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Abstract

In call-by-value languages, some mutually-recursive value definitions can be safely evaluated to build
recursive functions or cyclic data structures, but some definitions (let rec x = x + 1) contain vicious
circles and their evaluation fails at runtime. We propose a new static analysis to check the absence of
such runtime failures.

We present a set of declarative inference rules, prove its soundness with respect to the reference
source-level semantics of Nordlander, Carlsson, and Gill (2008), and show that it can be (right-to-left)
directed into an algorithmic check in a surprisingly simple way.

Our implementation of this new check replaced the existing check used by the OCaml programming
language, a fragile syntactic/grammatical criterion which let several subtle bugs slip through as the
language kept evolving. We document some issues that arise when advanced features of a real-world
functional language (exceptions in first-class modules, GADTs, etc.) interact with safety checking for
recursive definitions.

1 Introduction

OCaml is a statically-typed functional language of the ML family. One of the features of the language is
the let rec operator, which is usually used to define recursive functions. For example, the following code
defines the factorial function:

let rec fac x =

if x = 0 then 1

else x * (fac (x - 1))

Beside functions, let rec can define recursive values, such as an infinite list ones where every element
is 1:

let rec ones = 1 :: ones

Note that this “infinite” list is actually cyclic, and consists of a single cons-cell referencing itself.
However, not all recursive definitions can be computed. The following definition is justly rejected by the

compiler:

let rec x = 1 + x

Here x is used in its own definition. Computing 1 + x requires x to have a known value: this definition
contains a vicious circle, and any evaluation strategy would fail.

Functional languages deal with recursive values in various ways. Standard ML simply rejects all recursive
definitions except function values. At the other extreme, Haskell accepts all well-typed recursive definitions,
including those that lead to infinite computation. In OCaml, safe cyclic-value definitions are accepted, and
they are occasionally useful.

For example, consider an interpreter for a small programming language with datatypes for ASTs and for
values:

type ast = Fun of var * expr | . . .
type value = Closure of env * var * expr | . . .

The eval function takes an environment and an ast and builds a value
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let rec eval env = function

| . . .
| Fun (x, t) -> Closure(env, x, t)

Now consider adding an ast constructor FunRec of var * var * expr for recursive functions:
FunRec ("f", "x", t) represents the recursive function let rec f x = t in f . Our OCaml interpreter
can use value recursion to build a closure for these recursive functions, without changing the definition of
Closure: the recursive closure simply adds itself to the closure environment ((var * value) list).

let rec eval env = function

| . . .
| Fun (x, t) -> Closure(env, x, t)

| FunRec (f, x, t) -> let rec clo = Closure((f,clo)::env, x, t) in clo

Until recently, the static check used by OCaml to reject vicious recursive definitions relied on a syntactic/-
grammatical description. While we believe that the check as originally defined was correct, it proved fragile
and difficult to maintain as the language evolved and new features interacted with recursive definitions. Over
the years, several bugs were found where the check was unduly lenient. In conjunction with OCaml’s effi-
cient compilation scheme for recursive definitions (Hirschowitz et al., 2009), this leniency resulted in memory
safety violations, and led to segmentation faults.

Seeking to address these problems, we designed and implemented a new check for recursive definition
safety based on a novel static analysis, formulated as a simple type system (which we have proved sound with
respect to an existing operational semantics Nordlander et al. (2008)), and implemented as part of OCaml’s
type-checking phase. Our implementation was merged into the OCaml distribution in August 2018.

Moving the check from the middle end to the type checker restores, for recursive value definitions, the
desirable property that well-typed programs do not go wrong. This property is convenient for tools that
reuse OCaml’s type-checker without performing compilation, such as MetaOCaml Kiselyov (2014) (which
type-checks quoted code) and Merlin Bour et al. (2018) (which type-checks code during editing).

The present document formally describes our analysis using a core ML language restricted to the salient
features for value recursion (§3). We present inference rules (§4), study the meta-theory of the analysis, and
show that it is sound with respect to the operational semantics proposed by Nordlander et al. (2008) (§5). We
also discuss the challenges caused by scaling the analysis to OCaml (§6), a full-fledged functional language,
in particular the delicate interactions with non-uniform value representations (§6.2), with exceptions and
first-class modules (§6.3), and with Generalized Algebraic Datatypes (GADTs) (§6.4).

Contributions

We studied related work in search of an inference system that could be used, as-is or with minor modifications,
for our analysis – possibly neglecting finer-grained details of the system that we do not need. We did not
find any. Existing systems, detailed in Section 7.1 (Related work), have a finer-grained handling of functions
(in particular ML functors), but coarser-grained handling of cyclic data, and most do not propose effective
inference algorithms.

We claim the following contributions:

• We propose a new system of inference rules that captures the needs of OCaml (or F]) recursive value def-
initions, previously described by ad-hoc syntactic restrictions (§4). We implemented a checker derived
from these rules, scaled up to the full OCaml language and integrated in the OCaml implementation.

• We prove the analysis sound with respect to a pre-existing source-level operational semantics: accepted
recursive terms evaluate without vicious-circle failures (§5).

• Our analysis is less fine-grained on functions than existing works (thanks to a less demanding problem
domain), but in exchange it is noticeably simpler.

• The idea of right-to-left computational interpretation (from type to environment) reduces complexity
– a declarative presentation designed for a left-to-right reading would be more complex. It is novel in
this design space and could inspire other inference rules designers.
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2 Overview

2.1 Access modes

Our analysis is based on the classification of each use of a recursively-defined variable using “access modes”
or “usage modes” m. These modes represent the degree of access needed to the value bound to the variable
during evaluation of the recursive definition.

For example, in the recursive function definition

let rec f = fun x -> . . . f . . .

the recursive reference to f in the right-hand-side does not need to be evaluated to define the function value
fun x ->. . . since its value will only be required later, when the function is applied. We say that, in this
right-hand-side, the mode of use of the variable f is Delay.

In contrast, in the vicious definition let rec x = 1 + x evaluation of the right-hand side involves ac-
cessing the value of x; we call this usage mode a Dereference. Our static check rejects (mutually-)recursive
definitions that access recursively-bound names under this mode.

Some patterns of access fall between the extremes of Delay and Dereference. For example, in the cyclic
datatype construction let rec ones = 1 :: ones the recursively-bound variable ones appears on the
right-hand side without being placed inside a function abstraction. However, since it appears in a “guarded”
position, directly beneath the value constructor ::, evaluation only needs to access its address, not its value.
We say that the mode of use of the variable ones is Guard.

Finally, a variable x may also appear in a position where its value is not inspected, neither is it guarded
beneath a constructor, as in the expression x, or let y = x in y, for example. In such cases we say that
the value is “returned” directly and use the mode Return. As with Dereference, recursive definitions that
access variables at the mode Return, such as let rec x = x, would be under-determined and are rejected.

We also use a last Ignore mode to classify variables that are not used at all in a term.

