ2 x2 → σ2 (σ1 x2)

)
with

���� σ1 x1 → 0

σ2 x2 → 1

where v is a value of type A1. The (only) available redex is the innermost case, at type A1 +A2.

However, performing the reduction yields the term

match σ2 (σ2 v) with

���� σ1 x1 → 0

σ2 x2 → 1

that introduces a redex of (larger!) type A3 + (A2 +A1). More generally, when the term t in the

inference rule above is a sum injection σi t
′
; reducing this redex at type A1 +A2 into ui [t

′/x i ] may

create redexes at type Ai , but also at type C , which is unrelated in size. To do so, it is sufficient for

a redex at C to appear when ui starts with a constructor of type C and the reduced redex is under

an elimination form for C , as exemplified by the above nested cases.

One can work around this issue by introducing commuting conversions. For instance, the nested

cases above can be extruded as follows

match σ1 v with

��������
σ1 x1 → match σ2 (σ2 x1) with

���� σ1 x1 → 0

σ2 x2 → 1

σ2 x2 → match σ2 (σ1 x2) with

���� σ1 x1 → 0

σ2 x2 → 1

whose effect is to enable the redexes of larger type – see for example Scherer [2016] for a systematic

treatment of commuting conversions in a weakly normalizing setting. However, this approach adds

bureaucracy and complexity.

Trying to naively extend the reducibility method to sum types hits a similar well-foundedness

issue. A natural definition of reducibility at a sum typeA1 +A2 would be that t is reducible atA1 +A2

if, for any typeC and u1,u2 reducible atC , the elimination (match t with | σ1 x → u1 | σ2 x → u2)

is reducible at C . However, this definition is not well-founded. In the function case, we defined

reducibility at A → B from reducibility at the smaller types A and B, but to define reducibility at

type A1 +A2 we use the definition of reducibility at all types C , in particular at A1 +A2 itself or

even larger types, such as A3 + (A2 +A1) in our example above.
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On the positive fragment: bi-orthogonal closure. To obtain a reducibility proof accommodat-

ing sum types and side-effects, Lindley and Stark [2005] solved this well-foundedness problem.

They use a bi-orthogonality closure, also called the top-top (⊤⊤) closure [Pitts and Stark 1998]

following the notation of Pitts [2000], although (⊥⊥) would be a much more appropriate name and

notation. Looking through the Curry-Howard isomorphism, we find that (linear) logicians had in

fact pioneered this technique, Girard [1987] introducing bi-orthogonality to prove normalization of

linear logic proof-nets. We follow in these footsteps (Section 3).

This technique proceeds as follows. We say that a program context C [□] is “reducible at type A”
if, for any value v of type A, the composed term C [v] is normalizing. Then we define the terms

reducible at a sum type A + B to be the t such that, for any context C [□] reducible at type A + B,
the composed term C [t] is normalizing.

The guiding intuition of our first attempt of a definition, and of the definition of reducibil-

ity at function types, was to express how “using” the term t : A preserves normalization. This

intuition still applies here; in particular, the set of contexts C [□] includes the contexts of the

form match □ with | σ1 x1 → u1 | σ2 x2 → u2, that perform a case analysis on their argument.

However, notice that our definition does not require that C [t] be reducible at its type, which would

again result in an ill-founded definition, but only that it be normalizing: we do not require the

modular property, only the global one.

Remark that adapting the naive definition by saying that t is reducible at A1 +A2 if

match t with | σ1 x → u | σ2 x → u

is normalizing would give a well-founded definition, but one that is too weak, as the global

property is not modular. For example, we would not be able to prove that a term of the form

(match t with . . .) t ′ is normalizing by induction on its typing derivation. This is why we need to

quantify on all contexts C [□], such as (match □ with . . .) t ′ in our example, rather than only on

case eliminations.

There are really three distinct classes of objects in such a reducibility proof. The term and

context fragments interact with each other, respecting a modular interface given by the reducibility

predicate at their type.Whole programs are only required to be normalizing. These whole programs

are formed by the interaction of a term fragment t and a context C [□], both reducible at a type A.
Note that it is possible to adapt the standard reducibility arguments in presence of sums (t is re-

ducible at A1 +A2 if it reduces to σi ti for ti reducible at Ai ) but this requires strengthening various

(global) definitions to enforce stability under anti-reduction, which is a local property stating that if a

predicate holds forC [ui [ti/x i ]] then itmust hold forC [match σi ti with | σ1 x1 → u1 | σ2 x2 → u2]

as well. This approach is thus less modular.

With this paper, we wish to turn these nuggets of wisdom into a rationalized process. We achieve

this by expressing the problem in a setting familiar to functional programmers – dependent types

– and by soliciting the shoulders of giant logicians (Section 2) to cast the problem is a mold so

powerful as to make its solution simple and illuminating. This paper proposes the following 4-step

program to enlightenment:

• We recall the standard framework of classical realizability for the simply-typed λ-calculus
with sums while identifying the precise role of (co)-terms and (co)-values (Section 3). This

distinction is absent from usual presentations of classical realizability [Miquel 2011; Rieg

2014] because of their bias toward negative types, whereas it plays a crucial role in our study

of normalization proofs;
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• We show that the computational content of the adequacy lemma is an evaluation function

(Section 4). Along the way, we re-discover the fact that the polarity of object types determines

the flow of values in the interpreter;

• We show that this evaluation order can be exposed by recovering the compilation to abstract

machines from the typing constraints that appear when we move from a simply-typed version

of the adequacy lemma to a dependently-typed version capturing the full content of the

theorem (Section 5). Having carefully crafted our dependently-typed model, we use Coq to

obtain a machine-checked proof of the adequacy lemma and Coq extraction mechanism to

recover the underlying evaluation function in a systematic manner, thus validating our two

constructions with one artefact;

• We illustrate how the construction of the set of truth and falsity witnesses mechanically sets

the evaluation order of the resulting λ-calculus (Section 6). From this vantage point, we are

lead to conclude that at the computational heart of a normalization proof lies an evaluator

whose evaluation strategy is dictated by the flow of values in the model.

This research program is also a constructive one: throughout this paper, we demonstrate that,

with some care, our argument
1
can be carried in the Coq proof assistant [The Coq Development

Team 2018] and that the simply-typed normalization function from Section 4 can be extracted

from the dependently-typed program of Section 5. We hope for this paper to rejoice logicians – by

making fascinating techniques palatable to a larger audience of functional programmers – while

quenching functional programmers’ thirst for Curry-Howard phenomena.

2 BACKGROUND
This section recalls various notions this work relies on: realizability (giving a computational

interpretation of the judgments of a logic or type system), classical realizability (realizability using

abstract machines rather than λ-term), and the µµ̃ abstract machine.

We color syntactic objects (and the meta-language variables used to denote them) in blue to

make it easier to distinguish object-level constructs from meta-level constructs. This will become

particularly useful starting from Section 4, where we will reify the meta-language into a program.

We will never mix identifiers differing only by their color – you lose little if you do not see the

colors.

2.1 The simply-typed λ-calculus
Figure 1 defines the usual simply-typed λ-calculus, with functions and sums. As we mentioned in

the introduction, we distinguish positive types P and negative types N : our arrows are negative

and our sums are positive. This distinction, which has a clear logical motivation, will matter when

defining certain objects in our proofs.

2.2 Realizability interpretations
In mathematical logic, the name realizability describes a family of computational interpretations of

logic, introduced by Kleene in 1945 to understand intuitionistic arithmetic.

Consider a logic with formulas A, and a set of syntactic inference rules for judgments of the

usual form Γ ⊢ A. We may wonder whether this logic is sound – cannot prove contradictions – and

perhaps hope that it is constructive in some suitable sense. A realizability interpretation is given

by a choice of syntax of programs p, and a set of realizers |A| for each formula A of, such that (1)

false formulas have no realizers and (2) closed, provable formulas ⊢ A have a realizer p ∈ |A|. This

1
Available as supplementary material.
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t,u := terms

| x,y, z variables

| λx . t abstractions

| t u applications

| σi t (i ∈ {1, 2}) injections

| match t with | σ1 x1 → u1 | σ2 x2 → u2 case analysis

A,B := types

| X ,Y type variables / atoms

| P | N constructed types

N := negative types

| A → B function type

P := positive types

| A + B sum type

Γ, x :A ⊢ x : A

Γ, x :A ⊢ t : B

Γ ⊢ λx . t : A → B

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B

Γ ⊢ t : Ai

Γ ⊢ σi t : A1 +A2

Γ ⊢ t : A1 +A2 Γ, x i :Ai ⊢ ui : C

Γ ⊢ match t with | σ1 x1 → u1 | σ2 x2 → u2 : C

Fig. 1. Source language: simply-typed λ-calculus

yields a mathematical model that justifies the inference rules as well as provides a computational

interpretation of the logic.

The realizability relation p ∈ |A| – often written p ⊩ A – plays a very different role from a typing

judgment ⊢ p : A. A type system ought to be modular and checking types ought to be decidable.

Realizability can be defined in arbitrary ways, and tends to be wildly undecidable. Using powerful,

untyped realizers allows us to realize more formulas than those provable in the initial logic and,

in turn, any formula that we know how to realize can be added as an axiom without breaking

soundness. In mathematical logic, realizability interpretations have been proposed for various

axioms whose constructive character was not evident, such as Markov’s principle, the excluded

middle, the continuum hypothesis, and various flavors of the axiom of choice [Krivine 2014, 2009;

Miquel 2011]. In computer science, realizability interpretations have been used to build models

of powerful dependently-typed logics with set-theoretic connectives in the PRL family of proof

assistants, or the soundness of advanced type systems for languages with side-effects [Brunel 2014;

Lepigre 2016].

