
Speculative Optimizations without Fear

Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel,
Jan Vitek, Amal Ahmed

Northeastern University, Boston, USA

September 12, 2017

1

1 Context

2 Sourir

3 Formalization

4 Optimizations

2

Section 1

Context

3

Our work

Just-in-time (JIT) compilation is essential to efficient dynamic language
implementations.
(Javascript, Lua, R... Java)

There is a blind spot in our formal understanding of JITs: speculation.

We present a language design to study speculative optimizations
and prove them correct.

4

Just-in-time compilation

Source program

JITs:

5

Just-in-time compilation

Source program

Critical region

JITs: Profiling

5

Just-in-time compilation

Source program

Critical region

Machine code

JITs: Profiling

+ High/Low languages
+ Dynamic code generation/mutation

5

Just-in-time compilation

Source program

Critical region

Machine code

JITs: Profiling

+ High/Low languages
+ Dynamic code generation/mutation

+ Speculation
5

Just-in-time compilation

Source program

Critical region

Machine code

JITs: Profiling

+ High/Low languages
+ Dynamic code generation/mutation

+ Speculation

Checkpoint

and bailout
5

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation

eliminates interpretation overhead (constant factor)

speculation and bailout

eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout

eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout
eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout
eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout
eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout
eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation?

This work.

6

JITs:

profiling

high- and low-level languages (or multi-tiers, etc.)

dynamic code generation + mutation
eliminates interpretation overhead (constant factor)

speculation and bailout
eliminates dynamic features overhead:
dispatch (OO languages), type checks (Java),
code loading (Java), redefinable primitives (R...)

JIT formalization: Myreen [2010]

Stack language and x86 assembly

dynamic code generation

code mutation

mechanized in HOL!

What about speculation? This work.

6

What do we want to know?

Speculation requires keeping bailout data.

How should optimizations maintain/transform bailout data?
(inlining is tricky)

Does the presence of checkpoint restrict optimizations?
(hoisting writes or IO is tricky)

When an assumption fails, how much of the other optimizations can keep?
(non-stack-order is tricky)

How should practitioners reason about correctness?

7

Harper’s Weekly cartoon of February 11, 1865. 8

Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42

9

Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42

9

Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42

9

Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout a checkpoint instruction

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42

9

Sourir

high- and low-level languages a single bytecode language

dynamic code generation one unrolled multi-version program

speculative optimization and bailout a checkpoint instruction

Ffun(c)→
Vtough →
L0 : var o = 1
L1 : print (c + o)
Vluck →
L0 : assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉
L1 : print 42

9

Contribution

A language design to model speculative optimization: Sourir

A kit of correct program transformations and optimizations

A methodology to reason about correct speculative optimizations

10

Section 2

Sourir

11

A simple bytecode language

i ::=
| var x = e
| drop x
| x ← e
| array x [e]
| array x = [e∗]
| x [e1]← e2
| branch e L1 L2

| goto L
| print e
| read x
| call x = e(e∗)
| return e

| assume [e∗] else ξ ξ̃∗

| stop

e ::=
| se
| x [se]
| length(se)
| primop (se∗)

se ::=
| lit
| ‘F
| x

lit ::=
| . . . ,−1, 0, 1, . . .
| nil | true | false

12

Versions

P ::= (F (x∗)→ DF)∗ program: a list of named functions
DF ::= (V → I)∗ function definition: list of versioned instruction streams
I ::= (L : i)∗ instruction stream with labeled instructions

13

Checkpoints

Checkpoint: guards + bailout data.

assume [(c = 41)] else 〈Ffun.Vtough.L1 [c = c , o = 1]〉

Guards: just a list of expressions returning booleans.

Bailout data:

where to go: Ff .Vw .Ll

in what state: [x1 = e1, .. , xn = en]

(plus more: see inlining)

14

Speculative optimization pipeline

Critical version

15

Speculative optimization pipeline

copy

Critical version

15

Speculative optimization pipeline

copy

Critical version

Add checkpoints
and assumptions

15

Speculative optimization pipeline

copy

Critical version

Add checkpoints
and assumptions

Optimize

15

Speculative optimization pipeline

Critical version

Final program:
 Two versions

Active version

15

Speculative optimization pipeline

Critical version

15

Section 3

Formalization

16

Execution: Operational semantics

Configurations:

C ::= 〈P I LK ∗ M E 〉

Actions:

A ::= read lit | print lit Aτ := A | τ T ::= A∗.