2.2 A right-to-left inference system

The central contribution of our work is a simple system of inference rules for a judgment of the form Γ ` t : m,
where t is a program term, m is an access mode, and the environment Γ maps term variables to access modes.
Modes classify terms and variables, playing the role of types in usual type systems. The example judgment
x : Dereference, y : Delay ` (x+ 1, lazy y) : Guard can be read alternatively

left-to-right: If we know that x can safely be used in Dereference mode, and y can safely be used in Delay
mode, then the pair (x+1, lazy y) can safely be used under a value constructor (in a Guard-ed context).

right-to-left: If a context accesses the program fragment (x + 1, lazy y) under the mode Guard, then this
means that the variable x is accessed at the mode Dereference, and the variable y at the mode Delay.

This judgment uses access modes to classify not just variables, but also the constraints imposed on a
subterm by its surrounding context. If a context C[�] uses its hole � at the mode m, then any derivation
for C[t] : Return will contain a sub-derivation of the form t : m.

In general, we can define a notion of mode composition: if we try to prove C[t] : m′, then the sub-
derivation will check t : m′ [m], where m′ [m] is the composition of the access-mode m under a surrounding
usage mode m′, and Return is neutral for composition.

Our judgment Γ ` t : m can be directed into an algorithm following our right-to-left interpretation.
Given a term t and an mode m as inputs, our algorithm computes the least demanding environment Γ such
that Γ ` t : m holds.

For example, the inference rule for function abstractions in our system is as follows:

Γ, x : mx ` t : m [Delay]

Γ ` λx. t : m

The right-to-left reading of the rule is as follows. To compute the constraints Γ on λx. t in a context of mode
m, it suffices to the check the function body t under the weaker mode m [Delay], and remove the function
variable x from the collected constraints – its mode does not matter. If t is a variable y and m is Return, we
get the environment y : Delay as a result.

Given a family of mutually-recursive definitions let rec (xi = ti)
i∈I , we run our algorithm on each ti at

the mode Return, and obtain a family of environments (Γi)
i∈I such that all the judgments (Γi ` ti : Return)i∈I

hold. The definitions are rejected if one of the Γi contains one of the mutually-defined names xj under the
mode Dereference or Return rather than Guard or Delay.
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Terms 3 t, u ::= x, y, z
| let rec b in u
| λx. t | t u
| K (ti)

i | match t with h

Bindings 3 b ::= (xi = ti)
i

Handlers 3 h ::= (pi → ti)
i

Patterns 3 p, q ::= K (xi)
i

Figure 1: Core language syntax

3 A core language of recursive definitions

Family notation We write (. . .)i∈I for a family of objects parametrized by an index i over finite set
I, and ∅ for the empty family. Furthermore, we assume that index sets are totally ordered, so that the
elements of the family are traversed in a predetermined linear order; we write (ti1)i1∈I1 , (ti2)i2∈I2 for the
combined family over I1] I2, with the indices in I1 ordered before the indices of I2. We often omit the index
set, writing (. . .)i. Families may range over two indices (the domain is the cartesian product), for example
(ti,j)

i,j .
Our syntax, judgments, and inference rules will often use families: let rec (xi = ti)

i for example is
a mutually-recursive definition of families (ti)

i of terms bound to corresponding variables (xi)
i – assumed

distinct, we follow the Barendregt convention. Sometimes a family is used where a term is expected, and
the interpretation should be clear: when we say “(Γi ` ti : mi)

i holds”, we implicitly use a conjunctive
interpretation: each of the judgments in the family holds.

3.1 Syntax

Figure 1 introduces a minimal subset of ML containing the interesting ingredients of OCaml’s recursive
values:

• A multi-ary let rec binding let rec (xi = ti)
i in u.

• Functions (λ-abstractions) λx. t to write recursive occurrences whose evaluation is delayed.

• Datatype constructors K (t1, t2, . . . ) to write (safe) cyclic data structures; these stand in both for
user-defined constructors and for built-in types such as lists and tuples.

• Shallow pattern-matching (match t with (Ki (xi,j)
j → ui)

i), to write code that inspects values, in
particular code with vicious circles.

The following common ML constructs do not need to be primitive forms, as we can desugar them into
our core language. In particular, the full inference rules for OCaml (and our check) exactly correspond to
the rules (and check) derived from this desugaring.

• n-ary tuples are a special case of constructors:
(t1, t2, . . . , tn) desugars into Tuplen (ti)

i∈[1;n].

• Non-recursive let bindings are recursive bindings with access mode Ignore:
let x = t in u desugars into let rec x = t in u.

• Conditionals are a special case of pattern-matching:
if t then u1 else u2 desugars into match t with (True→ u1 | False→ u2).

Besides dispensing with many constructs whose essence is captured by our minimal set, we further simplify
matters by using an untyped ML fragment: we do not need to talk about ML types to express our check, or
to assume that the terms we are working with are well-typed.1 (Untyped algebraic datatypes might make
you nervous, but work just fine, and were invented in that setting. A match form gets stuck if the head
constructor of the scrutinee is not matched (with the same arity) by any clause.) However, we do assume
that our terms are well-scoped – note that, in let rec (xi = vi)

i in u, the (xi)
i are in scope of u but also

of all the vi.

1In more expressive settings, the structure of usage modes does depend on the structure of values, and checks need to be
presented as a refinement of a ML type system. We discuss this in Section 7.1. Our modes are a degenerate case, a refinement
of uni-typed ML.
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Modes 3 m ::= Ignore
| Delay
| Guard
| Return
| Dereference

Mode order:
Ignore ≺ Delay ≺ Guard ≺ Return ≺ Dereference

Mode composition rules :
Ignore [m] = Ignore = m [Ignore]
Delay [m � Ignore] = Delay
Guard [Return] = Guard
Guard [m 6= Return] = m
Return [m] = m
Dereference [m � Ignore] = Dereference

Mode composition as a table:
m [m′] Ignore Delay Guard Return Dereference m
Ignore Ignore Ignore Ignore Ignore Ignore
Delay Ignore Delay Delay Delay Dereference
Guard Ignore Delay Guard Guard Dereference
Return Ignore Delay Guard Return Dereference
Dereference Ignore Delay Dereference Dereference Dereference
m′

Figure 2: Access/usage modes and operations

Remark: recursive values break the assumption that structurally-decreasing recursive functions will ter-
minate on all inputs.2 In our experience, users of recursive values are careful to ensure termination; we are
not aware of production bugs caused by cyclic data flowing into unsuspecting consumers, but writing the
correct definitions can be delicate. Jeannin, Kozen, and Silva (2017) proposes languages extensions to make
it easier to operate over such cyclic structures.

4 Our inference rules for recursive definitions

4.1 Access/usage modes

Figure 2 defines the usage/access modes that we introduced in Section 2.1, their order structure, and the
mode composition operations. The modes are as follows:

Ignore is for sub-expressions that are not used at all during the evaluation of the whole program. This is the
mode of a variable in an expression in which it does not occur.

Delay means that the context can be evaluated (to a weak normal-form) without evaluating its argument.
λx.� is a delay context.

Guard means that the context returns the value as a member of a data structure, for example a variant
constructor or record. K (�) is a guard context. The value can safely be defined mutually-recursively
with its context, as in let rec x = K (x).

Return means that the context returns its value without further inspection. This value cannot be de-
fined mutually-recursively with its context, to avoid self-loops: in let rec x = x and let rec x =
let y = x in y, the rightmost occurrence of x is in Return context.