Classical realizability, presented next, is a sub-family of realizability interpretations whose

realizers are abstract machines. It has been introduced by Krivine in the 90s to study the excluded-

middle, using control operators to realize it and thus providing (constructive) models of classical

logic [Krivine 2009] and Zermelo-Fraenkel set theory [Krivine 2014].

2.3 The Krivine machine: classical realizability in the negative fragment
As argued in the introduction, reasoning about λ-terms leads to considering not only the terms but
also the contexts (with which the interaction occurs) and whole programs (which are just asked to
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normalize). Abstract machines, such as the Krivine Abstract Machine [Krivine 2007]
2
given just

below, turn this conceptual distinction into explicit syntax: it includes terms t but also an explicit

syntactic category of evaluation contexts e (context formers are t · e , which pushes an applied

argument t into the context e , and an end-of-stack symbol ⋆) as well as machine configurations
⟨ t | e ⟩, pairing a term and a context together to compute.

⟨ t u | e ⟩ { ⟨ t | u · e ⟩ (1)

⟨ λx . t | u · e ⟩ { ⟨ t[u/x] | e ⟩ (2)

t ::= x | λx . t | t u
e ::= ⋆ | t · e

Remark: for this simplified abstract machine, the terms t of the machine configuration are

exactly the usual (untyped) λ-terms – with only function types, no sums. This will not be the

case in general, so we are careful to distinguish the two syntactic categories; given a λ-term t ,
we write ⌊t⌋ for its (identity) embedding as a machine term. Traditionally, logicians define type

systems on top of realizers as way to systematically obtain realizers for large classes of formulas.

In these systems, the terms are the realizers. However, recent work in classical realizability [Miquel

2018] demonstrates the value of decoupling both worlds, whereby one effectively compile terms to

realizers.

This abstract machine simulates weak call-by-name reduction in the λ-calculus: the λ-term t
reduces to a weak normal-form u if and only if the configuration ⟨ ⌊t⌋ | ⋆ ⟩ reduces to ⟨ ⌊u⌋ | ⋆ ⟩.
A configuration is a self-contained object, which has no other interaction with the outside

world. Our realizability interpretation will be parametrized over the choice of a pole ⊥⊥, a set of
configurations exhibiting a specific, good or bad, behavior – for instance, “configurations that

reduce to a normal form without raising an error”.

Definition 2.1. A realizability structure [Krivine 2008] is a triple (T,E,⊥⊥) where T is a set of

machine terms, E a set of machine contexts, and ⊥⊥ is a set of configurations ⟨ t | e ⟩ with t ∈ T and
e ∈ E such that:

• T,E are closed by context-formers:

⋆ ∈ E t ∈ T ∧ e ∈ E =⇒ (t · e) ∈ E

• ⊥⊥ is closed by anti-reduction:

⟨ t ′ | e ′ ⟩ ∈ ⊥⊥ ∧ ⟨ t | e ⟩ { ⟨ t ′ | e ′ ⟩ =⇒ ⟨ t | e ⟩ ∈ ⊥⊥ (3)

Unless explicitly noted, we will reason parametrically over any choice of realizability structure.

We give a concrete instantiation at the end of the section, to study normalization.

While configurations are self-contained, a term needs a context to compute, and vice-versa. For

T ⊆ T an arbitrary set of terms, we define its orthogonal T⊥
as the set of contexts that “compute

well” against terms in T – in the sense that they end up in the pole. The orthogonal of a set of

contexts E ⊆ E is defined by symmetry:

T⊥ ≜ {e ∈ E | ∀t ∈ T , ⟨ t | e ⟩ ∈ ⊥⊥} (4) E⊥ ≜ {t ∈ T | ∀e ∈ E, ⟨ t | e ⟩ ∈ ⊥⊥} (5)

Orthogonality behaves in a way that is similar to intuitionistic negation: for any set S of either

terms or contexts we have S ⊆ S⊥⊥ (just as P =⇒ ¬¬P ) and this inclusion is strict in general,

except for sets that are themselves orthogonals: S⊥⊥⊥ ⊆ S⊥ (just as ¬¬¬P =⇒ ¬P ). If one
understands the pole as defining a notion of observation, the bi-orthogonals of a given (co)-term

are those that have the same observable behavior. In particular, we think of sets S that are “stable

2
Although the reference paper is dated from 2007, as its author said, the KAM “was introduced twenty-five years ago”. Its

first appearance was in an unpublished but widely circulated note [Krivine 1985] available on the author’s web page.
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by bi-orthogonality” (S is isomorphic to S⊥⊥) as observable predicates on terms or contexts: they

define an extensional property that is not finer-grained than what we can observe through the

pole. For example, taking the pole consisting of weakly normalizing configurations, the singleton

set S ≜ {λx . x} is not stable by bi-orthogonality: λx . (λy.y) x does not belong to S whereas it is

observationally indistinguishable from the identity function. Taking the bi-orthogonal closure

of S allows us to encompass all those function that “behave like” the identity function from the

standpoint of weak normalization.

We can now give a (classical) realizability interpretation of the typesA,B, . . . of the simply-typed

λ-calculus, parametrized over a choice of realizability structure (T,E,⊥⊥). Rather than just defining

sets of realizers |A|, we define a set of terms |A| called the “truth witnesses” of A, and a set of

contexts ∥A∥ called the “falsity witnesses” of A – called this way because, from a logical point of

view, |A| contains “justifications” for A, while ∥A∥ contains “refutations” for A. Their definitions
imply that a term in |A| and a context in ∥A∥ can “interact according to the interface A”.

∥A → B∥ ≜ |A → B |⊥ (6)

|A → B | ≜ ∥A → B∥V
⊥

(7)

∥A → B∥V ≜ {u · e | u ∈ |A|, e ∈ ∥B∥} (8)

Truth and falsity witnesses are both defined in terms of a set ∥A → B∥V of “falsity values”,

contexts of the form t · e where t is a truth witness for A, and e a falsity witness for B.
From a programming point of view, one can think of |A| as a set of “producers” of A, and

∥A∥ as a set of “consumers” of A. For example, the falsity values of the arrow type, ∥A → B∥V ,
can be understood as “to consume a function A → B, one shall produce an A and consume a B”.
Logically, the core argument in a refutation A → B is a justification of A paired with a refutation of

B. Notice that |A → B | and ∥A → B∥ are both stable by bi-orthogonal, with ∥A → B∥ = |A → A|⊥

by definition and |A → B | = ∥A → B∥⊥ from S⊥⊥⊥ = S⊥. 3

Realizability interpretations must ensure that provable formulas have a realizer. This is given by

a Fundamental Theorem:

Theorem 2.2 (Fundamental Theorem). If ⊢ t : A then ⌊t⌋ ∈ |A|

To prove the fundamental theorem by induction on the typing derivation, we need to handle

open terms. Typing environments Γ are realized by substitutions ρ mapping term variables to terms

as expected: ρ ∈ |Γ | ≜ ∀(x : A) ∈ Γ, ρ(x) ∈ |A|. The fundamental theorem is then a direct

corollary of the more precise Adequacy Lemma:

Lemma 2.3 (Adeqacy). If Γ ⊢ t : A then, for any ρ ∈ |Γ |, we have ⌊t⌋ [ρ] ∈ |Γ |.

Proof. The proof proceeds by induction on the derivation.

Abstraction case.
Γ, x : A ⊢ t : B

Γ ⊢ λx . t : A → B

Our goal is to prove that (λx . t)[ρ] ∈ |A → B |. Since |A → B | =(7) ∥A → B∥V
⊥
, we have to prove

that for any context u · e with u ∈ |A| and e ∈ ∥B∥ we have ⟨ (λx . t)[ρ] | u · e ⟩ ∈ ⊥⊥. By anti-

reduction (3) applied to (2), it suffices to show that ⟨ t[ρ,u/x] | e ⟩ ∈ ⊥⊥. The extended substitution

3
We have not defined the truth and falsity witnesses of type variables (atomic types) X , Y above; we are parametric over

any choice of subset of T and E, as long as they are stable by bi-orthogonality.
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ρ, x/u is in |Γ, x :A|, so by induction hypothesis we have that t[ρ,u/x] ∈ |B | – the body of the

function behaves well at B. This suffices to prove ⟨ t[ρ,u/x] | e ⟩ ∈ ⊥⊥, given that e is in ∥B∥, which
is precisely the orthogonal of |B |.

Application case.

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B

We want to prove that (t u)[ρ] is in |B |, that is: given any e ∈ ∥B∥, we have ⟨ (t u)[ρ] | e ⟩ ∈ ⊥⊥.

By anti-reduction (3) applied to (1), it suffices to prove ⟨ t[ρ] | u[ρ] · e ⟩ ∈ ⊥⊥, which we obtain by

induction hypothesis: u[ρ] is in |A|, so u[ρ] · e is in |A| × ∥B∥ =(8) ∥A → B∥V which is included in

∥A → B∥V
⊥⊥ =(7) |A → B |⊥ =(6) ∥A → B∥ and, since t[ρ] is in |A → B |, we can conclude that the

configuration is in the pole. □

We can obtain various meta-theoretic results as consequences of the fundamental theorem, by

varying the choice of the realizability structure (T,E,⊥⊥). For example:

Corollary 2.4. Closed terms in the simply-typed λ-calculus ⊢ t : A are weakly normalizing.

Proof. We choose a particular realizability structure by defining ⊥⊥ as the set of configurations

that reach a normal form, T as the set of terms t such as ⟨ t | ⋆ ⟩ is normalizing, and E as the set
of contexts e such that ⟨x | e ⟩ is normalizing. By definition of T, we have that ⋆ is in ∥A∥, that is
|A|⊥, for any A: indeed, for any term t ∈ |A|, we have |A| ⊂ T so, by definition, ⟨ t | ⋆ ⟩ ∈ ⊥⊥.

