GADT meet subtyping

Didier Rémy
Inria
Didier.Remy@inria.fr

Gabriel Scherer
Inria
Gabriel.Scherer@inria.fr

Abstract

While generalized abstract datatypes are now considered well-understood, adding them to a language with a notion of subtyping reveals a few surprises. What does it mean for a GADT parameter to be covariant? The answer turns out to be quite subtle, and involves new semantic properties of types that raise interesting design questions. We prove a soundness theorem for GADT with variance annotations, and study its applicability in a real-world language.

Consider the following example of GADT definition:

```ocaml
type α expr =
  | Val : α -> α expr
  | Int : int -> int expr
  | Prod : ∀β γ. (β expr * γ expr) -> β * γ expr
```

Is it sound to claim that α expr is covariant? The variance checking algorithm currently implemented in OCaml would reject it, because it uses a simple conservative criterion: parameters that are instantiated with something other than a type variable (α is instantiated with int in the Int case and β*γ in the Prod case) must be invariant.

In OCaml, covariance is used in particular with the relaxed value restriction [Gar04], which allows generalization of type variables appearing in covariant-only positions. This relaxation is crucial to work with polymorphic data structures, and is maybe the most important use of variance information. The current safe criterion is too restrictive to use GADT in this case.

Let’s first show why it is reasonable to say that α expr is covariant. We will explain why, informally, if we are able to coerce an α into a α’ (we write (v :: α’) to explicitly cast a value v of type α), then we are also able to transform an α expr into a α’ expr. Here is a pseudo-code for the coercion function:

```ocaml
let coerce : α expr ≤ α’ expr = function
  | Val (v : α) -> Val (v :: α’)
  | Int n -> Int n
  | Prod β γ ((b, c) : β expr * γ expr) ->
    (* if β * γ ≤ α’, then α’ is of the form
      β * γ’ with β ≤ β’ and γ ≤ γ’ *)
    Prod β’ γ’ ((b :: β’ expr), (c :: γ’ expr))
```

In the Prod case, we make an informal use of something we know about the OCaml type system: the supertypes of a tuple are all tuples. By entering the branch, we have gained the knowledge that α = β * γ, so from α ≤ α’ we know that β * γ ≤ α’; we can deduce that α’ is itself a pair of the form β’ * γ’, and by covariance of the product we know that β ≤ β’ and γ ≤ γ’, allowing to conclude by casting, recursively, at types β’ expr and γ’ expr.

Similarly, in the Int case, we know that α = int and returned an int expr; this is because we know that, in OCaml, no type is above int: if int ≤ α’ then α’ equals int.

What we use in both cases is reasoning of the form: “if T[β] ≤ α’, then I know that α’ is of the form T[β’] for some types T[β’].” We call this an upward closure property: when we “go up” from a T[β], we only find types that also have the structure of T. Similarly, for contravariant parameters, we would need a downward closure property: T is downward-closed if T[β] ≥ α’ entails that α’ is of the form T[β’].

Not all types are upward closed: the object type < m : int >, which has one method m returning an integer, is smaller than the empty object type < >, which is not of the form < m : int >. For this reason, it would be unsound to use it, as we did for int and β * γ, in a covariant GADT\(^1\):

```ocaml
type +α wrong =
  | K : < m : int > -> < m : int >
```

To see why the type-checker must reject this definition, let’s define the classic equality GADT and the corresponding casting function:

```ocaml
type (α, β) eq = Refl : ∀γ, (γ, γ) eq
let cast_eq : (α, β) eq -> α -> β = function
  | Refl -> (fun x -> x)
```

The type above leads to a way to cast the empty object of type < > into a < n : int >, which is clearly unsound:

```ocaml
let get_eq : α wrong -> (α,<m:int>) eq = function
  | K _ -> Refl
let evil_cast : < > -> < m : int > =
  let obj = K (object method m = 0 end) in
  cast_eq (get_eq (obj :< > wrong))
```

In the work we would like to present, we have proved that the notions of upward and downward-closure are the key to a sound variance check for GADT. We started from the formal development of Simonet and Pottier [SP07], which provides a general soundness proof for a language with subtyping and a very general notion of GADT expressing arbitrary constraints – rather than only type equalities. By specializing their correctness criterion, we were able to split it into three smaller criteria, that are simple to implement in a type-checker. One of them, the most delicate and important, is that instances of covariant (respectively contravariant) parameters should be upward-closed (resp. downward-closed).