Dereference means that the context consumes, inspects and uses the value in arbitrary ways. Such a value
must be fully defined at the point of usage; it cannot be defined mutually-recursively with its context.
match � with h is a Dereference context.

Remark 1 (Discarding). The Guard mode is also used for subterms whose result is discarded by the evaluation
of their context. For example, the hole � is in a Guard context in (let x = � in u), if x is never used in u;

2ML accepts general recursive types, not just inductive types with recursive occurrences in positive positions. In particular,
structural recursion may not terminate even in absence of recursive values
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Term judgment Γ ` t : m

Γ, x : m ` x : m

Γ ` t : m m � m′

Γ ` t : m′

Γ, x : mx ` t : m [Delay]

Γ ` λx. t : m

Γt ` t : m [Dereference] Γu ` u : m [Dereference]

Γt + Γu ` t u : m

(Γi ` ti : m [Guard])i∑
(Γi)

i ` K (ti)
i : m

Γt ` t : m [Dereference] Γh `cl h : m

Γt + Γh ` match t with h : m

(xi : Γi)
i ` rec b (m′

i)
i def

= (max(mi,Guard))i Γu, (xi : mi)
i ` u : m∑

(m′
i [Γi])

i + Γu ` let rec b in u : m

Clause judgments Γ `cl h : m and Γ `cl p→ u : m

(Γi `cl pi → ui : m)i∑
(Γi)

i `cl (pi → ui)
i : m

Γ, (xi : mi)
i ` u : m

Γ `cl K (xi)
i → u : m

Binding judgment (xi : Γi)
i ` rec b

(Γi, (xj : mi,j)
j∈I ` ti : Return)i∈I (mi,j � Guard)i,j

(Γ′
i = Γi +

∑
(mi,j

[
Γ′
j

]
)j)i

(xi : Γ′
i)
i∈I ` rec (xi = ti)

i∈I

Figure 3: Mode inference rules

even if the hole value is not needed, call-by-value reduction will first evaluate it and discard it. When these
subterms participate in a cyclic definition, they cannot create a self-loop, so we consider them guarded.

Our ordering m ≺ m′ places less demanding, more permissive modes that do not involve dereferencing
variables (and so permit their use in recursive definitions), below more demanding, less permissive modes.

Each mode is closely associated with particular expression contexts. For example, t � is a Dereference
context, since the function t may access its argument in arbitrary ways, while λx.� is a Delay context.

Mode composition corresponds to context composition, in the sense that if an expression context E[�]
uses its hole at mode m, and a second expression context E′[�] uses its hole at mode m′, then the composition
of contexts E[E′[�]] uses its hole at mode m [m′]. Like context composition, mode composition is associative,
but not commutative: Dereference [Delay] is Dereference, but Delay [Dereference] is Delay.

Continuing the example above, the context t (λx.�), formed by composing t � and λx.�, is a Dereference
context: the intuition is that the function t may pass an argument to its input and then access the result in
arbitrary ways. In contrast, the context λx. (t �), formed by composing λx.� and t �, is a Delay context:
the contents of the hole will not be touched before the abstraction is applied.

Finally, Ignore is the absorbing element of mode composition (m [Ignore] = Ignore = Ignore [m]), Return is
an identity (Return [m] = m = m [Return]), and composition is idempotent (m [m] = m).

4.2 Inference rules

Environment notations Our environments Γ associate variables x with modes m. We write Γ1,Γ2

for the union of two environments with disjoint domains, and Γ1 + Γ2 for the merge of two overlapping
environments, taking the maximum mode for each variable. We sometimes use family notation for environ-
ments, writing (Γi)

i to indicate the disjoint union of the members, and
∑

(Γi)
i for the non-disjoint merge

of a family of environments.

Environment notations Figure 3 presents the inference rules foraccess/usage modes. The rules are
composed into several different judgments, even though our simple core language makes it possible to merge
them. In the full system for OCaml the decomposition is necessary to make the system manageable.
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Variable and subsumption rules The variable rule is as one would expect: the usage mode of x in
an m-context is m. In this presentation, we let the rest of the environment Γ be arbitrary; we could also have
imposed that it map all variables to Ignore. Our directed/algorithmic check returns the “least demanding”
environment Γ for all satisfiable judgments, so it uses Ignore in any case.

We have a subtyping/subsumption rule; for example, if we want to check t under the mode Guard, it is
always sound to attempt to check it under the stronger mode Dereference. Our algorithmic check will never
use this rule; it is here for completeness. The direction of the comparison may seem unusual. We can coerce
a Γ ` t : m into Γ ` t : m′ when m � m′ holds, while we would expect m ≤ m′. This comes from the fact
that our right-to-left reading is opposite to the usual reading direction of type judgments, and influenced our
order definition. When m � m′ holds, m is more demanding than m′, which means (in the usual subtyping
sense) that it classifies fewer terms.

Simple rules We have seen the λx. t rule already, in Section 2.2. Since λ delays evaluation, checking
λx. t in a usage context m involves checking the body t under the weaker mode m [Delay]. The necessary
constraints Γ are returned, after removing the constraint over x3

The application rule checks both the function and its argument in a Dereference context, and merges
the two resulting environments, taking the maximum (most demanding) mode on each side; a variable y is
dereferenced by t u if it is dereferenced by either t or u.

The constructor rule is similar to the application rule, except that the constructor parameters appear in
Guard context, rather than Dereference.

Pattern-matching The rule for match t with h relies on a different clause judgment Γ `cl h : m that
checks each clause in turn and merges their environments. On a single clause K (xi)

i → u, we check the
right-hand-side expressions u in the ambient mode m, and remove the pattern-bound variables (xi)

i from
the environment.4

Recursive definitions The rule for mutually-recursive definitions let rec b in u is split into two parts
with disjoint responsibilities. First, the binding judgment (xi : Γi)

i ` rec b computes, for each definition
xi = ei in a recursive binding b, the usage Γi of the ambient context before the recursive binding – we detail
its definition below.

Second, the let rec b in u rule of the term judgment takes these Γi and uses them under a composition
m′
i [Γi], to account for the actual usage mode of the variables. (Here m [Γ] denotes the pointwise lifting of

composition for each mode in Γ.) The usage mode m′
i is a combination of the usage mode in the body u

and Guard, used to indicate that our call-by-value language will compute the values now, even if they are
not used in u, or only under a delay – see Remark 1 (Discarding).

Binding judgment and mutual recursion The binding judgment (xi : Γi)
i∈I ` rec b is independent

of the ambient context and usage mode; it checks recursive bindings in isolation in the Return mode, and
relates each name xi introduced by the binding b to an environment Γi on the ambient free variables.

In the first premise, for each binding (xi = ti) in b, we check the term ti in a context split in two parts,
some usage context Γi on the ambient context around the recursive definition, and a context (xj : mi,j)

j∈I

for the recursively-bound variables, where mi,j is the mode of use of xj in the definition of xi.
The second premise checks that the modes mi,j are Guard or less demanding, to ensure that these

mutually-recursive definitions are valid. This is the check mentioned at the end of Section 2.2 (A right-to-
left inference system).