By the Fundamental Theorem, ⊢ t : A implies ⌊t⌋ ∈ |A|. Given that⋆ ∈ ∥A∥, we have ⟨ ⌊t⌋ | ⋆ ⟩ ∈
⊥⊥, that is, ⟨ ⌊t⌋ | ⋆ ⟩ reduces to a (closed) normal form ⟨u | e ⟩ – in factu is exactly ⌊u⌋ . This can only
be a normal form if t is a λ-abstraction and e = ⋆. We have deduced that ⟨ ⌊t⌋ | ⋆ ⟩ {∗ ⟨ ⌊u⌋ | ⋆ ⟩,
so we know that t {∗ u in the λ-calculus, and u is a normal form. □

The Fundamental Theorem is also useful to establish various results based on the shape of normal

forms for certain connectives; for example, we could easily prove that there is no closed term of the

empty type. See for example Munch-Maccagnoni [2012]. In this paper, we will prove normalization

of the simply-typed λ-calculus with sums by showing that the configurationsm built from well-

typed terms are in the pole ⊥⊥ of normalizing configurations. Reading off the computational content

from its proof, we shall discover a normalization function.

2.4 The µµ̃ machine: classical realizability in the positive fragment too
We mentioned that realizers can be untyped, but they do not need to be untyped. In fact, there is a

beautiful way to extend the type system for the simply-typed λ-calculus to terms of the abstract

machine, with a judgment of the form Γ | e : A ⊢ B expressing that the context e consumes an input

of type A to produce an output of type B.

Γ ⊢ u : A Γ | e : B → C

Γ | u · e : A → B ⊢ C Γ | ⋆ : A ⊢ A

This extension appeals to logicians: it corresponds to sequent calculus, a presentation of logic that has
better cut-elimination properties than the usual natural deduction. Unfortunately, there is no direct

way to extend the Krivine abstract machine with sums that would preserve this correspondence.

Pragmatically, this means that reduction can get stuck unless we add commuting conversions.
4

Fortunately, the work of Curien and Herbelin [2000] shows that the bias toward negativity can

be avoided thanks to an abstract machine called µµ̃. We define its syntax and dynamic semantics

4
Which is why classical realizability is usually developed in System F, where datatypes are emulated by Church encoding.
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m ∈ M ::= ⟨ t | e ⟩ machine

t,u ∈ T ::= terms

| x variable

| µ(x · α).m abstraction

| σi t sum

| µα .m thunk

e, f ∈ E ::= co-terms

| α co-variable

| t · e function application

| µ̃ [x1.m1 | x2.m2] sum elimination

| µ̃x .m force

m′
1
{ m′

2

m[m′
1
] { m[m′

2
]

⟨ µα .m | e ⟩ { m[e/α] (9)

⟨ t | µ̃x .m ⟩ { m[t/x] (10)

⟨ µ(x · α).m | t · e ⟩ { m[t/x, e/α]
(11)

⟨σi t | µ̃ [x1.m1 | x2.m2] ⟩ { mi [t/x i ] (12)

Fig. 2. An untyped µµ̃ abstract machine

(Figure 2).
5
Note that we are giving an untyped and unpolarized presentation of µµ̃. It is known that

this presentation is non-confluent; as we explained, the languages of realizers can have very wild

computational behaviors. People working with µµ̃ directly, instead of as a language of realizers,

restrict the language to regain confluence by typing typing (enforcing normalization), evaluation

strategies [Downen and Ariola 2018] or polarization [Munch-Maccagnoni 2013].

In the µµ̃-calculus, some terms (or contexts) can capture the context (or term) set against them.

The term µα .m binds its context to the name α and reduces to the machine configurationm. For

example, in the Krivine machine, application t u expects to be put against a context e , and this

reduces to ⟨ t | u · e ⟩. In µµ̃, application t u is not a primitive term-former. It can be encoded,

following the above reduction principle, as µα . ⟨ t | u · α ⟩. The symmetric construction exists for

contexts µ̃x .m that capture the term set against them. Contexts are thus more powerful in the

µµ̃-machine than they are in the Krivine machine: they are in fact absolutely symmetrical to terms.

We therefore call them co-terms, to conduce the idea that contexts too can drive reduction.

Finally, each connective is defined by a constructor and a pattern-matching form. The con-

structors for sums are the term σ1 t and σ2 t , as in the λ-calculus. The pattern-matching form

µ̃ [x1.m1 | x2.m2] matches on the sum constructor, and reduces to one configuration or another

depending on its value. For functions, the constructor is the context former t · e – negative types

are defined by their observations, so the constructor builds a co-term. The pattern-matching form,

µ(x · α).m, matches on the application context and reduces to a configuration. In particular, λx . t is
not a primitive, it can be encoded using the pattern-matching form, by defining it as µ(x · α). ⟨ t | α ⟩.

Figure 3 gives a translation scheme from plain λ-calculus terms to µµ̃. This is not the only possible
choice – as we will see in Section 6, varying the choice of translation gives different evaluation

strategies.

The syntax of µµ̃ may come as a bit of a shock to unfamiliar readers. Fortunately, most of our

following sections can be understood without being familiar with µµ̃, as the central object in our

study is not the computational behavior of our realizers, but rather the computational meaning

of the proof of the fundamental lemma, which we interpret using a (dependent) λ-calculus as the
meta-language.

5
We use a slight improvement of the original syntax, where λ is not a primitive anymore, due to Munch-Maccagnoni and

Scherer [2015].



Dependent Pearl: Normalization by realizability 11

⌊λx . t⌋ ≜ µ(x · α). ⟨ ⌊t⌋ | α ⟩

⌊t u⌋ ≜ µα . ⟨ ⌊t⌋ | ⌊u⌋ · α ⟩

⌊σi t⌋ ≜ σi ⌊t⌋⌊
match t with

���� σ1 x1 → u1

σ2 x2 → u2

⌋
≜ µα .

〈
⌊t⌋ | µ̃

[
x1. ⟨ ⌊u1⌋ | α ⟩

x2. ⟨ ⌊u2⌋ | α ⟩

] 〉
Fig. 3. A compilation scheme from the λ-calculus to µµ̃

3 INTERPRETING TYPES, PROGRAMMATICALLY
In this section, we set up the realizability framework in general terms, starting with a carefully

engineered interpretation of types (Section 3.1) and a generic statement of the adequacy lemma

(Section 3.2). We conclude with a specialization of the overall framework to a simple instance

(Section 3.3) that focuses solely on the computational content of realizability, at the expense of its

logical content.

3.1 Value witnesses & witnesses
In this paper, we assume a classification of our syntactic types A (Figure 1) into a category P of

positive types, characterized by their “truth value witnesses” |P |V , and a category N of negative

types, characterized by their “falsity value witnesses” ∥N ∥V . Sum types are inherently positive:

they are defined by a choice of either a left or a right injection. Conversely, function types are

inherently negative: they are defined by their behavior when applied to an argument in a given

execution context. We postpone the actual definition of value witnesses until Section 4 for the

special case of call-by-name functions and sums and Section 6 for a systematic study of the design

space.

Truth and falsity witnesses for constructed types are defined by case distinction on the polarity:

∥P ∥ ≜ |P |V
⊥

(13)

∥N ∥ ≜ ∥N ∥V
⊥⊥

(14)

|P | ≜ |P |V
⊥⊥

(15)

|N | ≜ ∥N ∥V
⊥

(16)

These definitions will be used in all variants of realizability proofs in this article: only ∥N ∥V and

|P |V need to be defined, the rest is built on top of that. For consistency, we also define

∥P ∥V ≜ ∥P ∥ (17) |N |V ≜ |N | (18)

Indeed, positives have no specific “falsity value witnesses”, they are just falsity witnesses, and

conversely negatives have only truth witnesses. Still, extending |A|V and ∥A∥V to any type A,
regardless of its polarity, gives us the following useful properties (which hold definitionally):

∀A, |A| = ∥A∥V
⊥

(19) ∀A, ∥A∥ = |A|V
⊥

(20)

This is directly checked by case distinction on the polarity of A. For a negative type, for example,

we have |N | =(16) ∥N ∥V
⊥
, but also |N |V =

(18) |N | =(16) ∥N ∥V
⊥
and ∥N ∥ =(14) (∥N ∥V

⊥)⊥, thus

∥N ∥ = |N |V
⊥
.

As we remarked before, for any set S we have (S⊥)⊥⊥ � S⊥, where we write S � T to say that

the sets S and T are in bijection, and reserve the equality symbol to the definitional equality. As a

result, we can check that |A|⊥⊥ � |A| and ∥A∥⊥⊥ � ∥A∥, for any type A. Meaning that truth and

falsity witnesses, defined as orthogonals, are indeed stable by bi-orthogonality.
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3.2 Adequacy
To distill the computational content of realizability, we implement the adequacy lemma as a
program in a rather standard type theory. Martin-Löf type theory with one universe suffices for our

development. The universe is required to define the type of truth and falsity witnesses by recursion

on the syntax of object-language types.

Truth witnesses (and, respectively, falsity witnesses and the pole) contain closed programs, which

have no free variables. To interpret an open term Γ ⊢ t : A, one should first be passed a substitution

ρ that maps the free variables of t to closed terms. Such substitution is compatible with the typing

environment Γ if for each mapping x : A in Γ, the substitution maps x to a truth witness for A:
ρ(x) ∈ |A|. We use |Γ | to denote the set of substitutions satisfying this property.

