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Our work

Just-in-time (JIT) compilation is essential to efficient dynamic language
implementations.
(Javascript, Lua, R... Java)

There is a blind spot in our formal understanding of JITs: speculation.

We present a language design to study speculative optimizations
and prove them correct.
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JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation

eliminates interpretation overhead (constant factor)

speculation and bailout

eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.
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What do we want to know?

Speculation requires keeping bailout data.

How should optimizations maintain/transform bailout data?
(inlining is tricky)

Does the presence of checkpoint restrict optimizations?
(hoisting writes or IO is tricky)

When an assumption fails, how much of the other optimizations can keep?
(non-stack-order is tricky)

How should practitioners reason about correctness?
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Harper’s Weekly cartoon of February 11, 1865. 8



Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42
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Contribution

A language design to model speculative optimization: Sourir

A kit of correct program transformations and optimizations

A methodology to reason about correct speculative optimizations

10



Section 2

Sourir
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A simple bytecode language

i ::=
| var x = e
| drop x
| x ← e
| array x [e]
| array x = [e∗]
| x [e1]← e2
| branch e L1 L2

| goto L
| print e
| read x
| call x = e(e∗)
| return e

| assume [e∗] else ξ ξ̃∗

| stop

e ::=
| se
| x [se]
| length(se)
| primop (se∗)

se ::=
| lit
| ‘F
| x

lit ::=
| . . . ,−1, 0, 1, . . .
| nil | true | false
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Versions

P ::= (F (x∗)→ DF )∗ program: a list of named functions
DF ::= (V → I )∗ function definition: list of versioned instruction streams
I ::= (L : i)∗ instruction stream with labeled instructions
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Checkpoints

Checkpoint: guards + bailout data.

assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉

Guards: just a list of expressions returning booleans.

Bailout data:

where to go: Ff .Vw .Ll

in what state: [x1 = e1, .. , xn = en]

(plus more: see inlining)
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Speculative optimization pipeline

Critical version
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Speculative optimization pipeline

copy

Critical version

15



Speculative optimization pipeline

copy

Critical version

Add checkpoints
and assumptions

15



Speculative optimization pipeline

copy

Critical version

Add checkpoints
and assumptions

Optimize
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Speculative optimization pipeline

Critical version

Final program:
 Two versions

Active version
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Speculative optimization pipeline

Critical version
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Section 3

Formalization
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Execution: Operational semantics

Configurations:

C ::= 〈P I LK ∗ M E 〉

Actions:

A ::= read lit | print lit Aτ := A | τ T ::= A∗.

Reduction:

C1
Aτ−→∗ C2 C1

T−→∗ C2
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Equivalence: (weak) bisimulation

Relation R between the configurations over P1 and P2.

R is a weak simulation if:

C1 C ′1

C2

R

Aτ

=⇒

C1 C ′1

C2 C ′2

R

Aτ

R

Aτ ∗

R is a weak bisimulation if R and R−1 are simulations.
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Bailout invariants

Version invariant: All versions of a function are equivalent.
(Necessary to replace the active version)

Bailout invariant: Bailing out more than necessary is correct.
(Necessary to add new assumptions)
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Section 4

Optimizations
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Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT ) Lint Lnonint
Lint : . . .
Lnonint : . . .

Use a line here please!
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Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT ) Lint Lnonint
Lint : . . .
Lnonint : . . .

Vopt →

L0 : assume [(tag = INT )] else 〈F .Vbase .L1 δ〉
L1 : branch (tag = INT ) Lint Lnonint
Lint : . . .
Lnonint : . . .

Checkpoint + guard inserted Bailout invariant!
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Branch pruning – from the kit
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L0 : assume [(tag = INT )] else 〈F .Vbase .L1 δ〉
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Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT ) Lint Lnonint
Lint : . . .
Lnonint : . . .

Vopt →
L0 : assume [(tag = INT )] else 〈F .Vbase .L1 δ〉
Lint : . . .

unreachable code elimination
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Inlining

Fmain( )→
Vinlined →
L0 : array vec = [1, 2, 3, 4]
L2 : var size = nil
L3 : var obj = vec
Lcp1 : assume [(obj 6= nil)] else . . .
L5 : var len = length(obj)
L6 : size ← (len ∗ 4)
L7 : drop len
L8 : drop obj
L9 : goto Lret
Lret : print size
Vbase → . . .

Fmain( )→
Vbase →
L0 : array vec = [1, 2, 3, 4]
L2 : call size = ‘Fsize(vec)
Lret : print size

,Fsize(obj)→
Vopt →
Lcp1 : assume [(obj 6= nil)] else . . .
Lvec : var len = length(obj)
L3 : return (len ∗ 4)
Vbase → . . .

Need for an extra frame in the inlined version:
〈Fmain.Vbase .Lret size [vec = vec]〉
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Conclusion

All you need for speculation: versions + checkpoints.

Future work: bidirectional transformations.

Thanks!
Questions?
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