
GADT meet subtyping

Didier Rémy
Inria

Didier.Remy@inria.fr

Gabriel Scherer
Inria

Gabriel.Scherer@inria.fr

Abstract
While generalized abstract datatypes are now considered
well-understood, adding them to a language with a notion
of subtyping reveals a few surprises. What does it mean for
a GADT parameter to be covariant? The answer turns out
to be quite subtle, and involves new semantic properties of
types that raise interesting design questions. We prove a
soundness theorem for GADT with variance annotations,
and study its applicability in a real-world language.

Consider the following example of GADT definition:

type α expr =

| Val : α→ α expr

| Int : int→ int expr

| Prod : ∀βγ. (β expr ∗ γ expr)→ β ∗ γ expr

Is it sound to claim that α expr is covariant? The vari-
ance checking algorithm currently implemented in OCaml
would reject it, because it uses a simple conservative cri-
terion: parameters that are instantiated with something
other than a type variable (α is instantiated with int in
the Int case and β ∗γ in the Prod case) must be invariant.

In OCaml, covariance is used in particular with the re-
laxed value restriction [Gar04], which allows generaliza-
tion of type variables appearing in covariant-only posi-
tions. This relaxation is crucial to work with polymorphic
data structures, and is maybe the most important use of
variance information. The current safe criterion is too re-
strictive to use GADT in this case.

Let’s first show why it is reasonable to say that α expr

is covariant. We will explain why, informally, if we are able
to coerce an α into a α′ (we write (v :> α′) to explicitly
cast a value v of type α), then we are also able to transform
an α expr into a α′ expr. Here is a pseudo-code for the
coercion function:

let coerce : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)

| Int n -> Int n

| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)

Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

In the Prod case, we make an informal use of something
we know about the OCaml type system: the supertypes
of a tuple are all tuples. By entering the branch, we have
gained the knowledge that α = β ∗ γ, so from α ≤ α′ we
know that β ∗ γ ≤ α′; we can deduce that α′ is itself a
pair of the form β′ ∗ γ′, and by covariance of the product
we know that β ≤ β′ and γ ≤ γ′, allowing to conclude by
casting, recursively, at types β′ expr and γ′ expr.

Similarly, in the Int case, we know that α = int and
returned an int expr; this is because we know that, in

OCaml, no type is above int: if int ≤ α′ then α′ equals
int.

What we use in both cases is reasoning of the form: “if

T [β] ≤ α′, then I know that α′ is of the form T [β
′
] for

some types β
′
”. We call this an upward closure property:

when we “go up” from a T [β], we only find types that
also have the structure of T . Similarly, for contravariant
parameters, we would need a downward closure property:
T is downward-closed if T [β] ≥ α′ entails that α′ is of the

form T [β
′
].

Not all types are upward closed: the object type
< m : int >, which has one method m returning an in-
teger, is smaller than the empty object type < >, which is
not of the form < m : int >. For this reason, it would
be unsound to use it, as we did for int and β ∗ γ, in a
covariant GADT1:

type +α wrong =

| K : < m : int > -> < m : int > wrong

To see why the type-checker must reject this definition,
let’s define the classic equality GADT and the correspond-
ing casting function:

type (α, β) eq = Refl : ∀γ.(γ, γ) eq
let cast_eq : (α, β) eq→ α→ β = function

| Refl -> (fun x -> x)

The type above leads to a way to cast the empty object
of type < > into a < n : int >, which is clearly unsound.

let get_eq : α wrong→ (α,<m:int>) eq = function

| K _ -> Refl

let evil_cast : < > -> < m : int > =

let obj = K (object method m = 0 end) in

cast_eq (get_eq (obj :> < > wrong))

In the work we would like to present, we have proved
that the notions of upward and downward-closure are the
key to a sound variance check for GADT. We started from
the formal development of Simonet and Pottier [SP07],
which provides a general soundness proof for a language
with subtyping and a very general notion of GADT ex-
pressing arbitrary constraints – rather than only type
equalities. By specializing their correctness criterion, we
were able to split it into three smaller criteria, that are
simple to implement in a type-checker. One of them, the
most delicate and important, is that instances of covariant
(respectively contravariant) parameters should be upward-
closed (resp. downward-closed).

The problem of non-monotonicity

We have a problem with those closure properties: while
they hold naturally in a core ML type system with strong
inversion theorems, they are non-monotonic properties:

1This counterexample is due to Jacques Garrigue.



they are not necessarily preserved by extensions of the
subtyping lattice. For example, OCaml has a concept of
private types: a type specified by type t = private τ
is a new semi-abstract type smaller than τ (t ≤ τ but
t � τ). As private types can be defined from any type,
no type is downward-closed: for any type τ I may define
a new, strictly smaller type.