In this setting, the adequacy lemma amounts to a function of the following type:

rea : ∀{Γ} t {A} {ρ}. {Γ ⊢ t : A} → ρ ∈ |Γ | → ⌊t⌋ [ρ] ∈ |A|

As such, the result of this program is a proof of a set-membership ⌊t⌋ ∈ |A|, whose computational

status is unclear (and is not primitively supported in most type theories). Our core idea is to redefine

these types in a proof-relevant way: we will redefine the predicate _ ∈ |_| as a type of “witnesses”

where the inhabitants of ⌊t⌋ ∈ |A| are the different syntactic justifications that the µµ̃ term ⌊t⌋
indeed realizes A. We will respect a specific naming convention for arguments whose dependent

type is an inhabitation property: an hypothesis of type t ∈ |A| will be named t̄ , v̄ for the type

v ∈ |A|V of values, ē for the type e ∈ ∥A∥ of co-terms, π̄ for the type π ∈ ∥A∥V of linear co-terms6,
and finally ρ̄ for the type ρ ∈ |Γ |. Names like x , t and u, A,B, Γ will be used to name syntactic term

variables, terms, types, and co-terms.

Interestingly, we did not have to fix a single pole ⊥⊥ yet: the adequacy lemma actually works for

any pole closed under anti-reduction. Specializing it to different poles can then give different meta-

theoretic results (weak and strong normalization, some canonicity results, specification problems,

etc.). In this paper, we pick the following proof-relevant definition of _ ∈ ⊥⊥: informally,

m ∈ ⊥⊥ � {mn ∈ MN | m { m1 { . . . { mn} (21)

whereMN is the set of “normal configurations”, i.e., configurations that are not stuck on an error

but cannot reduce further. With this definition, an adequacy lemma provingm ∈ ⊥⊥ for a well-typed

m is exactly a normalization program – the question is how it computes.

While the definition of truth and falsity witnesses membership needs to be instantiated in each

specific calculus, we can already give the general proof-relevant presentation of orthogonality,

treating the types _ ∈ |_|⊥ and _ ∈ ∥_∥⊥ as dependent function types
7
:

e ∈ |A|⊥ � ∀{t : T}. t ∈ |A| → ⟨ t | e ⟩ ∈ ⊥⊥ t ∈ ∥A∥⊥ � ∀{e : E}. e ∈ ∥A∥ → ⟨ t | e ⟩ ∈ ⊥⊥

The orthogonality between truth and falsity witnesses is computationally incarnated by a cut
function

⟨ _ | _ ⟩A : ∀ {t e} , t ∈ |A| → e ∈ ∥A∥ → ⟨ t | e ⟩ ∈ ⊥⊥ (22)

defined by case distinction on the polarity of the type A:

⟨ t̄ | ē ⟩P ≜ t̄ ē ⟨ t̄ | ē ⟩N ≜ ē t̄

6
Linear co-terms are to co-terms what values are to terms. Extensionally, this means that ∀t , ⟨ t | π ⟩ ̸{ whereas, inten-

sionally, this amounts to having π = t1 · . . . · ⋆ (i.e., context constructors), justifying the adjective “linear” in the sense

that it contains a unique continuation ⋆. The notation π comes from the similarity between the French pronunciations of π
and stack: π is pronounced [pi] whereas stack, pile in French, is pronounced [pil].

7
Following common usage, we write ∀{x : A}. B to declare an implicit argument of type A, meaning that we will omit

those arguments when writing calls to function of such type, as they can be non-ambiguously inferred from the other

arguments or the ambient environment. We write λ {a }. t if we want to explicitly bind an implicit argument.
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For example in the positive case with t̄ |P | and ē ∥P ∥
, we have |P | =(15) ∥P ∥⊥ so the application t̄ ē is

well-typed. A similar reasoning holds for a negative type N . Intuitively, the cut function reflects

the intuition that interacting at a positive type gives control to the term (i.e., reduction is strict)

whereas interacting at a negative type gives control to the co-term (i.e., reduction is lazy).

Similarly, the set inclusion S ⊆ S⊥⊥ admits a computational interpretation in the form of an

auxiliary definition _
⊥⊥

. For conciseness, we overload this syntax to define two (distinct) functions,

one acting on truth witnesses, the other on falsity witnesses.

_
⊥⊥

: ∀{P v}.v ∈ |P |V → v ∈ |P |

(v̄)⊥⊥ ≜ λē ∥P ∥ . ē v̄

_
⊥⊥

: ∀{N π }. π ∈ ∥N ∥V → π ∈ ∥N ∥

(π̄ )⊥⊥ ≜ λt̄ |N | . t̄ π̄

Notice that we have only defined _
⊥⊥

on positive terms and negative co-terms. We do not need

it on negative terms, because we have that ∥P ∥V =
(17) ∥P ∥ and |N |V =

(18) |N |. Instead, just as we

generalized |_|V and ∥_∥V to be defined for any type, we further overload _
⊥⊥

to transparently

embed any |A|V into |A|, and any ∥B∥V into ∥B∥, irrespective of polarity.

(v̄ |P |V )⊥⊥ ≜ v̄⊥⊥ (t̄ |N |V )⊥⊥ ≜ t̄ (ē ∥P ∥V )⊥⊥ ≜ ē (π̄ ∥N ∥V )⊥⊥ ≜ π̄⊥⊥
(23)

Once again, computational breadcrumbs can be gathered from this function definition: a value

(resp., linear co-term) leaves it entirely to the opposing co-term (resp., term) to build the reduction

witnesses, as indeed the value (resp., linear co-term) is already in normal form.

3.3 Simplifying further
In the next section, we will use a simpler notion of pole that is not as orthodox, but results in simpler

programs. This pedagogical detour shall allow us to get to acquainted with the computational

content of the adequacy lemma. In effect, we will simply definem ∈ ⊥⊥ ≜ MN : a witness thatm is

well-behaved is not a reduction sequence to a normal configuration v , but only that configuration

v . This is a weaker type, as it does not guarantee that the value we get in return of the adequacy

program is indeed obtained fromm (it may be any other normal configuration). In Section 5, the

more informative definition of ⊥⊥ will be reinstated, and we will show how the simple programs

we are going to write can be enriched to keep track of this reduction sequence – incidentally

demonstrating that they were indeed returning the correct value.

A pleasant side-effect of this simplification is that the set membership types are not dependent

anymore: the definition ofm ∈ ⊥⊥ does not depend onm ; definitions of t ∈ |A| and e ∈ ∥B∥ do not

mention t, e ; ρ ∈ |Γ | does not mention ρ ; and orthogonality is defined with non-dependent types.

To make that simplification explicit, we rename those types J(⊥⊥), J(|A|), J(∥B∥) and J(|Γ |):
they are justifications of membership of some term (the type system does not track which one),

co-term or configuration to the respective set:

J(⊥⊥) ≜ MN (21’)

J(|A|⊥) ≜ J(|A|) → J(⊥⊥) (4’)

J(∥P ∥) ≜ J(|P |V
⊥) (13’)

J(∥N ∥) ≜ J(∥N ∥V
⊥⊥) (14’)

J(∥A∥⊥) ≜ J(∥A∥) → J(⊥⊥) (5’)

J(|P |) ≜ J(|P |V
⊥⊥) (15’)

J(|N |) ≜ J(∥N ∥V
⊥) (16’)

In particular, this allows us to study the λ-calculus without having to explicitly define the

compilation from λ-terms to µµ̃-machines first – which would steal some of the suspense away by

forcing us to decide upon an evaluation order in advance. The realizability program will very much

depend on the structure of truth and falsity value witnesses (J(|P |V ) and J(∥N ∥V )) which we will

define carefully, irrespectively of our compilation scheme – at first. In fact, we will show that we
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can deduce the compilation function from the dependent typing requirements, starting from the

programs of the simplified version – so they need not be fixed in advance.

It is tempting to see truth and falsity justifications as the erasure of truth and falsity witnesses: we

show in Section 5 that, with some ingenuity, Coq’s extraction can indeed be coerced into producing

the former from the latter.

4 NORMALIZATION BY REALIZABILITY FOR THE SIMPLY-TYPED λ-CALCULUS
We give a first example of a realizability-based proof of weak normalization of the simply-typed

λ-calculus with arrows and sums. Those inductive definitions of syntactic terms, types and type

derivations that we gave in Figure 1 should be understood as being part of the type theory used to

express the adequacy lemma as a program: this program will manipulate syntactic representations

of terms t , types A, and well-formed derivations (dependently) typed by a judgment Γ ⊢ t : A. To
help understanding, we stick to the color conventions introduced in Section 2, which take all their

meaning here as we combine programming constructs in the object and the meta-langagues: for

example, we distinguish the λ-abstraction of the object language λx . t and of the meta-language

λx̄ . t̄ . Again, we will never mix identifiers differing only by their color – you lose little if you do

not see the colors.

Recall from Section 2 the definitions of falsity value witnesses for the arrow type

∥A → B∥V =
(8) {u · e | u ∈ |A|, e ∈ ∥B∥}

as set of co-terms. In the simplified setting (defining datatypes of justifications J(_) instead of

membership predicates _ ∈ _), it is easy to make these proof-relevant, simply by interpreting the

Cartesian product as a type of pairs – pairs of the meta-language:

J(∥A → B∥V ) ≜ J(|A|) × J(∥B∥) (8’)

For the sum type, we are naturally lead to define truth value witnesses as

|A1 +A2 |V ≜ {σi t | t ∈ |Ai |} (i ∈ {1, 2}) (24)

that erases to

J(|A1 +A2 |V ) ≜ J(|A1 |) + J(|A2 |) (24’)

Note that the types J(|A|V ), J(∥A∥V ) are not to be understood as inductive types indexed by an
object-language type A, for they would contain fatal recursive occurrences in negative positions;

for example,

J(∥N → A∥V ) = J(|N |) × J(∥A∥)
= J(∥N ∥V

⊥) × J(∥A∥)
= (J(∥N ∥V ) → J(⊥⊥)) × J(∥A∥)

Instead, one should interpret J(|A|V ) and J(∥A∥V ) as mutually recursive type-returning functions
defined by induction over the syntactic structure of A (which is indeed well-founded, as per our

Coq formalization). With this in place, we can now write our simplified adequacy lemma, in the

non-dependent version:

rea : ∀{Γ} t {A} {ρ}. {Γ ⊢ t : A} → J(|Γ |) → J(|A|)

We will present the code case by case, and discuss why each is well-typed. Finally, to help the

reader type-check the code, we will writeMS
if the expressionM has type J(S). For example, t̄ |A |

can be interpreted as t̄ : J(|A|).
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Variable.

rea x
{
Γ, x :A ⊢ x : A

}
ρ̄ |Γ,x :A | ≜ ρ̄(x) |A |

By hypothesis, the binding x :A is in the context Γ, x :A, and we have ρ̄ : J(|Γ, x :A|), so in particular
ρ̄(x) : x ∈ |A| as expected.