Reduction:

C1
Aτ−→∗ C2 C1

T−→∗ C2

17

Equivalence: (weak) bisimulation

Relation R between the configurations over P1 and P2.

R is a weak simulation if:

C1 C ′1

C2

R

Aτ

=⇒

C1 C ′1

C2 C ′2

R

Aτ

R

Aτ ∗

R is a weak bisimulation if R and R−1 are simulations.

18

Bailout invariants

Version invariant: All versions of a function are equivalent.
(Necessary to replace the active version)

Bailout invariant: Bailing out more than necessary is correct.
(Necessary to add new assumptions)

19

Section 4

Optimizations

20

Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT) Lint Lnonint
Lint : . . .
Lnonint : . . .

Use a line here please!

21

Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT) Lint Lnonint
Lint : . . .
Lnonint : . . .

Vopt →

L0 : assume [(tag = INT)] else 〈F .Vbase .L1 δ〉
L1 : branch (tag = INT) Lint Lnonint
Lint : . . .
Lnonint : . . .

Checkpoint + guard inserted Bailout invariant!

21

Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT) Lint Lnonint
Lint : . . .
Lnonint : . . .

Vopt →

L0 : assume [(tag = INT)] else 〈F .Vbase .L1 δ〉
L1 : branch true Lint Lnonint
Lint : . . .
Lnonint : . . .

constant folding

21

Branch pruning – from the kit

Vbase →

L1 : branch (tag = INT) Lint Lnonint
Lint : . . .
Lnonint : . . .

Vopt →
L0 : assume [(tag = INT)] else 〈F .Vbase .L1 δ〉
Lint : . . .

unreachable code elimination

21

Inlining

Fmain()→
Vinlined →
L0 : array vec = [1, 2, 3, 4]
L2 : var size = nil
L3 : var obj = vec
Lcp1 : assume [(obj 6= nil)] else . . .
L5 : var len = length(obj)
L6 : size ← (len ∗ 4)
L7 : drop len
L8 : drop obj
L9 : goto Lret
Lret : print size
Vbase → . . .

Fmain()→
Vbase →
L0 : array vec = [1, 2, 3, 4]
L2 : call size = ‘Fsize(vec)
Lret : print size

,Fsize(obj)→
Vopt →
Lcp1 : assume [(obj 6= nil)] else . . .
Lvec : var len = length(obj)
L3 : return (len ∗ 4)
Vbase → . . .

Need for an extra frame in the inlined version:
〈Fmain.Vbase .Lret size [vec = vec]〉

22

Inlining

Fmain()→
Vinlined →
L0 : array vec = [1, 2, 3, 4]
L2 : var size = nil
L3 : var obj = vec
Lcp1 : assume [(obj 6= nil)] else . . .
L5 : var len = length(obj)
L6 : size ← (len ∗ 4)
L7 : drop len
L8 : drop obj
L9 : goto Lret
Lret : print size
Vbase → . . .

Fmain()→
Vbase →
L0 : array vec = [1, 2, 3, 4]
L2 : call size = ‘Fsize(vec)
Lret : print size

,Fsize(obj)→
Vopt →
Lcp1 : assume [(obj 6= nil)] else . . .
Lvec : var len = length(obj)
L3 : return (len ∗ 4)
Vbase → . . .

Need for an extra frame in the inlined version:
〈Fmain.Vbase .Lret size [vec = vec]〉

22

Conclusion

All you need for speculation: versions + checkpoints.

Future work: bidirectional transformations.

Thanks!
Questions?

23

Magnus O. Myreen. Verified just-in-time compiler on x86. In Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’10, pages 107–118, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-479-9. doi: 10.1145/1706299.1706313.

24

	Context
	Sourir
	Formalization
	Optimizations