The third premise makes mutual-recursion safe by turning the Γi into bigger contexts Γ′
i taking transitive

mutual dependencies into account: if a recursive definition xi = ei uses the mutually-defined variable xj
under the mode mi,j , then we ask that the final environment Γ′

i for ei contains what you need to use ej
under the mode mi,j , that is mi,j

[
Γ′
j

]
. This set of recursive equations corresponds to the fixed point of a

monotone function, so in particular it has a unique least solution.
Note that because the mi,j must be below Guard, we can show that mi,j [Γj ] � Γj . In particular, if we

have a single recursive binding, we have Γi � mi,i [Γi], so the third premise is equivalent to just Γ′
i
def
= Γi:

the Γ′
i and Γi only differ for non-trivial mutual recursion.

3In situations where it is desirable to have a richer mode structure to analyze function applications, as considered by some
of the related work (Section 7.1), we could use the mode mx in a richer return mode mx → m.

4If we wanted a finer-grained analysis of usage of the sub-components of our data, we would use the sub-modes (mi)
i of the

pattern variables to refine/enrich/annotate the datatype of pattern scrutinee.
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Values 3 v ::= λx. t | K (wi)
i

WeakValues 3 w ::= x, y, z | v
ValueBindings 3 B ::= (xi = vi)

i

EvalCtx 3 E ::= � | E[F ]

EvalFrame 3 F ::= � t | t �
| K ((ti)

i,�, (tj)j)
| match � with h
| let rec b, x = �, b′ in u
| let rec B in �

(λx. t) v →hd t[v/x]

∀(K ′ (x′j)
j → u′) ∈ h, K 6= K ′

match K (wi)
i with (h | K (xi)

i → u | h′)→hd u[(wi/xi)
i]

(x = v) ∈ B

(x = v)
frame
∈ let rec B in �

(x = v) ∈ (b ∪ b′)

(x = v)
frame
∈ let rec b, y = �, b′ in u

(x = v)
frame
∈ F ∨ (x = v)

ctx
∈ E

(x = v)
ctx
∈ E[F ]

t→hd t′

E[t]→ E[t′]

(x = v)
ctx
∈ E

E[x]→ E[v]

Figure 4: Operational semantics

In Appendix A (Properties) we develop some direct meta-theoretic properties of our inference rules. In
particular, they are principal in the sense that a unique minimal context Γ exists for each t : m – there is a
unambiguous way to extract an algorithm from these rules, which we implemented in the OCaml compiler.

5 Meta-theory: soundness

5.1 Operational semantics

Figure 4 and the explanations below recall the operational semantics of Nordlander, Carlsson, and Gill
(2008). (Unless explicitly noted, the content and ideas in this Subsec 5.1 come from this work.)

Weak values As we have seen, constructors in recursive definitions can be used to construct cyclic
values. For example, the definition let rec x = Cons (One (∅), x) is normal for this reduction semantics.
The occurrence of the variable x inside the Cons cell corresponds to a back-reference, the cell address in a
cyclic in-memory representation.

This key property is achieved by defining a class of weak values, noted w, to be either (strict) values or
variables. Weak values occur in the definition of the semantics wherever a cyclic reference can be passed
without having to dereference.

Several previous works (see Section 7.1 (Related work)) defined semantics where β-redexes have the form
(λx. t) w, to allow yet-unevaluated recursive definitions to be passed as function arguments. OCaml does not
allow this (a function call requires a fully-evaluated argument), so our redexes are the traditional (λx. t) v.
This is a difference from Nordlander, Carlsson, and Gill (2008). On the other hand, we do allow cyclic
datatype values by only requiring weak values under data constructors: besides closures λx. t, the other
value form is K (wi)

i.

Bindings in evaluation contexts An evaluation context E is a stack of evaluation frames F under
which evaluation may occur. Our semantics is under-constrained (for example, t u may perform reductions
on either t or u), as OCaml has unspecified evaluation order for applications and constructors, but making
it deterministic would not change much.

One common aspect of most operational semantics for let rec, ours included, is that let rec B in �
can be part of evaluation contexts, where B represents a recursive “value binding”, an island of recursive
definitions that have all been reduced to values. This is different from traditional source-level operational
semantics of let x = v in u, which is reduced to u[v/x] before going further. In let rec blocks this
substitution reduction is not valid, since the value v may refer to the name x, and so instead “value bindings”
remain in the context, in the style of explicit substitution calculi.

Head reduction Head redexes, the sources of the head-reduction relation t→hd t′, come from applying
a λ-abstraction or from pattern-matching on a head constructor. Following ML semantics, pattern-matching
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HeadFrame 3 H ::= � v | match � with h
ForcingFrame 3 Ff ::= � v | v � | match � with h

ForcingCtx 3 Ef ::= L | E[Ff [L]]
Mismatch

def
= {E[H[v]] | H[v] 9hd}

Vicious
def
= {Ef [x] | @v, (x = v)

ctx
∈ Ef}

Figure 5: Failure terms

is ordered: only the first matching clause is taken.

Reduction Reduction t→ t′ may happen under any evaluation context, and is of either of two forms.
The first is completely standard: any redex H[v] can be reduced under an evaluation context E.

The second rule reduces a variable x in in an evaluation context E by binding lookup: it is replaced by
the value of the recursive binding B in the context E which defines it. This uses the auxiliary definition

(x = v)
ctx
∈ E to perform this lookup.

The lookup rule has worrying consequences for our rewriting relation: it makes it non-deterministic and
non-terminating. Indeed, consider a weak value of the form K (x) used, for example, in a pattern-matching
match K (x) with h. It is possible to reduce the pattern-matching immediately, or to first lookup the value of
x and then reduce. Furthermore, it could be the case that x is precisely defined by a cyclic binding x = K (x).
Then the lookup rule would reduce to matchK (K (x)) with h, and we could keep looking indefinitely. This is
discussed in detail by Nordlander, Carlsson, and Gill (2008), who prove that the reduction is in fact confluent
modulo unfolding. (Allowing these irritating but innocuous behaviors is a large part of what makes their
semantics simpler than previous presentations.)

5.2 Failures

In this section, we are interested in formally defining dynamic failures. When can we say that a term is
“wrong”? — in particular, when is a valid implementation of the operational semantics allowed to crash?
This aspect is not discussed in detail by Nordlander, Carlsson, and Gill (2008), so we had to make our own
definitions; we found it surprisingly subtle.

The first obvious sort of failure is a type mismatch between a value constructor and a value destructor:
application of a non-function, pattern-matching on a function instead of a head constructor, or not having
a given head constructor covered by the match clauses. These failures would be ruled out by a simple type
system and exhaustivity check.

The more challenging task is defining failures that occur when trying to access a recursively-defined
variable too early. The lookup reduction rule for a term E[x] looks for the value of x in a binding of the
context E. This value may not exist (yet), and that may or may not represent a runtime failure.

We assume that bound names are all distinct, so there may not be several v values. The only binders
that we reduce under are let rec, so x must come from one; however, it is possible that x is part of a
let rec block currently being evaluated, with an evaluation context of the form E[let rec x = t, E′u] for
example, and that x’s binding has not yet been reduced to a value.

However, in presence of data constructors that permit building cyclic values not all such cases are failures.
For example the term let rec x = Pair (x, t) in x can be decomposed into E[x] to isolate the occurrence of
x as the first member of the pair. This occurrence of x is in reducible position, but there is no v such that

(x = v)
ctx
∈ E, unless t is already a weak value.