Abstraction.

rea (λx . t)

{
Γ, x :A ⊢ t : B

Γ ⊢ λx . t : A → B

}
ρ̄ |Γ | ≜ λ(ū |A |, ē ∥B ∥).

〈
rea t ρ̄[x 7→ ū] |Γ,x :A | | ē

〉
B

We have structural information on the return type J(|A → B |) =(16’) J(∥A → B∥V
⊥) =(5’)

J(∥A → B∥V ) → J(⊥⊥). It is thus natural to start with a λ-abstraction over J(∥A → B∥V ) =
(8’)

J(|A|) × J(∥B∥) , matching a pair of an ū : J(|A|) and an ē : J(∥B∥) to return a J(⊥⊥).

The recursive call on t : B gives a value of type J(|B |); we combine it with a value of type

J(∥B∥) to give a J(⊥⊥) by using the auxiliary cut function (22) which boils down to

⟨ _ | _ ⟩A : J(|A|) → J(∥A∥) → J(⊥⊥)

⟨ t̄ | ē ⟩P ≜ t̄ ē

⟨ t̄ | ē ⟩N ≜ ē t̄

(22’)

in the simply-typed setting.

Injections.

rea (σi t)

{
Γ ⊢ t : Ai

Γ ⊢ σi t : A1 +A2

}
ρ̄ ≜ (σi (rea t ρ̄))

⊥⊥ (i ∈ {1, 2})

The recursive call wrapped in the injection function has typeJ(|A1 |) + J(|A2 |) =
(24’) J(|A1 +A2 |V ).

This is not the expected type of the rea function, which is J(|A1 +A2 |) =
(15’) J(|A1 +A2 |V

⊥⊥).

The solution is to appeal to the bi-orthogonal inclusion (23), which boils down to the following

(pair of) simply-typed program:

_
⊥⊥

: J(|A|V ) → J(|A|)

(v̄ |P |V )⊥⊥ ≜ λē ∥P ∥ . ē v̄

(t̄ |N |V )⊥⊥ ≜ t̄

_
⊥⊥

: J(∥A∥V ) → J(∥A∥)

(ē ∥P ∥V )⊥⊥ ≜ ē

(π̄ ∥N ∥V )⊥⊥ ≜ λt̄ |N | . t̄ π̄

(23’)

Application.

rea (t u)

{
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B

}
ρ̄ ≜ λπ̄ ∥B ∥V . rea t ρ̄

(
rea u ρ̄, π̄⊥⊥

)
Unlike the previous cases, we know nothing about the structure of the expected return type

J(|B |), so it seems unclear at first how to proceed. In such situations, the trick is to use the fact

that |B | =(19) ∥B∥V
⊥
: the expected type is therefore J(∥B∥V

⊥) =(5’) J(∥B∥V ) → J(⊥⊥).

The function parameter π̄ at type J(∥B∥V ) is injected into J(∥B∥) by the _
⊥⊥

function defined

in (23’), and then paired with a recursive call on u at type J(|A|) to build a J(|A|) × J(∥B∥) =(8’)

J(∥A → B∥V ).
This co-value justification can then be directly applied to the recursive call on t , of type

J(|A → B |) =(16’) J(∥A → B∥V
⊥) =(5’) J(∥A → B∥V ) → J(⊥⊥) =(8’) J(|A|)×J(∥B∥) → J(⊥⊥).
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rea xA ρ̄ ≜ ρ̄(x)

rea (λxA. tB ) ρ̄ ≜ λ(ū |A |, ē ∥B ∥). ⟨ rea t ρ̄[x 7→ ū] | ē ⟩B
rea (tA→B uA) ρ̄ ≜ λπ̄ ∥B ∥V . rea t ρ̄

(
rea u ρ̄, π̄⊥⊥

)
rea (σi t

Ai ) ρ̄ ≜ (σi (rea t ρ̄))
⊥⊥ (i ∈ {1, 2})

rea δ (tA1+A2, x1.u1

C , x2.u2

C ) ρ̄ ≜

λπ̄ ∥C ∥V .

〈
rea t ρ̄ | λv̄ |A1+A2 |V . match v̄ with

���� σ1 t̄1
|A1 | → rea u1 ρ̄[x1 7→ t̄1] π̄

σ2 t̄2
|A2 | → rea u2 ρ̄[x2 7→ t̄2] π̄

〉
A1+A2

Fig. 4. Summary of the simply-typed setting

Case analysis.

rea δ (t, x1.u1, x2.u2)

{
Γ ⊢ t : A1 +A2 Γ, x i :Ai ⊢ ui : C

Γ ⊢ δ (t, x1.u1, x2.u2) : C

}
ρ̄ ≜

λπ̄ ∥C ∥V .

〈
rea t ρ̄ | λv̄ |A1+A2 |V . match v̄ with

���� σ1 t̄1
|A1 | → rea u1 ρ̄[x1 7→ t̄1] π̄

σ2 t̄2
|A2 | → rea u2 ρ̄[x2 7→ t̄2] π̄

〉
A1+A2

Here we use one last trick: it is not in general possible to turn a witness in |A| into a witness

in |A|V (respectively, a witness in ∥B∥ into a witness in ∥B∥V ), but it is when the return type of

the whole expression is J(⊥⊥): we can cut our t̄ : J(|A|) with an abstraction λx |A |V . . . . (thus
providing a name x at type J(|A|V ) for the rest of the expression) returning a J(⊥⊥), using the cut

function:

〈
t̄ | λx .M⊥⊥

〉
A : J(⊥⊥). (If you know about monads, this is the bind operation.)

This concludes our implementation of the adequacy lemma. For the sake of completeness, its

complete definition is summarized in Figure 4. It should be clear at this point that the computational

behavior of this proof is, as expected, a normalization function. The details of how it works, however,

are rather unclear to the non-specialist, in part due to the relative complexity of the types involved:

the call rea t ρ̄ returns a function type, so it may not evaluate its argument immediately. We further

dwell on this question in Section 6, in which we present a systematic study of the various design

choices available in the realizability proof. As for now, we move from the simplified, non-dependent

types to the more informative dependent types. This calls for defining the compilation from λ-terms

to µµ̃-machines, which has been left unspecified so far.

5 A DEPENDENTLY-TYPED REALIZABILITY PROGRAM
In the following, we undo the simplification presented in Section 3.3, by moving back to dependent

types. The best way to make sure that our program is type-correct is to run a type-checker on it.

To this end, this section has been developed under the scrutiny of the Coq proof assistant. Working

with Coq offers two advantages. First, it has allowed us to interactively explore the design space in

a type-driven manner, using type-level computation to assist this exploration. Second and unlike

the set-theoretic presentation, we can precisely delineate the computational content of our proof

from its propositional one.

We begin by refining our set-theoretic statement of the realizability lemma

rea : ∀{Γ} t {A} {ρ}. {Γ ⊢ t : A} → ρ ∈ |Γ | → ⌊t⌋ [ρ] ∈ |A|
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into dependent type theory. We want to be able to extract a realizer (a µµ̃ term) from a typing

derivation. This is achieved by a function

⌊−⌋ : ∀{Γ} t {A}. {Γ ⊢ t : A} → T

Then, we must set up the interpretation of types. We notice that the pole we are interested in,

defined by

m ∈ ⊥⊥ ≜ {mn ∈ MN | m { m1 { . . . { mn}

is rather distinctive: it consists in a computationally-relevant object (the normal formmn ∈ MN )

as well as a proposition stating that the normal form is indeed related to the original program.

We would like to exploit Coq’s extraction mechanism [Letouzey 2008] to obtain the simply-typed

program of Section 4 by extracting the adequacy lemma to OCaml.

We thus define the class of predicates over A

FamRel (A : Type) ≜
{
J : Type
R : A → J → Prop

for which the first component is computationally relevant while the second component is erasable

(i.e., of sort Prop in Coq). Given a predicate P : FamRel A, we write J(P) its first component while

we write R(P) its second component. An element a : A is said to verify P if we have

a ∈ P ≜ {a0 : J(P) | R(P) a a0} (25)

Note that we use a subset type (written {_ | _}) here: set membership erases to the underlying

witness, here a0, throwing away its logical justification. The pole is an example of such a predicate:

⊥⊥ : FamRel M

⊥⊥≜

{
J ≜MN

R ≜ λm. λmn .m { . . . { mn

(21”)

Besides, taking the orthogonal of a predicate in S : FamRel T yields a predicate in FamRel E:

(λt . t ∈ S)⊥

�(4) λe .∀{t : T}. t ∈ S → ⟨ t | e ⟩ ∈ ⊥⊥

=(21”) λe .∀{t : T}. t ∈ S → {mn : J(⊥⊥) | R(⊥⊥) ⟨ t | e ⟩ mn}

=choice λe . {ē : ∀{t : T}. t ∈ S → J(⊥⊥) | ∀{t : T}. (t̄ : t ∈ S) → R(⊥⊥) ⟨ t | e ⟩ (ē t̄)}

=(25) λe .