The problem of non-monotonicity

We have a problem with those closure properties: while they hold naturally in a core ML type system with strong inversion theorems, they are non-monotonic properties:

\(^1\)This counterexample is due to Jacques Garrigue.
they are not necessarily preserved by extensions of the subtyping lattice. For example, OCaml has a concept of private types: a type specified by type \(t = \text{private} \tau \) is a new semi-abstract type smaller than \(\tau \) (\(t \leq \tau \) but \(t \nsubseteq \tau \)). As private types can be defined from any type, no type is downward-closed: for any type \(\tau \) I may define a new, strictly smaller type.

This means that closure properties of the OCaml type system are relatively weak: no type is downward-closed (so instantiated GADT parameters cannot be contravariant), and arrow types are not upward-closed as their domain should be downward-closed. Only purely positive algebraic datatypes are upward-closed. The subset of GADT declarations that can be declared covariant is small, yet, we think, large enough to capture a lot of useful examples, such as \(\alpha \text{ expr} \) above.

Giving back the freedom of subtyping

It is disturbing that our type system would rely on non-monotonic properties: if we adopt the correctness criterion above, we must be careful in the future not to enrich the subtyping relations too much. This is contradictory to the general design aspects of subtyping, where decidability compromises may be made, but having more subtyping relations is always considered a good thing.

Consider for example private types: one could reasonably imagine a symmetric concept of a type that would be strictly above a given type \(\tau \); we will name those types invisible types (they can be constructed, but not observed). Invisible types and GADT covariance seem to be incompatible: the designer has to pick one, and cannot add the other.

A solution to this tension is to allow the user to locally guarantee negative properties about subtyping (what is not a subtype), at the cost of abandoning the corresponding flexibility. Just as object-oriented languages have final classes that cannot be extended, we would like to be able to define some types as public (respectively visible), that cannot later be made private (resp. invisible). Such declarations would be rejected if the defining type already has subtypes (eg. an object type), and would forbid further declarations of types below (resp. above) the declared, effectively guaranteeing downward (resp. upward) closure. Finally, upward or downward closure is a semantic aspect of a type that we must have the freedom to publish through an interface: abstract types could optionally be declared public or visible.

Another approach: subtyping constraints

The reason why getting fine variance properties out of GADT is difficult is because they correspond to type equalities which, to a first approximation, use their two operands both positively and negatively. One way to get an easy variance check is to encourage users to change their definitions into different ones that are trivial to check. Consider for example the following redefinition of \(\alpha \text{ expr} \):

\[
\text{let rec eval : } \forall \alpha. \alpha \text{ expr} \rightarrow \alpha = \text{function}\\| \text{Val} \ (\nu : \alpha) \rightarrow \nu\\| \text{Int} \ n \rightarrow (n : \alpha)\\| \text{Prod} \ (\gamma \beta_{\gamma}, \ (\nu_\beta \nu_{\gamma}) \rightarrow (\text{eval} b, \ \text{eval} c) : > (\nu \beta))
\]

As is manifest in this example, this approach could require more explicit annotations, at least with existing type system implementations relying on unification rather than implicit subtyping.

Work in progress: Completeness of variance annotations

For simple algebraic datatypes, variance annotations are “enough” to say anything we want to say about the variance of datatypes. Essentially all admissible variance relations between datatypes can be described by considering the pairwise variance of parameters separately.

This does not work anymore with GADT. For example, the type \((\alpha, \beta) \text{ eq} \) cannot be accurately described by considering variation of each of its parameters independently. We would like to say that \((\alpha, \beta) \text{ eq} \leq (\alpha', \beta') \text{ eq} \) holds as soon as \(\alpha = \beta \) and \(\alpha' = \beta' \). With the simple notion of variance we currently have, all we can soundly say about \(\text{eq} \) is that it must be invariant in both its parameters – which is considerably weaker. In particular, the well-known trick of “factoring out” GADT by using the \(\text{eq} \) type in place of equality constraint does not hold anymore: equality constraints allow fine-grained variance considerations based on upward or downward-closure, while the equality type instantly makes its parameters invariant.

We think it is possible to regain some “completeness”, and in particular re-enable factoring by \(\text{eq} \) by considering more information to decide subtyping between instances, in addition to individual parameter variances. We are considering using domain information, to know which instances of the type are inhabited: for example, \(\text{bool} \text{ expr}, \) or \(\text{int}, \text{float} \) \(\text{eq} \) are not inhabited.

References