To characterize failures during recursive evaluation, we propose to restrict ourselves to forcing contexts,
denoted Ef , that must access or return the value of their hole. A variable in a forcing context that cannot
be looked up in the context is a dynamic failure: we are forcing the value of a variable that has not yet been
evaluated. If a term contains such a variable in lookup position, we call it a vicious term.

Figure 5 gives a precise definition of these failure terms.
Mismatches are characterized by head frames, context fragments that would form a β-redex if they

were plugged a value of the correct type. A term of the form H[v] that is stuck for head-reduction is a
constructor-destructor mismatch.

The definition of forcing contexts Ef takes into account the fact that recursive value bindings remain,
floating around, in the evaluation context. A forcing frame Ff is a context fragment that forces evaluation
of its variable; it would be tempting to say that a forcing context is necessarily of the form � or E[Ff ], but
for example Ff [let rec B in �] must also be considered a forcing context.
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Note that, due to the flexibility we gave to the evaluation order, mismatches and vicious terms need not
be stuck: they may have other reducible positions in their evaluation context. In fact, a vicious term failing
on a variable x may reduce to a non-vicious term if the binding of x is reduced to a value.

5.3 Soundness

The proofs for these results are in Appendix B.

Lemma 1 (Forcing modes).
If Γ, x : mx ` Ef [x] : m with m � Return, then also mx � Return.

Theorem 1 (Vicious). ∅ ` t : Return never holds for t ∈ Vicious.

Theorem 2 (Subject reduction). If Γ ` t : m and t→ t′ then Γ ` t′ : m.

Corollary 1. Return-typed programs cannot go vicious.

6 Extension to a full language

We now discuss the extension of our typing rules to the full OCaml language, whose additional features
(such as exceptions, first-class modules and GADTs) contain some subtleties that needed special care.

6.1 The size discipline

The OCaml compilation scheme, one of several possible ways of treating recursive declarations, proceeds by
reserving heap blocks for the recursively-defined values, and using the addresses of these heap blocks (which
will eventually contain the values) as dummy values: it adds the addresses to the environment and computes
the values accordingly. If no vicious term exists, the addresses are never dereferenced during evaluation, and
evaluation produces “correct” values. Those correct values are then moved into the space occupied by the
dummies, so that the original addresses contain the correct result.

This strategy depends on knowing how much space to allocate for each value. Not all OCaml types have
a uniform size; for example, variants (sum types) may contain constructors with different arities, resulting
in different in-memory size, and the size of a closure depends on the number of free variables.

After checking that mutually-recursive definitions are meaningful using the rules we described, the OCaml
compiler checks that it can realize them, by trying to infer a static size for each value. It then accepts to
compile each declaration if either:

• it has a static size, or

• it doesn’t have a statically-known size, but its usage mode of mutually-recursive definitions is always
Ignore

(The second category corresponds to detecting some values that are actually non-recursive and lifting them
out. Non-recursive values often occur in standard programming practice, when it is more consistent to
declare a whole block as a single let rec but only some elements are recursive.)

This static-size test may depend on lower-level aspects of compilation, or at least value representation
choices. For example,

if p then (fun x -> x) else (fun x -> not x)

has a static size (both branches have the same size), but

if p then (fun x -> x + 1) else (fun x -> x + offset)

does not: the second function depends on a free variable offset, so it will be allocated in a closure with an
extra field. (While not is also a free variable, it is a statically-resolvable reference to a global name.)

6.2 Dynamic representation checks: float arrays

OCaml uses a dynamic representation check for its polymorphic arrays: when the initial array elements sup-
plied at array-creation time are floating-point numbers, OCaml chooses a specialized, unboxed representation
for the array.

Inspecting the representation of elements during array creation means that although array construction
looks like a guarding context, it is often in fact a dereference. There are three cases to consider: first, where
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the element type is statically known to be float, array elements will be unboxed during creation, which
involves a deference; second, where the element type is statically known not to be float, the inspection is
elided; third, when the element type is not statically known the elements will be dynamically inspected –
again a dereference.

The following program must be rejected, for example:

let rec x = (let u = [|y|] in 10.)

and y = 1.

since creating the array [|y|] will unbox the element y, leading to undefined behavior if y – part of the
same recursive declaration – is not yet initialized.

6.3 Exceptions and first-class modules

In OCaml, exception declarations are generative: if a functor body contains an exception declaration then
invoking the functor twice will declare two exceptions with incompatible representations, so that catching
one of them will not interact with raising the other.

Exception generativity is implemented by allocating a memory cell at functor-evaluation time (in the
representation of the resulting module); and including the address of this memory cell as an argument of
the exception payload. In particular, creating an exception value M.Exit 42 may dereference the module M

where Exit is declared.
Combined with another OCaml feature, first-class modules, this generativity can lead to surprising in-

correct recursive declarations, by declaring a module with an exception and using the exception in the same
recursive block.

For instance, the following program is unsound and rejected by our analysis:

module type T = sig exception A of int end

let rec x = (let module M = (val m) in M.A 42)

and (m : (module T)) = (module (struct exception A of int end) : T)

In this program, the allocation of the exception value M.A 42 dereferences the memory cell generated
for this exception in the module M; but the module M is itself defined as the first-class module value
(m : (module T)), part of the same recursive nest, so it may be undefined at this point.

(This issue was first pointed out by Stephen Dolan.)

6.4 GADTs

The original syntactic criterion for OCaml was implemented not directly on surface syntax, but on an inter-
mediate representation quite late in the compiler pipeline (after typing, type-erasure, and some desugaring
and simplifications). In particular, at the point where the check took place, exhaustive single-clause matches
such as match t with x -> . . . or match t with () -> . . .) had been transformed into direct substitu-
tions.

This design choice led to programs of the following form being accepted:

type t = Foo

let rec x = (match x with Foo -> Foo)

While this seems entirely innocuous, it becomes unsound with the addition of GADTs to the language:

type (_, _) eq = Refl : (’a, ’a) eq

let universal_cast (type a) (type b) : (a, b) eq =

let rec (p : (a, b) eq) = match p with Refl -> Refl in

p

For the GADT eq, matching against Refl is not a no-op: it brings a type equality into scope that increases
the number of types that can be assigned to the program (Garrigue and Rémy, 2013). It is therefore necessary
to treat matches involving GADTs as inspections to ensure that a value of the appropriate type is actually
available; without that change definitions such as universal_cast violate type safety.

6.5 Laziness

OCaml’s evaluation is eager by default, but it supports an explicit form of lazy evaluation: the programmer
can write lazy e and force e to delay and force the evaluation of an expression.
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The OCaml implementation performs a number of optimizations involving lazy. For example, when the
argument of lazy is a trivial syntactic value (variable or constant), since eager and lazy evaluation usually
behave equivalently, the compiler picks eager evaluation as an optimization to avoid thunk allocation.

However, for recursive definitions eager and lazy evaluation are not equivalent, and so the recursion check
must treat lazy trivialvalue as if the lazy were not there. For example, the following recursive definition
is disallowed, since the optimization described above nullifies the delaying effect of the lazy

let rec x = lazy y and y = . . .

while the following definition is allowed by the check, since the argument to lazy is not sufficiently trivial
to be subject to the optimization:

let rec x = lazy (y+0) and y = . . .