This means that closure properties of the OCaml type
system are relatively weak: no type is downward-closed (so
instantiated GADT parameters cannot be contravariant),
and arrow types are not upward-closed as their domain
should be downward-closed. Only purely positive alge-
braic datatypes are upward-closed. The subset of GADT
declarations that can be declared covariant is small, yet,
we think, large enough to capture a lot of useful examples,
such as α expr above.

Giving back the freedom of subtyping

It is disturbing that our type system would rely on non-
monotonic properties: if we adopt the correctness criterion
above, we must be careful in the future not to enrich the
subtyping relations too much. This is contradictory to
the general design aspects of subtyping, where decidability
compromises may be made, but having more subtyping
relations is always considered a good thing.

Consider for example private types: one could reason-
ably imagine a symmetric concept of a type that would
be strictly above a given type τ ; we will name those types
invisible types (they can be constructed, but not ob-
served). Invisible types and GADT covariance seem to be
incompatible: the designer has to pick one, and cannot
add the other.

A solution to this tension is to allow the user to lo-
cally guarantee negative properties about subtyping (what
is not a subtype), at the cost of abandoning the cor-
responding flexibility. Just as object-oriented languages
have final classes that cannot be extended, we would
like to be able to define some types as public (respec-
tively visible), that cannot later be made private (resp.
invisible). Such declarations would be rejected if the
defining type already has subtypes (eg. an object type),
and would forbid further declarations of types below (resp.
above) the declared, effectively guaranteeing downward
(resp. upward) closure. Finally, upward or downward clo-
sure is a semantic aspect of a type that we must have the
freedom to publish through an interface: abstract types
could optionally be declared public or visible.

Another approach: subtyping constraints

The reason why getting fine variance properties out of
GADT is difficult is because they correspond to type
equalities which, to a first approximation, use their two
operands both positively and negatively. One way to get
an easy variance check is to encourage users to change
their definitions into different ones that are trivial to check.
Consider for example the following redefinition of α expr:

type α expr =

| Val : ∀α.α→ α expr

| Int : ∀α[α≥int].int→ α expr

| Prod : ∀αβγ[α≥β ∗ γ]. (β expr ∗ γ expr)→ α expr

It is very simple to check that this definition is covariant,
because all type equalities α = Ti[β] have been replaced by
inequalities α ≥ Ti[β] that are obviously preserved when

replacing α by some α′ such that α′ ≤ α. This variant of
GADT, using subtyping rather than equality constraints,
has been studied by Emir et al. [EKRY] in the context of
the C] programming language.

But isn’t such a type definition less useful than the pre-
vious one, which had a stronger constraint? It actually
appears that we have not lost much. In the examples we
have studied, when a user considers a given parameter as
“naturally covariant” (or contravariant), the uses he has
in mind can be adapted to this weaker definition. Here
is for example the classic eval : α expr → α function on
this weaker definition, using (v :> τ) to cast a value v : σ
when σ ≤ τ .

let rec eval : ∀α. α expr→ α = function

| Val α (v : α) -> v

| Int α n -> (n :> α)
| Prod α β γ (b, c) -> ((eval b, eval c) :> α)

As is manifest in this example, this approach could re-
quire more explicit annotations, at least with existing type
system implementations relying on unification rather than
implicit subtyping.

Work in progress: Completeness of vari-
ance annotations

For simple algebraic datatypes, variance annotations are
“enough” to say anything we want to say about the vari-
ance of datatypes. Essentially all admissible variance rela-
tions between datatypes can be described by considering
the pairwise variance of parameters separately.

This does not work anymore with GADT. For example,
the type (α, β) eq cannot be accurately described by con-
sidering variation of each of its parameters independently.
We would like to say that (α, β) eq ≤ (α′, β′) eq holds as
soon as α = β and α′ = β′. With the simple notion of vari-
ance we currently have, all we can soundly say about eq is
that it must be invariant in both its parameters – which is
considerably weaker. In particular, the well-known trick
of “factoring out” GADT by using the eq type in place of
equality constraint does not hold anymore: equality con-
straints allow fine-grained variance considerations based
on upward or downward-closure, while the equality type
instantly makes its parameters invariant.

We think it is possible to regain some “completeness”,
and in particular re-enable factoring by eq, by considering
more information to decide subtyping between instances,
in addition to individual parameter variances. We are
considering using domain information, to know which in-
stances of the type are inhabited: for example, bool expr,
or (int, float) eq, are not inhabited.

References
[EKRY] Burak Emir, Andrew Kennedy, Claudio Russo, and

Dachuan Yu. Variance and generalized constraints for C#
generics. In Proceedings of the 20th European conference
on Object-Oriented Programming, ECOOP’06.

[Gar04] Jacques Garrigue. Relaxing the value restriction. In In In-
ternational Symposium on Functional and Logic Program-
ming, Nara, LNCS 2998, 2004.

[SP07] Vincent Simonet and François Pottier. A constraint-based
approach to guarded algebraic data types. ACM Trans-
actions on Programming Languages and Systems, 29(1),
January 2007.

2