{
J ≜ ∀{t : T}. t ∈ S → J(⊥⊥)

R ≜ λe . λē .∀{t : T}. (t̄ : t ∈ S) → R(⊥⊥) ⟨ t | e ⟩ (ē t̄)

So, we read off the definition of the orthogonal from this isomorphism, and symmetrically when

going from co-terms to terms along the specification (5):

|A|⊥ : FamRel E

|A|⊥ ≜

{
J ≜ ∀{t : T}. t ∈ |A| → J(⊥⊥)

R ≜ λe . λē .∀{t : T}. (t̄ : t ∈ |A|) → R(⊥⊥) ⟨ t | e ⟩ (ē t̄)
∥A∥⊥ : FamRel T

∥A∥⊥ ≜

{
J ≜ ∀{e : E}. e ∈ ∥A∥ → J(⊥⊥)

R ≜ λt . λt̄ .∀{e : E}. (ē : e ∈ ∥A∥) → R(⊥⊥) ⟨ t | e ⟩ (t̄ ē)

Assuming that (co-)term witnesses are predicates of that form, the value witnesses for sum and

arrow can naturally be expressed as elements of FamRel (−): exactly as in Section 4, the underlying

type consists, in both cases, in a pair of meta-evaluators while the attached relation asserts the
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validity of each evaluator. Thus, the set-theoretic definitions (24) and (8) of value witnesses for

arrows and sums translates into

∥A → B∥V : FamRel E

∥A → B∥V ≜


J ≜ J(|A|) × J(∥B∥)

R ≜ λt . λt̄ . match t, t̄ with

���� (u · e), (ū, ē) → R(|A|) u ū ∧ R(∥B∥) e ē
_ → ⊥

(8”)

|A1 +A2 |V : FamRel T

|A1 +A2 |V ≜


J ≜ J(|A1 |) + J(|A2 |)

R ≜ λt . λt̄ . match t, t̄ with

������ σ1 u,σ1 ū → R(|A1 |) u ū
σ2 u,σ2 ū → R(|A2 |) u ū

_ → ⊥

(24”)

We tie the knot by recursion over types and obtain a mutually recursive pair of functions

from syntactic types of the object language to predicates in our meta-language: a truth witness

interpretation targeting FamRel T and a falsity witness interpretation targeting FamRel E. This
naturally extends to contexts.

∥P ∥, ∥N ∥ : FamRel E

∥P ∥ ≜ |P |V
⊥

(13”)

∥N ∥ ≜ ∥N ∥V
⊥⊥

(14”)

|P |, |N | : FamRel T

|P | ≜ |P |V
⊥⊥

(15”)

|N | ≜ ∥N ∥V
⊥

(16”)

The adequacy lemma thus becomes

rea : ∀{Γ} t {A} {ρ}. {Γ ⊢ t : A} → ρ ∈ |Γ | → ⌊t⌋ [ρ] ∈ |A|

where ⌊t⌋ compiles a term of the object language into a µµ̃ term in the meta-language that witnesses

the reduction. Rather than define this function upfront, we are going to reverse-engineer it from

the proof of the adequacy lemma. Indeed, the typing constraints of the dependent version force us

to exhibit a reduction sequence, that is, a suitable compilation function.

The dependent version of the adequacy lemma has the same structure as the non-dependent

one. Apart from enriching types, the main difference is that we justify the existence of the desired

reduction sequence through computationally transparent annotations tracking the use of reduction

rules.

Abstraction. Consider the λ-abstraction case of Section 4 (p.14):

rea (λxA. tB )A→B ρ̄ ≜ λ(ū, ē)∥A→B ∥V . ⟨ rea t ρ̄[x 7→ ū] | ē ⟩B

We transform this code to a dependently-typed case, by adding annotations, leaving the code

structure otherwise unchanged:

rea {Γ} (λxA. tB )A→B {ρ} (ρ̄ : ρ ∈ |Γ |) ≜

λ{u · e : E}. λ((ū : u ∈ |A|, ē : e ∈ ∥B∥) : u · e ∈ ∥A → B∥V ). ⟨ rea t ρ̄[x 7→ ū] | ē ⟩lamB

Indeed, by definition (8”) of ∥A → B∥V , we can abstract over a pair in the object language

λ(u · e : E) instead of the more general λ {(e0 : E)} since the pattern matching implicit in the

subsequent abstraction necessarily teaches us that e0 must be equal to a pair, so any other case

would be absurd: matching on a pair covers all non-trivial cases.

The cut function was defined from the start with a dependent type:

⟨ _ | _ ⟩A : ∀ {t e} , t ∈ |A| → e ∈ ∥A∥ → ⟨ t | e ⟩ ∈ ⊥⊥



Dependent Pearl: Normalization by realizability 19

but this is not enough tomake thewhole term type-check. This gives to the expression ⟨ rea t ρ̄[x 7→ ū] | ē ⟩B
the type ⟨ ⌊t⌋ [ρ, x 7→ u] | e ⟩ ∈ ⊥⊥. But we just abstracted on u · e ∈ ∥A → B∥V , in order to form a

complete term of type ⌊λx . t⌋ [ρ] ∈ ∥A → B∥V
⊥
so the expected type is in fact ⟨ ⌊λx . t⌋ [ρ] | u · e ⟩ ∈

⊥⊥. To address this issue, we define an auxiliary function _
lam

of type

_
lam

: ∀{t ρ x u e}. ⟨ t[ρ, x 7→ u] | e ⟩ ∈ ⊥⊥ → ⟨ ⌊λx . t⌋ [ρ] | u · e ⟩ ∈ ⊥⊥

This auxiliary function exactly corresponds to the fact that the pole is closed under anti-reduction

of machine configurations (Figure 2). Indeed, the required reduction

⟨ ⌊λx . t⌋ | u · e ⟩ { ⟨ t[x 7→ u] | e ⟩

is a consequence of the general rule for functions

⟨ µ(x · α). ⟨ t | α ⟩ | u · e ⟩ { ⟨ t[x 7→ u,α 7→ e] | e ⟩

plus the fact that translations of λ-terms ⌊t⌋ have no free co-term variable α – as can be proved by

direct induction. Note that if we had not given you the definition of ⌊λx . t⌋ , you would be asked to

pick µ(x · α). ⟨ t | α ⟩ from the type-checking constraints that arise in the proof.

To define this function, recall our characterization of the pole:

m ∈ ⊥⊥ � {mn ∈ MN | m { m1 { . . . { mn}

The function _
lam

takes a normal form for the reduced machine, and has to return a normal form

for the not-yet-reduced machines; this is the exact same normal form, with an extra reduction step.

_
lam {t ρ x u e} ≜ λ{mn | ⟨ ⌊t⌋ [x 7→ u] | e ⟩ { . . . { mn}.

{mn | ⟨ ⌊λx . t⌋ | u · e ⟩ { ⟨ ⌊t⌋ [x 7→ u] | e ⟩ { . . . { mn}

Application. Similarly, the application case can be dependently typed as

rea (tA→B ut ) ρ̄ ≜ λ{π : E}. λπ̄ : π ∈ ∥B∥V .
(
rea t ρ̄

(
rea u ρ̄, π̄⊥⊥

) )app
The function _

⊥⊥
, which we had defined at the type J(∥A∥V ) → J(∥A∥), can be given – without

changing its implementation – the more precise type ∀{π }. π ∈ ∥A∥V → π ∈ ∥A∥ . This means that

rea t ρ̄
(
rea u ρ̄, π̄⊥⊥

)
has type ⟨ ⌊t⌋ [ρ] | ⌊u⌋ [ρ] · π ⟩ ∈ ⊥⊥. For the whole term to be well-typed,

the auxiliary function _
app

needs to have the type

∀{t u ρ π }. ⟨ ⌊t⌋ [ρ] | ⌊u⌋ [ρ] · π ⟩ ∈ ⊥⊥ → ⟨ ⌊t u⌋ [ρ] | π ⟩ ∈ ⊥⊥

Again, this is exactly an anti-reduction rule; not as a coincidence, but as a direct result of the

translation of application in µµ̃: ⌊t u⌋ ≜ µα . ⟨ ⌊t⌋ | ⌊u⌋ · α ⟩. The definition is similar to _
lam

.

Case analysis. The dependently-typed treatment of case analysis involves three decorations,

_
inj

1 , _
inj

2 and _
case

:

rea δ (tA1+A2, x1.u1

C , x2.u2

C ) ρ̄ ≜
λ{π : E}. λπ̄ : π ∈ ∥C∥V .〈

rea t ρ̄ | λ{v}. λv̄ : v ∈ |A1 +A2 |V .

match v, v̄ with���� σ1 t1,σ1 t̄1 → (rea u1 ρ̄[x1 7→ t̄1] π̄ )
inj

1

σ2 t2,σ2 t̄2 → (rea u2 ρ̄[x2 7→ t̄2] π̄ )
inj

2

〉case
A1+A2

Let us show how the typing constraints in this term let us deduce/recover exactly the translation

we gave in Figure 3 of sum elimination into µµ̃.
From the outer typing constraint, we know that the result type of _

case
must be of type

⟨ ⌊δ (t, x1.u1, x2.u2)⌋ [ρ] | π ⟩ ∈ ⊥⊥. Its argument is of the form ⟨ rea t ρ | . . . ⟩A1+A2

, so _
case

must

perform an anti-reduction argument on a reduction step of the form

⟨ ⌊δ (t, x1.u1, x2.u2)⌋ | π ⟩ { ⟨ ⌊t⌋ | . . . ⟩
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Let us write (⌊δ (□, x1.u1, x2.u2)⌋ ;π ) for the co-term in the right-hand-side of the reduction rule

above. From the desired reduction step above, we know that we need the translation

⌊δ (t, x1.u1, x2.u2)⌋ ≜ µα . ⟨ t | (⌊δ (□, x1.u1, x2.u2)⌋ ;α) ⟩

where (⌊δ (□, x1.u1, x2.u2)⌋ ;α) remains to be determined.