Our typing rule for lazy takes this into account: “trivial” thunks are checked in mode Return rather
than Delay.

7 Conclusion

We have presented a new static analysis for recursive value declarations, designed to solve a fragility issue in
the OCaml language semantics and implementation. It is less expressive than previous works that analyze
function calls in a fine-grained way; in return, it remains fairly simple, despite its ability to scale to a fully-
fledged programming language, and the constraint of having a direct correspondence with a simple inference
algorithm.

We believe that this static analysis may be of use for other functional programming languages, both
typed and untyped. It seems likely that the techniques we have used in this work will apply to other systems
— type parameter variance, type constructor roles, and so on. Our hope in carefully describing our system
is that we will eventually see a pattern emerge for the design and structure of “things that look like type
systems” in this way.

7.1 Related work

Backward analyses Our right-to-left reading is a particular case of backward analysis, as presented for
example by Hughes (1987). A lot of work on backward analysis for functional programs has a denotational
flavor, while we stick to a type system, giving a more declarative presentation. (Thanks to Joachim Breitner
for the reference.)

Degrees Boudol (2001) introduces the notion of “degree” α ∈ {0, 1} to statically analyze recursion
in object-oriented programs (recursive objects, lambda-terms). Degrees refine a standard ML-style type
system for programs, with a judgment of the form Γ ` t : τ where τ is a type and Γ gives both a type and
a degree for each variable. A context variable has degree 0 if it is required to evaluate the term (related to
our Dereference), and 1 if it is not required (related to our Delay). Finally, function types are refined with
a degree on their argument: a function of type τ0 → τ ′ accesses its argument to return a result, while a
τ1 → τ ′ function does not use its argument right away, for example a curried function λx. λy. (x, y) – whose
argument is used under a delay in its body λy. (x, y). Boudol uses this reasoning to accept a definition
such as let rec obj = class_constructor obj params, arising from object-oriented encodings, where
class_constructor has a type τ0 → . . . .

Our system of mode is finer-grained than the binary degrees of Boudol; in particular, we need to distin-
guish Dereference and Guard to allow cyclic data structure constructions.

On the other hand, we do not reason about the use of function arguments at all, so our system is much
more coarse-grained in this respect. In fact, refining our system to accept let rec obj = constr obj params

would be incorrect for our use-case in the OCaml compiler, whose compilation scheme forbids passing yet-
uninitialized data to a function.

In a general design aiming for maximal expressiveness, access modes should refine ML types; in Boudol’s
system, degrees are interlinked with the type structure in function types τα → τ ′, but one could also consider
pair types of the form τ1

α1 × τ2α2 , etc. In our simpler system, there are no interaction between value shapes
(types) and access modes, so we can forget about types completely, a nice conceptual simplification. Our
formalization will be done entirely in an untyped fragment of ML.
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Compilation Hirschowitz, Leroy, and Wells (2003, 2009) discuss the space of compilation schemes for
recursive value definitions, and prove the correctness of a compilation scheme similar to one used by the
OCaml compiler, using in-place update to tie the knot after recursive bindings are evaluated. Their source
language has let rec bindings and a source-level operational semantics, based on floating bindings upwards
in the term (similar to explicit substitutions or local thunk stores). Their target language can talk about
uninitialized memory cells and their update, and a mutable-store operational semantics.

In the present work, we do not formalize a compilation scheme for recursive definitions, we only prove
our static analysis correct with respect to a source-level operational semantics.

While they are presenting a lambda-calculus, these works were concerned with recursive modules and
mixin modules in ML languages – as other related work below. Recursive modules are used when program-
ming at large, where programmers are willing to introduce cyclic dependencies in subtle, non-local ways,
which requires fine-grained checks.

We only consider term-level cyclic value definitions, a simpler problem domain where less static sophis-
tication is demanded. In fact, we do not aim at accepting substantially more recursive definitions than the
previous OCaml syntactic check, only to be more trustworthy.

Name access as an effect Dreyer (2004) proposes to track usage of recursively-defined variables as
an effect, and designs a type-and-effect system whose effects annotations are sets of abstract names, main-
tained in one-to-one correspondence with let rec-bound variables. The construction let rec X.x : τ = e

introduces the abstract type-level name X corresponding to the recursive variable x. This recursive variable
is made available in the scope of the right-hand-side e : τ at the type box(X,τ) instead of τ (reminding
us of guardedness modalities). Any dereference of x must explicitly “unbox” it, adding the name X to the
ambient effect.

This system is very powerful, but we view it as a core language rather than a surface language: encoding
a specific usage pattern may require changing the types of the components involved, to introduce explicit
box modalities:

• When one defines a new function from τ to τ ′, one needs to think about whether it may be later
used with still-undefined recursive names as argument – assuming it indeed makes delayed uses of its
argument. In that case, one should use the usage-polymorphic type function type ∀X.box(X, τ)→ τ ′

instead of the simple function type τ → τ ′. (It is possible to inject τ into box(X, τ), so this does not
restrict non-recursive callers.)

• One could represent cyclic data such as let rec ones = 1 :: ones in this system, but it would
require a non-modular change of the type of the list-cell constructor from ∀α.α→ List(α)→ List(α) to
the box-expecting type ∀α.α→ ∀X.box(X, List(α))→ List(α) .

In particular, one cannot directly use typability in this system as a static analysis for a source language;
this work needs to be complemented by a static analysis such as ours, or the safety has to be proved manually
by the user placing box annotations and operations.

Graph typing Hirschowitz also collaborated on static analyses for recursive definitions in Hirschowitz
and Lenglet (2005); Bardou (2005). The design goal was a simpler system than existing work aiming for
expressiveness, with inference as simple as possible.

As a generalization of Boudol’s binary degrees they use compactified numbers N∪{−∞,∞}. The degree
of a free variable “counts” the number of subsequent λ-abstractions that have to be traversed before the
variable is used; x has degree 2 in λy. λz. x. A −∞ is never safe, it corresponds to our Dereference mode. 0
conflates our Guard and Return mode (an ad-hoc syntactic restriction on right-hand-sides is used to prevent
under-determined definitions), the n+ 1 are fine-grained representations of our Delay mode, and finally +∞
is our Ignore mode.

Another salient aspect of their system is the use of “graphs” in the typing judgment: a use of y within
a definition let x = e is represented as an edge from y to x (labeled by the usage degree), in a constraint
graph accumulated in the typing judgment. The correctness criterion is formulated in terms of the transitive
closure of the graph: if x is later used somewhere, its usage implies that y also needs to be initialized in this
context.

Our work does not need such a transitive-computation device, as our let rule uses a simple form of mode
substitution to propagate usage information. One contribution of our work is to show that a more standard
syntactic approach can replace the graph representation.
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Finally, their static analysis mentions the in-memory size of values, which needs to be known statically,
in the OCaml compilation scheme, to create uninitialized memory blocks for the recursive names before
evaluating the recursive definitions. Our type system does not mention size at all, it is complemented by
an independent (and simpler) analysis of static-size deduction, which is outside the scope of the present
formalization, but described briefly in Section 6.1 (The size discipline).

F] Syme (2006) proposes a simple translation of mutually-recursive definitions into lazy/force construc-
tions:. For example, let rec x = t and y = u is turned into

let rec xthunk = lazy (t[force xthunk/x, force ythunk/y])
and ythunk = lazy (u[force xthunk/x, force ythunk/y])

let x = force xthunk
let y = force ythunk

With this semantics, evaluation happens on-demand, which the recursive definitions evaluated at the
time where they are first accessed. This implementation is very simple, but it turns vicious definitions into
dynamic failures – handled by the lazy runtime which safely raises an exception. However, this elaboration
cannot support cyclic data structures: The translation of let rec ones = 1 :: ones fails at runtime:

let rec onesthunk = lazy (1 :: force onesthunk)

Nowadays, F] provides an ad-hoc syntactic criterion, the “Recursive Safety Analysis” (Syme, 2012),
roughly similar to the previous OCaml syntactic criterion, that distinguishes “safe” and “unsafe” bindings
in a mutually-recursive group; only the latter are subjected to the thunk-introducing translation

Finally, the implementation also performs a static analysis to detect some definitions that are bound to
fail – it over-approximates safety by considering ignoring occurrences within function abstractions, objects
or lazy thunks, even if those delaying terms may themselves be called/accessed/forced at definition time.
We believe that we could recover a similar analysis by changing our typing rules for our constructions – but
with the OCaml compilation scheme we must absolutely remain sound.

Operational semantics Hirschowitz, Leroy, and Wells (2003, 2009) give operational semantics for a
source-level language (floating let rec bindings) and a small-step semantics for their compilation-target
language with mutable stores. Boudol and Zimmer (2002) and Dreyer (2004) use an abstract machine.
Syme (2006) translates recursive definitions into lazy constructions, so the usual thunk-store semantics of
laziness can be used to interpret recursive definitions. Finally, Nordlander, Carlsson, and Gill (2008) give
the simplest presentation of a source-level semantics we know of; we extend it with algebraic datatypes and
pattern-matching, and use it as a reference to prove the soundness of our analysis.

One inessential detail in which the semantics often differ is the evaluation order of mutually-recursive
right-hand-sides. Many presentations enforce an arbitrary (e.g. left-to-right) evaluation order. Some sys-
tems (Syme, 2006; Nordlander, Carlsson, and Gill, 2008) allow a reduction to block on a variable whose
definition is not yet evaluated, and go evaluate it in turn; this provides the “best possible order” for the
user. Another interesting variant would be to say that the reduction order is unspecified, and that trying
to evaluate an uninitialized is always a fatal error / stuck term; this provides the “worst possible order”,
failing as much as possible; as far as we know, the previous work did not propose it, although it is a simple
presentation change. Most static analyses are evaluation-order-independent, so they are sound and complete
with respect to the “worst order” interpretation.
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A Properties

The following technical results can be established by simple inductions on typing derivations, without any
reference to an operational semantics.

Lemma 2 (Ignore inversion). Γ ` t : Ignore is provable with only Ignore in Γ.

Lemma 3 (Delay inversion). Γ ` t : Delay holds exactly when Γ maps all free variables of t to Delay or
Ignore.

Lemma 4 (Dereference inversion). Γ ` t : Dereference holds exactly when Γ maps all free variables of t to
Dereference.

Lemma 5 (Environment flow). If a derivation Γ ` t : m contains a sub-derivation Γ′ ` t′ : m′, then
∀x ∈ Γ, Γ(x) � Γ′(x).

Lemma 6 (Weakening). If Γ ` t : m holds then Γ + Γ′ ` t : m also holds.

(Weakening would not be admissible if our variable rule imposed Ignore on the rest of the context.)

Lemma 7 (Substitution). If Γ, x : mu ` t : m and Γ′ ` u : mu hold, then Γ + Γ′ ` t[u/x] : m holds.

Lemma 8 (Subsumption elimination). Any derivation in the system can be rewritten so that the subsumption
rule is only applied with the variable rule as premise.

Theorem 3 (Principal environments). Whenever both Γ1 ` t : m and Γ2 ` t : m hold, then min(Γ1,Γ2) `
t : m also holds.

Proof. The proof first performs subsumption elimination on both derivations, and then by simultaneous
induction on the results. The elimination phase makes proof syntax-directed, which guarantees that (on
non-variables) the same rule is always used on both sides in each derivation.

This results tells us that whenever Γ ` t : m holds, then it holds for a minimal environment Γ – the
minimum of all satisfying Γ.

Definition 1 (Minimal environment). Γ is minimal for t : m if Γ ` t : m and, for any Γ′ ` t : m we have
Γ � Γ′.

In fact, we can give a precise characterization of “minimal” derivations, that uniquely determines the
output of our right-to-left algorithm.

Definition 2 (Minimal binding rule). An application of the binding rule is minimal exactly when the choice
of Γ′

i is the least solution to the recursive equation in its third premise.

Definition 3 (Minimal derivation). A derivation is minimal if it does not use the subsumption rule, each
binding rule is minimal and, in the conclusion Γ ` x : m of each variable rule, Γ is minimal for x : m.

Definition 4 (Minimization). Given a derivation D :: Γ ` t : m, we define the (minimal) derivation
minimal(D) by:

• Turning each binding rule into a minimal version of this binding rule – this may require applying
Lemma 6 (Weakening) to the let rec derivation below.

• Performing subsumption-elimination to get another derivation of Γ ` t : m.

• Replacing the context of each variable rule by the minimal context for this variable, which gives a
minimal derivation of Γm ` t : m with Γm � Γ (this does not introduce new subsumptions).

Lemma 9 (Stability). If D is a minimal derivation, then minimal(D) = D.

Lemma 10 (Determinism). If D1 :: Γ1 ` t : m and D2 :: Γ2 ` t : m, then minimal(D1) and minimal(D2) are
the same derivation.

Corollary 2 (Minimality). The environment Γ of a derivation Γ ` t : m is minimal for t : m if and only if
Γ ` t : m admits a minimal derivation.

16



Proof. If Γ is minimal for t : m, then the context Γm � Γ obtained by minimization must itself be Γ.
Conversely, if a derivation Dm :: Γ ` t : m is minimal, then all other derivations Γ′ ` t : m have Dm as

minimal derivation by Lemma 9 (Stability) and Lemma 10 (Determinism), so Γ � Γ′ holds.

Theorem 4 (Localization). Γ ` t : m′ implies m [Γ] ` t : m [m′].
Furthermore, if Γ is minimal for t : m′, then m [Γ] is minimal for t : m [m′].

Proof. The proof proceeds by direct induction on the derivation, and does not change its structure: each
rule application in the source derivation becomes the same source derivation in the result. In particular,
minimality of derivations is preserved, and thus, by Corollary 2 (Minimality), minimality of environments is
preserved.

Besides associativity of mode composition, many cases rely on the fact that external mode composi-
tion preserves the mode order structure: m′

1 ≺ m′
2 implies m [m′

1] ≺ m [m′
2], and max(m [m′

1] ,m [m′
2]) is

m [max(m′
1,m

′
2)].