As a second step, we look at the typing constraints for the inner auxiliary functions _
inji , in the

terms (rea ui ρ̄[x i 7→ t̄i ] π̄ )
inji

. These terms must prove that the co-term (⌊δ (□, x1.u1, x2.u2)⌋ ;π )
is in ∥A1 +A2∥, that is, that putting it against any constructor σi ti goes in the pole. The result type

of _
inji is thus of the form

⟨σi ti | ⌊δ (□, x1.u1, x2.u2)⌋ ;π ⟩ ∈ ⊥⊥

Finally, we know the input type of _
inji , which is of the form ⟨ui [x i/ti ] | π ⟩ ∈ ⊥⊥ so we know

that this function must correspond to an anti-reduction argument for the reduction

⟨σi ti | ⌊δ (□, x1.u1, x2.u2)⌋ ;π ⟩ { ⟨ui [x i/ti ] | π ⟩ ∈ ⊥⊥

which forces us to pose:
8

(⌊δ (□, x1.u1, x2.u2)⌋ ;π ) ≜ µ̃ [x1. ⟨u1 | π ⟩ | x2. ⟨u2 | π ⟩]

which gives, indeed, the same definition as Figure 3:

⌊δ (t, x1.u1, x2.u2)⌋ = ⟨ t | ⌊δ (□, x1.u1, x2.u2)⌋ ;π ⟩

= ⟨ t | µ̃ [x1. ⟨u1 | π ⟩ | x2. ⟨u2 | π ⟩] ⟩

Sum injections. Injections, being computationally inert, are straightforward to handle: an

injection in the object language compiles into a µµ̃ injection and the corresponding realizability

program does not require decoration since it does not need to track a reduction of the configuration.

Wrapping up. We would like to point out that all of the compilation rules from the λ-calculus
to our abstract machines could be recovered by studying the typing constraints in our proof.

It means that this compilation scheme is, in some sense, solely determined by the type of the

adequacy lemma. In particular, we recovered the fact that the application transition needs to be

specified only for linear co-terms π – which, in our setting, correspond to those co-terms that

belong not only to ∥N ∥, but also to ∥N ∥V .

Mechanized formalization in Coq. Our formalization covers more type constructors than we

had space to present here, handling both (positive) natural numbers and positive products
9
. While

positive products are handled along the same line as sums, interpreting the elimination form for

natural numbers lead us naturally to introduce a standalone lemma that extracts (somewhat to our

disbelief) to an iterator over integers. This phenomena by which we “coincidentally extract to the

right program” is noteworthy. In fact, there is little to no choice in writing the proof, once we get

familiarized with the mechanics of our dependent types.

As a result of our careful segregation of the computational and propositional content of our

definitions, the dependently-typed adequacy lemma – proved using tactics and concluded with the

vernacular Defined. – admits a straightforward extraction: the second component of the subset

types are erased, leaving only the normal forms. The resulting OCaml program is almost literally

the program written in Section 4, provided that we ignore the remains of dependent types that

8
We took the idea of seeing introduction of a new pattern-matching form as the resolutions of some equations from

Munch-Maccagnoni [2013].

9
In intuitionistic logic, there is little difference between the positive and the negative product, so a product is always suspect

of being negative type in hiding. The elimination form of positive products matches strictly on both arguments whereas

negative products are eliminated by two projections. The difference is glaring in the presence of side-effects.
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extraction fails to eliminate, such as terms, stacks, and substitutions over them. In particular, we

uncovered during this process that the reduction sequence is justified by appeal to computationally

irrelevant annotations translating the anti-reduction closure of the pole, a reassuring and satisfying

result. An informal dead-code elimination argument suggests that we could safely remove the

remains of dependent types but convincing Coq that is safe to do so remains future work.

To illustrate the fact that the computational content of the adequacy lemma does not depend on

a particular choice of the pole, the proof itself is parametrized by a Coq module specifying the com-

putational and logical content of a pole. We provide two instantiations of pole to support extraction:

full machine configurations and natural numbers (suited for configurations that normalize to inte-

gers). In this way, we are able to run several examples of derivations in the simply-typed λ-calculus
through the adequacy lemma and extract the corresponding normalized configuration or integer.

The supplementary material provides information on how to run with these proofs/programs.

6 ALTERNATIVE REALIZATIONS
We made two arbitrary choices when we decided to define ∥A → B∥V ≜ {u · e | u ∈ |A|, e ∈ ∥B∥} .
There are in fact four possibilities with the same structure:

(1) {u · e | u ∈ |A|, e ∈ ∥B∥} (2) {u · e | u ∈ |A|, e ∈ ∥B∥V }

(3) {u · e | u ∈ |A|V , e ∈ ∥B∥} (4) {u · e | u ∈ |A|V , e ∈ ∥B∥V }

In our Coq formalization, we study the four possibilities and see that they all work but each of

them gives a slightly different realization program. For conciseness, we will only treat Variant (3)
in this section and omit sum types from these variants; it can be handled separately (and would

also give rise to four different choices), as we did in our formalization.

We will not repeat the reverse engineering process of the previous section, but directly jump to

the conclusion of what translation to (arrow-related) co-terms they suggest, and which reduction

strategy they must follow. We observe that the first two variants correspond to a call-by-name

evaluation strategy, while the two latter correspond to call-by-value; forcing us, in particular, to

use the µ̃x .m construction [Curien and Herbelin 2000] in the compilation to µµ̃ terms.

In order to distinguish the compilation functions of the various variants, we mark them with

their variant number as exponent: ⌊t⌋i for variant (i).

Variant (1) {u · e | u ∈ |A|, e ∈ ∥B∥}. This interpretation corresponds to the realization program
presented in Section 4, recalled here for ease of comparison:

rea xA ρ̄ ≜ ρ̄(x)

rea (λxA. tB )
A→B

ρ̄ ≜ λ(ū |A |, ē ∥B ∥). ⟨ rea t ρ̄[x 7→ ū] | ē ⟩B
rea (tA→B uA) ρ̄ ≜ λπ̄ ∥B ∥V . rea t ρ̄

(
rea u ρ̄, π̄⊥⊥

)
⌊x⌋1 ≜ x

⌊λx . t⌋1 ≜ µ(x · α).
〈
⌊t⌋1 | α

〉
⌊t u⌋1 ≜ µα .

〈
⌊t⌋1 | ⌊u⌋1 · α

〉
Variant (3) {u · e | u ∈ |A|V , e ∈ ∥B∥}. A notable difference in this variant – and Variant (4) – is

that we can restrict the typing of our environment witnesses to store value witnesses: rather than

ρ̄ : ρ ∈ |Γ |, we have ρ̄ : ρ ∈ |Γ |V , that is, for each binding t :A in Γ, we assume ρ̄(x) : ρ(x) ∈ |A|V .
The function would be typable with a weaker argument ρ̄ : ρ ∈ |Γ | (and would have an equivalent

behavior when starting from the empty environment), but that would make the type less precise

about the dynamics of evaluation.
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rea xA ρ̄ |Γ |V ≜ (ρ̄(x))⊥⊥

rea (λxA. tB )A→B ρ̄ ≜ λ(v̄ |A |V , ē ∥B ∥). ⟨ rea t ρ̄[x 7→ v̄] | ē ⟩B
rea (tA→B uA) ρ̄ ≜ λπ̄ ∥B ∥V .

〈
rea u ρ̄ | λv̄ |A |V

u .
〈
rea t ρ̄ |

(
v̄u , π̄

⊥⊥
) 〉

A→B

〉
A

Had we kept ρ̄ : ρ ∈ |Γ |, we would have only ρ̄(x) in the variable case, but ρ̄[x 7→ v̄⊥⊥] in

the abstraction case, which is equivalent if we do not consider other connectives pushing in the

environment.

It is interesting to compare the application case with the one of Variant (1):

λπ̄ ∥B ∥V . rea t ρ̄
(
rea u ρ̄, π̄⊥⊥

)
The relation between Variant (1) and Variant (3) seems to be an inlining of rea u ρ̄, yet the shapes
of the terms hint at a distinction between call-by-name and call-by-value evaluation. These two

versions are equivalent wheneverA is negative, as in that case the cut ⟨ rea u ρ̄ | λv̄u . . . . ⟩A applies

its left-hand side as an argument to its right-hand side, giving exactly the definition of Variant (1)
after β-reduction. However, once again, considering the dependent version forces us to clarify the

evaluation dynamics:

rea {Γ} (tA→B uA) {ρ} (ρ̄ : ρ ∈ |Γ |V ) ≜ λ{π : E}. λπ̄ : π ∈ ∥B∥V .〈
rea u ρ̄ | λ{vu : T}. λ(v̄u : vu ∈ |A|V ).

〈
rea t ρ̄ |

(
v̄u , π̄

⊥⊥
) 〉app−body

A→B

〉app−arg
A

The annotation _
app−body

corresponds to a reduction to the configuration

〈
⌊t⌋3[ρ] | vu · π

〉
. Its

return type – which determines the configuration which should reduce to this one – is constrained

not by the expected return type of the rea function as in previous examples, but by the typing of

the outer cut function which expects a ⌊u⌋3[ρ] ∈ |A| on the left, and thus on the right an e ∈ ∥A∥
for some co-term e . By definition of e ∈ ∥A∥, the return type of _

app−body
should thus be of the form

⟨vu | e ⟩ ∈ ⊥⊥.

What could be the result of ⌊u⌋3

that would respect the reduction “equation”

〈
vu | ⌊u⌋3

〉
{〈

⌊u⌋3[ρ] | vu · π
〉
so that _

app−body
amounts to stability under anti-reduction? Using µµ̃’s µ̃ binder [Curien

and Herbelin 2000], we define ⌊u⌋3 ≜ µ̃vx . ⟨ t[ρ] | vx · π ⟩ which is subject to the desired reduction:

⟨v | µ̃x .m ⟩ { m[x 7→ v].
From here, the input and output type of _

app−arg
are fully determined, allowing to state a

final equation:

〈
⌊t u⌋3 | π

〉
{

〈
⌊u⌋3 | µ̃vu .