B Proofs for Section 5.3 (Soundness)

Lemma (1: Forcing modes).
If Γ, x : mx ` Ef [x] : m with m � Return, then also mx � Return.

Proof. Ef may be of the form L or E[Ff [L]]
In the case of value bindings L we have mx = Return by construction.
In the case with a forcing frame, Ef = E[Ff [L]], let us call mE the mode of the hole of E. It is immediate

that the mode imposed by L on its hole is Return, and that the mode imposed by Ff on its own hole is
Dereference, so the total mode mx is mE [Dereference [Return]]. We can prove by an easy induction on E
that mE is not Ignore or Delay – those are not evaluation contexts, so we have mE � Guard. We conclude
by monotonicity of mode composition:

mx = mE [Dereference [Return]] � Guard [Dereference [Return]] = Dereference

Theorem (1: Vicious). ∅ ` t : Return never holds for t ∈ Vicious.

Proof. Given ` t : Return, let us assume that t is E[x] with no value binding for x in E, and show that E
is not a forcing context.

We implicitly assume that all terms are well-scoped, so the absence of value binding means that x occurs
in a let rec binding still being evaluated somewhere in E: E[x] is of the form

E[x] = Eout[trec] trec = (let rec b, y = Ein[x], b′ in u)

where x is bound in b, b′ or is y itself.
Given our let rec typing rule (see Figure 3), the typing derivation for t contains a sub-derivation for

trec of the form

(Γi, (xj : mi,j)
j ` ti : Return)i (mi,j � Guard)i,j

(Γ′
i = Γi +

∑
(mi,j

[
Γ′
j

]
)j)i

(xi : Γ′
i)
i ` rec (xi = ti)

i

In particular, the premise for Ein[x] is of the form Γ, (xj : mj)
j ` Ein[x] : Return with (xj � Guard)j , and in

particular x � Guard so x � Return.
By Lemma 1 (Forcing modes), Ein cannot be a forcing context, and in consequence E is not forcing

either.

Theorem (2: Subject reduction). If Γ ` t : m and t→ t′ then Γ ` t′ : m.

Proof. We reason by inversion on the typing derivation of redexes, first for head-reduction t→hd t′ and then
for reduction t→ t′.
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Head reduction We only show the head-reduction case for functions; pattern-matching is very similar.
We have:

Γt, x : mx ` t : m [Dereference] [Delay]

Γt ` λx. t : m [Dereference] Γv ` v : m [Dereference]

Γt + Γv ` (λx. t) v : m

By associativity, m [Dereference] [Delay] is the same as m [Dereference].
By subsumption, Γt, x : mx ` t : m [Dereference] implies Γt, x : mx ` t : m.
To conclude by using Lemma 7 (Substitution), we must reconcile the mode of the argument v : m [Dereference]

with the (apparently arbitrary) mode x : mx of the variable. We reason by an inelegant case distinction.

• If m [Dereference] is Dereference, then by inversion (Lemma 4) either mx is Dereference (problem solved)
or x does not occur in t (no need for the substitution lemma).

• If m [Dereference] is not Dereference, then m must be Ignore or Delay. If it is Ignore, inversion (Lemma
2) directly proves our goal. If it is Delay, then by inversion (Lemma 3) mx itself can be weakened
(subsuming the derivation of t) to be below Delay.

Reduction under context Reducing a head-redex under context preserves typability by the argument
above. Let us consider the lookup case.

(x = v)
ctx
∈ E

E[x]→ E[v]

By inspecting the (x = v)
ctx
∈ E derivation, we find a value binding B within E with x = v, and a derivation

of the form

(xi : Γ′
i)
i ` rec B (m′

i)
i def

= (max(mi,Guard))i Γu, (xi : mi)
i ` u : m∑

(m′
i [Γ′

i])
i + Γu ` let rec B in u : m

(Γi, (xj : mi,j)
j ` vi : Return)i (mi,j � Guard)i,j

(Γ′
i = Γi +

∑
(mi,j

[
Γ′
j

]
)j)i

(xi : Γi)
i ` rec (xi = vi)

i

By abuse of notation, we will write mx, Γx and Γ′
x to express the mi, Γi and Γ′

i for the i such that xi = x.
The occurrence of x in the hole of E[�] is typed (eventually by a variable rule) at some mode m�. The

declaration-side mode mx was built by collecting the usage modes of all occurrences of x in the let rec

body u, which in particular contains the hole of E, so we have m� � mx by Lemma 5 (Environment flow).
The binding derivation gives us a proof Γx,Γrec ` v : Return that the binding x = v was correct

at its definition site, where Γrec has exactly the mutually-recursive variables (xi : mi)
i. Notice that this

subderivation is completely independent of the ambient expected mode m.
By Theorem 4 (Localization), we can compose this within m� to get a derivation m� [Γx,Γrec] ` v : m�,

that we wish to substitute into the hole of E. First we weaken it (Lemma 6) into the judgment mx [Γx,Γrec] `
v : m�.

Plugging this derivation in the hole of E requires weakening the derivation of u (the part of E[�] that
is after the declaration of x) to add the environment mx [Γx,Γrec]. Weakening is always possible (Lemma
6), but it may change the environment of the derivation, while we need to preserve the environment of E[x].
Consider the following valid derivation:

(xi : Γ′
i)
i ` rec B

(m′′
i )i

def
= (max(max(mi,mx [Γrec] (xi)),Guard))i Γu +mx [Γx] , (xi : mi)

i +mx [Γrec] ` u[v/x] : m∑
(m′′

i [Γ′
i])
i + Γu +mx [Γx] ` let rec B in u[v/x] : m

To show that we preserve the environment of E[x], we show that this derivation is not in a bigger environment
than the environment of our source term:∑

(m′′
i [Γ′

i])
i + Γu +mx [Γx] �

∑
(m′

i [Γ′
i])
i + Γu
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By construction we have mx � m′
x � m′′

x and Γx � Γ′
x, so mx [Γx] � m′′

x [Γ′
x] which implies∑

(m′′
i [Γ′

i])
i + Γu +mx [Γx] �

∑
(m′′

i [Γ′
i])
i + Γu

Then, notice that Γrec(xi) is exactly mx,i, so m′′
i is max(m′

i,mx [mx,i]). We can thus rewrite m′′
i [Γ′

i] into
m′
i [Γ]

′
i +mx [mxi ] [Γ′

i], which gives∑
(m′′

i [Γ′
i])
i + Γu =

∑
(m′

i [Γ′
i])
i +mx

[∑
(mx,i [Γ′

i])
i
]

+ Γu

The extra term
∑

(mx,i [Γ′
i])
i is precisely the term that appears in the definition of Γ′

x from the (Γi)
i,

taking into account transitive mutual dependencies – indeed, when we replace x by its value v, we replace
transitive dependencies on its mutual variables by direct dependencies on occurrences in v. We thus have∑

(mx,i [Γ′
i])
i � Γ′

x

and can conclude with ∑
(m′

i [Γ′
i])
i +mx

[∑
(mx,i [Γ′

i])
i
]

+ Γu

�
∑

(m′
i [Γ′

i])
i +mx [Γ′

x] + Γu

�
∑

(m′
i [Γ′

i])
i + Γu
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