〈
⌊t⌋3 | vu · π

〉 〉
that is solved by taking ⌊t u⌋3 ≜

µα .
〈
⌊u⌋3 | µ̃vu .

〈
⌊t⌋3 | vu · α

〉 〉
. Summing up:

⌊x⌋3 ≜ x

⌊λx . t⌋3 ≜ µ(x · α).
〈
⌊t⌋3 | α

〉
⌊t u⌋3 ≜ µα .

〈
⌊u⌋3 | µ̃vu .

〈
⌊t⌋3 | vu · α

〉 〉
which corresponds to the compilation scheme from the call-by-value λ-calculus into µµ̃.

A closer look at reductions. Looking at these two variants, the code itself may not be clear

enough to infer their evaluation order. However, their compilation to µµ̃ machines, that were

imposed to us by the dependent typing requirement, are deafeningly explicit. When interpreting



Dependent Pearl: Normalization by realizability 23

the function type ∥A → B∥V , requiring truth value witnesses forA gives us call-by-value transitions

(Variant (3)), while just requiring arbitrary witnesses gives us call-by-name transitions (Variant (1)).
Finally, an interesting point to note is that we have explored the design space of the semantics

of the arrow connective independently from other aspects of our language – its sum type. Any

of these choices for ∥A → B∥V may be combined with any choice for |A + B |V (basically, lazy or

strict sums; the Coq formalization has a variant with lazy sums) to form a complete proof
10
. We see

this as yet another manifestation of the claimed “modularity” of realizability and logical-relation

approaches, which allows studying connectives independently from each other – once a notion of

computation powerful enough to support them all has been fixed.

7 RELATEDWORK
Classical realizability. Realizability has been used by logicians to enrich a logic with new

axioms and constructively justify such extensions. To do so, one extends the language of machines,

terms and co-terms with new constructs and reduction rules, in order to give a computational

meaning to interesting logical properties which had no witnesses in the base language. For example,

extending the base calculus with a suitably-defined callcc construct provides a truth witness for

Pierce’s law (and thus, provides a computational justification to the addition of the principle of

excluded middle in the source logic). When possible, this gives us a deeper (and often surprising)

understanding of logical axioms. This paper takes the opposite approach, starting from a logic

(embodied by the simply-typed λ-calculus) and an interpretation of its typed values to re-discover

the computational content of its realizers.

Intuitionistic realizability. Oliva and Streicher [2008] factor the use of classical realizability

for a negative fragment of second-order logic as the composition of intuitionistic realizability after a

CPS translation.We know that translating λ-terms into abstract machines then back corresponds to a

CPS transform. In this work, the authors remark that classical realizability corresponds to translating

the abstract machines back into (CPS-forms of) λ-terms, then doing intuitionistic realizability on the

resulting terms. The bi-orthogonal closure arises from the intuitionistic realizability interpretation

of the double-negation translation of intuitionistic formulas (the types of terms in the original

machine).

From the point of view of a user wishing to understand how realizability techniques prove

normalization of a given well-typed term, there are thus two choices: either see this term as part of

an abstract machine language, and look at the classical realizability proof on top of it, or look at the

CPS translation of this term and look at the intuitionistic realizability proof on top of it. Oliva and

Streicher show that those two interpretations agree; the question is then to know which will give

the better explanation. In our opinion, the abstract machine approach, by giving a direct syntax

for continuations instead of a functional encoding, make it easier to follow what is going on. In

particular, the justification of the difference in treatment between negative and positive types seems

particularly clean in such a symmetric setting; it is also easy to see the relation between changes to

the configuration reductions and the reduction strategy of the proof. This is precisely the term-level

counterpart of the idea that sequent calculus is more convenient than natural deduction to reason

about cut-elimination in presence of positives. That said, because our meta-language is also a typed

λ-calculus, some aspects of the CPS-producing transformation from machines to λ-terms are also

present in our system.

Ilik [2013] proposes a modified version of intuitionistic realizability to work with intuitionistic

sums, by embedding the CPS translation inside the definition of realizability. The resulting notion

10
With the exception that it is only possible to strengthen the type of environments from |Γ | to |Γ |V if all computation

rules performing substitution only substitute values; that is a global change.
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of realizability is in fact quite close to our classical realizability presentation, with a “strong forcing”

relation (corresponding to our set of value witnesses), and a “forcing” relation defined by double-

negation (∼ bi-orthogonal) of the strong forcing. In particular, Danko Ilik remarks that by varying

the interplay of these two notions (notably, requiring a strong forcing hypothesis in the semantics

of function types), one can move from a “call-by-name” interpretation to a “call-by-value” setting,

which seems to correspond to our findings.

Normalization by Evaluation. There are evidently strong links with normalization by evalua-

tion (NbE). The previously cited work of Ilik [2013] constructs, as is now a folklore method, NbE

as the composition of a soundness proof (embedding of the source calculus into a mathematical

statement parametrized on concrete models) followed by a strong completeness proof (instantiation

of the mathematical statement into the syntactic model to obtain a normal form). In personal

communication, Hugo Herbelin presented orthogonality and NbE through Kripke models as two

facets of the same construction. Orthogonality focuses on the (co)-terms realizing the mathematical

statement, exhibiting an untyped reduction sequence. NbE focuses on the typing judgments; its

statement guarantees that the resulting normal form is at the expected type, but does not exhibit

any relation between the input and output term.

System L. It is not so surprising that the evaluation function exhibited in Section 4 embeds a CPS

translation, given our observation that the definition of truth and value witnesses determines the

evaluation order. Indeed, the latter fact implies that the evaluation order should remain independent

from the evaluation order of the meta-language (the dependent λ-calculus used to implement

adequacy), and this property is usually obtained by CPS or monadic translations.

System L is a direct-style calculus that also has this propriety of forcing us to be explicit about

the evaluation order – while being nicer to work with than results of CPS-encoding. In particular,

Munch-Maccagnoni [2009] shows that it is a good calculus to study classical realizability. Our

different variants of truth/falsity witnesses correspond to targeting different subsets of System L,

which also determine the evaluation order. The principle of giving control of evaluation order to the

term or the co-term according to polarity is also found in Munch-Maccagnoni’s PhD thesis [Munch-

Maccagnoni 2013].

The computational content of adequacy for System L has been studied, on the small µµ̃ fragment,

by Hugo Herbelin in his habilitation thesis [Herbelin 2011]. The reduction strategy is fixed to be

call-by-name. We note the elegant regularity of the adequacy statements for classical logic, each of

the three versions (configurations, terms and co-terms) taking an environment of truth witnesses

(for term variables) and an environment of falsity witnesses (for co-term variables).

Another, more compositional way to understand the results presented in this paper consists in

performing a typed translation from the λ-calculus to typed System L, where we have a typing

judgment for terms of the form Γ ⊢ t : A, a typing judgment for co-terms of the form Γ | e : A ⊢ A
and well-typed configurationsm : Γ ⊢ are the pair of a well-typed term, and a well-typed co-term,

interacting along the same type A. This translation amounts to a CPS transform, System L being

essentially a direct syntax for writing programs in CPS.

This type system is also backed by an adequacy lemma formed of three mutually recursive results

of the following form:

• for any t and ρ such as Γ ⊢ t : A and ρ ∈ |Γ |, we have t[ρ] ∈ |A|
• for any e and ρ such as Γ | e : A ⊢ and ρ ∈ |Γ |, we have e[ρ] ∈ ∥A∥
• for anym and ρ such asm : Γ ⊢ and ρ ∈ |Γ |, we havem[ρ] ∈ ⊥⊥

A careful translation from the λ-calculus to System L would have allowed us to piggy-back on

the adequacy lemma of System L to obtain the desired adequacy lemma on λ-terms. In fact, we
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saw in Section 6 that our formalization is currently organized around a choice of translation from

the λ-terms to µµ̃: the missing piece consists in going from µµ̃ to System L, which amounts to

specifying the polarity of our translation – or, put otherwise, deciding on the strictness/laziness

of the constructs of the language. Such a translation goes beyond the intent of the present paper,

which is meant as providing a slow-paced transition from approaches based on λ-calculus to ones

based on abstract machines in meta-theoretical works.

Realizability in PTS. Bernardy and Lasson [2011] have some of the most intriguing work on

realizability and parametricity we know of. In many ways they go above and beyond this work:

they capture realizability predicates not as an ad-hoc membership, but as a rich type in a pure

type system (PTS) that is built on top of the source language of realizers – itself a PTS. They also

establish a deep connection between realizability and parametricity – we hope that parametricity

would be amenable to a treatment resembling ours, but that is purely future work.

One thing we wanted to focus on was the computational content of realizability techniques, and

this is not described in their work; adequacy is seen as a mapping from a well-typed term to a

realizer inhabiting the realizability predicate. But it is a meta-level operation (not described as a

program) described solely as an annotation process. We tried to see more in it – though of course,

it is a composability property of denotational model constructions that they respect the input’s

structure and can be presented as trivial mappings (e.g., Jt uK ≜ app(JtK , JuK) ) given enough

auxiliary functions.

Conclusion
At which point in a classical realizability proof is the “real work” done? We have seen that the

computational content of adequacy is a normalization function, that can be annotated to reconstruct

the reduction sequence. Yet we have shown that there is very little leeway in proofs of adequacy:

their computational content is determined by the types of the adequacy lemma and of truth and

falsity witnesses. We do not claim to have explored the entire design space, but would be tempted to

conjecture that there is a unique pure program (modulo βη-equivalence) inhabiting the dependent

type of rea.
Finally, we have seen that polarity plays an important role in adequacy programs – even when

they finally correspond to well-known untyped reduction strategies such as call-by-name or call-by-

value. This is yet another argument to study the design space of type-directed or, more generally,

polarity-directed reduction strategies.
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